TR201810053A2 - COOLING GAS TURBINE ENGINES WITH WATER RECYCLING PUMP - Google Patents
COOLING GAS TURBINE ENGINES WITH WATER RECYCLING PUMP Download PDFInfo
- Publication number
- TR201810053A2 TR201810053A2 TR2018/10053A TR201810053A TR201810053A2 TR 201810053 A2 TR201810053 A2 TR 201810053A2 TR 2018/10053 A TR2018/10053 A TR 2018/10053A TR 201810053 A TR201810053 A TR 201810053A TR 201810053 A2 TR201810053 A2 TR 201810053A2
- Authority
- TR
- Turkey
- Prior art keywords
- water
- cooling
- feature
- gas turbine
- turbine
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 51
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 title description 2
- 238000004064 recycling Methods 0.000 title 1
- 238000001816 cooling Methods 0.000 claims abstract description 35
- 210000000078 claw Anatomy 0.000 claims description 3
- 239000000498 cooling water Substances 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 17
- 238000010586 diagram Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 2
- 101100042271 Mus musculus Sema3b gene Proteins 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/085—Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2210/00—Working fluids
- F05D2210/10—Kind or type
- F05D2210/11—Kind or type liquid, i.e. incompressible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/60—Shafts
- F05D2240/61—Hollow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/60—Shafts
- F05D2240/63—Glands for admission or removal of fluids from shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/213—Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/232—Heat transfer, e.g. cooling characterized by the cooling medium
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Turbofan Gaz Türbinli motorların türbin disk kanatları (blade) soğutma işlemi, 650 derece sıcaklıkta Kompresör havasından çalıp motor gücünü düşürerek, oldukça stresli ve fazladan eneji harcanarak soğutma yerine, Motor ana mili (7) giriş kısmına eklenen 2. Mil (2) üzerindeki Su devirdaim pompası(1) HPT (8) ve LPT (9) Türbin disk kanatlarının (blade)(12),(13) içinden motor devir hızına eşdeğer veya daha hızlı bir döngü ile geçip ısı transferi yaparak film soğutmadan daha etkin bir soğutma sağlamaktadır.Turbofan Gas Turbine engines turbine disc blade (blade) cooling process, 650 degrees in the temperature of the compressor air by reducing the power of the engine, rather stressful and extra energy spent instead of cooling, the engine main shaft (7) is added to the input part of the 2nd shaft (2) Water recirculation The pump (1) HPT (8) and LPT (9) passes through the turbine blade blades (12), (13) in a cycle equivalent to or faster than the engine speed and transfers heat by providing a more efficient cooling than film cooling.
Description
TARIFNAME _ _ GAZ TURBINI MOTQRLARIVSU DEVIRDAIM POMPASI Bulusun ilgili oldug u teknik saha Bu bulus genel olarak gaz türbini motorlarina ve daha özel olarak Yüksek ve Düsük devirli Türbin disk ve kanatlarinin su ile sogutulmasi ile ilgilidir. DESCRIPTION _ _ GAS TURBINE MOTQRLARIV WATER CIRCULATION PUMP Technical field to which the invention relates This invention applies to gas turbine engines in general and more specifically to High and It is related to the cooling of low speed turbine disc and blades with water.
