TR201516147A2 - MICRO ROBOT SYSTEM - Google Patents

MICRO ROBOT SYSTEM Download PDF

Info

Publication number
TR201516147A2
TR201516147A2 TR2015/16147A TR201516147A TR201516147A2 TR 201516147 A2 TR201516147 A2 TR 201516147A2 TR 2015/16147 A TR2015/16147 A TR 2015/16147A TR 201516147 A TR201516147 A TR 201516147A TR 201516147 A2 TR201516147 A2 TR 201516147A2
Authority
TR
Turkey
Prior art keywords
liquid
micro robot
micro
robot
movement
Prior art date
Application number
TR2015/16147A
Other languages
Turkish (tr)
Inventor
Kurt Hüseyi̇n
Üvet Hüseyin
Erkan Kadi̇r
Esemen Cemre
Kahraman Yusuf
Eren Can Koçulu Ömer
Original Assignee
Esemen Cemre
Hueseyin Kurt
Hueseyin Uevet
Kadir Erkan
Oemer Eren Can Koculu
Kahraman Yusuf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esemen Cemre, Hueseyin Kurt, Hueseyin Uevet, Kadir Erkan, Oemer Eren Can Koculu, Kahraman Yusuf filed Critical Esemen Cemre
Priority to TR2015/16147A priority Critical patent/TR201516147A2/en
Priority to PCT/TR2016/050495 priority patent/WO2017105368A1/en
Publication of TR201516147A2 publication Critical patent/TR201516147A2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J7/00Micromanipulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Biyomedikal alanda ve çip üstü laboratuvar sistemlerinde kullanılmak üzere, hücre ve yapay mikro partiküllerin konumlandırılmasını veya manipülasyonunu gerçekleştiren bir sistem olup, özelliği; mikro robotun (3) alt bölgesine konumlandırılmış; mikro robotun (3), sıvı deney düzeneği (2) içerisinde bulunan sıvı üzerinde dengede kalmasını mıknatıs (5) tarafından uygulanan manyetik alan etkisi vasıtasıyla sağlayan bir ferromanyetik kaplama tabakası (1) içermesidir. (Şekil-1)It is a system that performs the positioning or manipulation of cell and artificial microparticles for use in biomedical field and on-chip laboratory systems. positioned in the lower region of the micro robot (3); the micro-robot (3) comprises a ferromagnetic coating layer (1) which ensures the stability of the liquid on the liquid in the liquid test device (2) by means of the magnetic field effect applied by the magnet (5). (Figure 1)

Description

TARIFNAME MIKRO ROBOT SISTEMI Teknik Alan Biyomedikal alanda ve çip üstü laboratuvar sistemlerinde kullanilmak üzere, mikro seviyede canli hücre ve yapay partiküllerin konumlandirilmasini veya manipülasyonunu gerçeklestiren bir sistem ile ilgilidir. DESCRIPTION MICRO ROBOT SYSTEM Technical Area Micro-level for use in biomedical and on-chip laboratory systems performing the positioning or manipulation of living cells and artificial particles relates to a system.

Teknigin Bilinen Durumu Günümüzde sivi içerisinde “tek hücre analizi ve manipülasyonu" alani gelismekte olan bir konudur ve bu konu robotik ile dogrudan ilgilidir. Sivi tasiyan petri kaplari veya küçük miktarlarda sivi tasiyan (örnek: mikro akiskan kanal) sistemler olmaksizin laboratuvar ortaminda böyle biyolojik çalismalar yürütülememektedir. State of the Art Today, the field of "single cell analysis and manipulation" in liquid is an emerging field. topic and this topic is directly related to robotics. Liquid-bearing petri dishes or small laboratory without systems that carry large amounts of liquid (example: microfluidic channel) Such biological studies cannot be carried out in the environment.

