TR201900020A2 - INTELLIGENT IRRIGATION WITH MONITORING OF BASE WATER LEVEL - Google Patents

INTELLIGENT IRRIGATION WITH MONITORING OF BASE WATER LEVEL Download PDF

Info

Publication number
TR201900020A2
TR201900020A2 TR2019/00020A TR201900020A TR201900020A2 TR 201900020 A2 TR201900020 A2 TR 201900020A2 TR 2019/00020 A TR2019/00020 A TR 2019/00020A TR 201900020 A TR201900020 A TR 201900020A TR 201900020 A2 TR201900020 A2 TR 201900020A2
Authority
TR
Turkey
Prior art keywords
ground water
water
monitoring
ground
irrigation
Prior art date
Application number
TR2019/00020A
Other languages
Turkish (tr)
Inventor
Ömer Yuluğ Ahmet
Original Assignee
Ahmet Oemer Yulug
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahmet Oemer Yulug filed Critical Ahmet Oemer Yulug
Priority to TR2019/00020A priority Critical patent/TR201900020A2/en
Priority to PCT/TR2019/051231 priority patent/WO2020142043A2/en
Publication of TR201900020A2 publication Critical patent/TR201900020A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/265Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Soil Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Sewage (AREA)

Abstract

Buluş, toprak altındaki taban suyu seviyesindeki değişimleri anlık belirlemek, izlemek, drenaj sorunu olup olmadığını tespit etmek, teorik olarak drenaj projelerinde kullanılan formüllerdeki değerlerin anlık ve gerçek verilerinin sahadan temin edilmesini sağlamak, bitkilerin taban suyundan hayati fonksiyonlarını gerçekleştirebilmek amacıyla ne kadar su kullandığını ve bitkilerin farklı gelişme periyodlarmda bitkilerin köklerinin zarar yada yarar sağlayıp sağlayamadığını anlık belirlemek, bitkilerce kullanılan taban suyu miktarının toprak profilinde bulunan kök bölgelerinde kullanımını tespit ve simüle etmek, havzada yerleştirilen birden fazla cihaz ile anlık taban suyu değişimlerini, haritalarını, simülasyonunu oluşturmak, yine opsiyonel olarak; taban suyu içerisindeki tuz, Ph, gibi taban suyu içerisindeki ihtiyaç duyulacak mineral ve maddelerin yerinde anlık analizini de yapmayı sağlayan, sulama sistemini, taban suyundan bitkinin kullandığı suya göre analiz edip yönetebilen cihaz ile ilgilidir.The invention aims to instantly determine and monitor the changes in the groundwater level under the ground, to determine whether there is a drainage problem, to provide instantaneous and real data of the values in the formulas used in theoretical drainage projects from the field, how much water the plants use in order to perform their vital functions from the ground water, To determine instantly whether the roots of plants can provide damage or benefit during the growth periods, to detect and simulate the use of the amount of ground water used by the plants in the root areas in the soil profile, to create instant groundwater changes, maps and simulations with more than one device placed in the basin, again optionally; It is related to the device that provides instant analysis of minerals and substances such as salt and pH in the ground water, which will be needed in the ground water, and that can analyze and manage the irrigation system according to the water used by the plant from the ground water.

Description

Tarifname TABAN SUYU SEVIYESININ IZLENMESI ILE AKILLI SULAMA Bulusun iniIi Oldugu Teknik Saha Bu bulus peyzaj, tarimsal alanlarda, toprak içerisinde bulunan taban suyu üst seviyesindeki anlik degisimleri tespit edebilen, bu degisimi anlik simüle edebilen, ayni zamanda, taban suyundan faydalanarak, bitkilerin sulama suyu ihtiyacini karsilayip karsilamadigini tespit eden, bitkilerin su ihtiyacinin ne kadarinin taban suyundan ne kadarinin sulama sisteminden karsilanmasi gerektigini ortaya koyabilen ve bu veriler isiginda sulama suyu ihtiyacini düsürebilen, drenaj projeleri yapiminda kullanilan formüllerde teorik olarak alinan degerlerin gerçek ve anlik degerler ile dogru alinmasini saglayan, sivi yada taban suyu içerisindeki tuzluluk, Ph, mineral ve iz elementler gibi ihtiyaç duyulan verilerin anlik degisimlerini gözlemlemeyi olasi kilan cihaz ile ilgilidir. specification SMART IRRIGATION WITH MONITORING THE BASE WATER LEVEL Technical Field of Invention This invention is used in landscape, agricultural areas, the ground water in the soil, the upper that can detect instantaneous changes in the level of At the same time, it meets the irrigation water needs of the plants by taking advantage of the ground water. How much of the water needs of the plants is determined from the ground water? and these data can reveal that how much should be met from the irrigation system. It is used in the construction of drainage projects, which can reduce the need for irrigation water in the light of taking the theoretical values taken in the formulas correctly with real and instant values. such as salinity, Ph, minerals and trace elements in the liquid or ground water. It is related to the device that makes it possible to observe the instant changes of the data needed.

Teknigin Bilinen Durumu Drenaj problemi olan sahalarda taban suyu gözlemlerinde mekanik olarak açilan arastirma kuyularina zamanla taban suyu üst seviyesine kadar dolan suyun yüzeyine, cm taksimatli cetvel konmakta ve su seviyesi ölçülmekte yada arastirma kuyusuna tas atilarak suya çarptigi ana kadar geçen zaman ölçülüyor ve taban suyu derinligi mekanik yollarla manuel olarak ölçümlenmeye çalisilmaktadir. State of the Art Mechanically opened groundwater observations in areas with drainage problems. The surface of the water, which fills the research wells to the upper level of the ground water over time, cm A graduated ruler is placed and the water level is measured or moved to the research well. The time elapsed until it hits the water is measured and the depth of the groundwater is measured mechanically. It is tried to be measured manually in different ways.

Drenaj sorunu olan sahalarda bu sekilde yürütülen manuel ölçüm teknigi/teknikleri, araziye 12 ay boyunca girmek mümkün olamadigindan ki zemin araç geçisine müsaade etmeyebilmekte ve ciddi is gücü gerektirdiginden her an etüt yapmaya müsaade etmemektedir. Bu tip sahalarda taban Suyu ölçümleri ortalama ayda bir yapilabilmektedir. Manual measurement technique/techniques carried out in this way in areas with drainage problems, Since it is not possible to enter the land for 12 months, the ground vehicle is not allowed to pass. It may not be possible to conduct studies at any time since it requires serious labor. does not. In such fields, ground water measurements can be made on average once a month.

En önemli problem ise ölçüm hassasiyetinin düsük olmasi ve ölçüm periodlarinin seyrek olmaSidir. The most important problem is that the measurement accuracy is low and the measurement periods are sparse. is to be.

Anlik taban suyu degisimleri belirlenemediginden bu sahalarda yetisen bitkilerin taban suyundan SU ihtiyacini karsilayip karsilamadiklari yada karsiliyorsa, karsiladiklari oranin tespitine yönelik bir çalisma ve buna hizmet eden cihaz yoktur. Bu nedenle bitki tarafindan sulama suyu olarak kullanilma ihtimaline bakilmaksizin taban suyu kök bölgesinden drenaj Ile uzaklastirilmakta ve bitkilerin su ihtiyaci hep sulama sistemi ile saglanmak durumunda kalinmaktadir. Bununla beraber taban sularinin tahliyesinde kullanilan dren borulari; arastirma kuyularindaki ölçümlerin hassas olamayisi nedeni ile çogu havzada gereginden daha derine büyük maliyet farki ile yerlestirilerek projelerde güvenli tarafta kalinmaya çalisilmaktadir. Amaç sadece suyu olabildigince derinden tahliye edebilmektir. Since instant ground water changes could not be determined, the plants growing in these areas could not be determined. whether they meet their WATER needs from the water or if they do, the rate they meet There is no study for its detection and no device serving it. Therefore the plant Regardless of the possibility of being used as irrigation water by the It is removed from the region by drainage and the water needs of the plants are always met with the irrigation system. has to be provided. However, in the discharge of groundwater used drain pipes; Due to the insensitivity of the measurements in the research wells In projects by placing them deeper than necessary in most basins with a large cost difference, Trying to stay on the safe side. The goal is only to make the water as deep as possible. is to evacuate.

Yani, drenaj projelerinde gerçek veriler yeterli haSSasiyet ve siklikta alinamadigindan drenaj hatlari gereginden çok daha derinden dösenmekte ve yüksek yatirim maliyetlerine ve bitkilerin bu sudan faydalanamamasi sonucunu dogurmaktadir. Yada drenaj Sistemi olmayan ancak taban suyu yüksek olan alanlarda. Bitkinin su ihtiyaCinin ne kadarini taban suyundan karsiladigini tespit eden bir cihaz olmadigindan bitki ayrica bilinçsizce sulanmakta ve hektarlarca alanda zirai ve çevresel olarak büyük zararlar ortaya çikmaktadir. That is, since real data cannot be obtained with sufficient sensitivity and frequency in drainage projects. Drainage lines are laid much deeper than necessary and cause high investment costs. and it results in plants not being able to benefit from this water. Yada drainage System in areas with no water but high groundwater. How much water does the plant need? Since there is no device that detects the ground water, the plant also unconsciously It is irrigated and causes great agricultural and environmental damage in hectares of land. is coming out.

Taban suyu arastirma kuyularinda anlik verilerin alinmasini saglayan bir yöntem ve bu verilerle beraber bitkilere faydali ve zararli etkilerin anlik analiz edilebilmesi, taban suyunun kök bölgesine ilerleyisini, bitki tarafindan kullanilabilen miktarini tespit edebilen bir cihaz olamayisi büyük havzalarda yer altinda taban suyu degisimlerinin etkilerini ve problemlerin giderilmesini ancak teorik yaklasimlari kullanarak çözümlemeyi zorunlu kilmakta buda dogrulugu tartismali sonuçlar ve maliyeti yüksek tartismali çözümler gerektirmektedir. A method that provides instantaneous data in groundwater research wells and this instant analysis of beneficial and harmful effects on plants with data, determine the progress of the water to the root zone and the amount that can be used by the plant. The inability to have a device capable of detecting underground groundwater changes in large basins effects and troubleshooting problems only by using theoretical approaches. This necessitates analysis, which results in controversial accuracy and high cost. requires controversial solutions.

Sulama sistemleri ve drenaj sistemleri atar ve toplar damar gibidir. Sulamaya açilacak havzanin, sahanin nasil bir taban suyu k0suluna ve projesine ihtiyaç duyacagini hatasiz ortaya koyabilen bir cihaz olmadigindan sulama projesi ile drenaj projesi birbirine paralel olarak istenen faydayi saglayacak sekilde dizayn edilmemektedir. Irrigation systems and drainage systems are like arteries and veins. Irrigation will be opened the basin, what kind of groundwater conditions and project the field will need. Since there is no device that can reveal the irrigation project and the drainage project, parallel to each other. It is not designed to provide the desired benefit.

