TR2021002234A1 - A flow correcting adapter for ventilation devices - Google Patents

A flow correcting adapter for ventilation devices

Info

Publication number
TR2021002234A1
TR2021002234A1 TR2021/002234A TR2021002234A TR2021002234A1 TR 2021002234 A1 TR2021002234 A1 TR 2021002234A1 TR 2021/002234 A TR2021/002234 A TR 2021/002234A TR 2021002234 A TR2021002234 A TR 2021002234A TR 2021002234 A1 TR2021002234 A1 TR 2021002234A1
Authority
TR
Turkey
Prior art keywords
flow
adapter
channel
ventilation devices
gas
Prior art date
Application number
TR2021/002234A
Other languages
Turkish (tr)
Inventor
Atalay Ozan
Orçun Çangal Berkant
Furkan Tektaş Meli̇h
Eray Torun Ali̇
Original Assignee
Aselsan Elektronik Sanayi Ve Ticaret As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aselsan Elektronik Sanayi Ve Ticaret As filed Critical Aselsan Elektronik Sanayi Ve Ticaret As
Priority to TR2021/002234A priority Critical patent/TR2021002234A1/en
Publication of TR2021002234A1 publication Critical patent/TR2021002234A1/en

Links

Abstract

Buluş, ventilasyon cihazlarında kullanılan ve hastaya verilen hava-oksijen karışımının uygun debide ve doğru oranlarda verilmesini sağlayan akış adaptörü (10) ile ilgilidir.The invention relates to the flow adapter (10), which is used in ventilation devices and ensures that the air-oxygen mixture given to the patient is given at the appropriate flow rate and at the right rates.

