TR201608131A2 - NEW PEROVSKYTE SENSITIVE SOLAR CELL BUILT ON MEERSERSITE COMPONENTS - Google Patents

NEW PEROVSKYTE SENSITIVE SOLAR CELL BUILT ON MEERSERSITE COMPONENTS Download PDF

Info

Publication number
TR201608131A2
TR201608131A2 TR2016/08131A TR201608131A TR201608131A2 TR 201608131 A2 TR201608131 A2 TR 201608131A2 TR 2016/08131 A TR2016/08131 A TR 2016/08131A TR 201608131 A TR201608131 A TR 201608131A TR 201608131 A2 TR201608131 A2 TR 201608131A2
Authority
TR
Turkey
Prior art keywords
perovskite
layer
solar cell
meerschaum
structures
Prior art date
Application number
TR2016/08131A
Other languages
Turkish (tr)
Inventor
Kuş Mahmut
Yenel Esma
Original Assignee
Yenel Esma
Mahmut Kus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yenel Esma, Mahmut Kus filed Critical Yenel Esma
Priority to TR2016/08131A priority Critical patent/TR201608131A2/en
Publication of TR201608131A2 publication Critical patent/TR201608131A2/en
Priority to PCT/TR2017/050266 priority patent/WO2017217954A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

Buluş; perovskit güneş hücrelerinin, doğal bir malzeme olan ve Lületaşı olarak bilinen, içeriği ağırlıklı olarak silisyum ve magnezyum silikatlardan oluşan, bunun yanında demir, aluminyum ve krom oksitleri de içerebilen, sepiyolit, kaolin, bentonit isimleri ile de anılan bir iskelet yapı üzerine üretilerek yüksek verimli, tekrarlanabilir ve uzun ömürlü güneş hücresi elde edilmesinin sağlanmasıyla ilgilidir.Meet; Perovskite solar cells are produced on a skeleton structure, which is a natural material known as Meerschaum, consisting mainly of silicon and magnesium silicates, which can also contain iron, aluminum and chromium oxides, also known as sepiolite, kaolin, bentonite, and high efficiency, It is about ensuring that reproducible and long-lasting solar cells are obtained.

Description

TARIFNAME LÜLETASI BILESENLERI ÜZERINE OLUSTURULAN YENI PEROVSKIT DUYARLI GÜNES HÜCRESI TEKNIK ALAN Bulus; perovskit günes hücrelerinin, dogal bir malzeme olan ve Lületasi olarak bilinen, içerigi agirlikli olarak silisyum ve magnezyum silikatlardan olusan, bunun yaninda demir, aluminyum ve krom oksitleri de içerebilen, sepiyolit, kaolin, bentonit isimleri ile de anilan bir iskelet yapi üzerine üretilerek yüksek verimli, tekrarlanabilir ve uzun ömürlü günes hücresi elde edilmesinin saglanmasiyla ilgilidir. ÖNCEKI TEKNIK Son yillarda 3. nesil günes hücrelerinde dikkat çeken en önemli teknolojilerden biri; düsük maliyetli ve yüksek verimli perovskit duyarli günes hücreleridir. Bu teknolojide isik absorplayici tabaka olarak perovskit (genellikle metilamonyum kursün halejenür) kristal yapisina sahip bir malzeme kullanilmaktadir. Saydam ve iletken (genellikle flor katkilanmis kalayoksit (FTO)) bir destek malzeme üzerine yogun bir n tipi (TiO2, ZnO gibi) bir malzeme kaplanmakta, bu tabaka üzerine ise isik absorplayici tabaka olarak perovskit yapisi olusturulmaktadir. Perovskit tabaka üstüne bosluk iletim tabakasi olarak organik yada inorganik malzeme (spiro-OMETAD, PsHT, diger elektrolitler) kaplanarak heteroeklem yapi olusturulmakta, en üst tabakaya ise iletken bir elektrod (AI, Au, Ag vb) kaplanarak hücre tamamlanmaktadir. Isik absorplayici tabakanin uyarilan elektronu n tipi yariiletken özellikleri katmana aktarilmakta buradan saydam elektrod üzerine geçmektedir. Olusan bosluk ise bosluk transfer malzemesi vasitasi ile üst elektrota aktarilarak döngü saglanmaktadir. DESCRIPTION NEW PEROVSKIT BUILT ON MELUTA COMPONENTS SENSITIVE SUN CELL TECHNICAL FIELD Meet; perovskite solar cells, a natural material and meerschaum known as, its content is predominantly made of silicon and magnesium silicates. formed, which may also contain iron, aluminum and chromium oxides, It is produced on a skeletal structure, also known as sepiolite, kaolin, bentonite. to obtain highly efficient, reproducible and long-lasting solar cells. it's about securing. PRIOR ART In recent years, the most important thing that has attracted attention in the 3rd generation solar cells one of the technologies; low cost and high efficiency perovskite sensitive solar are cells. In this technology, perovskite (usually a material with a crystalline structure (methylammonium lead halide) is used. Transparent and conductive (usually fluorine-doped tin oxide (FTO)) a dense n-type (such as TiO2, ZnO) material on a support material. The perovskite layer is coated on this layer as a light absorbing layer. structure is created. As a space conduction layer on top of the perovskite layer organic or inorganic material (spiro-OMETAD, PsHT, other electrolytes) A heterojunction structure is formed by coating, and a conductive layer is attached to the top layer. The cell is completed by coating the electrode (AI, Au, Ag etc.). light absorber The n-type semiconductor properties of the excited electron of the layer are transferred to the layer. From here it passes onto the transparent electrode. The emptiness you create is the emptiness The cycle is provided by transferring it to the upper electrode via the transfer material.