Bilinen Gaz Türbinli Turbofan Motorlarda Türbin kanatlarinin Yüksek devirli kompresörden gelen basinçli havanin, kombustörde yakitin yanmasiyla açiga çikan enerjiyle türbin kanatlarini tahriki sonucu itis gücü elde edilir, ancak kombustördeki yanmayla ortaya çikan 1700 derece civarindaki yüksek isiya, türbin kanatlarinin yapildigi metal alasimlarin dayanmasi güç bir hale geldiginden, türbin kanatlarinin sogutulmasi gerekmektedir. Bilinen en iyi teknik Türbin kanatlarini yüksek deirli kompresör havalisyla film teknigi kullanilarak sogutmaktir. Kanatlari içerden sogutma islemi için gereken sogutma havasi Yüksek devirli kompresör (çekirdek motor) havasindan çalinan % 20'lik hava oldugunu düsünürsek, bu miktarin türbinden güç elde etmek için ne kadar önemli oldugu kolayca anlasilir. Film sogutma tekniginde çekirdek motor olan kompresör havasinin %20 civari sogutma islemi için kullanildigindan kompresör havasindan %100 faydalanilamamaktadir. Film sogutma düsük devirli turbin kanatlarinida sogutmak oldukça stresli ve güç kaybina neden olan bir tekniktir. Bu sogutma tekniginde Yüksek devirli kompresörün basinçli havasi, dönen HPT Türbin diskine çarparken olusan stres ve Türbin devir hizinin düsürmesi fizik kurali geregi görmezden gelinemez, bu çarpmayla tahminimce % sayisinin düsmesine neden olur. High RPM of Turbine Blades in Known Gas Turbine Turbofan Engines Compressed air from the compressor is released by the combustion of fuel in the combustor. Thrust power is obtained as a result of driving the turbine blades with the energy released, but high heat of around 1700 degrees, which is caused by the combustion in the combustor, metal alloys from which turbine blades are made have become difficult to withstand. turbine blades need to be cooled. best known technique Using the film technique, the turbine blades are wrapped with high-grade compressor air. is to cool. Required cooling air for internal cooling of the blades 20% stolen air from high speed compressor (core engine) Considering that it is air, how much of this amount is needed to get power from the turbine? It's easy to understand how important it is. Core engine in film cooling technique Since around 20% of the compressor air is used for the cooling process. the compressor air cannot be used 100%. Film cooling low Cooling the rotating turbine blades is quite stressful and causes loss of power. is a technique. In this cooling technique, the pressure of the high speed compressor air, the stress caused by hitting the rotating HPT Turbine disc and the turbine speed speed reduction cannot be ignored by the law of physics, with this collision I guess the % number causes it to fall.
Bulusun çözümünü amaçladigi teknik problemler Bu bulus Gaz Türbini motorlarin Türbin disk ve kanatlarini kombüstördeki yakitin yanmasiyla açiga çikan 1700 derece civarindaki isi ortaminda HPT Kompresör havasindan çalinin 650-850 derecelik havayla sogutma yerine, su sogutma sistemiyle HPT ve LPT disk ve kanatlarinin sogutulmasi amaçlanmistir, Bu teknikle HPC kompresörün HPT kanatlarini soguturken harcanan %20'lik basinçli hava ve bu havanin HPT üzerinde meydana getirdigi strese son verilmesi, yanisira sogutma islemi sirasinda meydana gelen HPT disklerindeki hiz kaybi gibi sorunlara çözüm getirilmesi amaçlanmistir. Su sogutmayi, hava sogutmadan daha 'üstün kilan iki temel fiziksel özellik var. Technical problems that the invention aims to solve This invention replaces the turbine disc and blades of Gas Turbine engines in the combustor. HPT in a heat environment of around 1700 degrees, which is released by the combustion of fuel Work from the compressor air, instead of cooling with air at 650-850 degrees, water Cooling of HPT and LPT discs and fins with cooling system With this technique, the HPC is cooling the HPT blades of the compressor. 20% compressed air spent and the effect of this air on the HPT stress relief, as well as HPT occurring during the cooling process It is aimed to solve problems such as speed loss in disks. This There are two basic physical properties that make cooling superior to air cooling.
Bunlarin ilki, suyun isi iletkenliginin havaya oranla 25 kat daha fazla olmasidir, ikinci özellik suyun isi tasima kapasitesi havaya oranla 4 kat daha fada, sicakliginin artmasi için dört kat daha faüa isi enerjisine gerek duyuyor. Gaz Türbini Motorlar için Türbin kanatlari su sogutma teknigi asagidaki sekillerde gösterilmektedir. The first of these is that the thermal conductivity of water is 25 times higher than that of air, The second feature is that the heat carrying capacity of water is 4 times higher than that of air, It needs four times more heat energy to increase its temperature. Gas Turbine blades water cooling technique for Turbine Engines are as follows: is shown.
Sekil açiklamasi Sekil 1:Bir Turbofan motorun Ana milin giris kismi yatay huni seklinde genisletilerek yerlestirilen su devirdaim pompasi ile HPT ve LPT türbin disk ve kanatlarini su ile sogutma semasi. Figure description Figure 1: The input part of the main shaft of a Turbofan engine is in the form of a horizontal funnel HPT and LPT with extended water circulation pump The scheme of cooling turbine disc and blades with water.
