JP3179720U - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP3179720U
JP3179720U JP2012005382U JP2012005382U JP3179720U JP 3179720 U JP3179720 U JP 3179720U JP 2012005382 U JP2012005382 U JP 2012005382U JP 2012005382 U JP2012005382 U JP 2012005382U JP 3179720 U JP3179720 U JP 3179720U
Authority
JP
Japan
Prior art keywords
flow rate
fluid
pressure
wake
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012005382U
Other languages
Japanese (ja)
Inventor
一光 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN APPLIED-FLOW CO. LTD
Original Assignee
JAPAN APPLIED-FLOW CO. LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN APPLIED-FLOW CO. LTD filed Critical JAPAN APPLIED-FLOW CO. LTD
Priority to JP2012005382U priority Critical patent/JP3179720U/en
Application granted granted Critical
Publication of JP3179720U publication Critical patent/JP3179720U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】各種ガスの圧力および流量測定を簡略化することが可能な流量計測装置を提供する。
【解決手段】本考案の流量計測装置は、流体が流れると共に、流体の静圧を測定するための静圧測定孔を壁面に有する導通路と、導通路の静圧測定孔よりも下流域を貫通すると共に、流体の流れに正対する向きとは逆向きの位置に流体の後流圧を測定する後流圧孔を有する後流圧検出管と、静圧測定孔および後流圧検出管によって計測される圧力を流体の種類ごとの参照データに基づいて流体の流量値を計測し、出力する流量計測部とを備える。
【選択図】図1
Provided is a flow rate measuring device capable of simplifying pressure and flow rate measurement of various gases.
A flow measuring device according to the present invention has a conduction path having a static pressure measurement hole for measuring a static pressure of the fluid on a wall surface as the fluid flows, and a downstream area from the static pressure measurement hole of the conduction path. A wake pressure detection tube having a wake pressure hole for measuring the wake pressure of the fluid at a position opposite to the direction facing the fluid flow, and a static pressure measurement hole and a wake pressure detection tube. A flow rate measuring unit that measures and outputs the flow rate value of the fluid based on the reference data for each type of fluid.
[Selection] Figure 1

Description

本考案は、流体の流量を簡易な方法によって測定する流量計測装置に関する。   The present invention relates to a flow rate measuring device that measures the flow rate of a fluid by a simple method.

流体の流量測定には、差圧式,超音波式,渦式およびフロート式等の多くの方式の流量計が実用化され用いられている。   Many types of flow meters such as a differential pressure type, an ultrasonic type, a vortex type, and a float type have been put into practical use and used for fluid flow rate measurement.

流体の流れはレイノルズ数が2500以下の安定した流れの層流領域と、レイノルズ数が10000以上で渦が発生する乱流領域に分かれている。この層流と乱流に変化する境界付近では、流体の流れが不安定になる遷移領域が存在する。このため、差圧式流量計を用いる場合には、この領域を避けて測定することが重要である。   The fluid flow is divided into a laminar flow region where the Reynolds number is 2500 or less and a turbulent region where vortices are generated when the Reynolds number is 10,000 or more. In the vicinity of the boundary where the laminar flow and the turbulent flow change, there is a transition region where the fluid flow becomes unstable. For this reason, when using a differential pressure type flow meter, it is important to perform measurement while avoiding this region.

ところで、医療機関等では複数種類のガスが使用されている。例えば病院内の医療ガスとしては、酸素ガス,亜酸化窒素ガス(笑気ガス),炭酸ガス,窒素ガスおよび空気、あるいは吸引用の空気等が用いられている。これらのガスは供給設備から各病室,ICUおよび手術室等へ医療用ガス配管設備によって供給されている。医療用ガス配管の末端部では定期的に使用箇所における各ガスの圧力および流量の点検を行うことによってガスの供給を維持・管理している。   By the way, multiple types of gas are used in medical institutions and the like. For example, oxygen gas, nitrous oxide gas (laughing gas), carbon dioxide gas, nitrogen gas and air, or air for suction are used as medical gas in the hospital. These gases are supplied from a supply facility to each hospital room, ICU, operating room, and the like by a medical gas piping facility. At the end of the medical gas pipe, the gas supply is maintained and managed by periodically checking the pressure and flow rate of each gas at the point of use.