Taban suyunun köklere zarar yemeden bir sulama suyu olarak kullanilabilecegi bilinmediginden bunu belirleyip yönetebilecek yönde de bir cihaz gelistirilmemistir. Ground water can be used as an irrigation water without damaging the roots. Since it is not known, a device has not been developed to determine and manage it.

Taban suyu seviyesi ölçümünde taban suyu içerisindeki tuzluluk Ph gibi degerlere anlik ulasilamamaktadir. Taban suyundan bitkilerin sulama suyu olarak kökten kullandiklari iniktar ölçümlenememekte, taban suyunu barindiran satüre topraktan bitki kökünün bulundugu ve su ihtiyacinin karsilandigi topraga yukari yönde gerçeklesen kapiller su hareketi gözlemlenememekte ve Ölçümlenememektedir. Bu durum tüm su ihtiyacinin sulama sistemi ile karsilanmasi sonucunu dogurmakta, su kaynaklarimizin heba olmasi, sulama sistemi sabit yatirim tutarinin artmasi, toprak profilinin daha hizli tuzlanmasi, taban suyuna gübre ve kimyasal maddelerin karismasi gibi olumsuz sonuçlari dogurmakta ve dünyada bu nedenlerle `birçok havza tarim yapilamaz hale gelmektedir. In the measurement of the ground water level, the salinity in the ground water instantly changes to the values such as Ph. cannot be reached. Root water used by plants as irrigation water The amount cannot be measured, the root of the plant is removed from the saturated soil containing the ground water. Capillary water flowing upwards to the soil where it is located and where its water needs are met. Its movement cannot be observed and cannot be measured. This situation meets all water needs. This results in being met with the irrigation system, wasting our water resources, increase in the fixed investment amount of the irrigation system, faster salinization of the soil profile, negative consequences such as mixing of fertilizers and chemicals into the ground water. and for these reasons, many basins in the world become unfarmable.

Bitkilere taban suyundan yükselen nemin miktari ve yönündeki degisim tespit edilememektedir. Determination of the change in the amount and direction of moisture rising from the ground water to the plants. not possible.

Bulusun çözmeyi amaçladigi teknik problemler Bulus, taban suyunun, köklere zarar vermeden bir sulama suyu kaynagi olarak kullanilmasini saglayacaktir. Technical problems that the invention aims to solve The invention uses groundwater as a source of irrigation water without damaging the roots. will enable its use.

Taban suyu yüksek havzalarda ya tarim yapilamamakta yada yetistirilmeye çalisilan bitkilerin taban suyundan karsiladiklari su miktari bilinemediginden ayrica sulama yapilmakta ve kök bölgesinde oksijensiz kalan kökler bogulmakta, su israfi olmakta ve kimyasallarin taban suyuna karismasi ve kirlenme artmaktadir. In basins with high ground water, agriculture cannot be done or cultivation is attempted. Since the amount of water the plants receive from the ground water is not known, irrigation is also required. and the roots that are left without oxygen in the root area suffocate, waste water and mixing of chemicals with ground water and pollution is increasing.

Bulus, dört temel sorunu çözmektEClir. The invention solves four fundamental problems.

Birincisi, taban suyu seviyesini anlik yani her istenen zaman periyodunda ve milimetre hassasiyetine kadar yapabilmektedir. Böylece drenaj projelerinde kullanilan formüllerdeki birçok teorik kabullenmelerle yazilan degerlerdeki hata payini yok ederek yerine, gerçek ve anlik dogru verileri saglayarak simülasyonunu saglamak. First, the groundwater level is instantaneous, that is, in every desired time period and in millimeters. up to its sensitivity. Thus, used in drainage projects by eliminating the margin of error in the values written with many theoretical assumptions in the formulas. instead, to provide simulation by providing real and instantaneous accurate data.

Ikincisi, taban suyu içerisinde zaman içerisinde ortaya çikan özellikle tuzluluk, Ph Vb. verilerin degisimlerini anlik izleyerek saturasyonda olmayan üst toprak katmanlarinin kalitesine taban suyunun etkilerinin ortaya konabilmesi. Ayni zamanda tarimsal alanlarda atilan gübrelerin, jeotermal kaynakli bor gibi toksit etki yaratacak unsurlarin anlik tespit edilebilmesini saglamak. Üçüncüsü, taban suyundan bitkilerin sulama suyu ihtiyacinin tamaminin yada bir kisininin karsilanip karsilanamadiginin, sezonluk degisimlerin tespit edilerek sulama suyu ihtiyacinin taban suyundan karsilanan kismini sulama suyundan tasarruf etmeyi saglamak, sulama suyu olmayan havzalarda ise mevsimsel olarak uygun taban suyu degisimleri olmasi yada drenai sistemi ile kurulabilmesi ihtimalini tespit ederek, uygun kök yapisi ve derinligine sahip bitkilerin az yada hiç sulama yapmadan zirai üretim yapilmasinin önünü açmak. Bu sahalari tarimsal üretime açmak. Second, the salinity, Ph etc., which occur in the ground water over time. by monitoring the changes in the data instantly, the upper soil layers that are not in saturation To be able to reveal the effects of ground water on the quality of water. Also in agricultural Instant detection of discarded fertilizers and elements that will cause toxic effects such as geothermal boron. to make it possible. Third, the irrigation water needs of the plants from the ground water can be completely or partially determined. Irrigation is determined by determining whether the person can be met and seasonal changes. To save irrigation water for the part of the water need that is met from the ground water. to provide seasonally appropriate groundwater in basins without irrigation water. by determining the possibility that there are changes or that it can be installed with a drainage system, Agricultural production of plants with root structure and depth with little or no irrigation to pave the way for it. To open these fields for agricultural production.

DÖrdünCüsü, Drenaj projelerinde 3-4 mt. derinliklerde dahi dösenen dren borularinin daha yukariya çekilerek taban suyunun bir yüzey alti sulama suyu ihtiyacini saglayan bir kaynak gibi kullanmayi saglamak, drenaj hatlarinin bu sekilde sabit yatirim bedellerini düsürtmek. Fourth, in drainage projects, 3-4 mt. of the drain pipes laid even at depths a subsurface irrigation water requirement of the ground water by being pulled higher. to use it as a source, to reduce the fixed investment costs of the drainage lines in this way. to raise

Bulusun en önemli getirisi gida sikintisi çeken ve sulama suyu yoklugu yada eksikligi yüzünden tarim yapilamayan ancak taban suyu seviyesi yeterli olan arazilerin tarimsal üretime katki koymasini saglamaktir. The most important result of the invention is the lack or lack of irrigation water and those who suffer from food shortages. agricultural land of lands that cannot be cultivated due to to enable it to contribute to production.

Dolayisi ile bUiUS sayesinde, hassas taban suyu seviyesi ölçümleri ve taban suyundan kök bölgesine dogru toprakta kapiller su yükselisi ve hareketi ölçümlerinin ayni anda yapilmasi bitkiler için alternatif bir su kaynagi yaratmaya yönelik ekonomik ve çevreci bir çözüm saglayacaktir. Therefore, thanks to bUiUS, precise groundwater level measurements and rooting from groundwater Simultaneous measurements of capillary water rise and movement in the soil towards the economical and environmentally friendly to create an alternative water source for plants. will provide a solution.

Dünyada bas gösteren ve hizla artan kuraklik ve su kaynaklarinin yetersiz kalmasi atil duran ve bitkiye zararli oldugu farz edilen taban suyundan faydalanabilen bitkilerin yetistirilmesinde taban suyu seviyesi degisimi ile bitki kökü tarafindan kullanilan taban suyu miktarinin eszamanli tespitini önemli ve hayati hale getirmistir. Ancak bu iliski hassas ve anlik gözlemlenmesi gereken iki unsuru gerektirmektedir. Taban suyu seviyesi ve taban suyu üzerinde kalan toprak kisiminda suyun kapiierite ile köklere ulasmasi ve kökler tarafindan bitkinin su ihtiyacinin karsilanmasi için kullanilabilmesini analiz edebilen buIUS, taban suyunun bitkiye faydali ve zararli kisimini ayirarak iiZiken ve gerekirse kimyasal olarak Analiz kuyusunda gerekli analizleri yapmakta, bitkiye faydali suyun tespitini yaparken zararli suyun da, sulama amaçli kullanimini engellemeden ne seviyeye kadar uzaklasmasi gerektiginin projesinin belirlenmesini saglayacak yada yapilmasi düsünülen projelerde net olarak sagladigi veriler sayesinde bilim camiasinca kabullenilen teorik hesaplamalarin dogrulugununi ilgili yaklasim ve formüllerin kontrol edilmesini saglayacaktir. The rapidly increasing drought in the world and the inadequacy of water resources plants that stand still and can benefit from ground water that is presumed to be harmful to the plant. The base used by the root of the plant with the change of the ground water level in the cultivation of It has made the simultaneous determination of the amount of water important and vital. However, this relationship requires two elements that must be observed precisely and instantly. groundwater level and reaching the roots by capierite in the part of the soil above the ground water and analyze whether it can be used by the roots to meet the plant's water needs. buIUS, which can be used to separate the beneficial and harmful part of the ground water to the plant, chemically if necessary, it makes the necessary analyzes in the analysis well, it is beneficial to the plant. While determining the water, what can you do without preventing the use of harmful water for irrigation purposes? It will enable the determination of the project that it should move away to the level or Thanks to the data it provides clearly in the projects that are considered to be carried out, Checking the correctness of accepted theoretical calculations, related approaches and formulas will make it happen.