Sivi içerisinde manyetik alan etkisi ile hareketi saglanan mikro robotlarin en büyük sorunu içerisinde bulunduklari kanalin/kabin yüzey ile temas etmesi ve bu durumdan dolayi sürtünme kuvvetinin meydana gelmesidir. Mikro manipülasyon islemleri hassas islemlerdir ve mikro hassasiyette hareket gerektirmektedir. Mikro robotun zemin ile temasi, hareket hassasiyetini azaltan bir faktördür. Miknatislarin hareketlerini takip eden mikro robotlar için sürtünme kisitlayici etkide bulunmaktadir. Su ana kadar yapilan sistemlerde, miknatisin konumuna göre manyetik alan kuvveti cismi asagiya veya yukariya çekerek, mikro robotu bulundugu kabin yüzeyi ile temas ettirmekte ve dolayisiyla hareket ettirici manyetik kuvvetin büyük bir kismi bu sürtünme kuvvetini yenmek için kullanilmaktadir. Mikro robotun hareketi saglansa dahi, yüzey ile olan temastan ve sürtünme kuvvetinden dolayi, hareket esnasinda siçramalar olabilmekte ve istenilen konumda olamama sorunlarini da beraberinde getirmektedir. Bu durumdan ötürü hassas mikro robotun hareketi istenilen hassasiyette gerçeklestirilememekte, manipülasyon çalismalarini zorlastirmakta ve basari oranini düsürmektedir. The biggest problem of micro robots that are moved by the magnetic field effect in the liquid contact of the duct/cab they are in with the surface and friction due to this situation the emergence of force. Micro manipulation operations are delicate operations and requires precision movement. The contact of the micro robot with the ground increases the motion sensitivity. is a reducing factor. Friction for micro robots that follow the movements of magnets has a restrictive effect. In the systems made so far, according to the position of the magnet The magnetic field force pulls the object up or down, turning the micro robot into the cabin it is in. contact with its surface, and therefore a large part of the moving magnetic force It is used to overcome the friction force. Even if the movement of the micro robot is provided, the surface Due to the contact with the water and the friction force, there may be jumps during the movement. and brings with it the problems of not being in the desired position. Because of this situation The movement of the sensitive micro robot cannot be performed with the desired precision, manipulation complicates their work and reduces the success rate.

Teknik Arastirmalar sonucu ortaya çikan “Polymer-Based Wireless Resonant Magnetic Microrobots” adli Hsi-Wen Tung, Massimo Maffioli, Dominic R. Frutiger, Kartik M. Sivaraman, Salvador Pane ve Bradley J. Nelsonra ait makalede ; Sürtünmeye sahip kütle, yay benzeri bir yapi ile diger kütleye baglanmakta ve kütle yay ile kurulan baglanti haricinde mekanik temassiz hale gelmektedir. "Mikro robot yapilanmasi” bulusunda ise mikro robot hiç bir sekilde mekanik temasa sahip degildir. Bahsedilen makale, elektromanyetik alan uygulanarak yayin sikistirilmasi ve sonrasinda elektromanyetik alani ortadan kaldirarak yayin bosalmasi ile mikro robot hareketi üzerine kurgulanmistir. Sürtünme sürekli olarak ortamda bulunmaktadir ve mekanik temas söz konusudur. Bu durumda hassas hareketi engelleyici bir faktördür. Yayin bosalmasi esnasinda sistemin kontrolsüz halde oldugu görülmektedir. ”Mikro robot sistemi” bulusunda ise manyetik alan sürekli olarak sisteme uygulandigindan dolayi sürekli kontrol yapilabilmektedir. Ek olarak ; - Makalede, amaç manyetik etkiyle olusan çekim kuvvetiyle birlikte tasarimda yer alan polimer yayin sikistirilmasi ardindan manyetik kuvvetin ortadan kaldirilmasiyla itici kuvvet ile nesnelerin hareket ettirilmesidir. “Polymer-Based Wireless Resonant Magnetic Microrobots” by Hsi-Wen Tung, Massimo Maffioli, Dominic R. Frutiger, Kartik M. Sivaraman, In the article by Salvador Pane and Bradley J. Nelson; The frictional mass is connected to the other mass by a spring-like structure and the mass is connected by the spring. Except for the established connection, it becomes mechanical contactless. "Micro robot structuring" In his invention, the micro robot has no mechanical contact whatsoever. The article mentioned compression of the arc by applying an electromagnetic field and then the electromagnetic field It is built on the movement of micro robot with the broadcast discharge by eliminating it. Friction It is constantly in the environment and there is mechanical contact. In this case sensitive It is a hindrance to movement. The system is in an uncontrolled state during the broadcast. is seen. In the invention of the "micro robot system", the magnetic field is constantly applied to the system. Since it is applied, continuous control can be made. In addition ; - In the article, the purpose is included in the design together with the gravitational force formed by the magnetic effect. After the compression of the polymer spring, the magnetic force is eliminated. It is the movement of objects by repulsive force by lifting them.