しかしながら、各医療用ガスの圧力および流量の測定は、それぞれ用途別(種類別)の検査用流量計によって行っており、機材搬入量の多さおよび複数種類の流量計の用意等の負担が大きかった。   However, the pressure and flow rate of each medical gas is measured by an inspection flow meter for each application (by type), and the burden of loading a large amount of equipment and preparing multiple types of flow meters is significant. It was.

本考案はかかる問題点に鑑みてなされたもので、その目的は、各種ガスの圧力および流量測定を簡略化することが可能な流量計測装置(流量計)を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to provide a flow rate measuring device (flow meter) capable of simplifying the pressure and flow rate measurement of various gases.

本考案の流量計測装置は、流体が流れると共に、流体の静圧を測定するための静圧測定孔を壁面に有する導通路と、導通路の静圧測定孔よりも下流域を貫通すると共に、流体の流れに正対する向きとは逆向きの位置に流体の後流圧を測定する後流圧孔を有する後流圧検出管と、静圧測定孔および後流圧検出管によって計測される圧力を流体の種類ごとの参照データに基づいて流体の流量値を計測し、出力する流量計測部とを備えたものである。   The flow measuring device of the present invention has a flow path through which a fluid flows and a static pressure measurement hole for measuring the static pressure of the fluid in a wall surface, and a downstream area from the static pressure measurement hole of the conduction path, A wake pressure detection tube having a wake pressure hole for measuring the wake pressure of the fluid at a position opposite to the direction facing the fluid flow, and a pressure measured by the static pressure measurement hole and the wake pressure detection tube And a flow rate measuring unit that measures and outputs the flow rate value of the fluid based on the reference data for each type of fluid.

本考案の流量計測装置では、流体が流れる導通路の側壁に静圧測定孔を、静圧測定孔よりも下流域の導通路を貫通する後流圧検出管の、流体の流れに正対する向きとは逆向きの位置に流体の後流圧を測定する後流圧孔を設け、この静圧測定孔および後流圧孔において静圧および後流圧を測定することにより、差圧を正確に測定することが可能となる。また、流量計測部において、測定流体に対応する参照データを用いて流量を演算ことにより複数種類の流体の流量が測定される。   In the flow measurement device of the present invention, the static pressure measurement hole is formed in the side wall of the conduction path through which the fluid flows, and the wake pressure detection tube passing through the conduction path downstream from the static pressure measurement hole is directed to the fluid flow. A reverse pressure hole for measuring the wake pressure of the fluid is provided at a position opposite to that of the fluid, and by measuring the static pressure and the wake pressure at the static pressure measurement hole and the wake pressure hole, the differential pressure can be accurately determined. It becomes possible to measure. Further, the flow rate measurement unit measures the flow rate using the reference data corresponding to the measurement fluid, thereby measuring the flow rates of a plurality of types of fluids.

本考案の流量計測装置によれば、導通路を流れる流体の後流圧を測定する後流圧検出管の貫通位置よりも上流の導通路の側壁に静圧測定孔を設けて差圧を測定し、その差圧と測定流体に対応する参照データとから流量値を算出するようにした。これにより、一台の流量計測装置によって複数種類の流体の流量を簡易に測定することが可能となる。   According to the flow measuring device of the present invention, a differential pressure is measured by providing a static pressure measurement hole on the side wall of the conduction path upstream from the penetration position of the wake pressure detection pipe that measures the wake pressure of the fluid flowing through the conduction path. The flow rate value is calculated from the differential pressure and the reference data corresponding to the measurement fluid. This makes it possible to easily measure the flow rates of a plurality of types of fluids with a single flow rate measuring device.

本考案の一実施の形態に係る流量計測装置の概略図である。It is the schematic of the flow measuring device concerning one embodiment of the present invention. 図1に示した導通路の開口率を説明する断面図である。It is sectional drawing explaining the aperture ratio of the conduction path shown in FIG. 差圧と流量との関係を表す特性図である。It is a characteristic view showing the relationship between differential pressure | voltage and flow volume. 図1に示した流量計測装置のブロック図である。It is a block diagram of the flow measuring device shown in FIG.