Perovskit günes hücrelerinde iki temel yapi bulunmaktadir. Birinci yapida tüm tabakalar düzlemsel yapida oldugundan “Düzlemsel perovskit günes hücresi” olarak tanimlanir. Ikinci yapida ise yogun n tipi tabaka üzerinde mezogözenekli bir yapi içermektedir. Mezogözenekli yapi Ti02 gibi bir yariiletken olabilmekle beraber AI203 seklinde yalitkan bir yapidan da olusabilmektedir. Bu tip hücreler “mezogözenekli perovskit günes hücresi” olarak adlandirilmaktadir. Mezogözenekli yapinin n tipi bir yariiletken olmasi durumunda perovskit tabakadan gelen elektron mezogözenekli yapi araciligi ile alt katmana geçmektedir. Mezogözenekli yapinin yalitkan bir malzeme olmasi durumunda ise elektronlar perovskit kristalin kendi üzerinden en alt katmanda bulunan yogun n tabaka üzerine aktarilmaktadir. There are two basic structures in perovskite solar cells. in the first build Since all layers are in planar structure, “Planar perovskite solar known as "cell". In the second structure, on the dense n-type layer It contains a mesoporous structure. The mesoporous structure is similar to TiO2. Although it can be semiconductor, it can also be made of an insulating structure in the form of AI203. can occur. This type of cell is called the "mesoporous perovskite solar cell". is named. The mesoporous structure being an n-type semiconductor In the case of the perovskite layer, electrons come from the mesoporous structure. passes to the lower layer. The mesoporous structure is an insulating material. In the case of the perovskite crystal itself, the electrons are in the lowest layer. The dense n is transferred onto the layer.

Perovskit duyarli günes hücrelerinde en önemli sorun kararlilik ve yeniden üretilebilme özelligidir. Yüksek verimle çalisabilecek bir perovskit tabakanin oldukça büyük kristal tanecikleri içermesi, tabakanin düzgün olmasi ve kristal tanecikleri arasinda temasin çok iyi olmasi gereklidir. Perovskit tabakanin olusumu sirasinda düzensiz kristal taneciklerinin olusumu verimi çok ciddi oranda düsürmektedir. Bu nedenle sürekli ayni tabaka tipinin elde edilebilmesi önemlidir. Ortam kosullari, kullanilan üretim teknigi gibi parametreler kristal olusumu üzerinde ciddi etkiye sahiptir. Arastirmacilar tekrar üretilebilir perovskit tabaka eldesi için yeni yöntemler önermekte ve bu konuda Diger önemli bir sorun ise kararliliktir. Düzgün bir perovskit tabaka elde edilse bile, ki bu yüksek verimli günes hücresi elde edilmesi anlamina gelir, bu hücrenin kararliligi perovskit tabakayi olusturan kristallerin kararliligina baglidir. The most important problem in perovskite sensitive solar cells is stability and reproducibility feature. A perovskite that can work with high efficiency the layer contains very large crystal particles, the layer is smooth and the contact between the crystal particles must be very good. perovskite During the formation of the layer, the formation of irregular crystal particles is very efficient. seriously declining. Therefore, it is possible to obtain the same layer type continuously. possible is important. such as environmental conditions, production technique used parameters have a serious effect on crystal formation. Researchers again proposes new methods for obtaining producible perovskite layers and Another important issue is stability. A uniform perovskite layer is obtained. even if this means obtaining a highly efficient solar cell, this The stability of the cell depends on the stability of the crystals forming the perovskite layer.