Description

TARIFNAME Ventilasyon cihazlari için bir akis düzeltici adaptör TEKNIK ALAN Bulus, genel olarak ventilatör ve saglik cihazlarinda kullanilan ve hastaya verilen hava-oksijen karisiminin düzenlenmesini saglayan akis adaptörleri ile ilgilidir. Bulus özellikle, ventilasyon cihazlarinda kullanilan ve hastaya verilen hava-oksijen karisiminin uygun debide ve dogru oranlarda verilmesini saglayan akis düzeltici adaptör ile ilgilidir. TEKNIGIN BILINEN DURUMU Vantilatör adiyla bilinen solunum cihazlari havayi akcigerlerin içine ve disina hareket ettirerek mekanik ventilasyon saglamak, fiziksel olarak nefes alamayan veya yetersiz nefes alan bir hastaya nefes vermek için tasarlanmis bir makinedir. Bu cihazla hava-oksijen gaz karisimi, kani oksijenle doyurmak ve karbondioksiti akcigerlerden çikarmak için akcigerlere zorla verilir. Ventilasyon cihazlarinda hastaya istenilen debide ve dogru oranlarda hava ve oksijen karisimi vermek oldukça önemlidir. Ventilasyon cihazinin saglikli çalisabilmesi için cihaz üzerinde bulunan sensörlerin hassas okuma yapmalari gerekir. Cihaz içerisinde meydana gelen akis, karsi dirence veya yüksek basinç farkina maruz kaldiginda türbülansa girmekte bu da sensörlerin akisi hassas ölçmesini engellenmektedir. Olçi'im'ün dogrulugunu etkileyen diger önemli faktör akisin özelliklerinin stabil hale gelmesidir. Akisin içerisinde meydana geldigi borunun silindirik dik bir kesiti degerlendirildiginde, iç duvara ayni uzaklikta olan farkli iki kontrol hacmi için akis özelliklerinin benzer (hiz, türbülans vb.) olmasi gerekir. Bu durum tam gelismis akis olarak adlandirilir. Sensörün dogru ve hassas ölçüm yapabilmesi için akisin tam gelismis akis olmasi önemlidir. Mevcut teknikte kullanilan ventilasyon cihazlarinda, saglik sistemlerinde gazin istenilen debilerde hassas bir içimde ayarlanmasi oldukça önemlidir. Saglik sistemlerinde kullanilan akis sensörlerinin sisteme düzgün çikti verebilmesi için sensöre giren akisin oldukça Iaminar ve tam gelismis olmasi gerekir. Ventilasyon cihazi gibi saglik sistemlerinde bulunan akis dirençleri, valfler gibi komponentler, akis profilinin bozulmasina ve türbülansin artmasina neden olur. Sensörden dogru ve hassas veriler alabilmek için, silindirik bir boru içinde iç akis durumu düsünüldügünde, akis hiz profili sinirlarda sifir ve merkezde maksimum olacak sekilde tam gelismeli ve Iaminar özellik göstermelidir. Günümüzde akis debi ölçme sensörlerinin dogrulugunu artirmak için bal petegi ya da silindirik yapida olan akis düzenleyiciler kullanilmaktadir. Ancak bu akis düzenleyicilerin ana amaci akisin türbülansini azaltmaktir. Tam gelismis akis profiline sahip bir akis, bu akis düzenleyiciden geçtiginde akis profili önemli ölçüde degismezken, akistaki mikro veya nano boyutta bazi girdaplar sönümlenir, yani akisin türbülansi azaltilir. Teknigin bilinen durumunda, ventilasyon cihazinda akis oransal valf ile kontrol edilmektedir. Bu kisimda akis çok dar bir alandan geçmektedir ve valf çikisinda çok yüksek hiza sahiptir. Akisin kisa mesafede tam gelismis hiz profiline sahip olmasi ve türbülansin düsük olmasi, sensörlerin dogru ölçümü açisindan Önemlidir. Valften sonra akisin ilerledigi geometride kivrimlar, küt duvarlar vb. tasarimlar ve yüksek hiz nedeniyle dogru debi ölçümü yapilamamaktadir. Çünkü burada meydana gelen akis, tam gelismis ve laminar profil kriterlerine uygun degildir. Akis özellikleri düzenlenmeden yapilan ölçümler, akisin hiz profilinin tam gelismis olmamasi nedeni ile sensörün oryantasyonuna göre farkli sonuçlar verir. Akis üzerinde silindirik bir kesit için borunun duvarina uzakligi ayni olan farkli noktalarda lokal olarak farkli hiz ve basinç degerleri ölçülür. Bu durum sensörün dogrulugunu etkilemektedir. Sonuç olarak ventilasyon cihazlarinda akisin düzeltilmesi ile ilgili gelistirmelere gidilmekte, bu nedenle yukaridaki deginilen dezavantajlari ortadan kaldiracak ve mevcut sistemlere çözüm getirecek yeni yapilanmalara ihtiyaç duyulmaktadir. BULUSUN AMACI Mevcut bulus, yukarida bahsedilen gereksinimleri karsilayan, tüm dezavantajlari ortadan kaldiran ve ilave bazi avantajlar getiren akis düzeltici adaptör ile ilgilidir. Bulusun ana amaci; ventilasyon cihazi içerisinde hastaya en uygun hava-oksijen karisiminin verilmesi için tam gelismis akis profilini ve türbülansin azaltilmasini saglamaktir. Bunu saglamak üzere oransal valften çikan akis, akis adaptörü sayesinde merkezlenir, hiz profili düzeltilir ve ilerledigi ince kanal sayesinde türbülans azaltilir. Benzer akis düzlestirici tasarimlardaki ayri kanallar nedeniyle her kanala giren debi miktari farklidir ve düzlestirici parçanin çikisinda sensör ölçümüne uygun olmayan bir akis ve hiz profili çikabilir. Bulus konusu yapilanma ile oransal valften çikan akisa öncelikle kivrimli bir yapi ile yön verilerek gazin belli bir hacim içerisinde karismasi saglanir, sonra ana kanal etrafindaki küçük çapli delikler akisi kanala yönlendirmek için kullanilir. Ayrica kanal üst deligi çapi daha büyük tasarlanir ve yan çeperlerden giren gazin büyük çaptan geçen yüksek debide gaz ile yönlenmesini ve akisin homojen olmasini saglar. Kanal uzunlugu akisin tam gelismis bir hiz profiline ulasmasi için yeterli uzunluktadir. Tasarim sayesinde merkezden kaçik ve türbülansi yüksek bir akis, kisa mesafede/sürede debi ölçme sensörünün girisine uygun hale getirilir. Tasarim borunun merkezinden çikmayan, tam gelismemis akislari düzeltme özelligi açisindan diger tasarimlardan ayrilir. Yukarida bahsedilen ve asagidaki detayli anlatimdan anlasilacak tüm avantajlari gerçeklestirmek üzere mevcut bulus; ventilasyon cihazlarinda kullanilan ve bir giris agzina sahip bir montaj kanali içinde konumlanan, giris agzindan gelen gaz akisin türbülansinin azaltilmasini ve tam gelismis akis profiline sahip olmasini saglayan akis adaptörü olup; - akis adaptörünün giris agzina bakan yüzeyinde bulunan ve giris agzindan giren gazin çarparak yavaslamasini saglayan akis çarpma yüzeyi, o akis adaptörünün ortasindan iç kisminda bir akis kanali olacak sekilde çikinti olarak formlandirilan ve akis çarpma yüzeyinden daha yüksek seviyede olan, yanal yüzeyinde çevresel olarak bulunan yanal deliklere ve 'üst yüzeyinde bir merkezcil delige sahip olan bir merkezleme kulesi, içeren bir yapilanma elde edilmistir. Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen sekiller ve bu sekillere atiflar yapilmak suretiyle yazilan detayli açiklama sayesinde daha net olarak anlasilacaktir. Bu nedenle degerlendirmenin de bu sekiller ve detayli açiklama göz önüne alinarak yapilmasi gerekmektedir. SEKILLERIN KISA AÇIKLAMASI Mevcut bulusun yapilanmasi ve ek elemanlarla birlikte avantajlarinin en iyi sekilde anlasilabilmesi için asagida açiklamasi yapilan sekiller ile birlikte degerlendirilmesi Sekil 1 Bulus konusu akis adaptörünün perspektif bir görünümüdür. Sekil 2 Bulus konusu akis adaptörün'ün yandan bir görünümüdür. Sekil 3 Bulus konusu akis adaptörünün içine konumlandigi kanal 'üzerinde yan kesit bir görünümüdür REFERANS NUMARALARI . Akis adaptörü 11. Merkezleme kulesi 12. Merkezcil delik 13. Yanal delik 14. Akis çarpma yüzeyi . Akis kanali . Montaj kanali 21. Giris agzi 22. Akis havuzu BULUSUN DETAYLI AÇIKLANMASI Bu detayli açiklamada, bulus konusu akis adaptörünün (10) tercih edilen yapilanmalari, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Sekil 1 ve Sekil 2'de bulus konusu akis adaptörünün (10) görünümleri bulunmaktadir. Söz konusu akis adaptörü (10) ventilasyon cihazinda hava-oksijen karisiminin olusturuldugu kanal içerisine konumlanmaktadir. Akis adaptörü (10); üzerine gelen gaz akisin çarparak yavaslamasini saglayan bir akis çarpma yüzeyinden (14); akis adaptörü (10) ile içine konumlandigi montaj kanali (20) arasinda olusan akis havuzuna (22) dolan gazin, akis adaptöründen (10) geçisini saglayan, merkezcil delige (12), yanal deliklere (13) ve bir akis kanalina (15) sahip olan bir merkezleme kulesinden (11) meydana gelmektedir. Bahsedilen akis çarpma yüzeyi (14), akis adaptörünün (10) giris agzina (21) bakan yüzeyinde bulunmaktadir. Merkezleme kulesi (11) ise akis adaptörünün (10) ortasindan çikinti olarak akis çarpma yüzeyinden (14) daha yüksek seviyede formlandirilmistir. Sekil 3'te akis adaptörünün (10) bir montaj kanalina (20) irtibatli hali görülmektedir. Normal sartlarda giris agzindan (21) giren gaz, akis hattini merkezlememekte ve türbülansa neden olmaktadir. Gaz akisinin merkezcil ve tam gelismis akis olmamasi, akis sensörünün hassas okuma yapmasini engellemektedir. Bu durum saglik sistemlerinde kullanilan akis sensörleri gibi hassas ölçüm yapmasi gereken Cihazlarin, sensörün montajina bagli olarak degisen ve dogru olmayan degerler vermesine neden olmaktadir. Akis adaptörünün (10), montaj kanali (20) içinde konumlanmasi ile giris agzindan (21) giren ve merkezcil olmayan akis, akis çarpma yüzeyine (14) çarparak yavaslamakta ve akis havuzunu (22) doldurmaktadir. Akis çarpma yüzeyi (14), gaz akisin hizini yavaslatmak için oval forma sahiptir. Akis havuzuna (22) dolan gaz, yüksek hizli ve merkezcil olmama özelligini akis çarpma yüzeyinin (14) ve akis havuzunun (22) yapisi sayesinde kaybetmektedir. Akis havuzu (22) içine dolan gaz, merkezleme kulesinin (11) üzerinde çevresel olarak bulunan yanal delikler (13) vasitasi ile simetrik olarak merkezleme kulesine (11) dolmaktadir. Merkezleme kulesinin (11) yüksekligi ve üzerindeki yanal deliklerin (13) sayisi tercih edilecek olan basinç düsümüne ve homojen hiz dagilimina göre degistirilebilmektedir. Merkezleme kulesinin (11) üst kisminda bir merkezcil delik (12) bulunmaktadir. Merkezcil deligin (12) çapi, yanal deliklerin (13) çapindan büyüktür. Bu sayede merkezcil delikten (12) yüksek debili gaz akisi saglanmakta ve bu akisin, yanal deliklerden (13) giren gazi çikis hattina dogru sürüklenmesini ve akisin homojen bir sekilde karisarak akis kanalindan (15) geçmesini ve akis adaptöründen (10) laminar olarak çikmasini saglamaktadir. Akis kanalinin (15) uzunlugu ve çapi, akisin tam gelismis hiz profiline sahip olacagi sekilde optimize edilebilmektedir. Akis kanalinin (15) çapi küçültülerek daha yüksek basinç düsümlü bir hiz profili de saglanabilmektedir. Akis adaptörünün (10), akis hattina baglantiyi saglayan arayüzleri disli ya da konik siki geçme seklinde olabilmektedir. Böylelikle akis adaptörünün (10) herhangi bir akis hatti üzerine montaji kolay olmaktadir. Akisin, ilerledigi yol boyunca keskin geometri degisiklikleri ile karsilasmamasi için tasarim amacina uygun olarak adaptör (10) üzerinde köse yuvarlamalar yapilmistir. Bu sayede ters akislarin ve girdaplarin meydana gelmesi önlenmektedir. Ters akisin ve girdaplarin önlenmesi sonucunda türbülans olusumu da önlenmis olmaktadir. TR TR TR DESCRIPTION A flow corrector adapter for ventilation devices TECHNICAL FIELD The invention relates to flow adapters that are generally used in ventilators and healthcare devices and enable the regulation of the air-oxygen mixture delivered to the patient. The invention is particularly related to the flow corrector adapter used in ventilation devices, which ensures that the air-oxygen mixture given to the patient is delivered at the appropriate flow rate and in the correct proportions. KNOWN