Sekil 2: Su Devirdaim pompasi Mil semasi Sekil 3: Ana mil giris kisminin önden görünüs semasi Sekil 4: Su Devirdaim pompa milinin Ana mile baglanti semasi Sekil 5: Su Devirdaim pompa kasasinin disardan motor kasasina iç kismi ise ana milin 'on-iç kismina yerlestirilen R1 rulmaninin iç kismindan baglanti semasi Sekil 6: Ana mil parçalarinin iç mil ile baglantisini gösteren kesit semasi Sekil 7:Ana mil ve ara mil parçasinin iç mil ile baglantisi ve HPT ve LPT disklere suyun akis yönünü gösteren sema Sekil 8: Milden gelen suyun, HPT Disk içinden kanatlara ve kanatlardan tahliye düzenegini gösteren sema. Figure 2: Water Circulation pump Shaft diagram Figure 3: Front view diagram of main shaft input section Figure 4: Connection diagram of the Water Circulation pump shaft to the Main shaft Figure 5: If the Water Circulation pump casing is from the outside to the inside of the motor casing from the inside of bearing R1 located on the 'on-inside of the main shaft connection diagram Figure 6: Cross-section diagram showing the connection of the main shaft parts with the inner shaft Figure 7: Connection of main shaft and intermediate shaft part with inner shaft and HPT and LPT the sky showing the direction of water flow to the discs Figure 8: Evacuation of water from the shaft through the HPT Disc to and from the blades sema showing its arrangement.
Sekildeki referanslarin açiklanmasi Sekildeki numaralandirilmis parçalarin açiklamasi, asagida verilmektedir: 7- a) Ara mil 7-b) Ana ve Ara mil sabitleyici iç mil 8: HPT Disk ( Yüksek Devir Türbin) 9: LPT Disk( Düsük Devir Türbin) : HPT Su gidis kanali 11: LPT Su gidis kanali 12: HPT kanadi 13: LPT kanadi 14: Su Sogutma borusu (Radyatör) : HPT sicak su tahliye düznegi 16: LPT sicak su tahliye düznegi 19: Motor koruma kasasi : LPC Kömpresör kanadi (2 kademeli) 21: Soguk su kanali. xioianwN-x Sekilz1'e bakildiginda bir Turbofan Gaz Turbinli motor için Motorun Ana milinin(7) giris kisminda yatay olarak içerden 4 adet mil tutucu tirnaklar (6) su pompasi mili (2) 'üzerindeki 4 adet U kanalin(5) içine geçirilerek sabitlenir. Su devirdaim pompasi (1) suyu ana mil(7) içinden soguk su giris araligindan(17,18) Türbin diski su kanalina (10,11) geçip LPT ve HPT kanatlara gelir. Kanatlardaki(12,13) su tahliye düzneginden (15,16) radiator islevini gören su sogutma borularina (14) geçerek LPC kompresör tarafindan emilen soguk hava akisi ile sogutulur. Explanation of the references in the figure The description of the numbered parts in the figure is given below: 7- a) Intermediate shaft 7-b) Main and Intermediate shaft stabilizer inner shaft 8: HPT Disk (High Speed Turbine) 9: LPT Disk (Low Speed Turbine) : HPT Water flow channel 11: LPT Water flow channel 12: HPT wing 13: LPT vane 14: Water Cooler pipe (Radiator) : HPT hot water drain 16: LPT hot water drain 19: Engine protection box : LPC Compressor blade (2 stage) 21: Cold water channel. xioianwN-x Referring to Figure 1, for a Turbofan Gas Turbine engine, the Engine Main 4 shaft holder claws (6) horizontally from the inside at the entrance of the shaft (7). It is fixed by passing it into 4 U channels (5) on the pump shaft (2). This cold water inlet from the circulation pump (1) through the main shaft (7) from the gap (17,18) to the turbine disc water channel (10,11) and to the LPT and HPT blades. income. The water discharge mechanism on the wings (12,13) acts as the radiator (15,16). the cold absorbed by the LPC compressor passing through the water cooling pipes (14) cooled by air flow.
Sekil:2'ye bakildiginda, Su Devirdaim pompa milinin(2) bir tarafida 4 U kanali(5) ana mile(7) sabitlenmesi içindir. Referring to Figure:2, 4 U on one side of the Water Circulation pump shaft(2) The channel (5) is for fixing to the main shaft (7).