以下、本考案の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本考案の一実施の形態に係る流量計測装置(流量計測装置1)の概略構成を表したものである。図2は図1に示したI−I破線における導通路10の断面構成を表したものである。この流用計測装置1は、配管(ここでは導通路10)に絞り機構を設け、この絞り機構の前後の差圧(Differential Pressure;ΔP)を利用して配管を流れる流体の流量を測定する差圧式流量計である。流量計測装置1は、流体が流れる導通路10と、上述した絞り機構に相当する、導通路10を貫通する後流圧検出管20と、流量計測部30とから構成されている。本実施の形態では、導通路10を貫通する後流圧検出管20よりも上流域の側壁に設けられた静圧測定孔11と、後流圧検出管20に設けられた後流圧孔21とにおいて流体の差圧(ΔP)を計測し、流量計測部30にて導通路10内を流れる流体の流量を算出する。   FIG. 1 shows a schematic configuration of a flow rate measuring device (flow rate measuring device 1) according to an embodiment of the present invention. FIG. 2 shows a cross-sectional configuration of the conduction path 10 taken along the II broken line shown in FIG. This diversion measuring device 1 is provided with a throttle mechanism in a pipe (here, the conduction path 10), and a differential pressure type that measures the flow rate of fluid flowing through the pipe using a differential pressure (ΔP) before and after the throttle mechanism. It is a flow meter. The flow rate measuring device 1 includes a conduction path 10 through which a fluid flows, a wake pressure detection pipe 20 penetrating the conduction path 10, which corresponds to the above-described throttle mechanism, and a flow rate measurement unit 30. In the present embodiment, the static pressure measurement hole 11 provided in the side wall in the upstream region from the wake pressure detection pipe 20 penetrating the conduction path 10 and the wake pressure hole 21 provided in the wake pressure detection pipe 20. Then, the differential pressure (ΔP) of the fluid is measured, and the flow rate of the fluid flowing in the conduction path 10 is calculated by the flow rate measuring unit 30.

導通路10は、流量測定時に測定流体が流れる流路である。導通路10は例えば円筒形状を有し、例えばアルミ,真鍮等の金属類または樹脂類等によって構成されている。導通路10の側壁には、上述したように静圧測定孔11が設けられている。静圧測定孔11は、後述する流量計測部30内に設けられた圧力センサ31(図4参照)に接続され、導通路10内を流れる流体の静圧(P1)が測定される。静圧測定孔11の形状は特に限定されない。また、静圧測定孔11の大きさは導通路10内の静圧を正確に測定できる大きさであればよく、例えば導通路10の内径が10φの場合には、2〜5φの孔径とすればよい。 The conduction path 10 is a flow path through which a measurement fluid flows during flow rate measurement. The conducting path 10 has, for example, a cylindrical shape and is made of, for example, metals such as aluminum and brass, or resins. As described above, the static pressure measurement hole 11 is provided on the side wall of the conduction path 10. The static pressure measurement hole 11 is connected to a pressure sensor 31 (see FIG. 4) provided in a flow rate measurement unit 30 described later, and the static pressure (P 1 ) of the fluid flowing in the conduction path 10 is measured. The shape of the static pressure measurement hole 11 is not particularly limited. The size of the static pressure measurement hole 11 may be any size as long as the static pressure in the conduction path 10 can be accurately measured. For example, when the inner diameter of the conduction path 10 is 10φ, the hole diameter is 2 to 5φ. That's fine.

後流圧検出管20は、導通路10に設けられた静圧測定孔11よりも下流域に、導通路10の中心部(C1)を貫通するように導通路10の側壁に設けられた嵌合孔12を通って側壁の外側から内側へと垂直に挿通されている。静圧測定孔11と、後流圧検出管20との距離、即ち静圧測定孔11と嵌合孔12との間隔は静圧測定値を正確に計測するために一定の距離があることが好ましく、その距離は例えば0.5〜2mmあればよい。 The wake pressure detection pipe 20 is provided on the side wall of the conduction path 10 so as to pass through the central portion (C 1 ) of the conduction path 10 in a downstream area from the static pressure measurement hole 11 provided in the conduction path 10. The fitting hole 12 is inserted vertically from the outside to the inside of the side wall. The distance between the static pressure measurement hole 11 and the wake pressure detection tube 20, that is, the distance between the static pressure measurement hole 11 and the fitting hole 12 may be a constant distance in order to accurately measure the static pressure measurement value. Preferably, the distance should just be 0.5-2 mm, for example.