Sekillerin açiklanmasi Sekil 1: Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama (kesit) Görünüsü Sekildeki referanslarin açiklanmasi . Dis BOru Kapagi . Dis Hava Deligi . Dis Boru . Zemin 7. Iç Boru 8. Dis Boru Filtresi 9. Toprak . Kapiler Su Hareketi 11. Degisken Taban Suyu Üst Seviyesi 12. Sature Olmus Toprak 13. Dis Boru Savagi 14. Iç Boru Savagi . Dis Boru Dip Savagi 16. Çakil Tasi 17. Anten 18. Anten Deligi 19. Akilli Kart . Kablolar 21. Mesafe ölçen sensor 22. Iç Hava Deligi 24. Baski Devre . Nem Sensörü 26. Kapasitif Sensör 27. Komponentler 28. Kök Bölgesi 29. Taban Suyu Kaynakli Kapiller Su Hareketi Izleme Bölgesi Sensör Kablolari Ph Sensörü EC Sensörü Opsiyonel Sensör Yuvasi Analiz Kuyusu Uzak Makine Taban Suyu Geçirimsiz Tabaka h Mesafesi L Mesafesi Dren Borusu D Mesafesi H Mesafesi Sulama Sistemi Bulusun Açiklamasi Bulusun üzerindeki aksamlar en temel hali ile; Dis BOrunun (4) en üstünde bulunan ve fiziksel dis kosullara karsi koruma ve servis amaçli kullanilan dis boru kapagi (1) Dis Borunun (4) içinde havayi bosaltip yerine taban suyunun(36) dolabilmesi ve degisken taban suyu üst seviyesi(11l asagiya düstügünde dis boru(4) içine hava dolmasini saglayan, dis hava deligi(2) Cihazin enerji tüketen aksamlarinin enerjisini saglayan pil ve günes enerjisi (3) Degisken taban suyu üst seviyesi (11) ile ayni seviyede su seviyesinin olusmasini saglamak üzere. taban suyunu(36l dis boru filtresinden(8l filtreleyerek, dis boru savagindan(l3) içine alan sature olmus toprak(12l ile temas içinde ve söz konusu fiziki kosullara dayanikli analiz kuyusu(34) için açilmis deligin düsey toprak(9l kesiti ile temas halindeki dis boru(4) Topragin(9) en üstünde bulunan zemin(5l Cihazin montaji esnasinda zemin(5} ile 90 derece açi yapmasini ve sabit durmasini saglayan montaj düzenegi tesviye ve sabitleme parçasi(6) Dis boru (4) içerisinde bulunan ve dis boru(4) çapindan daha küçük çapa sahip, degisken taban suyu üst seviyesininüll zemin(5) Ile arasindaki mesafenin ölçümünün yapildigi ve opsiyonel olarak Ph sensörü(31), tuzlulugu ölçen EC sensörü(32), Opsiyonel sensör yuvalar1n1(3 3) barindiran iç boru(7] Sature olmus toprak(12) içerisindeki toprak(9l partiküllerinin dis boru(4) içerisine girmesini engelleyen dis boru filtresi(8) Degisken taban suyu üst seviyesi(11) ile zemin(5) arasinda kalan, taban suyu(36) kaynakli kapiler su hareketinin(10) gerçeklestigi, bitkilerin(44} sahip oldugu kök bölgesinin(28) gelisimini saglayan ortam, toprak(9] Toprak içerisinde sature olmus topraktan(12) topraga(9} oradan da zemine(5) dogru gitme egilimi gösteren ve adhezyon kuvveti nispetinde toprak(9l ve kök bölgesine(28l yayilan ve süreklilik gösteren, kapiler su hareketi(10) Sature olmus toprak(12) içerisindeki suyun zamanla farklilasan üst seviyesinin zemine(5] olan uzakligi, degisken taban suyu üst seviyesi(11) T0pragin(9) taban suyu(36l nedeniyle doygun hale geldigi durumdaki toprak(9), sature olmus toprak (12) Sature olmus toprak(12} içerisindeki suyun dis boruya(4) girmesini saglayan özel labirente sahip dis boru savagi(13) Dis boruya(4) dis boru savagindan(13l giren taban suyunun(36) iç boruya(7) girmesini saglayan özel labirente sahip iç boru savagi(14) Iç boru(7) içerisine taban suyunun(36l dolmasi yada bosalmasi esnasinda yerçekimi ile içeride kalabilecek sediment maddelerin, dis boru(4) içerisinde iken dibe çökmesi için birakilmis dis boru dip savagi(15) Dis boru dip savag1(15) içerisinde taban suyunun(36l dipten yükselebilmesi ve dis boru(4) içerisinde biriken suyun içerisindeki sediment maddelerin çöküp tahliye olmasini saglayan, dis boru dip savag1(15] altina serilen filtre amaçli çakil tasi(16] Uzak makine(35) ile akilli kartin(`l9) haberlesmesi için birakilmis, witi, Rf sinyallerinin IIetIImesini saglayan ve dis boru kapagi(l) üzerindeki izole edilmis anten deliginden(18) çikan, anten(17l Antenin(17) dis boru kapag1(1) üzerinden geçmesi için açilmis su geçirmez izolasyona sahip anten deligi(18l Tüm elektronik aksamin güç ve veri alisverisindeki isleyisi kontrol eden, uzak makineye(35) giden ve kendisine gönderilen verileri degerlendiren, tüm Cihazin yönetimini saglayan, islemci ve yapay zeka yazilimma sahip, akilli kart (19) Tüm elektronik aksamin bir birisi ile enerji ve veri baglantilarini saglayan kablolar(20) Iç boru(7) içerisinde zemin(5) seviyesinin izasinda yada üzerinde istenen bir kodda elektronik aksami bulunan, degisken taban suyu üst seviyesi(1 1) ile zemin(5) arasinda su olmayan mesafeyi mm. hassasiyetinde gerçek zamanli tespit edebilen, mesafe ölçen sensör(21) Iç borunun(7) içine havayi bosaltip yerine taban suyunun(36l dolabilmesi ve taban suyu(36l seviyesi düstügünde yerine hava dolmasini saglayan, iç hava deligi(22l Bitkilerin(44] ihtiyaç duydugu sulama suyu ihtiyacinin yaklasik %75-80 inin karsilandigi kökleri barindiran toprak(9) içerisindeki bitki etkili kök derinligi(23] Bitki etkili kök derinligi(23] boyunca toprak(9) içerisine yerlestirilecek olan içerisinde nem sensörü(25), nemin toprak(9) profilindeki dagilimini ve kapiler SU hareketi(10) gözlemleyebilen, nem ölçmeyen ancak dijital yani 1-0 seklinde veri saglayan kapasitif sensörler(26), elektronik yollari birbiri ile iliskilendiren ve sensörlere güç veren ve islemci ve yazilim barindiran komponentler(27) bulunan özel dizayn edilmis üzerinde islemcisi bulunan elektronik aksam, baski devre(24) T0prakta(9l yüzdesel yada tansiyon cinsinden nem okuyabilen ister baski devre(24) üzerinde sabit istenirse harici kullanima müsait nem sensörü(25) Baski devre(24) üzerinde bulunan bitki etkili kök derinligi(23l ile degisken taban suyu üst seviyesineüll kadar gerektiginde uzanan ve kapiler su hareketinin(10] olusturdugu kapasitif degisimi takip etmeye yarayan nem degeri okumayan, sadece içinde bulundugu ortamdaki kapasitif degisimleri takip eden ve her biri birbirinden bagimsiz olarak önündeki kapasiteye set edilebilen, özel dizayn edilmis, kapasitif sensör(26l Tüm elektronik aksamin enerji ve haberlesmesini temin eden baski devre(24) merkezlerinde bulunan islemci ve elektronik aksamlardan olusan komponentler (27) Bitki etkili kök derinligi(23) altinda kalan ve sulama suyu ihtiyacinin yaklasik %20- ini karsilayan kök bölgesi(28) Degisken taban suyu üst seviyesi(lll ile zemin(5) arasinda kalan toprakda(9l suyun hareketinin yönünün ve nem miktari degisiminin baski devrece(24) takip edilen, taban suyu(36l kaynakli kapiler su hareketi izleme bölgesi(29) Ph sensörü(3l), EC sensörü(32) ve opsiyonel sensör yuvasina(33) konacak istenen sensörlerden verileri akilli karta(19l ileten sensör kablolari(30) Dis Boru(4) içindeki taban suyunun(36l Ph derecesini ölçen Ph Sensörü(31l Dis Boru(4) içindeki taban suyunun(36) elektriksel iletkenlik derecesini ölçen EC sensörü(32l Dis Boru(4) içindeki taban suyunun(36l içine konacak opsiyonel sensörlerin kullanimina yönelik opsiyonel sensör yuvasi(33) - Tüm cihazin içine konmasi için makine ve elle yada burgu ile kazilarak, zemin(5] ile çakil tasinin(16) konuldugu derinlige kadar L mesafeleri (39) boyunca açilmis analiz kuyulari(34l - Akilli karta(l9l ulasan verilerin izlenebildigi lokal ekran, akilli telefon, tablet, masa üstü yada diz üstü bilgisayar, uzak makine(35) - Degisken Taban Suyu Üst Seviyesi(11] ile Geçirimsiz Tabaka(37} yani taban arasindaki Sature OlmUS T0prakda(12l bulunan taban suyu(36l - Taban suyunun(36) zemin(5l yönünde birikmesini saglayan geçirimsiz tabaka(37) - Iki dren borusu(40) arasindaki L Mesafesinin(39) orta noktasindan dik olarak, degisken taban suyu üst seviyesine(11l kadar olan, h Mesafesi(38l - Iki dren borusu(40) arasindaki L Mesafesi(39) - Taban Suyunu(36) Kök Bölgesi(28) den uzaklastirmak üzere delikli dren b0rusu(40) - Dren borusu(40) içerisindeki su düzeyinin geçirimsiz tabakaya(37)uzakligi yani dren borusu(40) seviyesi altindaki aküfer kalinligi, D Mesafesi(41) - Iki dren borusu(40) arasindaki L Mesafesinin(39) orta noktasindan dik olarak, degisken taban suyu üst seviyesi(11] ile geçirimsiz tabaka(37) arasindaki mesafe, H Mesafesi(42) - Bitkinin(44l ihtiyaç duydugu suyun dogal yagislar ve taban suyundan(36) karsilanamayan kismini yapay yollarla veren basinçli sulama yöntemlerinden yagmurlama, zemin(5] alti damlama, zemin(5l üstü damlama yada geleneksel sulama yöntemi ile karsilanmasi için kurulan, bitki(44) sulama amaçli tesis, sulama sistemi(43l - T0prakta(9l kök bölgesinde(28l kökleri bulunan, bitki(44) Taban suyundaki(36l degisim, sature olmus toprakta(12) gerçeklesmektedir. Degisken taban suyu üst seviyesi(11) analiz kuyusu (34) içerisinde degistikçe, bilesik kaplar esasina göre iç boruda(7) da ayni su seviyesini OIUSacaktir. Kodu ve koordinati belli olan Zemin(5] ile degisken taban suyu üst seviyesi (11) arasindaki degisken mesafe, mesafe ölçen sensör(21) tarafindan mm hassasiyetinde gerçek zamanli ölçülür akilli kartda(19) yorumlanir ve uzak makineye(35l gönderilerek simülasyon ve matematiksel veriler görüntülenir. Explanation of figures Figure 1: Intelligent Irrigation View with Monitoring of Groundwater Level (section) Explanation of the references in the figure . Outer Pipe Cover . Outer Air Hole . Outer Pipe . Ground 7. Inner Pipe 8. External Pipe Filter 9. Soil . Capillary Water Movement 11. Variable Base Water Upper Level 12. Saturated Soil 13. Outer Pipe Weir 14. Inner Pipe Weir . Outer Pipe Bottom Weir 16. Pebble Stone 17. Antenna 18. Antenna Hole 19. Smart Card . cables 21. Distance measuring sensor 22. Inner Air Hole 24. Printed Circuit . Humidity Sensor 26. Capacitive Sensor 27. Components 28. Root Zone 29. Ground Water Sourced Capillary Water Movement Monitoring Zone Sensor Cables Ph Sensor EC Sensor Optional Sensor Mount Analysis Well Remote Machine Ground Water Impermeable Layer h Distance L Distance Drain Pipe D Distance H Distance Irrigation System Description of the Invention The components of the invention in its most basic form; Protection and service against physical external conditions, located at the top of the outer pipe (4). external pipe cover (1) used for Being able to discharge the air inside the Outer Pipe (4) and fill the ground water (36) instead of it and when the variable ground water upper level(11l drops down) air into the outer pipe(4) external air hole (2) The battery and solar energy that provides the energy of the energy-consuming parts of the device (3) The formation of the water level at the same level as the variable ground water upper level (11) about to provide. ground water(through 36l outer pipe filter(8l filtering, outer pipe filter) Saturated soil(l3) containing from the weir(l3) is in contact with 12l and in question Vertical soil (9l section) of the hole drilled for the analysis well(34) resistant to physical conditions outer pipe in contact with (4) The ground (5l) at the top of the soil(9) During the installation of the device, it is required to make a 90 degree angle with the ground (5} and to be stable. leveling and fixing part(6) Inside the outer pipe (4) and having a smaller diameter than the outer pipe (4), variable groundwater top level EC measurement, optionally pH sensor(31), measuring salinity sensor(32), inner tube containing optional sensor slots1(3 3)(7] The soil(9l particles) in the saturated soil(12) are placed in the outer pipe(4). external pipe filter(8) Ground water (36) between the variable groundwater upper level(11) and the ground(5) rooted capillary water movement (10), plants(44} have root The environment that enables the development of the region(28) is the soil(9] From the saturated soil(12) to the soil(9} and from there to the ground(5) soil (9l and root region (28l diffuse and continuous, capillary water movement (10) The upper level of the water in the saturated soil (12) that changes over time the distance to the ground(5], the variable groundwater upper level(11) Topragin(9) ground water(the soil(9) in the state where it is saturated due to 36l, saturated soil (12) A special feature that allows the water in the saturated soil (12} to enter the outer pipe (4). outer pipe weir with labyrinth(13) The bottom water(36) entering the outer pipe(4) from the outer pipe weir(13l) to the inner pipe(7) Inner pipe weir with special labyrinth (14) Gravity during the filling or discharge of ground water (36l) into the inner pipe (7) sedimentation materials that may remain inside the outer pipe (4). outside pipe bottom weir(15) In the outer pipe bottom savag1(15), the ground water (36l can rise from the bottom and the outer The sedimentation substances in the water accumulating in the pipe (4) are collapsing and evacuating. pebble stone for filter purposes laid under the outer pipe bottom savag1(15], which ensures that It is left for communication between the remote machine (35) and the smart card (`l9), witi, Rf insulated on the outer pipe cover (l) that allows the transmission of signals coming out of the antenna hole(18), antenna(17l) Opened for the antenna(17) to pass over the outer tube cover1(1), waterproof Antenna hole with isolation (18l A remote device that controls the operation of all electronics in power and data exchange. that evaluates the data sent to and sent to the machine (35), Smart card with processor and artificial intelligence software (19) It provides energy and data connections of all electronic components with each other. cables(20) In the inner pipe(7) above or below the ground(5) level in a desired code between the variable groundwater upper level(11) and the ground(5) the distance without water in mm. capable of detecting in real time with precision, distance measuring sensor(21) In order to discharge the air into the inner tube (7), the ground water (36l) can be filled and the bottom water (inner air hole (22l), which allows air to fill instead of when the 36l level drops Approximately 75-80% of the irrigation water needs of plants(44) The effective root depth of the plant in the soil(9) containing the roots (23) The plant will be placed in the soil(9) along the effective root depth(23). humidity sensor (25), the distribution of moisture in the soil (9) profile and capillary water data that can observe the movement(10) but do not measure humidity, but digital, that is, in the form of 1-0 Capacitive sensors(26) that provide special components (27) that power the sensors and house the processor and software. designed electronics, printed circuit board(24) Printed circuit (24) fixed on it, suitable for external use if desired humidity sensor(25) Variable base with plant effective root depth (23l) on the printed circuit(24) extending when necessary up to the upper level of the water and capillary water movement(10) It does not read the humidity value to follow the capacitive change it creates, only following the capacitive changes in the environment and each of them is different from each other. specially designed, capacitive sensor(26l Printed circuit providing energy and communication of all electronics(24) components consisting of processor and electronic components located in centers (27) Approximately 20% of the irrigation water requirement below the plant effective root depth(23) root zone (28) In the soil between the variable ground water upper level (lll and the ground (5)) (9l of water the direction of the movement and the change in the amount of moisture are followed on the printing circuit(24), ground water(36l sourced capillary water movement monitoring zone(29) Ph sensor (3l), EC sensor (32) and the desired sensor to be placed in the optional sensor socket (33) sensor cables(30) transmitting data from sensors to smart card(19l) Ph Sensor (31l) measuring the Ph degree of the ground water(36l) inside the Outer Pipe(4) EC measuring the electrical conductivity of the ground water(36) inside the Outer Pipe(4) sensor(32l Optional sensors to be placed in the ground water (36l) inside the Outer Pipe(4) Optional sensor holder(33) for use - In order to put the whole device into the ground, by digging by machine and by hand or with auger, with the ground(5] Drilled analysis along L distances (39) to the depth at which the pebble (16) is placed wells(34l - Local screen, smart phone, tablet, table where data reaching smart card(l9l can be monitored) laptop or laptop, remote machine(35) - Variable Top Water Level(11] with Impermeable Layer(37} ie bottom in the Saturated Soil (12l) - An impermeable layer (37) that allows the ground water (36) to accumulate in the direction of the ground (5l) - Perpendicular to the midpoint of the Distance L (39) between the two drain pipes (40), Distance h to variable groundwater upper level(11l)(38l - Distance L between two drain pipes(40)(39) - Perforated drain pipe(40) to remove Ground Water(36) from Root Zone(28) - The distance of the water level in the drain pipe (40) to the impermeable layer (37) Aquifer thickness below the pipe(40) level, Distance D(41) - Perpendicular to the midpoint of the Distance L (39) between the two drain pipes (40), The distance between the variable groundwater top level(11] and the impermeable layer(37), H Distance(42) - The water needed by the plant (44l comes from natural precipitation and ground water(36) One of the pressure irrigation methods that give the unmet part artificially. sprinkling, under ground(5] drip, above ground(5l drip or conventional irrigation plant(44) plant for irrigation, irrigation system(43l - In soil(9l root zone(with 28l roots, plant(44)) The change in the ground water (36l) takes place in the saturated soil (12). As the groundwater top (11) changes within the analysis well (34), the composite vessels According to the principle, the same water level will be reached in the inner pipe (7). Known code and coordinate Variable distance between the ground(5] and the variable groundwater top level (11), distance It is measured in real time with mm precision by the measuring sensor(21) on the smart card(19) It is interpreted and sent to the remote machine (35l) to send simulation and mathematical data. is displayed.