. Zemin ile temas söz konusudur. Bu da hareketin hassasiyetini etkilemektedir. o Manyetik alan etkisini olusturacak miknatislar mikro robotun hem altina hem üstüne yerlestirilmistir. ”Mikro robot sistemi” bulusunda ise miknatislar sadece mikro robotun al kismina yerlestirilmektedir. o Makalede, mikro robot tasariminda polimer malzeme olarak bir tek SUB kullanilmistir ve bu malzeme sudan agirdir. Cisim sivi içinde batacak ve yine yüzey ile temasini kaybetmeyecektir. . There is contact with the ground. This affects the sensitivity of the movement. o The magnets that will create the magnetic field effect are placed both under the micro robot and is placed on top of it. In the invention of the "micro robot system", the magnets are only It is placed on the lower part of the micro robot. o In the article, a single SUB as a polymer material in micro robot design used and this material is heavier than water. The object will sink in the liquid and again will not lose contact with the surface.

- SU8 bu makalede sistemin bütünlügünü saglayan baglanti malzemesi ve yay malzemesi olarak kullanilmistir. - The SU8 is the connection material and spring that provides the integrity of the system in this article. was used as the material.

- Yay olarak polimer kullanilmasinin nedeni düsük young modülüne sahip olmasidir. - The reason for using polymer as spring has low Young's modulus is that.

. Daha 'önce yay malzemesi olarak altin kullanilmistir. . Gold was used as a spring material before.

. Ancak SUS in de kullanilmasiyla yatay düzlemde daha stabil bir hareket elde edilmistir. Bu çalisma prensibi "Mikro robot sistemi" bulusundaki sistemden tamamen farklidir. . However, with the use of SUS, a more stable movement in the horizontal plane can be achieved. has been made. This working principle is derived from the system in the "Micro robot system". is completely different.

Teknik arastirmalar sonucunda ortaya çikan “Wireless Manipulation of Single Cells using Magnetic Microtransporters" adli Mahmut Selman Sakar Edward B. Steager, Anthony Cowley, Vijay Kumar, ve George J. Pappasia ait makalede; Ferromanyetik (sonradan miknatislandirilmis) malzeme ile karistirilmis polimer manyetik alan uygulanarak akiskan içerinde hareket ettirilmektedir. ”Mikro robot yapilanmasi” bulusunda malzeme ferromanyetik olmasina ragmen miknatislandirma gibi bir kosula sahip degildir. Diger taraftan makaledeki sistemde Ievitasyon söz konusu degildir; yani yüzey ile mekanik temas vardir ve bu durum sürütmeden dogacak problemleri (hassas konumlandirma) büyük ölçüde tasimaktadir. Ek olarak ; o Makalede, daha önce yapilan çalismalara benzer sekilde polimer ve metal tozu karisimindan olusan robot tasarlanmistir. 0 Bu makalede de, robotun zemin ile temasi söz konusudur. o Sivinin yogunluguna benzer yogunlukta robot tasarlanmistir ancak siviya esit veya daha düsük degildir. ”Mikro robot yapilanmasi" bulusunda sividan düsük bir yogunluk kullanilarak yüzey ile temas kesilmektedir. “Wireless Manipulation of Single Cells using Magnetic Microtransporters" by Mahmut Selman Sakar, Edward B. Steager, Anthony Cowley, In the article by Vijay Kumar, and George J. Pappasia; Polymer magnetic field mixed with ferromagnetic (post-magnetized) material is applied and moved in the fluid. In the invention of "Micro robot structuring" Although the material is ferromagnetic, it does not have a condition such as magnetization. Other On the other hand, there is no Ievitation in the system in the article; that is, mechanical contact with the surface There is a large amount of friction problems (precise positioning). carries. In addition ; o In the article, similar to the previous studies, polymer and metal powder The robot consisting of the mixture is designed. 0 In this article, the robot is in contact with the ground. o The robot is designed with a density similar to that of the liquid, but the liquid is equal. or lower. Low in liquid in the invention of ”microrobot structuring" By using a density, contact with the surface is cut off.