STATE OF THE ART Respiratory devices, also known as ventilators, are machines designed to provide mechanical ventilation by moving air in and out of the lungs, and to breathe into a patient who is physically unable to breathe or who is breathing inadequately. With this device, the air-oxygen gas mixture is forced into the lungs to saturate the blood with oxygen and remove carbon dioxide from the lungs. It is very important to give the patient a mixture of air and oxygen at the desired flow rate and in the correct proportions in ventilation devices. In order for the ventilation device to work properly, the sensors on the device must make precise readings. The flow occurring within the device enters turbulence when exposed to resistance or high pressure difference, which prevents the sensors from measuring the flow accurately. Another important factor affecting the accuracy of measurement is the stabilization of the flow properties. When a cylindrical vertical section of the pipe in which the flow occurs is evaluated, the flow characteristics must be similar (velocity, turbulence, etc.) for two different control volumes at the same distance from the inner wall. This situation is called fully developed flow. It is important that the flow is fully developed so that the sensor can make accurate and sensitive measurements. It is very important to precisely adjust the gas at the desired flow rates in the ventilation devices and healthcare systems used in the current technique. In order for flow sensors used in healthcare systems to give proper output to the system, the flow entering the sensor must be quite narrow and fully developed. Components such as flow resistances and valves in healthcare systems such as ventilation devices cause the flow profile to deteriorate and turbulence to increase. In order to receive accurate and sensitive data from the sensor, when the internal flow situation in a cylindrical pipe is considered, the flow velocity profile must be fully developed and have a laminar feature, with zero at the borders and maximum at the center. Nowadays, flow regulators with honeycomb or cylindrical structures are used to increase the accuracy of flow rate measurement sensors. However, the main purpose of these flow regulators is to reduce the turbulence of the flow. When a flow with a fully developed flow profile passes through this flow regulator, the flow profile does not change significantly, while some micro- or nano-sized vortices in the flow are damped, that is, the turbulence of the flow is reduced. In the state of the art, the flow in the ventilation device is controlled by a proportional valve. In this part, the flow passes through a very narrow area and has a very high alignment at the valve outlet. It is important for the flow to have a fully developed speed profile in a short distance and to have low turbulence for the accurate measurement of the sensors. There may be folds, blunt walls, etc. in the geometry where the flow proceeds after the valve. Accurate flow measurement cannot be made due to designs and high speed. Because the flow occurring here does not meet the fully developed and laminar profile criteria. Measurements made without regulating the flow properties give different results depending on the orientation of the sensor because the speed profile of the flow is not fully developed. For a cylindrical section on the flow, locally different velocity and pressure values are measured at different points with the same distance from the pipe wall. This affects the accuracy of the sensor. As a result, improvements are being made to improve the flow in ventilation devices, therefore new structures are needed that will eliminate the disadvantages mentioned above and provide solutions to existing systems. PURPOSE OF THE INVENTION The present invention relates to a flow corrector adapter that meets the above-mentioned requirements, eliminates all disadvantages and brings some additional advantages. The main purpose of the invention is; It is to ensure a fully developed flow profile and reduction of turbulence in order to provide the most appropriate air-oxygen mixture to the patient within the ventilation device. To achieve this, the flow coming out of the proportional valve is centered thanks to the flow adapter, the speed profile is corrected and turbulence is reduced thanks to the thin channel through which it moves. Due to the separate channels in similar flow straightener designs, the flow rate entering each channel is different and a flow and velocity profile that is not suitable for sensor measurement may occur at the exit of the straightener part. With the configuration subject to the invention, the flow coming out of the proportional valve is first directed with a curved structure to ensure that the gas is mixed within a certain volume, and then the small diameter holes around the main channel are used to direct the flow to the channel. In addition, the upper hole diameter of the channel is designed larger and ensures that the gas entering from the side walls is directed with high flow rate gas passing through the large diameter and the flow is homogeneous. The channel length is long enough for the flow to reach a fully developed velocity profile. Thanks to the design, an off-center and highly turbulent flow is made suitable for the input of the flow measurement sensor in a short distance/duration. The design differs from other designs in terms of its ability to correct immature flows that do not originate from the center of the pipe. The present invention aims to realize all the advantages mentioned above and which can be understood from the detailed explanation below; It is a flow adapter used in ventilation devices and positioned in a mounting channel with an inlet port, ensuring that the turbulence of the gas flow coming from the inlet port is reduced and has a fully developed flow profile; - The flow impingement surface, which is located on the surface of the flow adapter facing the inlet and which causes the gas entering from the inlet to slow down by colliding with it, has lateral holes located circumferentially on its lateral surface, which are formed as a protrusion from the middle of that flow adapter, with a flow channel on the inside, and are at a higher level than the flow impingement surface. and a centering tower having a centripetal hole on its upper surface, a structure is obtained. The structural and characteristic features and all the advantages of the invention will be understood more clearly thanks to the figures given below and the detailed explanation written by making references to these figures. For this reason, the evaluation should be made taking these figures and detailed explanation into consideration. BRIEF DESCRIPTION OF THE FIGURES The structure of the present invention and its evaluation with the figures explained below in order to best understand its advantages with additional elements. Figure 1 is a perspective view of the flow adapter that is the subject of the invention. Figure 2 is a side view of the flow adapter that is the subject of the invention. Figure 3 is a side sectional view of the flow adapter of the invention on the channel in which it is positioned. REFERENCE NUMBERS. Flow adapter 11. Centering tower 12. Centripetal hole 13. Lateral hole 14. Flow impact surface. Streaming channel . Mounting channel 21. Inlet port 22. Flow pool DETAILED DESCRIPTION OF THE INVENTION In this detailed description, the preferred embodiments of the flow adapter (10) subject to the invention are explained only for a better understanding of the subject and in a way that does not create any limiting effect. Figure 1 and Figure 2 show the views of the flow adapter (10) of the invention. The flow adapter (10) in question is positioned within the channel where the air-oxygen mixture is created in the ventilation device. Flow adapter (10); A flow impingement surface (14) that causes the incoming gas flow to slow down by impacting it; It has a centripetal hole (12), lateral holes (13) and a flow channel (15), which allows the gas filled into the flow pool (22) formed between the flow adapter (10) and the mounting channel (20) in which it is positioned, to pass through the flow adapter (10). It consists of a centering tower (11). The said flow impact surface (14) is located on the surface facing the inlet port (21) of the flow adapter (10). The centering tower (11) is formed as a protrusion from the middle of the flow adapter (10) at a higher level than the flow impact surface (14). Figure 3 shows the flow adapter (10) connected to a mounting channel (20). Under normal conditions, the gas entering from the inlet port (21) does not center the flow line and causes turbulence. The fact that the gas flow is not centripetal and fully developed prevents the flow sensor from making precise readings. This causes devices that need to make precise measurements, such as flow sensors used in healthcare systems, to give varying and inaccurate values depending on the mounting of the sensor. With the flow adapter (10) positioned in the mounting channel (20), the non-centripetal flow entering from the inlet port (21) slows down by hitting the flow impact surface (14) and fills the flow pool (22). The flow impact surface (14) has an oval form to slow down the speed of the gas flow. The gas filling the flow pool (22) loses its high-speed and non-centripetal feature thanks to the structure of the flow impact surface (14) and the flow pool (22). The gas filled into the flow pool (22) is filled symmetrically into the centering tower (11) through the lateral holes (13) located circumferentially on the centering tower (11). The height of the centering tower (11) and the number of lateral holes (13) on it can be changed according to the preferred pressure drop and homogeneous velocity distribution. There is a centripetal hole (12) at the top of the centering tower (11). The diameter of the centripetal hole (12) is larger than the diameter of the lateral holes (13). In this way, high flow rate gas flow is provided through the centripetal hole (12), and this flow ensures that the gas entering from the lateral holes (13) is dragged towards the outlet line, and the flow mixes homogeneously, passes through the flow channel (15), and exits from the flow adapter (10) in a laminar manner. The length and diameter of the flow channel (15) can be optimized so that the flow has a fully developed speed profile. A velocity profile with higher pressure drop can also be achieved by reducing the diameter of the flow channel (15). The interfaces of the flow adapter (10) that provide connection to the flow line can be in the form of threaded or conical fit. Thus, it is easy to mount the flow adapter (10) on any flow line. In order to prevent the flow from encountering sharp geometry changes along its path, corner roundings have been made on the adapter (10) in accordance with the design purpose. In this way, reverse flows and eddies are prevented from occurring. As a result of preventing reverse flow and eddies, turbulence formation is also prevented. TR TR TR