Denizden yüksekligi ve koordinatlari belli olan analiz kuyusunun(34l zemin(5] ile birlestigi noktada ölçüm yapilir. Diger analiz kuyulari(34l arasinda ayni sekilde c0grafi bir ag kurulur. Analiz kuyusuna(34) baslangicindaki zemin(5l kodu ve her bir analiz kuyusunun(34l havza içerisinde degisken taban suyu üst seviyesi(11l belli oldugundan, hem zemin(5l kodlari hemde degisken taban suyu üst seviyeleri(11) arasindaki degisimleri bir grafige dökmek, simüle etmek ve bu farkliliklarin raporlanmaSi ile yorumlanmasi akilli kart(19) tarafindan gerçek zamanli veriler ile yapilir. Akilli kart (19) bu verileri içerisindeki yazilim sayesinde süzecek ve uzak makineye(35l paket halinde istenen zaman araliklarinda gönderecektir. Uzak makine(35) içerisinde bu veriler drenaj problemi olan sahalarin çözümlenmesi için kullanilan formüllerde kullanilacak ve normalde kabullenilen degerlerin yerine gerçek degerler hatasiz olarak yer alabilecektir. The analysis well (with 34l ground(5]) and its coordinates and altitude from the sea The measurement is made at the junction point. C0graph in the same way between other analysis wells (34l) a network is established. The soil at the beginning of the analysis well(34)(5l code and each analysis since the variable ground water upper level (11l) of the well (34l in the basin is clear, between both the ground (5l codes and the variable groundwater upper levels (11) by graphing the changes, simulating and reporting these differences. The interpretation is made by the smart card (19) with real-time data. Smart card (19) It will filter this data with the software in it and send it to the remote machine (in 35l package). will send at the requested time intervals. In the remote machine (35), these data are drained. It will be used in the formulas used for the resolution of the problem areas and Normally accepted values can be replaced by actual values without error.

Bu degerler Donnan esitliginde ve özellikle Hooghoudt esitliginde gerçek zamanli dogru çözümleme yapmayi saglayacaktir. These values are accurate in real time in the Donnan equation and especially in the Hooghoudt equation. will enable analysis.