後流圧検出管20は、例えばアルミ,真鍮、等の金属類または樹脂類によって構成され、外形は円筒形状を有し、内部はシリンダ状の空洞をなしている。後流圧検出管20の外径は、例えば導通路10の内径が10φの場合には、2〜6φとすることが好ましい。導通路10を貫通する後流圧検出管20は流体の流路を塞ぐこととなり、導通路10の断面における流体の流れる部分は、図2に示したように、後流圧検出管20によって塞がれた部分の両側にできる。導通路10の断面において後流圧検出管20によって塞がれる面積が大きく、即ち流体の通過断面積(Sl)が狭くなると差圧は増加する。 The wake pressure detection tube 20 is made of, for example, a metal such as aluminum or brass, or a resin. The outer shape has a cylindrical shape, and the inside has a cylindrical cavity. The outer diameter of the wake pressure detection tube 20 is preferably 2 to 6φ, for example, when the inner diameter of the conduction path 10 is 10φ. The wake pressure detection tube 20 penetrating the conduction path 10 closes the fluid flow path, and the fluid flow portion in the cross section of the conduction path 10 is blocked by the wake pressure detection pipe 20 as shown in FIG. Can be done on both sides of the stripped part. In the cross section of the conduction path 10, the differential pressure increases when the area blocked by the wake pressure detection tube 20 is large, that is, when the fluid cross-sectional area (S l ) is narrowed.

本実施の形態における後流圧検出管20の導通路10内に露出する円筒部分の中心部(C2)には内部の空洞に連通する後流圧孔21が設けられている。この後流圧孔21は流体の流れに正対する向きとは逆向きに形成されている。後流圧孔21は後流圧検出管20の内部を介して、静圧測定孔11と同様に、後述する流量計測部30内に設けられた圧力センサ31に接続され、導通路10内を流れる流体の後流圧(P2)が測定される。 In the present embodiment, a wake pressure hole 21 communicating with the internal cavity is provided at the center (C 2 ) of the cylindrical portion exposed in the conduction path 10 of the wake pressure detection tube 20. The wake pressure hole 21 is formed in the direction opposite to the direction facing the fluid flow. The wake pressure hole 21 is connected to a pressure sensor 31 provided in a flow rate measuring unit 30 (described later) through the inside of the wake pressure detection tube 20, and is connected to the inside of the conduction path 10. The wake pressure (P 2 ) of the flowing fluid is measured.

なお、導通路10内の流れが逆方向の流体を測定する場合には、後流圧孔21において計測される圧力(P2)の値が静圧測定孔11において測定される圧力(P1)よりも高くなる。この場合は、後述する圧力センサ31として正負(+および−)の両方の値を測定可能なセンサを用いることにより測定が可能となる。 Incidentally, the pressure value of the pressure flow in the conductive path 10 when measuring the reverse direction of the fluid, which is measured in the downstream pressure hole 21 (P 2) is measured in the static pressure measurement hole 11 (P 1 ). In this case, measurement is possible by using a sensor capable of measuring both positive and negative (+ and-) values as the pressure sensor 31 described later.

流量計測部30は、例えば圧力センサ31、メモリ部32,指定部33および流量値演算回路34とから構成されている。   The flow rate measurement unit 30 includes, for example, a pressure sensor 31, a memory unit 32, a designation unit 33, and a flow rate value calculation circuit 34.