Sekil:3'e bakildiginda Su devirdaim pompa milinin(2) Ana mile(7) baglanti kesiti önden görünüsü. Considering Figure:3, the connection section of the water circulation pump shaft(2) to the main shaft(7) front view.
Sekilz4'e bakildiginda, Su devirdaim pompasi milinin(2) ana mile(7) sabitlenme sekli görülmektedir. Referring to Figure 4, the fixation of the water circulation pump shaft(2) to the main shaft(7) form is seen.
Sekilz5'e bakildiginda, Su devir daim pompa mili(2), motor ana milinin (7) giris kismi içerden dört tane tirnaga(6) sabitlenmis, su devirdaim pompa(1) kasasi(3) motor korumasina (19) uygun bir sekilde sabitlenir. Su devirdaim pompa kasasinin(3) disi motor korumasinin(19) dis kismina ve kasanin(3) iç kismi ise ana mil(7) girisindeki rulmanin(R1) iç kismina sabitlenir. Referring to Figure 5, the water circulation pump shaft (2) is the input of the motor main shaft (7). water circulation pump(1), partly fixed to four claws(6) from inside the casing(3) is properly fixed to the motor protection (19). water circulation the outside of the pump casing(3) the outside of the motor guard(19) and the inside of the casing(3) The part is fixed to the inner part of the bearing (R1) at the input of the main shaft (7).
Sekilzö'ya bakildiginda ara mil (7a) ve iç mil(7b) baglantisi ve soguk suyun geçisini saglayan 4 tane su kanali(21) kesit görülmektedir. Looking at the figure, the intermediate shaft (7a) and the inner shaft (7b) connection and the cold water 4 water channels (21) cross section are seen.
Sekilz7'ye bakildiginda, Ana mil(7), ara mil(7-a) ve iç mil(7-b) baglantisi ve su geçis araligi(17,18) görülmektedir. Referring to Figure7, the connection of Main shaft(7), intermediate shaft(7-a) and inner shaft(7-b) and water transition interval(17,18) can be seen.
Sekil:8'e bakildiginda HPT disk(8) ve kanadinin(12) yandan kesiti görülmekte, HPT diskin(8) içinden(10) geçen soguk su t'urbin kanadinin(12) içine, burdan tüm kanatlari üstten birseltiren U seklindeki çemberin içindeki bosluga akar. U çemberin iki ucunun her bir ucu sagli sollu su sizdirmalik rulmanin (R4,R5) iç kismina sabitlenerek suyu sizrnasi önlenmis olur. Burda rulmanlara (R4,R5) herhangi bir agirlik binmediginden HPT diskin dönme hizi üzerinden herhangi bir hiz kaybi ve stress meydana getirmeyecektir. Suyu devir ve sogutma döngüsü motor devriyle ayni oldugundan isiyi kanatlardan motor kasasi içindeki sogutma havasiyla sogutularak çok iyi bir isi tranferi gerçekletirilerek kanatlarin ve disklerin etkin bir sekilde sogutulmasi amaçlanmistir. When looking at Figure 8, the side section of the HPT disc(8) and wing(12) is seen, The cold water passing through the HPT disc(8)(10) enters the turbine blade(12), from here It flows into the space inside the U-shaped circle connecting all the wings from the top. U Each end of the two ends of the circle is inside the left and right waterproof bearing (R4,R5). By fixing it to the part, leakage of water is prevented. Here to the bearings (R4,R5) Since no weight is put on, the HPT disk rotates at any speed. it will not cause a loss of speed and stress. Water circulation and cooling Since the cycle is the same as the engine speed, the engine frame heats up from the wings. It is cooled with the cooling air inside and a very good heat transfer is realized. It is aimed to effectively cool the blades and discs.