Tarimsal uygulamalarda kullanilan sulama suyu içerisindeki mineral ve iz elementler, gübre ve kimyasallar gibi dis etkiler toprak profiline oradan da sature olmus topraga (12) yani taban sularina karismaktadir. Taban sulari hareket halindedir. Dolayisi ile taban suyuna(36l karisan bu maddelerin konsantrasyonlarini ölçebilmek ve etkilerini degerlendirmek gerekmektedir. Dis boru (4) içerisinde degisken taban suyu üst seviyesi (11] altina indirilecek Ph sensörü(31l, tuzluluk seviyesini belirleyen EC(32) sensörü ve diger ölçülmesi istenen verilere iliskin sensörlerin konumlandirilmasini saglayan opsiyonel Sensör yuvasi(33), sature olmus toprak(12) içerisinde bulunan maddelerin oranlarini gerçek zamanli olarak ölçerek verilerini sensör kablolari(30l vasitasi ile akilli karta(19l tasir. Akilli kart(19) içerisinde veriler yorumlanir, paketlenir ve akilli kart(19) uzak makineye(35l veri paketini anten(17l vasitasi ile gönderir. Böylece sature oImUs toprakta(12l degisken taban suyu üst seviyesi (lll ile beraber taban suyu(36l içerisindeki ölçümlenen mineral, tuz, Ph gibi verilere de gerçek zamanli ulasim saglanir. Bu sayede de aküferdeki akis miktari hakkinda veriler de akilli kartda(19l toplanir. Mineral and trace elements in irrigation water used in agricultural applications, external effects such as fertilizers and chemicals to the soil profile and then to the saturated soil (12) that is, it mixes with the ground waters. Ground waters are in motion. So the base To be able to measure the concentrations of these substances mixed with water (36l and to determine their effects) needs to be evaluated. Variable ground water upper level in outer pipe (4) (11] Ph sensor to be lowered below (31l, EC(32) sensor that determines the salinity level and which enables the positioning of the sensors related to the data that is desired to be measured. optional Sensor housing(33), saturated soil(12) by measuring the ratios in real time, and its data via the sensor cables(30l Carries the card(19l. The data is interpreted, packaged and stored in the smartcard(19). sends data packet to remote machine(35l via antenna(17l. Thus sature oImUs) in soil(12l variable ground water upper level (with Lll ground water(within 36l) It also provides real-time access to the measured data such as minerals, salt and Ph. In this way The data about the amount of flow in the aquifer are also collected on the smart card (19l).

Degisken taban suyu üst seviyesi(11l, toprakta(9] bulunan kök bölgesi(28l yada zemine(5l daha yakin konumlanan bitki etkili kök derinligi(23l seviyesinde bulunan köklere d0gru yani zemin(5l yönünde ve yanal olarak, doga kanunlari geregi kapiller su hareketinin(10l basladigi su seviyesidir. Degisken taban suyu üst seviyesi(11l ile zemin(5l araSinda bulunan toprak(9) içerisine konulmus baski devre(24l ile nem hareketinin yönü ve miktarinin degisimi sirasi ile kapasitif sensör(26l ve nem sensörü(25] vasitasi ile ölçümlenerek akilli karta(19l iletilir. Bu veriler akilli kartta(19l analiz edilip, yorumlanir ve paketlenerek uzak makineye(35l gönderilir. T0prak(9l içerisindeki nemin10 kaynagi olan taban suyunun(36l kök bölgesi(28) ve bitkili etkili kök bölgesine(23) bitkinin Ihtiyaç duydugu sulama suyu ihtiyaci açisindan ne kadar katki sagladigi nem sensörü(25l ile ölçümlenir. Kapasitif sensör(26) ile de vektörel olarak nemin sature olmus topraktan(12}, toprak(9J içerisine yer çekimine ters yönde ve yanal dagilimi gerçek zamanli gözlemlenir. Sulama sistemi(43) yada d0gal yagislar vasitasi ile zeminden(5), toprak(9l profiline yer çekimi yönünde giren sularin da vektörel olarak dagilimi ayni sekilde gerçek zamanli olarak izlenir. Farkli hassasiyetlere sahip komponentler(27) kullanilarak kapasitif sensör(26l hassasiyeti toprak(9l bünyesine göre ayarlandiginda, topraktan(9l degil sadece nem degisiinindeki kapasitif farklar dijital olarak 1(bir) ve 0(sifir] olarak belirlenir. Ayni sekilde kapasitif sensörler(26l su geldiginde 1(birl, su kökler tarafindan çekildiginde 0(sifir) sinyali gönderir. Bu sekilde vektörel su hareketi kapasitif sensörlerce(26) belirlenmis olur. Bu sekilde topragin(9) nemlenmesi sirasinda 1(bir] kuruinasi sirasinda 0(sifir) sinyali geldiginden kök bölgesindeki(28l SUyu çeken köklerin yerleri de simüle edilir. Tüm bu veriler akilli karta(19l iletilir. Bu sekilde topragin(9l baski devre(24) tarafindan ölçümlenen ve izlenen kesitinde nemin hangi su kaynagindan geldigi ve nemin vektörel ilerleyisi akilli kartta(19l degisken taban suyu üst seviyesi(ll) ile de iliskilendirilerek anten(17l ile uzak makinede(35) görüntülenmek üzere gönderilir. Baski devre(24) taban suyu kaynakli kapiller su hareketi izleme bölgesine(29l konur ve akilli karta(19l gerçek zamanli verileri iletir. Nem orani disinda topragin(9l içinde fiziki kapasiteyi degistiren nem, kök, Sürüngen gibi faktörlerin verilerini baski devreden(24) akilli kart(l9) yapay zeka sahip oldugundan zamanla ögrenerek ayirt eder hale gelir ve bu verileri raporlayip anten(17) vasitasi ile uzak makineye(35l iletir. Variable ground water upper level (11l, root zone in soil(9](28l or The effective root depth of the plant positioned 5l closer to the ground(23l level towards the roots, that is, the ground (5l direction and laterally, capillary water Movement (10l is the water level at which it starts. Variable ground water upper level(11l to pressed circuit (24l and humidity) placed in the soil(9) located between the ground(5l) capacitive sensor(26l and humidity sensor(25) It is measured by means of the smart card (19l) and transmitted to the smart card (19l. These data are analyzed in the smart card(19l, it is interpreted and packaged and sent to the remote machine (35l. T0prak(10 of the moisture in 9l) source of ground water (36l root zone(28) and plant effective root zone(23) how much moisture the plant contributes to the irrigation water need it needs Sensor (measured with 25l. With capacitive sensor(26), humidity saturates vectorally. from dead soil(12}, earth(9J in the opposite direction of gravity and its lateral distribution is true observed over time. From the ground (5) through the irrigation system (43) or natural precipitation, The vectorial distribution of the waters entering the soil (9l profile in the direction of gravity is the same) monitored in real time. Components with different sensitivities(27) using a capacitive sensor (26l sensitivity is adjusted according to the soil (9l body), from the soil (not 9l, only the capacitive differences in the moisture change are digitally 1 (one) and It is set to 0(zero). Likewise, capacitive sensors(1(one, water) when 26l of water comes in. It sends a 0 (zero) signal when it is attracted by the roots. In this way, vector water movement It is determined by the capacitive sensors(26). In this way, during the moistening of the soil(9) Since 0 (zero) signal is received during 1(one) drying, in the root area (which absorbs 28l of water) The locations of the roots are also simulated. All these data are transmitted to the smart card (19l. In this way What water level does the humidity measure in the section of the soil(9l printed circuit(24) measured and monitored? It comes from the source and the humidity vector progresses on the smart card (19l variable ground water upper to be displayed on the remote machine(35) with antenna(17l) also associated with the level(ll) is sent to. Printed circuit(24) capillary water movement monitoring from ground water It is put into the zone (29l and transmits the real-time data to the smart card (19l. Except for the humidity rate) factors such as moisture, root, Reptile, which change the physical capacity in the soil Since the smart card(l9) has artificial intelligence, which prints out data (24) over time, It learns to distinguish it and reports these data and uses the antenna (17) to reach the distance. transmits (35l) to the machine.

Baski devre(24l taban suyu kaynakli kapiller su hareketi izleme bölgesinde(29l bulunur. Printed circuit (24l ground water source is located in the capillary water movement monitoring zone (29l).

Yani degisken taban suyu üst seviyesinden(11) baslar ve zemine(5l kadar uzanir. Baski devre(24) yapisi itibari ile bu bölgenin nem miktarinin degisimini ve nem hareketini vektörel olarak takip edebilen bir yapiya sahiptir. Bu yapi sayesinde toprak(9l içerisinde nem hangi kaynaktan ve yönden gelirse gelsin hem miktari hemde vektörel olarak kapasite degisim yönünü yani kapiller su hareketini(10) tespit eden tüm yapiyi barindirir. That is, the variable groundwater starts from the upper level (11) and extends to the ground (5l). The circuit (24) shows the change of the moisture content of this region and the movement of humidity as of its structure. It has a structure that can follow vectorially. Thanks to this structure, soil (within 9l No matter what source and direction moisture comes from, it can be used both quantitatively and vectorally. It contains the whole structure that detects the direction of capacity change, that is, the capillary water movement (10).

Istendiginde tek basina analiz kuyusu(34) haricinde akilli kart(19) ile ayni amaçlar için kullanilabilir yapiya sahiptir. For the same purposes as the smart card (19) except for the analysis well (34) alone, if desired. It has usable structure.

Degisken taban suyu üst seviyesi(11l Ile toprak(9) içerisinde bulunan kök bölgesine(28) kapiller su hareketi(10] ile nemin ulasip ulasmadigi baski devrece(24l belirlenir.10 Ulastiramadigi durumda baski devre(24l üzerindeki nem sensörü(25l ve kapasitif sensörde(26l veri degisikligi olamayacaktir. Böylece bitkinin(44l sulama suyu ihtiyaci sulama sistemi(43l bu senaryoya göre akilli kartça(43i programlanip çalistirilir. Variable ground water upper level (11l to the root zone in the soil (9)(28) With capillary water movement(10], it is determined whether the moisture can reach the pressure circuit(24l.10). Printed circuit (humidity sensor above 24l (25l and capacitive) there will be no data change in the sensor (26l. Thus, the plant (44l irrigation water need) irrigation system(43l is programmed and operated by smart card(43i according to this scenario).

Sulama Sistemi(43l çalisirken sadece sulama yada dogal yagis kaynakli nem degisimini, nem sensörü(25) ve nem dagilim dogrultusunu da kapasitif sensörler(26l ölçümleyip akilli karta(19l analize gönderecektir. Uzak makine (35) deki kullanici ise bu veriler isiginda sulama sisteminin(43l manuel yada otomatik yönetimini gerçeklestirebilecektir. Irrigation System (When 43l is working, only the moisture change due to irrigation or natural precipitation, humidity sensor (25) and humidity distribution direction with capacitive sensors (26l measuring and It will send the smart card (19l) to the analysis. If the user on the remote machine (35), this data is It will be able to perform manual or automatic management of the irrigation system (43l) in the light of the day.

Sulama sistemi(43l çalisirken, taban suyu kaynakli kapiller su hareketi izleme bölgesinde(29l kapiller su hareketi(10) baski devrece(24) algilandiginda taban suyundan(36l saglanan nem miktari nispetinde akilli kart(19) sulama sistemini(43l daha az çalistirarak su tasarrufu saglar. Irrigation system (43l working, capillary water movement monitoring from ground water When the pressure in the region (29l capillary water movement (10) is sensed to the pressure circuit(24), the bottom water (36l) in proportion to the amount of moisture provided, the smart card(19) irrigation system(43l more It saves water by operating less.