圧力センサ31は、静圧測定孔11から伝達されてきた静圧(P1)および後流圧孔21から伝達されてきた後流圧(P2)に対応した電圧または電気信号を出力する。図3はこの圧力センサ31からの差圧出力と流量値(真値Q0)との関係を表した特性図である。図3から流量値(Q0)に対応して差圧出力が二次関数的に変化している。このように、差圧出力と流量とは、明確な1対1対応の関数関係にある。 The pressure sensor 31 outputs a voltage or an electrical signal corresponding to the static pressure (P 1 ) transmitted from the static pressure measurement hole 11 and the wake pressure (P 2 ) transmitted from the wake pressure hole 21. FIG. 3 is a characteristic diagram showing the relationship between the differential pressure output from the pressure sensor 31 and the flow rate value (true value Q 0 ). From FIG. 3, the differential pressure output changes in a quadratic function corresponding to the flow rate value (Q 0 ). As described above, the differential pressure output and the flow rate have a clear one-to-one correspondence relationship.

メモリ部32は、各種流体の標準状態の密度(ρ0)または分子量の値が格納されている。この静止時における流体の密度(ρ0)は、次に説明する流量値演算回路33における流量値の算出時における参照データとして用いられる。本実施の形態では、メモリ部32に、計測対象となる流体(例えば酸素,亜酸化窒素等)の静止時密度(ρ0)(表1参照)を予め入力し、差圧計測時に指定部33によって指示された流体の参照データを読み出すことにより複数種類の流体を測定することが可能となる。 The memory unit 32 stores density (ρ 0 ) or molecular weight values of various fluids in the standard state. The density (ρ 0 ) of the fluid at rest is used as reference data when calculating a flow value in the flow value calculation circuit 33 described below. In the present embodiment, the static density (ρ 0 ) (see Table 1) of the fluid to be measured (for example, oxygen, nitrous oxide, etc.) (see Table 1) is input to the memory unit 32 in advance, and the designation unit 33 is used during differential pressure measurement. It is possible to measure a plurality of types of fluids by reading the fluid reference data instructed by.

流量値演算回路34は、差圧(ΔP)に基づいて、下記式(1)を基に流量計測値(Q)を算出する。但し、実際には導通路10内の通過時における流体の密度は静止時の密度(ρ0)とは異なる。下記式(2)は、導通路10内の通過時における流体の密度(ρm)の補正を加えたものであり、この式を用いて流量計測値(Q)を算出する。具体的には、圧力センサ31からの出力に基づいて求められる静圧(P1)と後流圧(P2)との差圧(ΔP)(=P2−P1)の値(絶対値)の2倍(2ΔP)を計測対象の流体の密度(ρ)で除した値(2ΔP/ρ)の平方根√(2ΔP/ρ)の値を演算する。次いで、導通路10の流路としての総断面積(SD)から後流圧検出管20によって遮られる断面積(Sd)を差し引いた実質的開口面積(SD−Sd)の値を総断面積SDで除すことによって導通路10の実質的開口率Kpを乗算する。続いて、設計状態の流体の静圧(P0)測定中ライン圧(Pm)との比率(P0/Pm)を静止時の流体密度の値(ρ0)に乗算する演算を行うことにより、流体の密度の値(ρ)を補正する。この補正された密度の値ρmを、流量計測値(Q)を算出するための演算に用いる。なお、Kpは流量係数である。 The flow rate value calculation circuit 34 calculates a flow rate measurement value (Q) based on the following formula (1) based on the differential pressure (ΔP). However, in reality, the density of the fluid when passing through the conduction path 10 is different from the density (ρ 0 ) when stationary. The following formula (2) is obtained by correcting the fluid density (ρ m ) when passing through the conduction path 10, and the flow rate measurement value (Q) is calculated using this formula. Specifically, the value (absolute value) of the differential pressure (ΔP) (= P 2 −P 1 ) between the static pressure (P 1 ) and the wake pressure (P 2 ) obtained based on the output from the pressure sensor 31. 2) (2ΔP) divided by the density (ρ) of the fluid to be measured (2ΔP / ρ) is calculated as a square root √ (2ΔP / ρ). Next, the value of the substantial opening area (S D −S d ) obtained by subtracting the cross sectional area (S d ) blocked by the wake pressure detection pipe 20 from the total cross sectional area (S D ) as the flow path of the conduction path 10 is obtained. By dividing by the total cross-sectional area S D , the substantial aperture ratio Kp of the conduction path 10 is multiplied. Subsequently, the fluid density value (ρ 0 ) at rest is multiplied by the ratio (P 0 / P m ) with the static pressure (P 0 ) of the designed fluid (P 0 ) and the measured line pressure (P m ). Thus, the fluid density value (ρ) is corrected. The corrected density value ρ m is used for the calculation for calculating the flow rate measurement value (Q). Kp is a flow coefficient.