Bulusun sanayiye uygulanma biçimi Yukarida anlatilan Bilinen Gaz Türbinli motorlarin sogutma islemindeki teknik problemlere, Harici Gaz Türbini su devirdaim sogutma teknigi ile bilinen tekniklerden daha basarili bir sekilde çözüm getirilen bir yöntemdir. Üretimi sekildeki bulus teknigine göre yapilacak bir tasarim ve imalat çalismasi ile sanayide üretilebilecek bir üründür. Ürünün imlatinda ve çalisma düzenine engel herhangi karmasik birteknik degildir.How the invention is applied to industry The technique in the cooling process of the Known Gas Turbine engines described above known problems with External Gas Turbine water circulation cooling technique. It is a method that is solved more successfully than other techniques. production With a design and manufacturing study to be made according to the invention technique in the figure It is an industrial product. In the manufacture and working order of the product The obstacle is not any complex technique.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR2018/10053A TR201810053A2 (en) | 2018-07-14 | 2018-07-14 | COOLING GAS TURBINE ENGINES WITH WATER RECYCLING PUMP |
PCT/TR2019/050543 WO2020018056A2 (en) | 2018-07-14 | 2019-07-08 | Cooling of gas turbine engines with water recirculation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR2018/10053A TR201810053A2 (en) | 2018-07-14 | 2018-07-14 | COOLING GAS TURBINE ENGINES WITH WATER RECYCLING PUMP |
Publications (1)
Publication Number | Publication Date |
---|---|
TR201810053A2 true TR201810053A2 (en) | 2018-08-27 |
Family
ID=64559111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TR2018/10053A TR201810053A2 (en) | 2018-07-14 | 2018-07-14 | COOLING GAS TURBINE ENGINES WITH WATER RECYCLING PUMP |
Country Status (2)
Country | Link |
---|---|
TR (1) | TR201810053A2 (en) |
WO (1) | WO2020018056A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113669160B (en) * | 2021-08-06 | 2022-05-20 | 西北工业大学 | Turbine gas water spray cooling device of underwater vehicle |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2865598A (en) * | 1954-03-03 | 1958-12-23 | Merland L Moseson | Air cooled turbine wheel design |
GB0524266D0 (en) * | 2005-11-29 | 2006-01-04 | Lewis Stephen D | The over clocked turbojet |
TR201805946A2 (en) * | 2018-04-27 | 2018-06-21 | Uyanik Talat | COOLING GAS TURBINE ENGINES WITH WATER RECYCLING PUMP |
-
2018
- 2018-07-14 TR TR2018/10053A patent/TR201810053A2/en unknown
-
2019
- 2019-07-08 WO PCT/TR2019/050543 patent/WO2020018056A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2020018056A2 (en) | 2020-01-23 |
WO2020018056A3 (en) | 2020-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9797310B2 (en) | Heat pipe temperature management system for a turbomachine | |
US11421598B2 (en) | Staggered heat exchanger array with side curtains | |
US8459040B2 (en) | Rear hub cooling for high pressure compressor | |
EP3075953A1 (en) | Heat pipe temperature management system for a turbomachine | |
CN101113689B (en) | Heat transfer system and method for turbine engine using heat pipes | |
US4254618A (en) | Cooling air cooler for a gas turbofan engine | |
US4137705A (en) | Cooling air cooler for a gas turbine engine | |
US9605593B2 (en) | Gas turbine engine with soft mounted pre-swirl nozzle | |
CN110259581A (en) | A kind of by-pass air duct double-work medium heat exchanger using air and fuel oil | |
JP2016196885A (en) | Heat pipe temperature management system for wheels and buckets in turbomachine | |
TR201810053A2 (en) | COOLING GAS TURBINE ENGINES WITH WATER RECYCLING PUMP | |
US20230417188A1 (en) | Thermal management system for a gas turbine engine | |
WO2014181824A1 (en) | Engine cooling system | |
CN109210961A (en) | A kind of liquid radiator for aero-engine | |
JP3365005B2 (en) | Turbine vane cooling system | |
TR201805946A2 (en) | COOLING GAS TURBINE ENGINES WITH WATER RECYCLING PUMP | |
US20180274369A1 (en) | Airfoil cooling | |
CN107044347A (en) | A kind of regenerator and gas turbine | |
US20130302143A1 (en) | Cooling device for a jet engine | |
RU168451U1 (en) | Deep-cooled Combined Engine Air Supply System | |
CN111305905B (en) | Cooling structure and method suitable for rich-combustion working medium turbine rotating and static disc cavity | |
US10830094B2 (en) | Gas turbine engine with graphene heat pipe | |
RU2572513C2 (en) | Heat-exchange module of air conditioning system of airplane | |
CN220522639U (en) | Aviation turbine cooling device | |
CN105626265B (en) | Intercooling and backheating system of gas turbine |