Perovskit kristalin ortam kosullarina (sicaklik, nem vb) karsi çok duyarli olmasi nedeni ile yapisi kisa süre içinde bozulmakta, bu da günes hücresinin verimini ciddi anlamda düsürmektedir. Bu hücrelerin kararliliginin arttirilmasi içinde çok farkli yöntemler önerilmis olmakla beraber, kararlilik konusu bu teknolojinin problemlerinden biri olarak devam etmektedir. Perovskite crystal is very sensitive to ambient conditions (temperature, humidity, etc.) structure deteriorates in a short time due to this, which reduces the efficiency of the solar cell. seriously degrades. It is very important in increasing the stability of these cells. Although different methods have been suggested, the stability issue of this technology continues to be one of the problems.

SEKILLERIN ANLAMI Sekil 1. Lületasi Yapilarinin Iskelet Yapi Olarak Kullanildigi Perovskit Günes Hücresinin Semasi Sekil 2. iletken (FTO) Cam Üzerine Kaplanmis Lületasi Yapilarinin Üstten Alinmis Taramali Elektron Mikroskobu (SENI) Görüntüsü Sekil 3. iletken (FTO) Cam Üzerine Kaplanmis Lületasi Yapilarinin Katmanin Çaprazdan Alinmis Elektron Mikroskobu Görüntüsü Sekiller de belirtilen parça numaralarinin karsiliklari asagida verilmistir. 1. iletken Elektrotlar Bosluk Transfer Tabaka Perovskit Tabaka Lületasi Esasli iskelet Yapi Yogun n Tipi Yari iletken Tabaka 939199!“ Saydam iletken Destek Malzeme BULUSUN DETAYLI AÇIKLAMASI Bulusa konu perovskit duyarli günes hücresi, iletken elektrotlar (1 bosluk transfer tabaka (2), perovskit tabaka (3), lületasi esasli iskelet yapi (4 , yogun n tipi yari iletlen tabaka (5) ve saydam iletken destek malzeme (6) bölümlerinden olusmaktadir. MEANING OF SHAPES Figure 1. Meerschaum Structures Used as Skeletal Structure The Schematic of the Perovskite Solar Cell Figure 2. Meerschaum Structures Coated on Conductive (FTO) Glass Top View Scanning Electron Microscopy (SENI) image Figure 3. Meerschaum Structures Coated on Conductive (FTO) Glass Crossed Layer Electron Microscopy image The corresponding part numbers in the figures are given below. 1. Conductive Electrodes Space Transfer Layer Perovskite Layer Meerschaum Based Skeleton Structure Dense n Type Semiconductor Layer 939199!” Transparent Conductive Support Material DETAILED DESCRIPTION OF THE INVENTION The perovskite sensitive solar cell, which is the subject of the invention, has conductive electrodes (1 space transfer layer (2), perovskite layer (3), meerschaum-based skeletal structure (4 , dense n-type semiconducting layer (5) and transparent conductive support material (6) consists of parts.