Degisken taban suyu üst seviyesi(11] toprak(9) içerisinde kök bölgesine(28) kapiller su hareketi(10) Ile kismen ulasabilecei( derinlikte Oldugu nem sensörü(25) ve nem dagilim dogrultusunu da kapasitif sensörler(26) tarafindan tespit edildiginde; Nemin baski devre(24l boyunca sature olmus topraktan(12l zemine(5l dogru izledigi yol ve miktar tespit edilir. Bu durumda sulama sisteminin(43l sadece eksik kalan nem açigini kapatacak kadar çalistirilmasi yine baski devre(24l boyunca izlenerek, zeminden(5l bitki etkili kök deriniiginin(23l sonuna kadar sulama yapilir. Yer çekimi yönünde ve ters yönde toprakta(9l gerçeklesen nem hareketinin hem vektörel ilerleyisi hemde miktarinin tespit edilmesi ve yorumlanmasi sonucunda her iki yönden su ile beslenen köklerin fazla sudan bogulmalari engellenerek, daha az su ile sulamanin gerçeklesmesi akilli kart(19) tarafindan saglanmaktadir. T0praga(9l sulama sistemi(43] ile verilen gübre ve kimyasallarin bitki etkili kök derinliginde(23) ilerleyisi, sature olmus topraga(12) karismamalari kapasitif sensör(26) verilerinin akilli karta(19l ulasip, uzak makinede(35) anlik görüntülenmesi ile izlenir ve sulama sistemi(43) manuel yada otomatik yönetilebilir hale gelir. Capillary water to the root zone(28) in the soil(9) at the variable groundwater upper level(11). movement(10) with the humidity sensor(25) and moisture distribution its direction is also detected by the capacitive sensors(26); pressure of moisture circuit(from the saturated soil for 24l(12l to the ground(5l the path and amount) detected. In this case, the irrigation system (43l will only close the missing moisture gap. to be operated until the pressure circuit (followed throughout the 24l, from the ground (5l plant effective root) Irrigation is done until the end of the depth (23l. In the direction of gravity and in the opposite direction Determination of both the vectorial progression and the amount of moisture movement in the soil (9l) As a result of the analysis and interpretation of the roots fed with water from both directions, excess water Smart card (19) is provided by. T0praga(9l irrigation system(43] with fertilizer and advancement of chemicals at plant effective root depth(23) into saturated soil(12) interference of the capacitive sensor(26) data to the smart card(19l) and to the remote machine(35). It is monitored with its instant display and the irrigation system (43) can be managed manually or automatically. becomes.

Yaz ve kis bazi havzalarda ve sahalarda degisken taban suyu üst seviyesi(11l, gerçek zamanli izlenerek zeminden(5l bir sulama yapmadan bitki(44) yetistirmeye uygun taban suyu(36l Olup olmadigi akilli kartça(19i tespit edilir. Bu durumda dren borularinin(40] kök bölgesine(28l fazla su nedeniyle zarar vermeyecegi uygun planlamasi akilli kartça(19l önerilir. Bazi bitkiler(44l için hiçbir dren borusu(40] yani drenaj sistemi10 kullanmadan taban suyundan(36] temin edilen su ile bitki(44) sulama imkani baski devreden(24i gelen verilerin akilli kartta(19i yorumlanmasi ile saglanir. Köklerin zarar görmeden böyle bir imkanin olup olamayacagini, tarimsal bitki(44i üretim tesisi kurulmadan sahanin etüdünün yapilmaSi ve isletme döneminin izlenmesi, mesafe ölçen sensör(21i, nem sensörü(25], kapasitif senSÖr(26) verilerini gerçek zamanli alip yorumlayabilen akilli kart(19) tarafindan saglanir. Akilli kartta (19) paketlenen veriler uzak makineye(35l görüntülenmek üzere gönderilir. Variable groundwater upper level in some basins and areas in summer and winter (11l, real The base suitable for growing plants (44) from the ground (5l without irrigation) by monitoring the time Water(36l or not) is determined by the smart card(19i. In this case, the drain pipes(40]) It will not damage the root zone (28l due to excess water, its proper planning is smart) cardca(19l recommended. For some plants(44l no drainpipe(40] ie drainage system10) the possibility of watering plants (44) with the water supplied from the ground water (36) without using the pressure Deactivated(24i is provided by interpreting the incoming data on the smart card(19i. Damage of the roots) without seeing whether such an opportunity is possible, agricultural plant (44i production facility) survey of the field and monitoring of the operation period, distance measuring sensor(21i, humidity sensor(25], capacitive sensor(26) can receive data in real time provided by the smart card (19) that can interpret it. Data packed in smart card (19) sent to the remote machine(35l) for viewing.

Sature olmus toprak(12i içerisindeki suda bulunan maddelerin miktarlarinin dis boru(4i içerisindeki sensörler ile ölçümlenebilmesi ve bitki(44) yetistiriciligi için uygun olup olmadigi gerçek zamanli veriler elde edilerek saglanir. Bu arastirma ve veri toplama isi Ph sensörü(31], EC Sensörü(32) ve her ne maddeler arastiriliyor ise ilgili sensörlerin yerlestirilebilmesi için opsiyonel sensör yuvasina(33i konan sensörler ile Saglanir. Sensör kablolari(30] ile aktarilan veriler akilli kartta(19) degerlendirilir. Verileri degerlendiren akilli kart(19) hazirladigi paketi uzak makineye(35i görüntülemek için gönderir. Saturated soil (12i), the amount of substances in the water in the outer pipe (4i It can be measured with the sensors inside and is suitable for plant (44) cultivation. is provided by obtaining real-time data. This research and data collection Ph sensor(31], EC Sensor(32) and whatever substances are investigated It is supplied with sensors placed in the optional sensor slot (33i) for placement. Sensor The data transferred with the cables(30] is evaluated on the smart card(19). The smart card (19) sends the package it has prepared to the remote machine (35) for viewing.

Böylece degisken taban suyu üst seviyesi(11], Taban suyu(36) kaynakli kapiller su hareketi izleme bölgesinde(29i, kök bölgesi(28i ve bitki etkili kök derinligi(23] nem muhteviyati ve su hareketi verileri, sature olmus toprak(12} içerisindeki suda bulunan tuz, ph ve opsiyonel sensör yuvasi(33) vasitasi ile ölçülen diger gereksinim duyulan maddelerin analizi ve bu veriler isiginda zirai faaliyetleri ve sulama sisteminin(43i yönetimi yada öneride bulunma islemleri ayri ayri yada birlikte akilli kart(19) tarafindan saglanmakta ve analizler uzak makine(35) vasitasiyla görüntülenmektedir. Akilli kart(19) yapay zekaya sahip oldugundan zaman içerisinde ögrenir. Bu açidan akilli kart(19) ögrenebilen bir makine olarak verileri degerlendirir ve görev yapabilir özelliktedir. Thus, capillary water sourced from variable ground water upper level(11], Ground water(36) in motion tracking zone(29i, root zone(28i and plant effective root depth(23]) moisture content and water movement data, salt in the water in the saturated soil(12}, pH and any other required measurement via the optional sensor housing(33) analysis of substances and agricultural activities and irrigation system (43i) in the light of these data. management or making suggestions separately or together by the smart card(19). is provided and the analyzes are viewed via the remote machine (35). Smart card(19) Since it has artificial intelligence, it learns over time. In this respect, the smart card(19) As a learning machine, it evaluates data and is capable of performing tasks.

Gerçek zamanli verilerin izlenebilir olmasi havzada yada sahada planlanmasi düsünülen drenaj sisteminin fazla suyun tamamen topraktan(9) kök bölgesine(28i zarar vermemek üzere uzaklastirilmasi için gerekli verileri hatasiz Saglamasi yaninda, sature olmus topraktaki(12i nem muhteviyatinin kapiller su hareketi(10i ile bitkilerin(44) su ihtiyacinin kismen yada tamamen karsilanmasini temin edecek sekilde nasil kurgulanmaSi gerektigi yönünde akilli kart(19) analiz yapmaktadir. Real-time data can be monitored, which is thought to be planned in the basin or field. To avoid damaging the root zone (28) of the drainage system completely from the soil (9) In addition to providing the necessary data to be removed without errors, Capillary water movement of moisture content in the soil(12i and plants(44) with 10i how to ensure that his/her needs are met partially or completely. The smart card (19) analyzes in the direction that it should be constructed.

Akilli kart(19), topladigi veriler isiginda dren borusu(40i araliklarini ve dren borularinin(4()i zeminden(5) toprak(9i profilinde ne kadar asagiya konmasi gerektigini,10 yada evvelce dren borulari(40) yerlestirilmisse, bu yerlesimin dogru olup olmadigini ve mühendislik hesaplari ile gerçegin örtüsüp örtüsmedigini tespit etme özelligine sahiptir. The smart card(19), in the light of the data it collects, determines the drain pipe(40i intervals and drain how far down the pipes(4()) from the ground(5) should be placed on the soil(9i profile),10 or if drain pipes (40) have been placed before, check whether this placement is correct and It has the feature of detecting whether engineering calculations and reality overlap.

Akilli kart(19i, bitkilerin(44i su ihtiyaci karsilanirken, kök bölgesine(28] taban suyunun(36] zarar vermemesi yönünde, degisken taban suyu üst seviyesindenül) toprak(9l içerisine kapiller su hareketiyle(10} yayilan nemin en optimum sekilde gerçeklesmesini saglayan dren borusu(40l h mesafesini(38) tespit etme islemini ve mevcut bir Isletme kurulmUS ise hesaplamalarin dogrulugunu analiz edebilme özelligine sahiptir. Smart card(19i, water needs of plants(44i), root zone(28] base) from the upper level of the variable ground water in the direction of not damaging the water (36]) soil(9l with the movement of capillary water (10} in the most optimum way of spreading moisture) the drain pipe (40l h distance (38)) If an existing business is established, it can analyze the accuracy of the calculations. has.

Iki dren borusu(40i arasindaki L mesafesi(39} boyunca h mesafesi(38) degisir. Teorik olarak L mesafesinin(39i orta noktasmdan degisken taban suyu üst seviyesine (11) dik olarak uzanan h mesafesi(38], L mesafesi(39) üzerindeki en maksimum degerine ulasir. The distance h(38) changes along the distance L(39} between the two drain pipes(40i). Theoretical as perpendicular to the variable groundwater upper level (11) from the middle point of the distance L(39i) The distance h(38], which extends as the distance, reaches its maximum value over the distance L(39).