(数1)Q=(1/Kp)・√{(P0/P1)・ΔP/ρ0})・・・・・(1)

(Equation 1) Q = (1 / Kp) · √ {(P 0 / P 1 ) · ΔP / ρ 0 }) (1)


(数2)Q=Kp・√{2(P0/Pm)・ΔP/ρ0})・・・・・(2)

(Equation 2) Q = Kp · √ {2 (P 0 / P m ) · ΔP / ρ 0 }) (2)

このように、本実施の形態に係る流量計測装置では、静圧測定孔11において計測された静圧(P1)と、後流圧孔21において計測された後流圧(P2)との差圧(ΔP)を用いて流体の流量値を算出する。具体的には、図4に示したように、静圧測定孔11および後流圧孔21においてそれぞれ計測された静圧(P1)および後流圧(P2)が圧力センサ31に伝達される。圧力センサ31では差圧(ΔP)が計算されると共に、この差圧(ΔP)に基づいた出力が流量値演算回路34に行われる。一方、指定部33において指示された流体の参照データ(静止時における流体密度(ρ0))がメモリ部32から流量値演算回路34へ出力される。流量値演算回路34では差圧(ΔP)および参照データを基に導通路10を流れる流体の流速値が演算され、表示部(図示せず)に演算結果が出力される。 Thus, in the flow rate measuring device according to the present embodiment, the static pressure (P 1 ) measured in the static pressure measurement hole 11 and the wake pressure (P 2 ) measured in the wake pressure hole 21. The flow rate value of the fluid is calculated using the differential pressure (ΔP). Specifically, as shown in FIG. 4, the static pressure (P 1 ) and the wake pressure (P 2 ) measured in the static pressure measurement hole 11 and the wake pressure hole 21 are transmitted to the pressure sensor 31. The The pressure sensor 31 calculates a differential pressure (ΔP) and outputs an output based on the differential pressure (ΔP) to the flow rate value calculation circuit 34. On the other hand, fluid reference data (fluid density (ρ 0 ) at rest) instructed by the designation unit 33 is output from the memory unit 32 to the flow rate value calculation circuit 34. The flow rate value calculation circuit 34 calculates the flow velocity value of the fluid flowing through the conduction path 10 based on the differential pressure (ΔP) and the reference data, and outputs the calculation result to a display unit (not shown).

以上のように本実施の形態では、導通路10を流れる流体の差圧(ΔP)を導通路10の側壁に設けられた静圧測定孔11において計測された静圧(P1)と、静圧測定孔11よりも下流域を貫通する後流圧検出管20の、流体の流れに正対する向きとは逆向きの位置に設けられた後流圧孔21において計測された後流圧(P2)とから算出するようにした。これにより、流体の差圧(ΔP)を正確に測定することが可能となる。また、流量計測部30内のメモリ部32に各種流体の参照データ(静止時における密度(ρ0))を格納し、測定流体を指定することによって対応する参照データを流量値演算回路34に出力するようにした。これにより、一台の流量測定装置によって複数種類の流体の流量を正確且つ簡易に測定することが可能となる。 As described above, in the present embodiment, the differential pressure (ΔP) of the fluid flowing through the conduction path 10 is measured with the static pressure (P 1 ) measured in the static pressure measurement hole 11 provided in the side wall of the conduction path 10 and the static pressure. The wake pressure (P) measured at the wake pressure hole 21 provided at a position opposite to the direction facing the fluid flow of the wake pressure detection pipe 20 penetrating the downstream area from the pressure measurement hole 11. 2 ) and calculated from. Thereby, the differential pressure (ΔP) of the fluid can be accurately measured. Further, reference data (density (ρ 0 ) at rest) of various fluids is stored in the memory unit 32 in the flow rate measuring unit 30, and the corresponding reference data is output to the flow rate value calculation circuit 34 by designating the measurement fluid. I tried to do it. Accordingly, it is possible to accurately and easily measure the flow rates of a plurality of types of fluids with a single flow rate measuring device.