. Makalede, yogunlugu düsürmekteki amaç, sürtünme kuvvetini azaltmak ve daha az manyetik kuvvet ile nesnelerin hareketini saglamaktir. o Makalede, yüzey ile temasi kesmede farkli bir yöntem kullanilmistir. Uygulanan manyetik kuvvet etkisiyle sticki'slip -tutma birakma hareketi - mekanizmasiyla hareket saglanmaktadir. Bu mekanizma ile yüzeyde hareket için “rocking movement” denilen bir etkiden bahsedilmektedir. . In the article, the purpose of reducing the density is to reduce the friction force and It is to provide the movement of objects with less magnetic force. o In the article, a different method is used to cut off contact with the surface. Applied with magnetic force effect sticki'slip -hold-release movement - mechanism movement is provided. With this mechanism, "rocking" for movement on the surface An effect called “movement” is mentioned.

Teknik Arastirmalar sonucu ortaya çikan “High-Speed Magnetic Microrobot Actuation in a Microfluidic Chip by a Fine V-Groove Surface” adli Masaya Hagiwara, Tomohiro Kawahara, Toru lijima, and Fumihito Arai, ait makalede; Mikro robotun taban yüzeyi ile siviyi tasiyan kabin taban yüzeyi arasinda olusan sürtünme kuvvetini tamamen ortadan kaldirmak yerine, titresim sistemleriyle veya robotun yüzey tasarimi ile azaltmaya çalisilmistir. Tasarlanan mikro robot silikon wafer üzerine V-oyuklari islenerek hazirlanmistir. V-oyuklar yüzey alani düsürülüp, sivinin mikro robot üzerinde neden oldugu sürtünme kuvveti azaltilmaya çalisilmistir. V-oyuk ile sürtünme kuvveti tam olarak yenilemediginderi, ultrasonik titresimler ile sürtünme kuvveti etkisi azaltilmaya çalisilmistir."High-Speed Magnetic Microrobot Actuation in a Microfluidic Chip by a Fine V-Groove Surface” by Masaya Hagiwara, Tomohiro Kawahara, In the article by Toru lijima, and Fumihito Arai; The friction between the bottom surface of the micro robot and the cabinet floor surface that carries the liquid Instead of completely eliminating the force of the robot, vibration systems or the surface of the robot It has been tried to reduce by design. V-grooves on the designed micro robot silicon wafer it is prepared by processing. V-grooves surface area is reduced, causing the liquid to be on the micro robot. The friction force is tried to be reduced. With the V-groove, the friction force is exactly It has been tried to reduce the friction force effect with ultrasonic vibrations on non-renewable leather.

Ancak, mikro robot için tüm sisteme verilen titresim, küçük çaptaki mikro objeleri de (50 mikrometre ve alti) etkileyip kontrolsüz hareket sagladigindan, canli hücre ve yapay mikro partiküllerin konumlandirma hassasiyetini düsürmektedir. However, for the micro robot, the vibration given to the whole system can also affect small micro objects (50 micrometer and below) and provides uncontrolled movement, living cells and artificial micro reduces the positioning accuracy of the particles.

Sonuç olarak yukarida anlatilan olumsuzluklardan dolayi ve mevcut çözümlerin konu hakkindaki yetersizligi nedeniyle ilgili teknik alanda bir gelistirme yapilmasi gerekli kilinmistir.As a result, due to the above-mentioned negativities and existing solutions Due to the inadequacy of the subject, it was necessary to make an improvement in the related technical field.

Bulusun Amaci Bulus, mevcut problemlerden yola çikarak mikro robotun sürtünme sebebi ile olusan olumsuzluklarini çözmeyi amaçlamaktadir. Purpose of the Invention Based on the existing problems, the invention is based on the friction caused by the micro robot. seeks to resolve its shortcomings.

Bulusun bir diger amaci, siviyi tasiyan yüzey ile mikro robot arasindaki sürtünmeyi azaltarak daha hassas hareket kabiliyeti elde edebilmek ve yapilacak manipülasyon islemlerinde basari saglamaktir. Another aim of the invention is to reduce the friction between the liquid carrying surface and the micro robot. to obtain more precise movement capability and to be successful in manipulation operations. is to provide.