Dolayisi ile toprakta(9) taban suyu kaynakli kapiler su hareketi izleme bölgesinde(29) olusan nem miktari nem sensörü(25) tarafindan, nemin topraktaki(9) dagilimi ise kapasitif sensörler(26l ile belirlenir. Bu amaçla kullanilan ve bitki etkili kök derinliginde(23l bulunan baski devreler(24i bagimsiz olarak tek basina L mesafesi(39l boyunca yerlestirilerek, taban suyu kaynakli kapiler su hareketi izleme bölgesinde(29) nem oranlarini ve nemin dagilimini anlik olarak toprakta(9i ölçümlerlere ve akilli kart(19l bu verileri yorumlayarak uzak makineye(35) gönderir. Böylece iki dren borusu(40) arasinda OIUSan degisken taban suyu üst seviyesi(11) ile zemin(5} arasindaki topragin(9l nem orani ve dagilimi açisindan tarima elverisli olup olmadigi yada dren borusu(40) gömme derinliginin ne olmaSi gerektigi akilli kart(19) tarafindan saglanan veriler ile gerçek zamanli, sezonluk istenen periyodlarda yorumlanir. Bu veriler isiginda taban suyu(36] zarari yasayan saha ve havzalarin tarima açilmasi için gerekli kosullarin olusup olusmadigi hangi bitkilerin(44) yetistirilebilecegi ve su ihtiyacinin taban suyundan(36l ne kadarinin karsilanabilecegi bilgileri akilli kart(19] belirler ve uzak makineye(35) iletilir. Therefore, in the soil(9) groundwater sourced capillary water movement monitoring region(29) The amount of moisture formed is determined by the humidity sensor (25), and the distribution of moisture in the soil (9) capacitive sensors (determined by 26l. Roots used for this purpose and plant effective print circuits with depth(23l(24i independently L distance alone(39l) in the monitoring zone of capillary water movement originating from ground water (29) humidity rates and moisture distribution instantly in the soil (9i measurements and smart card(19l) interprets this data and sends it to the remote machine(35). between the OIUSan variable groundwater upper level(11) and the ground(5} whether the soil (9l humidity rate and distribution is suitable for agriculture or not What should be the burial depth of the pipe(40) is provided by the smart card(19). real-time, seasonal data is interpreted in desired periods. In light of these data The necessary conditions for opening the fields and basins that are damaged by ground water(36) to agriculture whether it is formed, which plants(44) can be grown and the base of water need The smart card(19] determines how much of the water(36l) can be met and the remote transmitted to the machine (35).

Akilli kart(19) yapay zekaya sahip yazilimi sayesinde, en az suyu harcayacak ve maksimum kapasitede taban suyundan(36) gerçeklesen kapiler su hareketini(10] bitki(44) su ihtiyacini karsilamak üzere kullanacak sekilde sulama sistemini(43i çalistiracak Özellige sahiptir. Thanks to its software with artificial intelligence, the smart card (19) will consume the least water and Capillary water movement from ground water(36) at maximum capacity(10] plant(44) It will operate the irrigation system (43i) to meet the water needs. It has feature.

Akilli kart (19] drenaj projeleri için gerekli verilerin dogrulugunu test ederek kapiller su10 hareketi(10) ile degisken taban suyu üst seviyesi(ll) arasindaki iliskiyi her toprak(9) yapisi ve bitki(44) için yorumlayarak aradaki iliskiyi tanimlayaoak ve baski devre(24) ile mesafe ölçen sensörü(21) kullanabilme özelligine sahiptir. Ayni zamanda akilli kart(l9) uzak makine(35l üzerinden manuel islem yapilmasma ve erisilip programlanmaya müsait yapidadir. The smart card (19] tests the accuracy of the data required for drainage projects, testing the capillary water10 Every soil(9) determines the relationship between the movement (10) and the variable ground water upper level (ll). will describe the relationship between the structure and the plant(44) by interpreting it and with the printed circuit(24) It has the feature of using the distance measuring sensor(21). Also smart card(l9) remote machine (available for manual operation and access and programming over 35l) is in the structure.

Bulusun sanayiye uvqulan ma biçimi BUIUS, bitkilerin sulanmasinda bilinçli bir sekilde taban suyu kullaniminin önünü açacaktir. Atil duran taban sularinin tamamen toprak profilinden uzaklastirilmasi yerine sulamaya destek olacak seviyede tutulmasina yarayan drenaj projelerinin hayata geçmesinin önü açilacaktir. Bilim dünyasinin kullandigi formüllerin dogrulugu saglikli biçimde test edilebilecektir. Taban suyu yüksek olup, elektrik ve sulama suyu imkâni bulunmayan havza ve sahalarda alternatif bir sulama suyu kaynagi yaratilmis olacaktir. How the invention applied to industry BUIUS prevents the conscious use of ground water in the irrigation of plants. will open. Instead of completely removing the inactive ground water from the soil profile, the implementation of drainage projects, which help to keep irrigation at a level that will support irrigation. will be opened to pass. The accuracy of the formulas used by the scientific world is healthy. can be tested accordingly. Ground water is high, electricity and irrigation water facilities are available. An alternative source of irrigation water will be created in the basins and areas that do not exist.

Taban suyu yüksek olup tarim yapilamayan bölgelerde hangi kök yapisina sahip bitkilerin hangi kosullarda yetisebilecegi tespit edilecektir. Taban suyu yüksek sahalarin bu sekilde bitlendirilebilmesi ekosistem ve mikroklimayi çok olumlu etkileyecektir. Su kaynaklarindan sulama amaçli kullanilan sularin orani taban suyunun bitkiye sagladigi su miktari kadar azalacaktir. Taban suyu içerisindeki anlik tuzluluk, ph gibi mineral, kimyasal degisimlerin tespiti sahada kullanilan gübre, kimyasal ya da taban suyuna karisan maddeler ve taban suyunun hareketi hakkinda bilgiler toplanmasina böylece Zirai faaliyetlerin denetim altinda sürmesine olanak saglayacaktir. Bu hali ile bUiUSU oIUSturan özellikler tümden ya da kisim kisim ülkelerin tarim politikalarina yön veren ve su yönetimi stratejilerini gelistiren resmi dairelerin ve özel sektörün, bilim camiasi ile beraber ilgisini görecektir. Drenaj problemi olan sahalarin etüdünde en büyük sorun gerçek zamanli verilerin elde edilememesidir. Bu problem ortadan kalkarak gerçek zamanli çok hassas verilere ulasilacagindan islah projeleri, drenaj ve su yönetimi projeleri öncesinde vaz geçilmez bir etüt cihazi olarak kullanilabilecektir.Which root structure of the plants in the areas where ground water is high and agriculture cannot be done? It will be determined under which conditions it can be grown. In this way, the fields with high ground water lice will have a very positive effect on the ecosystem and microclimate. This the rate of water used for irrigation from the water sources that the ground water provides to the plant amount will decrease. Instant salinity in the ground water, minerals such as ph, detection of chemical changes to the fertilizer, chemical or ground water used in the field thus enabling the collection of information about the contaminants and the movement of groundwater. will allow activities to continue under control. In this state, it forms buUiUSU. characteristics that shape the agricultural policies of the countries in whole or in part and government agencies and the private sector that develop management strategies, together with the scientific community will be of interest to you. The biggest problem in the study of sites with drainage problems real-time data is not available. This problem is eliminated Reclamation projects, drainage and water management, as timely very sensitive data will be available. It can be used as an indispensable study device before projects.

Claims (16)