Bulus, perovskit duyarli günes hücrelerinin mezogözenekli yapiya sahip olan sinifindaki teknolojide, mezogözeneklerin yani iskelet yapinin, bilinen sentetik malzemeler (TiOz ve Al2Os gibi) yerine dogal bir ürün olan, içerigi agirlikli olarak silisyum ve magnezyum silikatlardan olusan, bunun yaninda demir, aluminyum ve krom oksitleride içerebilen, sepiyolit, kaolin, bentonit isimleri ile de anilan, halk arasinda Lületasi olarak bilinen bir iskelet yapi (4) ile donatilmis, bilinen hücre yapilarindan daha verimli ve kararli çalisan bir mezogözenekli perovskit duyarli günes hücresi yapisi üretilmistir. Yukarida içerigi tanimlanmis olan ve bu kisimdan itibaren Lületasi olaran anilacak olan yapilar yalitkan özellikte olup bilinen mezogözenekli Al203 veya polimerik iskelet yapilarin yerine kullanilmistir. Lületasi yapilarinin en büyük avantaji mezogözenekli Al203 gibi yapilardan çok daha fazla aktif yüzey alanina sahip olmasidir. Mezogözenekli A|203 ortalama 400 m2/gr aktif (BET ölçümlerine göre) yüzey alanina sahip iken Lületasi yapilarinda bu alan 900 m2/gr düzeyine kadar çikmaktadir. Bu durumda günes hücresinde isik absorplayici tabaka olan perovskit, çok daha fazla bir yüzeye kaplanabilmektedir. Böylece daha fazla isik absorpsiyonu ve yüksek verim vermektedir. Lületasi'nin ipliksi yada tanecikli yapilarinin sadece yüzeyleri degil taneciklerin iç katmanlarina da kadar inebilen gözeneklerin olmasi, bu malzemelerin isik geçirgenligini de arttirmakta ve dogal olmasi yaninda seffaf bir özellik saglamaktadir. Bu durum iskelet yapinin isigi absorplayarak verimi düsürmesinin önüne geçmekte ve fotonlarin çogunun aktif perovskit katman üzerine düsmesini saglamaktadir. Lületasi yapilarinin kullanildigi perovskit duyarli günes hücreleri, bilinen düzlemsel veya mezogözenekli (Ti02, Al203 ve benzeri) perovskit günes hücrelerinden en az yaninda, iskelet yapi olarak Lületasi yapilari (4) kullanildiginda tekrar üretilebilirlik artmaktadir. Olusturulan bu gözenekli yapinin tanecikleri üzerinde düzgün kristaller olusarak %80 in üzerinde tekrarlanabilir günes hücresi üretimi saglanmaktadir. The invention shows that perovskite-sensitive solar cells have mesoporous structure. In this class of technology, mesopores, that is, the skeletal structure, are known It is a natural product instead of synthetic materials (such as TiOz and Al2Os), its content consisting predominantly of silicon and magnesium silicates, sepiolite, kaolin, bentonite, which may contain iron, aluminum and chromium oxides. with a skeletal structure (4), which is also known by its names, popularly known as Meerschaum. equipped with a more efficient and stable working than known cell structures. A mesoporous perovskite sensitive solar cell structure was produced. Above the contents of which have been defined and hereinafter referred to as Meerschaum. The structures are insulating and the known mesoporous Al2O3 or polymeric skeleton used instead of structures. The biggest advantage of meerschaum structures It has much more active surface area than structures such as mesoporous Al2O3. is that. Mesoporous A|203 average 400 m2/gr active (according to BET measurements) While it has a surface area of 900 m2/gr in Meerschaum structures it goes up. In this case, the light absorbing layer in the solar cell perovskite can be coated on a much larger surface. So more light absorption and high efficiency. Meerschaum filamentous or granular that can reach not only the surfaces of the structures but also the inner layers of the particles. The presence of pores also increases the light permeability of these materials and creates a natural Besides, it provides a transparent feature. This is the light of the skeletal structure. It absorbs and prevents the reduction of efficiency and most of the photons are active. allows it to fall on the perovskite layer. meerschaum structures perovskite sensitive solar cells, known planar or mesoporous (TiO, Al2O3, etc.) perovskite solar cells besides, when Meerschaum structures (4) are used as skeletal structures, manufacturability is increasing. On the particles of this porous structure formed over 80% reproducible solar cell production by forming smooth crystals is provided.

Perovskit duyarli günes hücresi teknolojilerinin diger bir problemi olan kararlilik ve dayanim Lületasi yapilarinin iskelet yapi olarak kullanilmasi ile ciddi oranda gelismektedir. Lületasindan üretilen iskelet yapi özellikle perovskit tabaka için büyük sorun teskil eden su moleküllerini kendi içine çekerek perovskit tabaka ile etkilesimini engellemekte, bu durum aktif perovskit tabakanin daha uzun süre dayanmasina olanak saglamaktadir. Lületasi yapilarinin bünyelerinde suyu hapsedebilme özellikleri nemin aktif katmanlarla tepkimeye girmeden tutulmasini ve perovskit kristalinin kararliliginin artmasini saglamaktadir. Bunun yaninda iskelet yapiyi olusturan Lületasinin kendisinin isiya dayanikliligi yaninda, isi izolasyonu saglama özelligi de kararliligin artmasinda rol oynar.Another problem of perovskite sensitive solar cell technologies is Stability and strength are serious with the use of Meerschaum structures as a skeleton structure. rate is developing. Skeleton structure produced from meerschaum, especially perovskite by attracting water molecules, which poses a major problem for the layer, It prevents the interaction with the perovskite layer, which makes it active perovskite. This allows the layer to last longer. Meerschaum the ability to trap water in the structures of their structures keeping it unreacted and increasing the stability of the perovskite crystal. it provides. In addition to this, the meerschaum itself, which forms the skeletal structure, In addition to its heat resistance, its ability to provide heat insulation also ensures stability. plays a role in the increase.