Biyomedikal alanda ve çip üstü laboratuvar sistemlerinde kullanilmak üzere, petri kaplari veya mikro akiskan kanallar içerisine yerlestirilerek hücre ve yapay mikro partiküllerin konumlandirilmasini veya manipülasyonunu gerçeklestiren sistem ile ilgilidir. Söz konusu 0 Mikro seviyedeki canli hücre ve yapay partiküllerin konumlandirilmasini veya manipülasyonunu gerçeklestiren bir mikro robot, - eksenel hareketlerle mikrorobotu harekete geçiren bir mikromanipülatör düzenegi, - mikromanipülatör düzenegi üzerine konumlandirilmis, mikro robotun manyetik etki ile hareketini ve dengelenmesini saglayan en az bir miknatis, . mikro robotun alt bölgesine konumlandirilmis; mikro robotun ; sivi deney düzenegi içerisinde bulunan sivi üzerinde dengede kalmasini miknatis tarafindan uygulanan manyetik alan etkisi vasitasiyla saglayan bir ferromanyetik kaplama tabakasi , - Mikro robota ve alt bölgesine konumlandirilmis ferromanyetik kaplama tabakasina yataklik yapan bir sivi deney düzenegi, i Akiskan kanallarin alt yüzeyini olusturan bir altlik, içermektedir. For use in the biomedical field and laboratory-on-a-chip systems, petri dishes or cells and artificial microparticles are placed in microfluidic channels. It relates to the system that performs its positioning or manipulation. Aforementioned 0 Involves the positioning or positioning of micro-level living cells and artificial particles. a micro robot that performs the manipulation, - a micromanipulator assembly that activates the microrobot with axial movements, - positioned on the micromanipulator assembly, with the magnetic effect of the micro robot at least one magnet that provides its movement and stabilization, . positioned in the lower region of the micro robot; micro robot ; liquid test setup applied by the magnet to keep it in balance on the liquid in it. a ferromagnetic coating layer that provides through the magnetic field effect, - Ferromagnetic coating layer positioned on the micro robot and its lower region a bedding liquid test setup, i A substrate forming the bottom surface of the fluid channels, contains.

Bulusun Anlasilmasina Yardimci Olacak Sekiller Sekil-1, bulusa konu olan mikro robot sisteminde kullanilan, mikro robot ve ferromanyetik kaplama plakalari gösterilmektedir. Figures to Help Understand the Invention Figure-1 shows the micro robot and ferromagnetic system used in the micro robot system, which is the subject of the invention. cover plates are shown.

Sekil-2, bulusa konu olan mikro robot sisteminin, petri kabinda kullanimi gösterilmektedir.Figure-2 shows the use of the micro robot system, which is the subject of the invention, in the petri dish.

Sekil-3, bulusa konu olan mikro robot sisteminin, mikroakiskan çip içerisinde kullanimi gösterilmektedir. Çizimlerin mutlaka ölçeklendirilmesi gerekmemektedir ve mevcut bulusu anlamak için gerekli olmayan detaylar ihmal edilmis olabilmektedir. Bundan baska, en azindan büyük ölçüde özdes olan veya en azindan büyük ölçüde özdes islevleri olan elemanlar, ayni numara ile gösterilmektedir. Figure-3, the use of the inventive micro robot system in a microfluidic chip is shown. Drawings do not necessarily need to be scaled and are necessary to understand the present invention. details may be neglected. Moreover, at least largely identical elements with or at least substantially identical functions, with the same number is shown.

Parça Referanslarinin Açiklamasi 1.Ferromanyetik Kaplama Tabakasi 2.Sivi Deney Düzenegi 3.Mikro Robot 4.Altlik .Miknatis 6.Mikromanipülatör Düzenegi Bulusun Detayli Açiklamasi Bu detayli açiklamada, bulusun tercih edilen yapilanmalari, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Description of Part References 1.Ferromagnetic Coating Layer 2.Liquid Experiment Setup 3.Micro Robot 4. Litter .Magnet 6.Micromanipulator Assembly Detailed Description of the Invention In this detailed description, preferred embodiments of the invention are merely better suited to the subject. are explained for clarity and without any limiting effect.

Biyomedikal alanda ve çip üstü laboratuvar sistemlerinde kullanilmak üzere, hücre ve yapay mikro partiküllerin konumlandirilmasini veya manipülasyonunu gerçeklestiren bir sistem olup, özelligi; . mikro robotun (3) alt bölgesine konumlandirilmis; mikro robotun (3); sivi deney düzenegi (2) içerisinde bulunan sivi üzerinde dengede kalmasini miknatis (5) tarafindan uygulanan manyetik alan etkisi vasitasiyla saglayan bir ferromanyetik kaplama tabakasi (1), içermesidir. For use in the biomedical field and laboratory-on-a-chip systems, cell and artificial It is a system that performs the positioning or manipulation of microparticles, feature; . positioned in the lower region of the micro robot (3); the micro robot (3); liquid experiment magnet (5) A ferromagnetic material that provides it through the effect of a magnetic field applied by coating layer (1), it contains.

Sivi deney düzenegi (2) içerisine yüzeyi ferromanyetik kaplama tabakasi (1) ile kaplanan mikro robot (3) yerlestirilmektedir.(Bknz. Sekil-2). Ferromanyetik kaplama tabakasi (1) ve mikro robot (3) bütünlesik yapidadir.(Bknz. Sekil-1). Bahsedilen ferromanyetik kaplama tabakasi (1) ve mikro robot (3) ortak hareket etmektedir. mikro robotun (3), sistemde kullanilacak sivi yogunluguna esit ya da daha az bir yogunluga sahip, polimer yapidadir. Altlik (4) kullanarak sivi deney düzenegi (2) içerisindeki sivilarin sizdirmazligi saglanmakta ve mühürlenmektedir.(Bknz. Sekil-3). Mikro robot (3) miknatisin (5) yaydigi manyetik dalganin etkisi ile temassiz hareket ettirilmektedir. Manyetik alan kuvvetlerinin yerçekimi ile ayni yönlü olan kuvvetleri, sivinin kaldirma kuvvetine zit bir kuvvet olusturmaktadir. Bu üç kuvvet dengelenerek, mikro robot (3) sivi içinde askida kalmakta ve sivi deney düzenegi (2) ile etkilesimi kalmamakta, dolayisiyla sürtünme kuvveti sifirlanmaktadir. Bu sayede sadece manyetik alan kuvvetlerinin paralel etkisi altindaki kuvvetler kullanilarak mikro robot (3) sivi içerisinde istenilen yöne hareket ettirilmektedir. The microscopic surface of which is coated with a ferromagnetic coating layer (1) inside the liquid test apparatus (2). robot (3) is placed. (See Figure-2). Ferromagnetic coating layer (1) and micro-robot (3) has an integrated structure. (See Figure-1). Said ferromagnetic coating layer (1) and the micro robot (3) acts jointly. of the micro robot (3), the liquid to be used in the system It has a polymer structure with a density equal to or less than its density. Using the pad (4) The tightness of the liquids in the liquid test apparatus (2) is ensured and (See Figure-3). The magnetic wave emitted by the micro robot (3) magnet (5) is moved without contact. Magnetic field forces in the same direction as gravity The forces of the liquid form a force opposite to the buoyant force of the liquid. These three forces By balancing, the micro robot (3) is suspended in the liquid and is combined with the liquid experimental setup (2). there is no interaction, therefore the friction force is reset. In this way, only Using forces under the parallel effect of magnetic field forces, the micro robot (3) is moved in the desired direction.

Sivi deney düzeneginin (2) alt kisminda bulunan mikromanipülatör düzenegi (6) miknatislar (5) ile bütünlesiktir. Mikromanipülatör düzenegi (6) hareket ederek manyetik alan kuvvetinin yönünü degistirmekte ve ferromanyetik kaplama tabakasi (1) ile kaplanan mikro robot (3) istenilen pozisyona yönlendirilmektedir. k "î ' . `MM-'vura ”VE” :im-JJ ` 1` n 5,2' 45 "B-n 54;” "i... H.' W ”2; ' SEKIL-l The micromanipulator assembly (6) located in the lower part of the liquid test apparatus (2) magnets It is integral with (5). The micromanipulator assembly (6) moves to increase the magnetic field strength. The micro robot (3) changes its direction and is covered with a ferromagnetic coating layer (1). is directed to the desired position. k "î ' . `MM-'hit ”AND” :im-JJ ` 1` n 5.2' 45" B-n 54;” "I... H.' W”2; ' FIGURE-l

Claims (2)

ISTEMLERREQUESTS 1. Biyomedikal alanda ve çip 'üstü laboratuvar sistemlerinde kullanilmak üzere, hücre ve yapay mikro partiküllerin konumlandirilmasini veya manip'L'ilasyonunu gerçeklestiren bir 5 sistem olup, özelligi; o mikro robotun (3) alt bölgesine konumlandirilmis; mikro robotun (3); sivi deney düzenegi (2) içerisinde bulunan sivi üzerinde dengede kalmasini miknatis (5) tarafindan uygulanan manyetik alan etkisi vasitasiyla saglayan 10 bir ferromanyetik kaplama tabakasi (1), içermesidir.1. It is a system that performs the positioning or manipulation of cells and artificial microparticles to be used in the biomedical field and on-chip laboratory systems, and its feature is; it is positioned in the lower region of the micro robot (3); the micro robot (3); It contains a ferromagnetic coating layer (1), 10, which ensures that the liquid in the liquid experiment setup (2) remains in balance on the liquid by means of the magnetic field effect applied by the magnet (5). 2. istem 1, e göre bir sistem olup özelligi; 15 o mikro robotun (3), sistemde kullanilacak sivi yogunluguna esit ya da daha az bir yogunluga sahip, polimer yapida olmasidir.2. It is a system according to claim 1 and its feature is; 15 o micro robot (3) has a polymer structure with a density equal to or less than the liquid density to be used in the system.
TR2015/16147A 2015-12-15 2015-12-15 MICRO ROBOT SYSTEM TR201516147A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2015/16147A TR201516147A2 (en) 2015-12-15 2015-12-15 MICRO ROBOT SYSTEM
PCT/TR2016/050495 WO2017105368A1 (en) 2015-12-15 2016-12-13 Micro robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2015/16147A TR201516147A2 (en) 2015-12-15 2015-12-15 MICRO ROBOT SYSTEM

Publications (1)

Publication Number Publication Date
TR201516147A2 true TR201516147A2 (en) 2017-07-21

Family

ID=58018178

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2015/16147A TR201516147A2 (en) 2015-12-15 2015-12-15 MICRO ROBOT SYSTEM

Country Status (2)

Country Link
TR (1) TR201516147A2 (en)
WO (1) WO2017105368A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115212936A (en) * 2022-07-01 2022-10-21 北京工业大学 Ultrasonic-excited micro-robot with adjustable motion direction and in-situ preparation chip thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099216A (en) * 1988-11-04 1992-03-24 Ron Pelrine Magnetically levitated apparatus

Also Published As

Publication number Publication date
WO2017105368A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
Jiang et al. Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer
Feng et al. High-precision motion of magnetic microrobot with ultrasonic levitation for 3-D rotation of single oocyte
US11192107B2 (en) DEP force control and electrowetting control in different sections of the same microfluidic apparatus
Pan et al. MEMS-based platforms for mechanical manipulation and characterization of cells
Durrer et al. A robot-assisted acoustofluidic end effector
Ichikawa et al. On-chip enucleation of an oocyte by untethered microrobots
US9207684B2 (en) Microfluidic surface processing systems with self-regulated distance-to surface control
Christ et al. Design of hydrodynamically confined microfluidics: controlling flow envelope and pressure
Bouchebout et al. An overview of multiple DoF magnetic actuated micro-robots
Mats et al. “Particle-Free” magnetic actuation of droplets on superhydrophobic surfaces using dissolved paramagnetic salts
TR201516147A2 (en) MICRO ROBOT SYSTEM
WO2012153192A2 (en) Microfluidic device with holding interface, and method of use
Shen et al. Area cooling enables thermal positioning and manipulation of single cells
Cors et al. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens
Ruggeri et al. Micro-assembly
Fuchiwaki et al. Multi-axial non-contact in situ micromanipulation by steady streaming around two oscillating cylinders on holonomic miniature robots
Mohammadrashidi et al. Experimental and theoretical investigation on the dynamic response of ferrofluid liquid marbles to steady and pulsating magnetic fields
Lucarini et al. Magnetically driven microrobotic system for cancer cell manipulation
Chen et al. On-chip automatic trapping and rotating for zebrafish embryo injection
US10376890B2 (en) Apparatus, systems and methods for modular microfluidic devices
Ichikawa et al. Untethered micro-robot with gripping mechanism for on-chip cell surgery utilizing outer magnetic force
Son et al. Bidirectional Droplet Manipulation on Magnetically Actuated Superhydrophobic Ratchet Surfaces
Wang et al. A fully automated robotic system for three-dimensional cell rotation
Liu et al. All-purpose magnetic micromanipulation system with two modes: Chopstick-like two-finger microhand and hydrodynamic tweezer
Jing et al. Magnetic mobile microrobots for mechanobiology and automated biomanipulation