また、測定流体ごと(例えば医療用ガス;酸素ガス,亜酸化窒素ガス(笑気ガス),炭酸ガス,窒素ガスおよび空気等)に流量測定装置を用意する必要がなくなり、流量点検時における機材の搬入量が削減されると共に、作業時間を短縮することが可能となる。   In addition, there is no need to prepare a flow measurement device for each measurement fluid (for example, medical gas; oxygen gas, nitrous oxide gas (laughing gas), carbon dioxide gas, nitrogen gas, air, etc.). The carry-in amount is reduced, and the work time can be shortened.

また、前述のように圧力センサ31として正負(+および−)の両方の値を測定可能なセンサ(±差圧センサ)を用いることにより、逆方向に流れる流体の流量も測定すること可能となる。具体的には上記医療用ガスとは逆方向に流れる吸引用の空気の流量も測定できる。   Further, by using a sensor (± differential pressure sensor) capable of measuring both positive and negative (+ and-) values as the pressure sensor 31 as described above, it is possible to measure the flow rate of the fluid flowing in the opposite direction. . Specifically, the flow rate of suction air flowing in the direction opposite to the medical gas can also be measured.

更に、本実施の形態では、導通路10を流れる流体として単一流体を前提に説明したが、測定する混合流体のガス密度を計算してメモリ部32に入力することによって各種ガスが混合された混合流体においてもその流量を測定することができる。これにより、従来の質量流量計で行っていた実ガス校正が不要となるため、検査時間の短縮およびコストを低減することが可能となる。   Furthermore, in the present embodiment, the description has been made on the premise that the fluid flowing through the conduction path 10 is a single fluid, but various gases are mixed by calculating the gas density of the mixed fluid to be measured and inputting it to the memory unit 32. The flow rate of the mixed fluid can also be measured. This eliminates the need for actual gas calibration, which has been performed with a conventional mass flow meter, thereby reducing the inspection time and cost.

以上、上記実施の形態を挙げて本考案を説明したが、本考案はこれに限定されるものではなく、種々の変形が可能である。   Although the present invention has been described with reference to the above embodiment, the present invention is not limited to this, and various modifications can be made.

1…流量計測装置、10…導通路、11…静圧測定孔、12…嵌合孔、20…後流圧検出管、21…後流圧孔、30…流量計測部、31…圧力センサ、32…メモリ部、33…指定部、34…流量値演算回路   DESCRIPTION OF SYMBOLS 1 ... Flow measuring device, 10 ... Conduction path, 11 ... Static pressure measurement hole, 12 ... Fitting hole, 20 ... Backflow pressure detection pipe, 21 ... Backflow pressure hole, 30 ... Flow measurement part, 31 ... Pressure sensor, 32 ... Memory unit, 33 ... Designation unit, 34 ... Flow rate value calculation circuit

Claims (5)