Claims (1)

ISTEMLERREQUESTS 1. Perovskit duyarli günes hücresi olup, özelligi; TiO2 ve Al203 gibi sentetik mezogözenekli iskelet yapisinin yerine Lületasi bilesenlerini içermesiyle karakterizedir.1. It is a perovskite sensitive solar cell, its feature is; It is characterized by containing meerschaum components instead of synthetic mesoporous skeletal structure such as TiO2 and Al2O3.
TR2016/08131A 2016-06-15 2016-06-15 NEW PEROVSKYTE SENSITIVE SOLAR CELL BUILT ON MEERSERSITE COMPONENTS TR201608131A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2016/08131A TR201608131A2 (en) 2016-06-15 2016-06-15 NEW PEROVSKYTE SENSITIVE SOLAR CELL BUILT ON MEERSERSITE COMPONENTS
PCT/TR2017/050266 WO2017217954A1 (en) 2016-06-15 2017-06-15 Perovskite sensitized solar cells constructed on sea foam (meerschaum) contents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2016/08131A TR201608131A2 (en) 2016-06-15 2016-06-15 NEW PEROVSKYTE SENSITIVE SOLAR CELL BUILT ON MEERSERSITE COMPONENTS

Publications (1)

Publication Number Publication Date
TR201608131A2 true TR201608131A2 (en) 2016-08-22

Family

ID=59966811

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2016/08131A TR201608131A2 (en) 2016-06-15 2016-06-15 NEW PEROVSKYTE SENSITIVE SOLAR CELL BUILT ON MEERSERSITE COMPONENTS

Country Status (2)

Country Link
TR (1) TR201608131A2 (en)
WO (1) WO2017217954A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201208793D0 (en) * 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device
EP3161876B1 (en) * 2014-06-24 2020-05-20 Dow Global Technologies LLC Photovoltaic modules comprising organoclay
SG11201706058VA (en) * 2015-02-06 2017-08-30 Univ Nanyang Tech Gel, method of forming the same, photovoltaic device and method of forming the same

Also Published As

Publication number Publication date
WO2017217954A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
US9799790B2 (en) Mesoscopic solar cell based on perovskite light absorption material and method for making the same
Jose et al. Metal oxides for dye‐sensitized solar cells
Onoda et al. The superiority of Ti plate as the substrate of dye-sensitized solar cells
Das et al. Influence of annealing temperatures on the properties of low aspect-ratio TiO2 nanotube layers
Sauvage et al. Hierarchical TiO2 photoanode for dye-sensitized solar cells
Liu et al. Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles
Ghadiri et al. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers
Yang et al. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties
Zhao et al. Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method
Moon et al. Highly sensitive CO sensors based on cross-linked TiO2 hollow hemispheres
Inakazu et al. Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength
Pansri et al. Band offset determination of p-NiO/n-TiO 2 heterojunctions for applications in high-performance UV photodetectors
Zhang et al. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction
CN104953030A (en) Interface-modified perovskite-type solar cell and preparation method thereof
Gu et al. Nanoporous TiO2 aerogel blocking layer with enhanced efficiency for dye-sensitized solar cells
Gromboni et al. Enhancing activity in a nanostructured BiVO4 photoanode with a coating of microporous Al2O3
Pawar et al. Photoelectrochemical solar cell based on surfactant mediated rutile TiO 2 nanorods
CN105374942A (en) Perovskite based solar cell and preparation method thereof
Ling et al. Photocurrents in crystal‐amorphous hybrid stannous oxide/alumina binary nanofibers
Tabari-Saadi et al. Efficient dye-sensitized solar cells based on carbon-doped TiO 2 hollow spheres and nanoparticles
TR201608131A2 (en) NEW PEROVSKYTE SENSITIVE SOLAR CELL BUILT ON MEERSERSITE COMPONENTS
Hwang et al. Light-penetration and light-scattering effects in dye-sensitised solar cells
Morozova et al. The influence of various deposition techniques on the photoelectrochemical properties of the titanium dioxide thin film
Park et al. Fabrication of MgO-coated TiO 2 nanotubes and application to dye-sensitized solar cells
TR201714384A2 (en) NEW PEROVSKYTE SENSITIVE SOLAR CELL CONTAINING MEERSERSITE COMPONENTS AS SKELETAL STRUCTURE IN INVERTED AND FLAT GEOMETRY