ISTEMLERREQUESTS . Bulus, Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama Olup, özelligi; degisken taban suyu üst seviyesi(11) ile zemin(5l arasindaki mesafeyi gerçek zamanli olarak mm. hassasiyetinde sürekli mesafe ölçen sensör(21) kullanarak ölçebilmesidir.. The Invention Is Intelligent Irrigation by Monitoring the Ground Water Level, its feature is; It can measure the distance between the variable ground water upper level (11) and the ground (5l) in real time by using a continuous distance measuring sensor (21) with mm precision. . Istem 1°deki gibi Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama olup, özelligi; dren borusu(40) olan sahalarda, h mesafesini(38l, L mesafesi(39l boyunca gerçek zamanli olarak mm. hassasiyetinde tespit edebilmesidir.. It is Intelligent Irrigation by Monitoring the Ground Water Level as in Claim 1, and its feature is; In areas with a drain pipe (40), it can detect the h distance (38l, L distance (39l) in real time with mm. precision. . Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama Olup, özelligi; degisken taban suyu üst seviyesindeki(11) degisimleri gerçek zamanli bildiren mesafe ölçen sensör(21l ile toprak(9) içerisindeki kapiller su hareketini(10l gerçek zamanli belirleyen baski devrenin(24l entegre çalismasini temin ederek taban suyu(36l sayesinde kök bölgesindeki(28) sulama suyu ihtiyacinin ne kadarinin karsilandigini belirleyen ve sulama sistemini yöneten akilli karta(19) sahip olmasidir.. It is Intelligent Irrigation by Monitoring the Ground Water Level, its feature is; By providing the integrated operation of the pressure circuit (24l that determines the capillary water movement (10l) in the soil (9) in real time with the distance measuring sensor (21l) that informs the changes in the variable ground water upper level (11) in real time, the irrigation in the root zone (28) thanks to the ground water (36l) Having a smart card (19) that determines how much of its water needs are met and manages the irrigation system. . Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama Olup, özelligi; yapay zekaya sahip akilli karta(19l sahip olmasidir.. It is Intelligent Irrigation by Monitoring the Ground Water Level, its feature is; It has a smart card (19l) with artificial intelligence. . Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama OlupI özelligi; baski devre(24) ile toprak(9l profili boyunca istenen ve degisken mesafelerde hem nem miktarini hemde nemin hareket yönünü ayni anda tespit edebilen nem sensörü(25) ve kapasitif sensöre(26} sahip olmasidir.. It is Intelligent Irrigation by Monitoring the Ground Water Level; It has a humidity sensor (25) and a capacitive sensor (26} that can detect both the amount of moisture and the direction of movement of moisture at desired and variable distances along the soil (9l profile) with a printed circuit(24). . Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama Olup, özelligi; etkili kök derinligini(23) kapasitif sensör(26] ile algilayabilmesidir.. It is Intelligent Irrigation by Monitoring the Ground Water Level, its feature is; It can detect the effective root depth (23) with the capacitive sensor (26). . Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama olup, özelligi; sulama sistemi(43} ve taban suyu(36) kaynakli toprak(9) içerisindeki kapiller su hareketini(10] ayni anda ayirt ederek gerçek zamanli izlenmesine olanak taniyan ve sulama seneryosu gelistirebilen yapay zekaya sahip akilli karta(19i sahip olmasidir.. It is Intelligent Irrigation by Monitoring the Ground Water Level, and its feature is; It has a smart card (19i) with artificial intelligence, which allows real-time monitoring by distinguishing the capillary water movement (10] in the soil (9) originating from the irrigation system (43} and the ground water (36) at the same time and can develop an irrigation scenario. . Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama OlupI özelligi; taban suyu içerisindeki gerekli kimyasal ölçümlemeleri analiz kuyusu(34) içerisinde bulunan Ph sensörüßll, EC sensörü(32l ve opsiyonel sensör yuvalarina(33l konan istenen opsiyonel Sensörler ile yerinde tahlil yapilabilmesidir.. It is Intelligent Irrigation by Monitoring the Ground Water Level; The necessary chemical measurements in the ground water can be made on-site with the optional sensors placed in the Ph sensorßll, EC sensor (32l and optional sensor sockets (33l) located in the analysis well(34). . Istem 8 deki gibi Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama Olup, özelligi; Ph sensörü(31l, EC sensörü(32) ve opsiyonel sensör yuvalarina(33) konan sensörlerden gelen verileri yorumlayan yapay zekaya sahip akilli karta(19) sahip olmasidir.. It is Intelligent Irrigation by Monitoring the Ground Water Level as in Claim 8, its feature is; It has a smart card (19) with artificial intelligence that interprets the data from the sensors placed in the Ph sensor (31l, EC sensor (32) and optional sensor slots (33)). Taban Suyu Seviyesinin izlenmesi ile Akilli Sulama Olup, özelligi; analiz kuyusu(34) içerisinde toplanan taban suyunun(36] bilesik kaplar esasina göre dis boru savagindan(13l içeriye filtre edilerek girmesini saglayan dis boru filtresine(8l sahip olmasidir.It is Intelligent Irrigation by monitoring the Ground Water Level and its feature is; It has an external pipe filter (8l) that allows the ground water (36) collected in the analysis well (34) to enter through the outer pipe weir (13l) on the basis of compound vessels, by filtering it. Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama Olup, özelligi; taban 5uyu(36) ölçümünü yapmak üzere açilan analiz kuyusunda(34l degisken taban suyu üst seviyesinin(11) hatasiz ve yerine gitmeden okunmasini saglayan dis boru(1li iç boru(7l, dis boru savagi(13), iç boru savagi(14l ve dis boru filtresi(8) aksamlarina sahip olunmaSidir.It is Intelligent Irrigation by Monitoring the Ground Water Level, its feature is; In the analysis well (34l variable ground water upper level (11) opened to make the measurement of the base 5 well(36), the outer pipe(1 inner pipe(7l, outer pipe weir(13),the inner pipe weir(14l and outer pipe filter(8) components. Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama olup, özelligi; Bitki(44) yetistirebilmek için gerekli suyun kismen yada tamamen taban 5uyundan(36)kars11an1p karsilanamayacagini, karsilanmasi için dren borusunun(40l toprakda(9l yerlestirilmesi için projesi hazirlanirken gerekli olan h mesafesi(38l, L mesafesi(39l ve H mesafesi(42l hesaplanmasi için gerekli verileri toplayan ve hesaplamalari yapan, en dogru sonucu buluncuya kadar ögrenmeye devam eden yapay zekaya sahip akilli kart(19) ile entegre çalisan baski devre(24), mesafe ölçen sensöre(21l sahip olmasidir.It is Intelligent Irrigation by Monitoring the Ground Water Level, and its feature is; It should be noted that the water required to grow plants (44) cannot be met partially or completely from the bottom 5 well (36) and the drain pipe (for the calculation of the h distance (38l, L distance (39l and H distance)) required while preparing the project for the placement of the drain pipe (40l in soil (9l) It has a printed circuit (24) integrated with a smart card (19) with artificial intelligence, which collects the necessary data and makes the calculations, continues to learn until it finds the most accurate result, and has a sensor (21l) that measures distance. 14. Taban Suyu Seviyesinin izlenmesi ile Akilli Sulama Olup, özelligi; kurulmUS yada kurulacak drenaj sisteminin, mevcut taban suyunun(36l bitki(44) yetistirmek için su kaynagi olarak kullanilip kullanilamayacagini belirleyen akilli karta(19] sahip olmasidir.14. It is Intelligent Irrigation by monitoring the Ground Water Level, its feature is; Established US or the drainage system to be established has a smart card(19] that determines whether the existing ground water(36l) can be used as a water source to grow plants(44). Taban Suyu Seviyesinin izlenmesi ile Akilli Sulama Olup, özelligi; taban 5uyu(36} yüksek sahalarda sulama sistemini(43) daha az çalistirarak yada gerek duymadan hangi bitkilerin(44) yetistirilebilecegini belirleyebilmeyi saglayan akilli karta(19l sahip olmasidir.It is Intelligent Irrigation by monitoring the Ground Water Level and its feature is; It has a smart card (19l) that enables to determine which plants (44) can be grown by operating the irrigation system (43) less or not in the base 5uyu(36} high fields. 16. Taban Suyu Seviyesinin Izlenmesi ile Akilli Sulama Olup, özelligi; toprak(9) içerisinde taban suyu(36) kaynakli nem dagiliminin ve nem hareket yönünün ayni anda belirlenmesini saglayan baski devreye(24l sahip olunmasidir.16. It is Intelligent Irrigation by Monitoring the Ground Water Level, its feature is; It is the presence of a pressure circuit (24l) that enables the moisture distribution and moisture movement direction to be determined simultaneously in the soil (9) originating from the ground water (36).
TR2019/00020A 2019-01-02 2019-01-02 INTELLIGENT IRRIGATION WITH MONITORING OF BASE WATER LEVEL TR201900020A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2019/00020A TR201900020A2 (en) 2019-01-02 2019-01-02 INTELLIGENT IRRIGATION WITH MONITORING OF BASE WATER LEVEL
PCT/TR2019/051231 WO2020142043A2 (en) 2019-01-02 2019-12-26 Smart irrigation by monitoring the ground water level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2019/00020A TR201900020A2 (en) 2019-01-02 2019-01-02 INTELLIGENT IRRIGATION WITH MONITORING OF BASE WATER LEVEL

Publications (1)

Publication Number Publication Date
TR201900020A2 true TR201900020A2 (en) 2020-07-21

Family

ID=71407326

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2019/00020A TR201900020A2 (en) 2019-01-02 2019-01-02 INTELLIGENT IRRIGATION WITH MONITORING OF BASE WATER LEVEL

Country Status (2)

Country Link
TR (1) TR201900020A2 (en)
WO (1) WO2020142043A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483861B (en) * 2021-07-30 2024-03-29 江苏森彩生态环境有限公司 Water level monitoring equipment for treegarden irrigation
CN114680026A (en) * 2022-04-15 2022-07-01 安徽农业大学 Underground water quality monitoring and farmland irrigation integrated double-control device
CN115598308A (en) * 2022-11-16 2023-01-13 安徽省(水利部淮河水利委员会)水利科学研究院(安徽省水利工程质量检测中心站)(Cn) Method for detecting crop root water source based on tracing technology
CN116186869B (en) * 2023-05-05 2023-08-04 北京城建集团有限责任公司 Precipitation recharging integrated design method for deep foundation pit precipitation and short-path recharging
CN116754013B (en) * 2023-06-16 2024-01-05 海丰县绿色部落生态农业有限公司 Wild tea planting environment monitoring system based on data analysis
CN116929487B (en) * 2023-07-25 2024-03-08 湖北煤炭地质勘查院 Underground water level dynamic trend prediction algorithm based on well engineering operation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9880537B2 (en) * 2015-08-05 2018-01-30 Clearag, Inc. Customized land surface modeling for irrigation decision support in a crop and agronomic advisory service in precision agriculture
US20160247079A1 (en) * 2015-02-20 2016-08-25 Iteris, Inc. Modeling of soil compaction and structural capacity for field trafficability by agricultural equipment from diagnosis and prediction of soil and weather conditions associated with user-provided feedback
CN207167046U (en) * 2017-03-04 2018-04-03 陇东学院 A kind of fertilizer irrigation system of PLC controls
CN107852933A (en) * 2017-11-14 2018-03-30 王巧丽 A kind of Fuzzy irrigation control system and its irrigation method based on PLC

Also Published As

Publication number Publication date
WO2020142043A2 (en) 2020-07-09
WO2020142043A3 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
TR201900020A2 (en) INTELLIGENT IRRIGATION WITH MONITORING OF BASE WATER LEVEL
Tanji Agricultural salinity assessment and management
Ogden et al. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama
CN102539642B (en) Simulation testing system of water circulation process under human activity disturbance conditions
CN110346533B (en) Method for guiding arrangement and combination of underground pipes of saline-alkali soil
Gunawardena et al. Deep drainage through Vertosols in irrigated fields measured with drainage lysimeters
Groves Hydrological methods
Kogovšek Characterization of a karst aquifer in the recharge area of Malenščica and Unica springs based on spatial and temporal variations of natural tracers
Shahrajabian et al. A Lysimster Study, a Unique Tool for Botanists, Agronomists and Other Plant Scientists
Sheler The impact of agricultural drainage systems on hydrologic responses
Savabi Determining soil water characteristics for application of WEPP model in south Florida
Mousavizadeh et al. Management of aquifer and dam reservoir quantitative-qualitative interaction
Grootjans et al. 3 An eco-hydrological approach to wetland restoration
Varadarajan et al. SaltMod estimation of root-zone salinity Varadarajan and Purandara Application of SaltMod to estimate root-zone salinity in a command area
Kahsay Groundwater resource assessment through distributed steady-state flow modeling, Aynalem Wellfield, Mekele, Ethiopia
Kirby et al. A bibliography of hydrological, geomorphological, sedimentological, biological and hydrochemical references to the Institute of Hydrology experimental catchment studies in Plynlimon
Jyothy Assessment of lateral flow and base flow for effective interventions in water conservation
Lennon Assessing the Performance of Vadose Zone Monitoring Systems using Bromide as a Tracer
Yang et al. Water Cycle Process Research: Experiments and Observations
Uygan et al. Mapping boron pollution using GIS for boron-affected soils in Western Turkey
Prevost Hydrogeological Characterization of Springs in the Bighill Creek Watershed
Clausen Introduction to Water Resources
Green Point and regional scale modelling of vadose zone water and salt fluxes in an area of intensive horticulture
Milinic Evaluation of Bedrock Depth and Soil Infiltration along Pennypack Creek Using Electrical Resistivity Tomography and Moisture Loggers
Kinzli A low cost remote monitoring method for determining farmer irrigation practices and water use