流体が流れると共に、前記流体の静圧を測定するための静圧測定孔を壁面に有する導通路と、
前記導通路の前記静圧測定孔よりも下流域を貫通すると共に、前記流体の流れに正対する向きとは逆向きの位置に前記流体の後流圧を測定する後流圧孔を有する後流圧検出管と、
前記静圧測定孔および後流圧検出管によって計測される圧力を流体の種類ごとの参照データに基づいて前記流体の流量値を計測し、出力する流量計測部と
を備えた流量計測装置。
As the fluid flows, a conduction path having a static pressure measurement hole for measuring the static pressure of the fluid on the wall surface;
A wake having a wake pressure hole that measures the wake pressure of the fluid at a position opposite to the direction facing the fluid flow while passing through the downstream area of the conduction path from the static pressure measurement hole. A pressure detection tube;
A flow rate measuring device comprising: a flow rate measuring unit that measures and outputs a flow rate value of the fluid based on reference data for each type of fluid, the pressure measured by the static pressure measurement hole and the wake pressure detection tube.
前記流量計測部は、前記静圧および後流圧の差圧を検出する圧力センサと、前記参照データが格納されたメモリ部と、前記圧力センサからの出力および前記参照データに基づいて前記流体の流量値を算出する流量値演算回路とを有する、請求項1に記載の流量計測装置。   The flow rate measurement unit includes a pressure sensor that detects a differential pressure between the static pressure and the wake pressure, a memory unit in which the reference data is stored, an output from the pressure sensor, and the reference data. The flow rate measuring device according to claim 1, further comprising a flow rate value calculation circuit that calculates a flow rate value. 前記流量計測部は前記流体の種類を指定する支持部を有する、請求項1に記載の流量計測装置。   The flow rate measurement device according to claim 1, wherein the flow rate measurement unit includes a support unit that specifies a type of the fluid. 前記流体として医療用ガスの流量を計測する、請求項1に記載の流量計測装置。   The flow rate measuring device according to claim 1, wherein a flow rate of medical gas is measured as the fluid. 前記流体として酸素ガス、空気、亜酸化窒素ガス、炭酸ガス、窒素ガスおよび吸引用空気である、請求項1に記載の流量計測装置。   The flow rate measuring device according to claim 1, wherein the fluid is oxygen gas, air, nitrous oxide gas, carbon dioxide gas, nitrogen gas, and suction air.
JP2012005382U 2012-09-03 2012-09-03 Flow measuring device Expired - Fee Related JP3179720U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012005382U JP3179720U (en) 2012-09-03 2012-09-03 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012005382U JP3179720U (en) 2012-09-03 2012-09-03 Flow measuring device

Publications (1)

Publication Number Publication Date
JP3179720U true JP3179720U (en) 2012-11-15

Family

ID=48006344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012005382U Expired - Fee Related JP3179720U (en) 2012-09-03 2012-09-03 Flow measuring device

Country Status (1)

Country Link
JP (1) JP3179720U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004167A (en) * 2016-07-01 2018-01-11 高砂熱学工業株式会社 Flow rate control damper
JP2018004168A (en) * 2016-07-01 2018-01-11 高砂熱学工業株式会社 Flow rate damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004167A (en) * 2016-07-01 2018-01-11 高砂熱学工業株式会社 Flow rate control damper
JP2018004168A (en) * 2016-07-01 2018-01-11 高砂熱学工業株式会社 Flow rate damper

Similar Documents

Publication Publication Date Title
US6957586B2 (en) System to measure density, specific gravity, and flow rate of fluids, meter, and related methods
Meriläinen et al. A novel sensor for routine continuous spirometry of intubated patients
US6865957B1 (en) Adaptable fluid mass flow meter device
EP3646036B1 (en) Pitot tube instrument
WO1995033979A1 (en) Flowmeter
CN109855691B (en) Differential laminar flow measuring method and device
JP6771254B2 (en) Flow rate measuring device and flow rate measuring method
JP3181789U (en) Hot-wire anemometer verification device
KR101178038B1 (en) Differential pressure-type mass flow meter with double nozzles
JP3179720U (en) Flow measuring device
KR20110120424A (en) Air flow rate sensor
JP2008116283A (en) Flow meter
JP3200638U (en) Flow measuring device
CN105571661B (en) The computational methods of electromagnetic flowmeter instrument characteristic coefficient based on error of indication fitting
Wigertz A low-resistance flow meter for wide-range ventilatory measurement
RU73600U1 (en) SPIROMETER
US9488509B2 (en) Method or determining an absolute flow rate of a volume or mass flow
JP6886675B2 (en) Flow measuring device
Sârbu Modern water flowmeters: Differential pressure flowmeters
Gilbey et al. Measurement of gas flow and volume
JP5015622B2 (en) Flow rate measurement method
Han et al. Research on detection method of large diameter pitot tube type differential pressure flowmeter
CN208860411U (en) A kind of concave arc shape double fluid is to mean velocity tube flowmeter
Hubiao et al. Study on the inaccuracies of air velocity measured by pitots with different outer diameter in a air duct
JP6280267B1 (en) Air flow measuring device and air flow measuring method

Legal Events

Date Code Title Description
R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151024

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees