TR201504382A2 - High Capacity And Long Life Li-Ion And Na-Ion Batteries And Production Method Of Cathode Material Used In These Batteries - Google Patents

High Capacity And Long Life Li-Ion And Na-Ion Batteries And Production Method Of Cathode Material Used In These Batteries Download PDF

Info

Publication number
TR201504382A2
TR201504382A2 TR2015/04382A TR201504382A TR201504382A2 TR 201504382 A2 TR201504382 A2 TR 201504382A2 TR 2015/04382 A TR2015/04382 A TR 2015/04382A TR 201504382 A TR201504382 A TR 201504382A TR 201504382 A2 TR201504382 A2 TR 201504382A2
Authority
TR
Turkey
Prior art keywords
ion
ion batteries
different ratios
battery
batteries
Prior art date
Application number
TR2015/04382A
Other languages
Turkish (tr)
Inventor
Altin Serdar
Demi̇rel Serkan
Altin Emi̇ne
Bayri̇ Ali̇
Avci Sevda
Öz Erdi̇nç
Original Assignee
Ali Bayri
Emine Altin
Erdinc Oez
Altin Serdar
Serkan Demirel
Avci Sevda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ali Bayri, Emine Altin, Erdinc Oez, Altin Serdar, Serkan Demirel, Avci Sevda filed Critical Ali Bayri
Priority to TR2015/04382A priority Critical patent/TR201504382A2/en
Publication of TR201504382A2 publication Critical patent/TR201504382A2/en
Priority to PCT/TR2016/050096 priority patent/WO2016163964A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Farklı metotlar ile üretilen, Li-iyon piller için LixCoyO2, LixMnyO2, LiMn2+yO4, LixNiyO2 ve bunları farklı oranlarda içeren LiCoxMnyNizO2 bileşikleri ile Na-iyon piller için NaxCoyO2, NaxMnyO2, NaxNiyO2 ve bunları farklı oranlarda içeren NaCoxMnyNizO2 (0?x,y,z?1) materyalleri, yüksek sıcaklıklarda gözlemlenen yüksek spin durumunu ani ve hızlı soğutma ile oda sıcaklığında yüksek spin durumunu koruyacak şekilde yapısal bozunuma uğramadan elde edilmekte ve Li-iyon ve Na-iyon pillerde kullanılarak şarj-deşarj ömrü bakımından yüksek performans sergilemektedir. Li-iyon piller için LixCoyO2, LixMnyO2, LiMn2+yO4, LixNiyO2 ve bunları farklı oranlarda içeren LiCoxMnyNizO2 bileşikleri ile Na-iyon piller için NaxCoyO2, NaxMnyO2, NaxNiyO2 ve bunları farklı oranlarda içeren NaCoxMnyNizO2 (0?x,y,z?1) materyali, materyal üzerine uygulanan dış etmenler karşısında materyalin spin durumunda değişimler meydana gelmektedir. Materyal, 300-900 oC arasında LS-IS-HS spin durumları arasıda spin geçişleri göstermektedir. Materyalin faz oluşum sıcaklığında sahip olduğu HS spin konfigürasyonu quenchleme metodu ile dondurulması ve bu materyalden üretilecek Li-iyon pilin performansının arttırılması sağlanmıştır.For Li-ion batteries produced by different methods, LixCoyO2, LixMnyO2, LiMn2 + yO4, LixNiyO2 and LiCoxMnyNizO2 compounds containing them in different proportions and NaxCoyO2, NaxMnyO2, NaxNiyO2 for Na-ion batteries and NaCoyO2, NaxMnyO2, NaxNiyO2 containing them in different proportions The z? 1) materials are obtained without structural degradation in a way to preserve the high spin state observed at high temperatures with sudden and rapid cooling at room temperature, and exhibit high performance in terms of charge-discharge life by using in Li-ion and Na-ion batteries. For Li-ion batteries LixCoyO2, LixMnyO2, LiMn2 + yO4, LixNiyO2 and LiCoxMnyNizO2 compounds containing them in different proportions and NaxCoyO2, NaxMnyO2, NaxNiyO2 and NaCoxMnyNizO2 (0? Changes occur in the spin state of the material against external factors applied on the material. The material shows spin transitions between LS-IS-HS spin states between 300-900 oC. The material is freezed by the HS spin configuration quenching method at the phase formation temperature and the performance of the Li-ion battery to be produced from this material is increased.

Description

Teknik Alan Bu bulus, Li-iyon piller için LixCoyOZ, LixMnyOZ, Lian+y04, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoxMnyNiZOZ bilesikleri ile Na-iyon piller için NaxCoyOz, NaXMnyOZ, NaXNiyOZ ve bunlari farkli oranlarda içeren NaCoXMnyNizOg (05x,y,zS]) bilesiklerinden elde edilen tek kristal, ince film, kalin film ve polikristal malzemelerinin, yüksek sicaklikta manyetik spin geçis sicakliginda ani sogutma metodu ile materyallerin yüksek sicakliktaki ortaya çikan spin durumlarini dondurarak kontrol edilmesini, böylelikle bu malzemelerden üretilecek Li-iyon ve Na-iyon pillerin sarj-deserj performanslarinin arttirlmasini içermektedir. Technical Area This invention includes LixCoyOZ, LixMnyOZ, Lian+y04, LixNiyOZ for Li-ion batteries and different NaxCoyOz, NaXMnyOZ for Na-ion batteries with LiCoxMnyNiZOZ compounds containing It is obtained from NaXNiyOZ and NaCoXMnyNizOg (05x,y,zS]) compounds containing them in different ratios. of single-crystal, thin-film, thick-film and polycrystalline materials produced at high temperature With the sudden cooling method at the magnetic spin transition temperature, the materials are produced at high temperature. control the resulting spin states by freezing, so that these materials It includes increasing the charge-discharge performance of the Li-ion and Na-ion batteries to be produced.

Bulusun Altyapisi Geçmisten günümüze dogru teknolojinin büyük bir hizla ilerledigi görülmektedir. Gelisen teknoloji ile, insan hayatindaki birçok engeli ortadan kaldiran tasinabilir cihazlarin, sayisi ve gelisimi de hizla büyümektedir. Teknolojinin bu cihazlara ve araçlara getirdigi yeni özellikler ile enerji kullaniin miktarida artmaktadir. Tasinabilir cihazlarin enerji ihtiyacinin karsilanmasi için Lityum-iyon ve Sodyum-iyon piller üretilmekte ve günlük hayatimizdaki hemen hemen bütün elektronik cihazlarda kullanilmaktadir. Invention Background From the past to the present, it is seen that technology is advancing at a great speed. Developing With technology, the number and number of portable devices that remove many obstacles in human life development is also growing rapidly. New features brought by technology to these devices and tools With this, the amount of energy use also increases. Meeting the energy needs of portable devices Lithium-ion and Sodium-ion batteries are produced for It is used in all electronic devices.

Günümüzde elektrikli cihazlarin kullanildigi hemen her alanda kullanilabilen Li-iyon piller, sarj-desarj kapasitelerinin zaman içerisinde hizla düsmesi kullanicilari ve üreticileri sikintiya sokmaktadir. Li-ion batteries, which can be used in almost every area where electrical devices are used today, The rapid decline of charge-discharge capacities over time puts users and manufacturers in distress. it inserts.

Li-iyon piller, tasinabilir elektronik cihazlar ve enerji depolama sistemleri gibi teknolojileri domine etmesi ile birlikte yeni nesil elektrikli araçlarda güç kaynagi olarak kullanilmasi açisindan iyi bir aday olarak görülmektedir. Ancak uzun vadede, araç pilleri ve büyük skala uygulamalar için dünya üzerindeki sinirli lityum rezervleri ve inaliyetlerin artmasi büyük bir sorun olarak görülmektedir. Gelecek açisindan Li-iyon pillerin kullaniinini sinirlamakta olan bu sorunlar nedeniyle biliin adamlari, Li-iyon pillerinin performans arttirma çalismalarina büyük bir hizla devam etmektedir. Literatür incelendigi zaman bu performans artirimi çalismalari çogunlukla katot materyalleri üzerine yapilmaktadir. Technologies such as Li-ion batteries, portable electronic devices and energy storage systems to be used as a power source in new generation electric vehicles with its dominance is seen as a good candidate. But in the long run, vehicle batteries and large scale Limited lithium reserves around the world and increasing costs for applications seen as a problem. limiting the use of Li-ion batteries for the future. Because of these problems, scientists began to work on improving the performance of Li-ion batteries. continues at great speed. When the literature is examined, this performance increase studies are mostly done on cathode materials.