TR2021/002234A 2021-02-17 2021-02-17 A flow correcting adapter for ventilation devices TR2021002234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TR2021/002234A TR2021002234A1 (en) 2021-02-17 2021-02-17 A flow correcting adapter for ventilation devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2021/002234A TR2021002234A1 (en) 2021-02-17 2021-02-17 A flow correcting adapter for ventilation devices

Publications (1)

Publication Number Publication Date
TR2021002234A1 true TR2021002234A1 (en) 2022-08-22

Family

ID=84100698

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2021/002234A TR2021002234A1 (en) 2021-02-17 2021-02-17 A flow correcting adapter for ventilation devices

Country Status (1)

Country Link
TR (1) TR2021002234A1 (en)

Similar Documents

Publication Publication Date Title
CN101900588B (en) Flow sensing device including a tapered flow channel
US9713438B2 (en) Flow sensor
EP3136062B1 (en) Flow sensor assembly with integral bypass channel
US7631562B1 (en) Mass-flow sensor with a molded flow restrictor
EP2482044B1 (en) Flow sensor with enhanced flow range capability
US20050039809A1 (en) Flow sensor with integrated delta P flow restrictor
KR20010021842A (en) Flowmeter
CN110662946B (en) Flow rate measuring device and flow rate measuring method
TR2021002234A1 (en) A flow correcting adapter for ventilation devices
EP4279879A1 (en) High-measurement-precision differential pressure flowmeter capable of being repeatedly sterilized
CN205580530U (en) Injection formula flow detection device for medical instruments
CN109540229A (en) Phase unsteady flow saturated steam flowing meter
CN209342163U (en) Long flowmeter for pipe
CN105698878A (en) Jet type flow detection device for medical instrument
JP3179720U (en) Flow measuring device
WO1997042467A1 (en) Inverted venturi flow element for measuring fluid velocity in a conduit
CN209727186U (en) A kind of ball-type current stabilization metering mould group for hot type gas meter, flow meter
JP2003166862A (en) Flowmeter, flow measuring device and medical flow measuring device
JP5015622B2 (en) Flow rate measurement method
TR2021004544A2 (en) A flow sensor device
CN116754027A (en) Air flow sensor, air circuit system based on air flow sensor and ventilation treatment equipment
SE535494C2 (en) Coaxial flowmeter element and method for measuring flow
US8707780B2 (en) Fluid mixture metering device including an arcuate path on the periphery of the impeller wheel
JP2014515491A (en) Measuring device for measuring fluid flow rate
CN105268069B (en) Blower fan cabin