Li-iyon pillerin bu dezavantajlarini gidermeye yönelik çalismalar devam ederken bilim adamlari tarafindan Li-iyon pillere alternatif olarak kesfedilen Sodyum-iyon piller üzerine çalismalar da büyük bir hizla devam etmektedir. Özellikle Sodyum (Na) elementinin dogada bol miktarda bulunmasi ve maliyet açisindan Lityum (Li) elementine göre daha ucuz olmasi dikkatleri Na-iyon piller üzerine de çekmistir. While studies to eliminate these disadvantages of Li-ion batteries continue, science on Sodium-ion batteries, which were discovered as an alternative to Li-ion batteries by work continues at a great pace. Especially the sodium (Na) element in nature. It is abundant and cheaper than Lithium (Li) element in terms of cost. attention has also been drawn to Na-ion batteries.

Na-iyon pillerin çevre dostu olmasi, kolay elde edilebilir ve düsük maliyetli olmasi Li-iyon pillere göre büyük avantaj saglamaktadir. Fakat bu avantajlara ragmen Na-iyon pillerin kisa vadede Li-iyon pillerin ticari olarak yerine geçmesini engelleyen dezavantajlari bulunmaktadir. Daha net olarak bahsetmek gerekirse bir Li-iyon pil ortalama 3.04 V çalisma voltajina sahipken, Na-iyon pil ortalama 2.71 V çalisma voltajina sahiptir. Na ve Li-iyon piller arasindaki bu büyük farkin kisa vadede çözülmesi amaciyla bilim adamlari çalismalarina büyük bir hizla devam etmektedir. Na-ion batteries are environmentally friendly, easily available and cost-effective. It provides a great advantage over batteries. However, despite these advantages, Na-ion batteries are short-lived. disadvantages that prevent commercial replacement of Li-ion batteries in the long run are available. To be more precise, a Li-ion battery works at an average of 3.04 V. voltage, while the Na-ion battery has an average operating voltage of 2.71 V. Na and Li-ion In order to solve this huge difference between batteries in the short term, scientists continues its work at a great pace.

Yapilan mevcut çalismalar, Li-iyon pillerde kullanim ömrü, Na-iyon pillerde ise çalisma voltajini arttirmak üzerine yogunlasmistir. Li-iyon ve Na-iyon piller üzerine yapilan bu performans çalismalari genel olarak pil içerisinde bulunan anot, elektrolit ve özellikle de katot materyali olarak adlandirdigimiz negatif (-) kutup üzerinde modifikasyonlar ile gerçeklesmektedir. The current studies, the service life in Li-ion batteries, the working life in Na-ion batteries concentrated on increasing the voltage. This is done on Li-ion and Na-ion batteries. performance studies generally include the anode, electrolyte and especially the cathode in the battery. with modifications on the negative (-) pole, which we call the material is taking place.

Bir pil genel anlamda elektrot olarak adlandirilan anot (pozitif kutup) ve katotun (negatif kutup) karsilikli olarak yerlestirilmesi ve bu iki elektrot arasinda Lityum (Li+) ve Sodyum (Na+) iyonlarinin transferini saglayan elektrolit sivisinin konulmasi ile olusmaktadir. Yeniden sarj edilebilir özellige sahip olan Li-iyon ve Na-iyon pillerin çalisma mekanizmasi, bu iki elektrot içinde Li ve Na atomlarinin indirgenme-yükseltgenme (Li ya da Na°un elektron kaybetmesi ya da kazanmasi) reaksiyonlari sonucu olusmaktadir. A battery consists of an anode (positive pole) and a cathode (negative pole), commonly called an electrode. pole) mutually placed and between these two electrodes Lithium (Li+) and Sodium It is formed by adding electrolyte liquid that provides the transfer of (Na+) ions. Again The working mechanism of rechargeable Li-ion and Na-ion batteries reduction-oxidation of Li and Na atoms in the electrode (electron electrons of Li or Na It is formed as a result of the reactions (losing or winning).

Bir Li-iyon (Lityum-iyon) pilde, sarj olayi sirasinda (-) negatif kutup olan katottaki Li atomlarinin birer elektron kaybetmesi (Li atomunun yükseltgenmesi) sonucu Lityum atomu iyon haline geçer. Bu yükseltgenme olayi sonucu Li+ iyonu olusur. Lityum atoinu sahip oldugu 3.7 volt degerindeki yükseltgenme voltaji sayesinde, yükseltgenme sirasinda 3.7 volt luk bir gerilim ortaya çikar. Ortaya çikari bu potansiyel Li-iyon pilinin voltajini olusturmaktadir. Benzer bir tanimlama Na-iyon piller için de geçerlidir. In a Li-ion (Lithium-ion) battery, the Li at the cathode, which is the (-) negative pole during charging, Lithium atom as a result of losing one electron each of its atoms (oxidation of the Li atom) becomes an ion. As a result of this oxidation event, Li+ ion is formed. Has lithium atoin 3.7 volts during oxidation, thanks to the oxidation voltage of 3.7 volts. A tension arises. This potential creates the voltage of the Li-ion battery. forms. A similar definition applies to Na-ion batteries.

Yükseltgenme sonrasi Li-iyon pillerde ortaya çikan Li+ ve Na-iyon pillerde ortaya çikan Na+ iyonlari, sarj sirasindan katottan ayrilir ve anoda dogru hareket eder. Bu esnada Na+ ve Li+ iyonunun olusumu ile ortaya çikan serbest elektron, iletken pil tabakalari yardimi ile kapali bir devre içerisine aktarilir. Örnegin, bir ampule bir Li-iyon veya Na-iyon pili baglandigi zaman, pil içerisindeki katot materyalinde bulunan Li veya Na atomundan bir elektron kopar ve elektron katoda bagli olan iletken pil kapagi ile devreye aktarilir ve devre içerisinde olusturulan elektriksel akim ile devredeki ampulün yanmasi saglanir ve daha sonra elektronlar anoda iletilir. Iste bu esnada Li-iyon pil içerisindeki Li+ iyonu ve Na-iyon pil içerisindeki Na+ iyonu da katot materyalinden anot inateryaline hareket eder. Bir Li-iyon ve Na-iyon pilinin desarj olayinda ise sarj olayinin hemen hemen tam tersi olmaktadir. Iyon halinde, katottaii aiioda giderek anoda yerlesen Li+ ve Na+ iyonlari, pil üzerine verilecek elektriksel akim ile anot üzerinde Li ve Na atomlari elektron vererek yükseltgenirler. Elektronlar desarj olayindaki gibi dis iletken kullanilarak katota dogru iletilirken yükseltgenen Li+ ve Na* iyonlari anottan katota dogru elektrolit sivisi içerisinde hareket eder. Katot üzerinde yapi içerisine yerlesen Li+ ve Na+ iyonlari elektronlarini tekrar alarak indirgenirler ve katot yapisina katilirlar. Li+ occurring in Li-ion batteries after oxidation and Na+ occurring in Na-ion batteries ions leave the cathode during charging and move towards the anode. Meanwhile, Na+ and Li+ The free electron that emerges with the formation of the ion is closed with the help of conductive battery layers. transferred into a circuit. For example, a Li-ion or Na-ion battery is connected to a light bulb. time, an electron is removed from the Li or Na atom in the cathode material in the battery. and the electron is transferred to the circuit with the conductive battery cover connected to the cathode and inside the circuit With the electrical current created, the light bulb in the circuit is burned and then electrons are released. transmitted to the anode. Meanwhile, the Li+ ion in the Li-ion battery and the Na+ ion in the Na-ion battery. ion moves from the cathode material to the anode material. of a Li-ion and Na-ion battery In the discharge event, it is almost the opposite of the charging event. In ion form, cathodetaii Li+ and Na+ ions, which gradually settle in the anode in the aiio, are formed by the electrical current to be given to the battery. On the anode, Li and Na atoms are oxidized by losing electrons. Electrons discharge Li+ and Na* are oxidized while being transmitted to the cathode using an external conductor, as in the case of ions move from the anode to the cathode in the electrolyte liquid. Artwork on the cathode Li+ and Na+ ions placed in it are reduced by taking their electrons again and the cathode they participate in it.

Li-iyon ve Na-iyon pillerin sahip olduklari bu basit çalisma mekanizmasi, zaman içerisinde anot ve katot içerisinde kimyasal ve fiziksel deformasyonlari da beraberinde getirmektedir. This simple working mechanism of Li-ion and Na-ion batteries has changed over time. It also brings about chemical and physical deformations in the anode and cathode.

Bu nedenle bir Li-iyon veya Na-iyon pilinin sar-desarj döngüsünün artmasi ile birlikte her seferinde kapasite miktari azalacaktir. Bir pilin kapasitesi, farkli tanimlari olmasi ile birlikte, bir katot materyalinin 1 grami basina 1 saatlik verebildigi akim miktari olarak açiklanabilir. Therefore, with the increase of the charge-discharge cycle of a Li-ion or Na-ion battery, each capacity will decrease. The capacity of a battery, although it has different definitions, It can be explained as the amount of current that a cathode material can deliver for 1 hour per 1 gram.

Bu baglamda, kapasitenin akim ile belirlenmesi, ayni zamanda pilin depolayabilecegi Li+ ve Na+ iyon miktari seklinde tanimlanabilir. Sarj-desarj döngülerinin beraberinde getirdigi deformasyonlar, kapasitede düsüs meydana getirmekte ve bir süre sonra materyal pil özelligini kaybedecek duruma gelmektedir. Bu konu üzerine yapilan çalismalar ise Li-iyon ve Na-iyon pillerin kapasite performansini arttirmak üzerinedir. Böylelikle Li-iyon pilin kullaniin ömrü de arttirilinis olacaktir. In this context, the determination of the capacity with the current, at the same time, the Li+ and It can be defined as the amount of Na+ ion. Charge-discharge cycles bring deformations cause a decrease in capacity and after a while, the material becomes a battery. it loses its character. Studies on this subject are Li-ion and It is about increasing the capacity performance of Na-ion batteries. Thus, the Li-ion battery The lifetime of use will also be increased.

Yukarida bahsedilen alt yapidan yola çikarak bulusun amaci, yüksek sicakliklardaki yüksek spin degerini düsük sicakliklarda da saglayarak yüksek ömürlü ve yüksek performansli katot materyali elde etmek ve katot materyali ile hazirlanan Li-iyon ve Na-iyon pillerinin kapasite perforinasinda yaklasik %60 oraninda artis saglanmaktir. Starting from the above-mentioned infrastructure, the aim of the invention is to High-life and high-performance cathode by providing spin value at low temperatures To obtain the material and the capacity of Li-ion and Na-ion batteries prepared with cathode material It is to provide an increase of approximately 60% in perforina.

Bulusun Detayli Açiklanmasi Bu bulus asagida verilecek açiklamalarin ve de ekli sekillerin görülmesinden sonra daha iyi anlasilacaktir. Detailed Description of the Invention This invention is better understood after seeing the following explanations and accompanying figures. will be understood.

Sekil-1: LS, IS, HS durumlari için spin, etkin manyetik moment (jigff) ve enerji araligi degerleri. Figure-1: Spin, effective magnetic moment (jigff) and energy range for LS, IS, HS states values.

Sekil-2: Oktahedral yapida 3d yörüngesinin enerjisi. Figure-2: Energy of 3d orbit in octahedral structure.

Sekil-3: Örnek olarak LixC002 materyaline ait 5-1000 Kelvin sicaklik araliginda sicakliga bagli manyetik özellikleri. Figure-3: For example, in the temperature range of 5-10000 Kelvin of LixC002 material temperature dependent magnetic properties.

Sekil-4: Örnek olarak Quench”lenmis(ani olarak sogutulmus) LIXC002 materyali kullanilarak üretilen Li-iyon pilin kapasite-volta j (C -Voltaj) grafigi. Figure-4: Example of Quenched (suddenly cooled) LIXC002 material capacity-voltage j (C-Voltage) graph of the Li-ion battery produced using

Sekil-5: Örnek olarak Quench”lenmis LixCOOZ materyali kullanilarak üretilen Li-iyon pilin kapasite-döngü sayisi (C-Döngü sayisi) grafigi. ueff : Etkili manyetik moment ”B : Bohr magnetonu eg : Birinci orbital gurubu tzg : Ikinci orbital gurubu A7r : ::t yarilmasi enerji farki Ad : Yarilma enerjisi farki Bu bulus kapsaminda, Li-iyon piller için LixCoyOZ, LixMnyoz, LiMn2+yO4, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoxMnyNiZOZ bilesikleri ile Na-iyon piller için NaXCoyOZ, NaXMnyûz, NaxNiyûz ve bunlari farkli oranlarda içeren NaCOXMnyNiZOZ (05X,y,ZSl) bilesiklerin farkli üretim yöntemleri ile üretildikten sonra özellikle C0 ve Mn de beklenen degisik spin durumlarinin olasi olmasi nedeni ile yüksek sicakliklara kadar isitilip spin geçisinin baslamasi ve tamamlanma sicakligi ve üstündeki sicakliklarda ani olarak oda sicakligi veya sivi azot (sivi azot sicakligi: - sicakligina düsürülmesi ile yüksek spin durumu yapida oda sicakliginda korunmasi prensibine dayanmaktadir. Figure-5: Li-ion produced using the Quenchned LixCOOZ material as an example battery capacity-cycle count (C-Cycle count) graph. ueff : Effective magnetic moment ”B : Bohr magneton eg : First orbital group tzg : Second orbital group A7r : ::t splitting energy difference Name : Split energy difference Within the scope of this invention, for Li-ion batteries, LixCoyOZ, LixMnyoz, LiMn2+yO4, LixNiyOZ and LiCoxMnyNiZOZ compounds containing these in different proportions, and NaXCoyOZ for Na-ion batteries, NaXMnyûz, NaxNiyûz and NaCOXMnyNiZOZ (05X,y,ZSl) containing them in different ratios After the compounds are produced with different production methods, especially in C0 and Mn, the expected Since different spin states are possible, it is heated to high temperatures and spinned. at the start and completion temperature of the transition and at temperatures above temperature or liquid nitrogen (temperature of liquid nitrogen: - high spin by lowering the temperature The condition is based on the principle of maintaining the structure at room temperature.

Bulus ekibi tarafindan geçis metali bazli LixCoyOZ, leMnyOZ, LiMn2+yO4, LiXNiyOZ ve bunlarin farkli oranlarda içeren LiCoxMnyNizOZ bilesikleri ile Na-iyon piller için NaxCOyOz, NaÄMnyOZ, NaxNiyO2 ve bunlarin farkli oranlarda içeren NaCoxMnyNizOZ (OSx,y,zSl) bilesiklerinin üzerine yapilan manyetik çalisma ile ilk defa yüksek sicaklik (LiCoOz için 600 0C nin üzerinde digerleri için ise kompozisyona bagli olarak bölgesinde spin geçisi kesfedilmistir. Bu kesifte, materyalin spin geçisleri, sicaklik degisimine bagli manyetik almganlik (x) degerlerinin ölçülmesi ile elde edilmistir. Manyetik alinganlik (x) (yada manyetik moment, m, emu, emu/g veya emu/cm3) degerinin dis etkenlere bagli olarak artmasi veya azalmasi, materyali olusturan atomlarin çiftlenmemis elektronlarinin spin durumlarinin degismesi olarak yorumlanmaktadir. Transition metal-based LixCoyOZ, leMnyOZ, LiMn2+yO4, LiXNiyOZ and LiCoxMnyNizOZ compounds containing different proportions of these, and NaxCOyOz for Na-ion batteries, NaÄMnyOZ, NaxNiyO2 and NaCoxMnyNizOZ (OSx,y,zSl) containing them in different ratios high temperature (600 for LiCoOz) for the first time with magnetic work on For others above 0C, depending on the composition spin transition was discovered in the region. In this concentration, the spin transitions of the material depend on the temperature change. It was obtained by measuring the magnetic susceptibility (x) values associated with it. magnetic susceptibility (x) (or magnetic moment, m, emu, emu/g or emu/cm3) value depending on external factors increase or decrease as the spin of the unpaired electrons of the atoms that make up the material. interpreted as a change in status.

Elektron kendi iç özelligi nedeni ile spin olarak adlandirilan bir iç manyetik momente sahiptir. Due to its intrinsic property, the electron has an internal magnetic moment called spin.

Bu manyetik momentin uygulanan manyetik alan yönüne göre iki olasi yönelimi söz konusudur. Bu nedenle genellikle elektronun manyetik moment durumu ±l/2 olarak gösterilir. There are two possible orientations of this magnetic moment with respect to the applied magnetic field direction. subject. For this reason, the magnetic moment state of the electron is usually shown as ±1/2.

Bu da l/2h durumunun manyetik alan ile ayni yönlü, -l/2h durumunun da manyetik alan ile zit yönde yöneldigi anlamina gelmektedir. This means that the l/2h state is in the same direction as the magnetic field, and the -l/2h state is in the same direction as the magnetic field. It means that it is directed in the opposite direction.

Pauli disarlama ilkesine göre ayni spin durumundaki iki elektron ayni orbitalde (atom yörüngesi) bulunamamaktadir. Yani bir orbitalde elektronlarin çiftlenmesi durumunda elektronlardan birinin spini (T), digerinin spini (iz) yönlü olacaktir. Böylelikle bu orbitaldeki toplam spin degeri 0 olacaktir. According to the Pauli exclusion principle, two electrons in the same spin state are in the same orbital (atom). orbit) cannot be found. So in case of pairing of electrons in an orbital The spin (T) of one of the electrons will be in the direction of the spin (trace) of the other. Thus, in this orbital the total spin value will be 0.

Yukarida belirtilen bilgiler isiginda bir atomun manyetik moment degerini büyük oranlarda tam dolu olmayan yörüngelerdeki çiftlenmemis elektronlar belirlemektedir. Çiplak gözle görülebilen bir nesnede sayilamayacak kadar çok atom vardir. Bu nedenle bir atomun fiziksel özelliklerine yogunlastigimizda o atomun bulundugu çevreyi de dikkate almak zorundayiz. Bu nedenle serbest bir atomda bekledigimiz fiziksel özelliklerin bir geometrik yapida tamamen ayni kalmasini bekleyemeyiz. Özellikle manyetik açidan bakildiginda serbest bir atomda manyetizasyonun orjini olan çiftlenmemis elektronlar Hund kurallarina göre sekillenim alirken bir yapi içerisinde bu durum her zaman korunmayabilir. In the light of the above-mentioned information, the magnetic moment value of an atom can be greatly increased. unpaired electrons in incompletely filled orbitals. There are too many atoms to count in an object visible to the naked eye. Therefore a When we concentrate on the physical properties of the atom, we take into account the environment in which that atom is located. we have to take Therefore, one of the physical properties we expect in a free atom We cannot expect it to remain exactly the same in the geometric structure. Especially from a magnetic point of view Unpaired electrons that are the origin of magnetization in a free atom This situation may not always be preserved in a structure while taking shape according to the rules.

Bunun temel nedeni çiftlenmemis elektronlarin bulundugu yörüngenin enerjisinin bir yapi içerisinde degismesinden kaynaklanmaktadir. Bizim çalismamizda kullandigimiz manyetik elementler 1. Geçis metalleri oldugu için bu atomik durumdan sapmayi 3d yörüngesi için söyle izah etmek mümkün: Bilindigi gibi 3d yörüngesi dejenere bir yörünge olup serbest atomda 5 farkli orbital ayni enerjiye sahiptir. fakat bu atom bir sistem içerisine gittiginde sistemdeki diger atomlarin uzaysal konumlari dejenere orbitallerin enerjilerini degistirir. Yani serbest atomdaki dejenerilik, yapinin geometrisine bagli olarak, bozulacaktir. Manyetik özellik belirledigimiz yakin koinsulugunda bulunan diger atom veya atom gruplarinin elektronegatifligine göre dejenerelikteki bu enerji farkliliklari, Hund kuralindan kaynakli enerji kazancini yenebilir. Iste böyle bir durumda 3d” deki elektronlar artik Hund kurallari geregi degil de bu kristal alan kaynakli yarilmalara göre yeniden bir düzenlenme yolunu tercih edeceklerdir (tamamen enerji kazancina dayali bir tercih). Dejeneriligi bozan bu kristal alan dis etkiler ile kontrol altinda tutulabilinir. Bu etkiler genellikle isi, isik ve basinç ile kontrol edilmektedir. Bir örnek üzerinde bu durum daha kolay anlasilacaktir. Oktahedral bir alanda 3d yörüngesinin enerjisi Sekil-2” deki gibi degisektir. Görüldügü gibi daha önce 5, li dejenere olan d yörüngesi tzg ve eg gibi iki enerji seviyesine yarilacaktir. Serbest atomda Hund kuralina göre sekillenim alan elektronlar artik eg ile tzg arasindaki enerji farkinda sekilleniinlerine katmak zorundadir. 3d4 elektronik konfigürasyonu örnek olarak seçildiginde iki olasi durumun olabilecegi asikardir. Birinci durum ti; (düsük spin) durumu, 2. durumda t2g3eg] (yüksek spin) duruinudur. Dis etkileri kontrol ederek bu iki spin durumu arasinda bir spin state geçisini (spin durumu geçisi) kontrol etmek mümkündür. Örnegin atomlar arasi uzakligi arttirarak (mesela yapiyi isitarak) t2g4-› t2g3eg] gibi bir geçisi saglamamiz mümkündür. Böyle bir malzeme için LS (low spin)”den HS(high spin)”ye bir geçis oldugunu söyleyebiliriz. d yörüngesine yerlesecek elektron sayisina göre özellikle d4-d7 için geometriye bagli olarak LS, daha çok simetri bozukluklarindan kaynaklanmaktadir. Mesela yapida kristal parametrelerin kübikten tetragonal yapiya sapmasi gibi. The main reason for this is that the energy of the orbit with unpaired electrons is a structure. due to changes in it. The magnetic we used in our study Elements 1. Since they are transition metals, deviate from this atomic state for the 3d orbital. It is possible to explain as follows: As it is known, the 3d orbit is a degenerate orbit and it is free. 5 different orbitals in an atom have the same energy. but when this atom goes into a system The spatial positions of the other atoms in the system change the energies of the degenerate orbitals. well the degeneracy in the free atom will deteriorate, depending on the geometry of the structure. Magnetic the properties of other atoms or groups of atoms located in the close coinsularity that we have determined. These energy differences in degeneracy according to electronegativity are due to Hund's rule. can beat energy gain. In such a case, electrons in 3d are now Hund's rules. instead of necessity, it prefers a way of rearrangement according to the cleavages caused by this crystal field. (a preference purely based on energy gain). This crystal field that breaks degeneracy It can be kept under control by external influences. These effects are usually controlled by heat, light and pressure. is being done. This will be easier to understand on an example. 3d in an octahedral space The energy of its orbit is different as in Figure-2. As can be seen before, 5, li degenerate the d orbital will be split into two energy levels tzg and eg. Hund's rule for the free atom The electrons that are shaped according to their shape are now shaped in the energy difference between eg and tzg. has to add. When the 3d4 electronics configuration is chosen as an example, there are two possible It is clear that the situation can happen. The first case is ti; (low spin) case, t2g3eg in case 2] (high spin) state. a spin between these two spin states by controlling external effects. It is possible to control the state transition (spin state transition). For example, the distance between atoms It is possible to provide a transition such as t2g4-› t2g3eg] by increasing (for example, heating the structure). Like this We can say that there is a transition from LS (low spin) to HS (high spin) for a material. D Depending on the geometry, especially for d4-d7 according to the number of electrons to be placed in its orbit, LS, mostly due to symmetry disorders. For example, the crystal parameters in the structure as it deviates from cubic to tetragonal structure.

Bulus konusu Li-iyon piller için LixCoy02, LixMnyOZ, LiMn2_yO4, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoxMnyNiZOZ bilesikleri ile Na-iyon piller için NaxCoyOZ, NaXMnyOZ, NaXNiyûg ve bunlari farkli oranlarda içeren NaCoxMnyNizOZ (05X,y,zsl) bilesiklerinin farkli formlarda üretildikten sonra her bir bilesik için farkli olan Spin geçis sicakliginda Quench”1eme metodu (ani sogutma yöntemi) kullanmasi amaçlanarak materyalin aniden sogutulmasi ile HS durumununda spinlerin dondurulmasi amaçlanmistir. Bir materyal HS durumunda iken kristal yapisindaki elektronik konfigürasyonu, IS ve LS durumundakine göre daha farklidir. Oktahedral bir yapida çok net gözüktügü gibi 3d4 elektronik konfigürasyonu HS durumunda t2g3eg] sekillenimini alacaktir. eg orbitali tzg orbitaline göre daha az lokalize olacagindan egdeki bir elektron kismen delokalize gibi davranarak sistemin iletkenligini arttiracak dolayisi ile dirençte bir düsüse neden olacaktir. Bunun sonucunda yukarida belirtileii bilesiklerin yapisindaki Li ve Na atomlarinin iyonlasmasi, iyonlastiktan sonra sistem içindeki hareketleri sonucu kristal yapida meydana gelecek deformasyon LS manyetik konfigürasyonuna göre daha düsük olacaktir. Böylelikle üretilecek Li-iyon pilin sarj-desarj performansinda da sitabilite saglanacaktir. For Li-ion batteries, the subject of the invention, LixCoy02, LixMnyOZ, LiMn2_yO4, LixNiyOZ and different NaxCoyOZ, NaXMnyOZ for Na-ion batteries with LiCoxMnyNiZOZ compounds containing NaXNiyûg and NaCoxMnyNizOZ (05X,y,zsl) compounds containing them in different ratios Spin transition temperature, which is different for each compound after it is produced in different forms. With the aim of using the “quench” method (sudden cooling method), the material is suddenly It is aimed to freeze the spins in the HS state by cooling. A material HS The electronic configuration in the crystal structure is in the IS and LS state. is more different. 3d4 electronic configuration as it looks very clear in an octahedral structure In the case of HS it will take the shape of t2g3eg]. The eg orbital is less localized than the tzg orbital. Since it will be will increase, therefore, it will cause a decrease in resistance. As a result, above The ionization of the Li and Na atoms in the structure of the mentioned compounds, after ionization, the system The deformation that will occur in the crystal structure as a result of its movements in the LS magnetic will be lower than its configuration. Thus, the charge-discharge of the Li-ion battery to be produced stability will be ensured in the performance.

Bu bulus, Li-iyon piller için LixCoyûz, LixMnyûg, LiMn2+yO4, LixNiy02 ve bunlari farkli oranlarda içeren LiCoxMnyNiZOZ bilesikleri ile Na-iyon piller için NaXCoyOZ, NaXMnyOZ, NaXNIYOZ ve bunlari farkli oranlarda içeren NaCoxMnyNiZOZ (OSX,y,ZSl) bilesiklerinin farkli formlarda üretildikten sonra spin geçis sicakliginda Quench yöntemi (ani sogutma) ile oda sicakliginda HS manyetik konfigürasyonunun elde edilmesi ve bu malzeme ile üretilecek olan katot inateryali ile olusturulacak Li-iyon ve Na-iyon pillerinin performasinin arttirilinasini saglamaktadir. This invention covers LixCoyûz, LixMnyûg, LiMn2+yO4, LixNiy02 and their different types for Li-ion batteries. NaXCoyOZ, NaXMnyOZ, for Na-ion batteries with LiCoxMnyNiZOZ compounds containing NaXNIYOZ and NaCoxMnyNiZOZ (OSX,y,ZSl) compounds containing them in different ratios After it is produced in forms, it is produced in the room with the Quench method (instant cooling) at the spin transition temperature. obtaining the HS magnetic configuration at the temperature of To increase the performance of Li-ion and Na-ion batteries to be formed with cathode material. it provides.

Bu patent kapsaminda Li-iyon piller ve Na-iyon piller için en büyük sorunlardan biri olan kullanim ömrü performansi, Li-iyon piller için LiXCoyOZ, LixMnyOZ, LiMn2+yO4, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoxMnyNiZOZ bilesikleri ile Na-iyon piller için NaxCOyOz, NaXMnyog, NaXNiyOZ ve bunlarin farkli oranlarda içeren NaCoXMnyNiZOZ (05x,y,zsl) katot malzemeleri üzerine uygulanan farkli üretim teknigi sayesinde, bu malzemeden hazirlanan katot materyali ile hazirlanan Li-iyon ve Na-iyon pillerinin kapasite performasinda yaklasik kullanim ömrü 100 sarj-desarjdan 160 sarj-desarj ömrüne uzamistir. 80 yili askin süredir belirli bir geçis elementi bilesikleri baglanma durumuna göre iyonik ve kovalent baglanma olmak üzere iki farkli kategoride incelenmektedir. Geçis elementinin bulundugu ortama göre orbital enerjileri dejenere durumdan yarilarak elektron spinleri farkli konfigürasyona sahip olabilmektedir. One of the biggest problems for Li-ion batteries and Na-ion batteries within the scope of this patent. lifetime performance, for Li-ion batteries LiXCoyOZ, LixMnyOZ, LiMn2+yO4, LixNiyOZ and LiCoxMnyNiZOZ compounds containing these in different proportions and NaxCOyOz for Na-ion batteries, NaXMnyog, NaXNiyOZ and NaCoXMnyNiZOZ (05x,y,zsl) cathode containing them in different ratios Thanks to the different production technique applied on the materials, the products prepared from this material The capacity performance of Li-ion and Na-ion batteries prepared with cathode material is approximately the service life has been extended from 100 charge-discharge to 160 charge-discharge life. For more than 80 years, certain transition element compounds are ionic and It is examined in two different categories as covalent bonding. transition element Depending on the environment, the orbital energies are split from the degenerate state and the electron spins are different. can be configured.

Bu durumda elektronlarin manyetik moinentleri farkli olacagindan, malzeme düsük spin (Low spin, LS), ara spin (Intermediate spin, IS) ve yüksek spin (High spin, HS) durumunda Dis bir perturbasyon uygulanmasi ile metal koinpleksin spin durumunu degistirmesi spin geçisi (Spin crosover veya spin transition) olarak isimlendirilir. Genelde spin geçisleri geçis elementlerini içeren bilesiklerde gözlenmistir. Spin geçislerinde en önemli iki temel sonuç tzg ve e`g orbitallerinin bagil doluluklarinin degisiminden kaynaklanan metal-donor atom bag uzunlugunun degismesi ve dolayisi ile manyetik özelliklerin degismesi olarak verilebilir. LS durumundan HS durumuna geçisteki degisim, sistemin paramanyetizmasinda bir artisa neden olur. Bu durum genelde isisal degisim ile birlikte ortaya çikar. Spin geçisini belirlemek için manyetik alinganlik ve Mössbauer spektroskopisi en gerçekçi yöntemdir. Spin geçisi egrisi genelde XHs egrisi ile belirlenir. In this case, since the magnetic moinents of the electrons will be different, the material will have a low spin (Low spin, LS), intermediate spin (Intermediate spin, IS) and high spin (High spin, HS) Changing the spin state of the metal coinplex by applying an external perturbation It is called a spin crossover or spin transition. In general, spin transitions observed in compounds containing elements. The two most important fundamental results in spin transitions are tzg and the metal-donor atom bond resulting from the change in the relative occupancy of the e`g orbitals It can be given as the change of the length and therefore the change of the magnetic properties. WORK The change from the HS state to the HS state causes an increase in the paramagnetism of the system. It is possible. This situation usually occurs with thermal change. To determine the spin transition magnetic affinity and Mössbauer spectroscopy are the most realistic methods. spin transition curve usually determined by the XHs curve.

LixCooz malzemesi yüksek sicaklik bölgesinde LS-IS ve IS-HS gibi spin geçislerine sahiptir (Sekil-1,2). Bulus kapsaminda yapilan çalismalar sonucunda bu malzemeye ait sicakliga bagli manyetik alinganlik egrisi (x-T) (Sekil-3) incelendigi zaman inalzeinede meydana gelen isi enerjisi degisimi ile spin geçisleri meydana gelmektedir. LixCooz material has spin transitions such as LS-IS and IS-HS in the high temperature region. (Figure-1,2). As a result of the studies carried out within the scope of the invention, the temperature dependence of this material When the magnetic susceptibility curve (x-T) (Figure-3) is examined, the heat generated in inalzeine With a change in energy, spin transitions occur.

Literatürde “Quencleme Metodu” olarak adlandirilan ani sogutma yöntemi ile materyallerin üretilme yöntemi su sekildedir; - Li-iyon piller için kullanilacak olan LIXCOyOZ, LixMnyOZ, LixMn2+yO4, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoXMnyNizûg (05x,y,zgl) bilesikleri için LigO, C03O4 Mqu ve Ni203 materyalleri(veya ayni sekilde Na-iyon piller için kullanilacak olan NaxCoyOZ, NaXMnyOZ, NaxNiyOz ve bunlari farkli oranlarda içeren materyalleri) ve bunlarin asetatli, nitratli, karbonatli ve elementel bilesikleri kullanilarak yukarida belirtilen kompozisyonlar olusturacak sekilde uygun oranlarda tartilarak mekanik olarak karistirilir. With the sudden cooling method, which is called the “Quencleme Method” in the literature, the materials are the method of production is as follows; - LIXCOyOZ, LixMnyOZ, LixMn2+yO4, LixNiyOZ and LigO for LiCoXMnyNizûg (05x,y,zgl) compounds containing these in different proportions, C03O4 Mqu and Ni2O3 materials (or likewise to be used for Na-ion batteries containing NaxCoyOZ, NaXMnyOZ, NaxNiyOz and these in different proportions. materials) and their acetate, nitrate, carbonate and elemental compounds in appropriate proportions to form the above-mentioned compositions using weighed and mixed mechanically.

- Daha sonra yukarida belirtilen kompozisyonlara ait toz örneklere, oksijen ortaminda 700-900 DC sicakliginda, ortalama 6-36 saatlik isil islem uygulanir. - Afterwards, powder samples of the above-mentioned compositions were placed in oxygen environment. At a temperature of 700-900 DC, an average of 6-36 hours of heat treatment is applied.

- Isil islem sonrasi elde edilen toz halindeki numune, yüksek (birkaç tonluk) bir basinç altinda sikistirilarak pelet olarak adlandirilan kati forma getirilir. - The powdered sample obtained after heat treatment is produced under a high (several tons) pressure. It is brought into a solid form called pellets by being compressed under it.

- Pelet formundaki malzemeye daha sonra Oksijen ortaminda tekrar ayni sicaklik altinda 24 saatlik ikinci isil islem uygulanir. Uygulanan ikinci isil islemde amaç daha iyi bir kristal yapisi elde etmektir. - The material in the form of pellets is then heated again in the oxygen environment under the same temperature. A second heat treatment of 24 hours is applied. In the second heat treatment applied, the aim is to obtain a better to obtain a crystal structure.

- Son asainada, istenilen kompozisyonda farkli üretim teknikleri ile üretilen tek kristal, ince film (tum kalinligindan az e-beam(elektr0n demeti ile saçtirma), Atomik tabaka kaplama, sputter(püskürtme), thermal buharlastirici gibi sistemler kullanilarak elde edilen kaplamalar), kalin film (lum kalinligindan fazla daldirma, sol-gel, püskürtme gibi yöntemlerle üretilen kaplamalar) ve polikristal (katihal sentezi, hidrotermal yöntemler, cam seramik yöntemlerden üretilen tozlar) formundaki malzemenin spin geçis sicakliginin hemen üstündeki bir sicaklikta iken ani olarak farkli yöntemler kullanilarak oda sicakligina (ya da daha düsük sicakliklara) sogutularak oda sicakliginda malzemenin yüksek spin durumunda kalmasi saglanir. - In the last step, a single crystal produced with different production techniques in the desired composition, thin film (less than full thickness e-beam) Atomic layer obtained by using systems such as coating, sputter, thermal evaporator. coated coatings), thick film (more than lum-thick dipping, sol-gel, spraying) coatings produced by methods such as coatings) and polycrystalline (solid state synthesis, hydrothermal methods, powders produced from glass-ceramic methods) At a temperature just above the transition temperature, suddenly different methods room temperature by cooling to room temperature (or lower) using At this temperature, it is ensured that the material remains in high spin state.

Bulusun diger asamasinda, yukarida bahsedilen yöntem ile, Li-iyon piller için LixCoyOZ, LiXMnyOZ, Lian+yO4, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoxMnyNizOZ bilesikleri ile Na-iyon piller için NaXCoyOZ, NaxMnyOZ, NaXNiyOZ ve bunlari farkli oranlarda içeren NaCoxMiiyNiZOZ (05x,y,zsl) materyallerinin yüksek spinli manyetik durumunda ve oda sicakliginda elde edilmesinden sonra, Li-iyon ve Na-iyon pillerde bu malzemelerin katot materyali olarak kullanilarak pil performansinda hem kapasite hem de ömürlerinin uzatilmasi - Toz haline getirilip quenchlenmis(aniden sogutulma farkli yöntemlerle yapilabilir), Li- iyon piller için LixCoyOz, LixMnyOQ, LiMn2+yO4, LixNiy02 ve bunlari farkli oranlarda içeren LiCoxMnyNiZOg bilesikleri (veya Na-iyon piller için NaxCoyOZ, NaxMnyOZ, NaXNiyog ve bunlari farkli oranlarda içeren NaCoxMnyNizoz (05X,y,zîl) bilesikleri), PVDF (Polyyinylidene fluoride) ve CB (Carbon Black) kimyasal tozlari sirasiyla toplam karisim agirliginin farkli oranlarda ( örnegin %80:%10:%10 orani gibi) oranlarinda tartilarak homojen bir karisim elde edilinceye kadar mekanik olarak karistirilir. In the other stage of the invention, with the method mentioned above, LixCoyOZ for Li-ion batteries, LiXMnyOZ, Lian+yO4, LixNiyOZ and LiCoxMnyNizOZ compounds containing them in different proportions with NaXCoyOZ, NaxMnyOZ, NaXNiyOZ for Na-ion batteries and containing them in different ratios In the high spin magnetic case of NaCoxMiiyNiZOZ (05x,y,zsl) materials and the chamber temperature, these materials are used as cathodes in Li-ion and Na-ion batteries. prolonging both capacity and lifetimes in battery performance by using - Powdered and quenched (sudden cooling can be done by different methods), Li- for ion batteries LixCoyOz, LixMnyOQ, LiMn2+yO4, LixNiy02 and these in different ratios containing LiCoxMnyNiZOg compounds (or NaxCoyOZ, NaxMnyOZ for Na-ion batteries, NaXNiyog and NaCoxMnyNizoz (05X,y,zil) compounds containing them in different ratios), PVDF (Polyyinylidene fluoride) and CB (Carbon Black) chemical powders, respectively different ratios of the total mixture weight (eg 80%:10%:10% ratio) mechanically until a homogeneous mixture is obtained. is mixed.

- Yukarida belirtilen Quenchli bilesikler, PVDF ve CB, den olusan homojen karisima daha sonra NMP (N-Methyl-Z-pyrrolidone) sivisi eklenerek toz formundaki malzemenin çamur formuna getirilmesi saglanir. - Homogeneous mixture consisting of the above mentioned Quench compounds, PVDF and CB then NMP (N-Methyl-Z-pyrrolidone) liquid is added to the powder form. It is ensured that the material is brought into mud form.

- Elde edilen çamur daha sonra yaklasik 100 nm kalinliginda tabaka olusturacak sekilde bir aliminyum folyo üzerine serilir. Bu islemin ardindan üzerinde Çamur olan aliminyum folyo yaklasik 1200C” sicakligindaki etüv içerisinde kurutularak NMP sivisinin buharlastirilmasi saglanir ve Li-iyon ve Na-iyon piller için katot materyalleri üretilir. - The obtained sludge is then used to form a layer with a thickness of about 100 nm. placed on an aluminum foil. Mud on it after this process The aluminum foil is dried in an oven at a temperature of approximately 1200C and NMP evaporation of the liquid is provided and cathode materials for Li-ion and Na-ion batteries is produced.

- Katot materyali üretimi sonrasi, Ar (Argon) gazi ile doldurulmus, oksijensiz ortam içerisinde Li-iyon (veya Na-iyon) piller için, sirasiyla; Pil alt kapagi, LixCoyOz, LixMnyOZ, LiM112+yO4, LixNiyog veya bunlari farkli oranlarda içeren LiCoxMnyNizoz ve bunlari farkli oranlarda içeren NaCoxMnyNizOz (05x,y,zîl) katot materyalinden herhangi biri), elektrolit sivisi, membran, elektrolit sivisi, saf Li metal anot, metal iletken, yay ve pil üst kapagi olacak sekilde Li-iyon(veya Na-iyon) pil olusturulur. - After the production of cathode material, filled with Ar (Argon) gas, oxygen-free environment for Li-ion (or Na-ion) batteries, respectively; Battery bottom cover, LixCoyOz, LixMnyOZ, LiM112+yO4, LixNiyog or LiCoxMnyNizoz containing them in different ratios and NaCoxMnyNizOz (05x,y,zil) cathode material containing them in different ratios. any), electrolyte liquid, membrane, electrolyte liquid, pure Li metal anode, metal Li-ion (or Na-ion) battery is formed as conductor, spring and battery top cover.

- Son asamada, olusturulan pil içerisinde elektrostatik denge saglanmasi için pil, 24 saat süresince Ar gazi dolu oksijensiz ortamda bekletilir. Bu 24 saatin sonunda Li-iyon (veya Na-iyoii) pil elde edilmis olur. - In the last stage, the battery is heated for 24 hours in order to provide electrostatic balance in the created battery. It is kept in an oxygen-free environment filled with Ar gas. At the end of these 24 hours, Li-ion (or Na-ioii) battery is obtained.

Li-iyon piller için LixCoyoz, LilelnyOg, LiMn2+yO4, LixNiyOZ ve bunlarin farkli oranlarda içeren LiCoxMnyNizOg bilesikleri ile Na-iyon piller için NaxCoyOg, NaXMnYOg, NaXNiyOZ ve bunlarin farkli oranlarda içeren NaCoxMnyNiZOQ (05x,y,251) bilesiklerinin 300-9OOOC arasinda quenchlenmesi ile elde edilen katot materyallerinden üretilen Li-iyon ve Na-iyon pillerinin sarj-desarj döngü performansi %60 arttirilmistir. Yani bu islemler sonucunda bulus konusu quenchlenmis Li-iyon piller için LixCoyOz, LixMnyOZ, LiMn2+yO4, LiXNiyOZ ve bunlari farkli oranlarda içeren LiCoxMnyNizOz bilesikleri ile Na-iyon piller için NaxCoyOZ, NaxMnyOz, NaXNiyOg ve bunlari farkli oranlarda içeren NaCoxMnyNizOz (05x,y,zsl) katot materyaleri ile üretilen bir Li-iyon ve Na-iyon pilinin ömrü ve kapasitesi artmis olacaktir. For Li-ion batteries, LixCoyoz, LilelnyOg, LiMn2+yO4, LixNiyOZ and their different ratios NaxCoyOg, NaXMnYOg, NaXNiyOZ and NaxCoyOg for Na-ion batteries with LiCoxMnyNizOg compounds containing 300-9OOOC of NaCoxMnyNiZOQ (05x,y,251) compounds containing these in different proportions Li-ion and Na-ion produced from cathode materials obtained by quenching between The charge-discharge cycle performance of the batteries has been increased by 60%. In other words, as a result of these operations, the invention LixCoyOz, LixMnyOZ, LiMn2+yO4, LiXNiyOZ and NaxCoyOZ for Na-ion batteries with LiCoxMnyNizOz compounds containing them in different proportions, NaxMnyOz, NaXNiyOg and NaCoxMnyNizOz (05x,y,zsl) cathode containing them in different ratios The life and capacity of a Li-ion and Na-ion battery produced with these materials will be increased.

Claims (1)

ISTEMLER Bulus, yüksek performans ve uzun ömürlü pil elde etmek amaciyla, Li-iyon piller için LIXC0y02, leMnyOz, LiMn2+yO4, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoxMnyNi202 (veya Na-iyon piller için NaxCoyOZ, NaxMnyOL NaXNiyOZ ve bunlari farkli oranlarda içeren NaCoxMnyNizog (05x,y,zsl)) bilesiklerinden, katot materyallerinin elde edilmesi yöntemi olup özelligi; Li-iyon piller için kullanilacak olan LixCoyOZ, LixMnyOZ, LixMn2+yO4, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoxMnyNiZOZ (05X,y,zSl) bilesikleri için; LigO, C03O4, MnOZ ve Ni203 materyalleri(veya ayni sekilde Na-iyon piller için kullanilacak olan NaXCoyOg, NaxMnyOZ, NaXle02 ve bunlari farkli oranlarda içeren NaCoxMnyNizog (05X,y,251) bilesikleri için; karbonatli ve elementel bilesikleri kullanilarak yukarida belirtilen kompozisyonlar olusturacak sekilde uygun oranlarda tartilarak mekanik olarak karistirilmasi, Daha sonra yukarida belirtilen kompozisyonlara ait toz örneklere, oksijen uygulanmasi, bir basinç altinda sikistirilarak pelet olarak adlandirilan kati forma getirilmesi, Pelet formundaki malzemeye daha sonra Oksijen ortaminda tekrar ayni sicaklik altinda daha iyi bir kristal yapisi elde etmek için 24 saatlik ikinci isil islem uygulanmasi, Son asamada, LixCoyOZ, LixMnYOZ, LiMii2+yO4, LIXNIy02 ve bunlari farkli oranlarda içeren LiCoXMnyNizog bilesiklerin (veya ayni sekilde Na-iyon piller için NaXCoyûg, NaxMnyog, NaXNiyOZ ve bunlari farkli oranlarda içeren NaCoxMnyNiZOZ (0gx,y,zîl) bilesiklerin) spin geçis sicaklik degerine göre 300-9000C sicaklikta iken ani olarak sivi azot(s1vi azot sicakligi= -, buzlu su ya da sogutulmus levhalarin içine atilarak quenchleme(aniden sogutma) islemi yapilip, yüksek spin durumunun korunarak oda sicakligina düsürülmesi ve bu sicaklikta korunmasi, Islem adimlarini içermesidir. Istem l”e uygun Li-iyon piller için LixCoyOZ, LiXMnyOZ, LiMn2+yO4, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoXMnyNi202 bilesikleri olup özelligi; yapisal özellikleri bozulmadan tek kristal, ince film (lum kalinligindan az e-beam(elektroii demeti ile saçtirma), Atomik tabaka kaplama, sputter(püskürtme), thermal buharlastirici gibi sistemler kullanilarak elde edilen kaplamalar), kalin film (lpm kalinligindan fazla daldirma, sol-gel, püskürtme gibi yöntemlerle üretilen kaplamalar) ve polikristal (katihal sentezi, hidrotermal yöntemler, cam seramik yöntemlerden üretilen tozlar) malzemelere dönüstüreleeek yapida olmasidir. . Na-iyon piller için NaXCoyOZ, NaxMnyOZ, NaXNiyOZ ve bunlari farkli oranlarda içeren NaCoXMnyNi202 (05X,y,zgl) materyalleri olup özelligi; yapisal özellikleri bozulmadan tek kristal, ince film (lum kalinligindan az e-beam, Atomik tabaka kaplama, sputter, thermal buharlastirici gibi sistemler kullanilarak elde edilen kaplamalar), kalin film (lum kalinligindan fazla daldirma, sol-gel, püskürtme gibi yöntemlerle üretilen kaplamalar) ve polikristal (katihal sentezi, hidrotermal yöntemler, cam seramik yöntemlerden üretilen tozlar) malzemelere dönüstürelecek yapida olmasidir. Pil içerisinde kullanilarak Li-iyon piller ve Na-iyon piller için sarj-desarj döngülerinde yüksek performans saglamak ainaciyla kullanilacak katot materyaleri olup özelligi; bu katot materyalleri LiXCoyOZ, LiXMnyog, LiMn2_yO4, LiXNiyog ve bunlari farkli oranlarda içeren LiCoXMnyNi202 bilesikleri veya Na-iyon piller için NaxCoyOg, NaXMnyog, NHXNIy02 ve bunlari farkli oranlarda içeren NaCoxMnyNizOg (05x,y,zîl) bilesiklerinden katihal reaksiyon, sol-gel yöntemlerinden biri ile ince, kalin film, tek kristal, polikristal formda üretildikten sonra, yüksek sicaklik bölgesinde (kullanilan bilesige bagli olarak 300-900°C°ye kadar) veya yüksek basinç altinda LS-IS ve lS-HS gibi spin geçislerine sahip olma özelligi kullanilarak spin geçis sicakliginin hemen üstündeki sicakliktan(300-9OO OC) farkli yöntemlerle ani olarak oda sicakligina düsürülmesi ile yüksek sicaklik veya yüksek basinç altinda olusan yüksek spin(High spin-HS) durumunun korunarak pil sarj -desarj döngüsü performansinin arttirilmasidir. Bulus, Yukaridaki istemlerde belirtilen yöntemlerle elde edilen katot materyali kullanilarak Li-Iyon veya Na-Iyon pillerin üretim yöntemi olup özelligi; Toz haliiie getirilmis quenchlenmis (aniden sogutulma farkli bir yöntemle de yapilabilir), Li-iyon piller için LixCoyOZ, LixMnyûz, LiMn2+yO4, LixNiyOZ ve bunlari farkli oranlarda içeren LiCoxMnyNiZOZ bilesikleri (veya Na-iyon piller için NaxCoyOZ, NaXMnyoz, NaXNiyOZ ve bunlari farkli oranlarda içeren NaCoxMnyNizOZ (OSX,y,zSl) bilesikleri), PVDF (Polyvinylidene fluoride) ve CB (Carbon Black) kimyasal tozlari sirasiyla toplam karisim agirliginin farkli ( örnegin %80:%10:%10 gibi) oranlarinda tartilarak homojen bir karisim elde edilinceye kadar mekanik olarak karistirilmasi. Yukarida belirtilen Quenchli bilesikler, PVDF ve CB” den olusan homojen karisima daha sonra NMP (N-Methyl-Z-pyrrolidone) sivisi eklenerek toz formundaki malzemenin çamur formuna getirilmesi saglanmasi. Elde edilen çamur daha sonra yaklasik 100 nm kalinliginda tabaka olusturacak sekilde bir aliminyum folyo üzerine serilir. Bu islemin ardindan üzerinde çamur olan aliminyum folyo yaklasik 1200C' sicakligindaki etüv içerisinde kurutularak NMP sivisinin buharlastirilmasi saglanir ve Li-iyon ve Na-iyon piller için katot materyalleri üretilmesi. Katot materyali üretimi sonrasi, Ar (Argon) gazi ile doldurulmus, oksijensiz ortam içerisinde Li-iyon (veya Na-iyon) piller için, sirasiyla; Pil alt kapagi, LixCoy02, LiXMnyOZ, LiMn2-yO4, LIXNiyOZ veya bunlari farkli oranlarda içeren LiCoxMnyNizûg (OSX,y,zSI) katot materyalinden herhangi biri (veya NaXCoyOZ, NaXMnyûz, NaxNiyOZ ve bunlari farkli oranlarda içeren NaCoxMnyNiZOZ (05x,y,zgl) katot materyalinden herhangi biri), elektrolit sivisi, membran, elektrolit sivisi, saf Li metal anot, metal ayici, yay ve pil üst kapagi olacak sekilde Li-iyon(veya Na-iyon) pil olusturulmasi. - Son asamada, olusturulan pil içerisinde elektrostatik denge saglanmasi için pil, 24 saat süresince (Li-iyon (veya Na-iyon) pil elde edilmesi için son asama) Ar gazi dolu oksijensiz ortamda bekletilmesi. Islem adimlarini içermesidir. Yüksek Kapasiteli Ve Uzun Ömürlü Li-Iyon Ve Na-Iyon Pil Ve Bu Pillerde Kullanilan.REQUESTS In order to obtain a battery with high performance and long life, the invention is aimed at LIXC0y02, leMnyOz, LiMn2+yO4, LixNiyOZ for Li-ion batteries and LiCoxMnyNi202 containing them in different ratios (or NaxCoyOZ for Na-ion batteries, NaxMnyOL NaXNiyOz containing NaXNiyOz and these in different ratios) (05x,y,zsl)) compounds, it is the method of obtaining cathode materials and its feature is; For LixCoyOZ, LixMnyOZ, LixMn2+yO4, LixNiyOZ and LiCoxMnyNiZOZ (05X,y,zSl) compounds containing them in different ratios to be used for Li-ion batteries; For LigO, C03O4, MnOZ and Ni2O3 materials (or NaXCoyOg, NaxMnyOZ, NaXle02 to be used for Na-ion batteries and NaCoxMnyNizog (05X,y,251) compounds containing them in different ratios; carbonate and elemental compounds will be formed by using the above-mentioned compositions. Weighing in appropriate proportions and mechanically mixing, Then applying oxygen to the powder samples of the above-mentioned compositions, compressing under a pressure and bringing them into a solid form called pellets, To obtain a better crystal structure under the same temperature in the atmosphere of oxygen, hourly second heat treatment, In the final stage, LixCoyOZ, LixMnYOZ, LiMii2+yO4, LIXNIy02 and LiCoXMnyNizog compounds containing them in different ratios (or likewise NaXCoyûg for Na-ion batteries, NaxCoyûg, NaxMnyog, NaXNiyOZ, NaXNiyOZ and these in different ratios (0xNiyOZ, NaiXNiyOZ and these in different ratios) zîl) according to the spin transition temperature of the compounds While at 300-9000C temperature, liquid nitrogen (liquid nitrogen temperature= -), quenching (sudden cooling) is done by being thrown into icy water or chilled plates, lowering to room temperature by preserving the high spin state and maintaining it at this temperature. For Li-ion batteries according to claim 1, LixCoyOZ, LiXMnyOZ, LiMn2+yO4, LixNiyOZ and LiCoXMnyNi202 compounds containing them in different ratios, and their feature is; Single crystal without deteriorating their structural properties, thin film (less than lum thickness e-beam (electronic beam scattering), atomic layer coating, coatings obtained by using systems such as sputter, thermal evaporator), thick film (dipping more than lpm thickness, left -coatings produced by methods such as gel, spraying) and polycrystalline (powders produced by solid state synthesis, hydrothermal methods, glass ceramic methods) materials. . NaXCoyOZ, NaxMnyOZ, NaXNiyOZ and NaCoXMnyNi202 (05X,y,zgl) materials containing them in different ratios for Na-ion batteries. Single crystal without deteriorating their structural properties, thin film (coatings obtained by using systems such as e-beam, atomic layer coating, sputter, thermal evaporator), thick film (coatings produced by methods such as dipping, sol-gel, spraying more than lum thickness) and polycrystalline (solid state synthesis, hydrothermal methods, powders produced from glass ceramic methods) materials. It is the cathode materials to be used in the battery to provide high performance in charge-discharge cycles for Li-ion batteries and Na-ion batteries. these cathode materials are LiXCoyOZ, LiXMnyog, LiMn2_yO4, LiXNiyog and LiCoXMnyNi202 compounds containing them in different ratios or NaxCoyOg, NaXMnyog, NHXNIy02 for Na-ion batteries and NaCoxMnyNizOg compounds containing them in different ratios, one of the reaction compounds, sol-silOg (05x) methods, After it is produced in a thin, thick film, single crystal, polycrystalline form with a spinneret, spin transitions such as LS-IS and LS-HS are used in the high temperature region (up to 300-900°C depending on the compound used) or under high pressure. It is to increase the battery charge-discharge cycle performance by preserving the high spin-HS state that occurs under high temperature or high pressure by suddenly reducing the temperature from just above the transition temperature (300-9OO OC) to room temperature by different methods. The invention is the production method of Li-Ion or Na-Ion batteries by using the cathode material obtained by the methods specified in the above claims. Powdered, quenched (sudden cooling can also be done by a different method), LixCoyOZ, LixMnyûz, LiMn2+yO4, LixNiyOZ for Li-ion batteries and LiCoxMnyNiZOZ compounds containing them in different ratios (or NaxCoyOZ for Na-ion batteries, NaXNiZMinoz, NaXNiYOZ and these NaCoxMnyNizOZ (OSX, y, zSl) compounds, PVDF (Polyvinylidene fluoride) and CB (Carbon Black) chemical powders containing different ratios of the total mixture weight (for example, 80%: 10%: 10%) are weighed in different ratios, respectively, until a homogeneous mixture is obtained. until mechanical mixing. Afterwards, NMP (N-Methyl-Z-pyrrolidone) liquid is added to the homogeneous mixture consisting of the above-mentioned Quench compounds, PVDF and CB” to bring the powdered material into sludge form. The obtained sludge is then laid on an aluminum foil to form a layer of approximately 100 nm thickness. After this process, the aluminum foil with mud on it is dried in an oven at a temperature of approximately 1200C to evaporate the NMP liquid and to produce cathode materials for Li-ion and Na-ion batteries. After the production of the cathode material, for Li-ion (or Na-ion) batteries filled with Ar (Argon) gas in an oxygen-free environment, respectively; Battery bottom cover, LixCoy02, LiXMnyOZ, LiMn2-yO4, LIXNiyOZ or any of the cathode material LiCoxMnyNizûg (OSX,y,zSI) containing them in different proportions (or NaXCoyOZ, NaXMnyûz, NaxNiyOZ and NaXNiyOZ, NiyZ05) containing these in different proportions Creating a Li-ion (or Na-ion) battery with any of the cathode material), electrolyte liquid, membrane, electrolyte liquid, pure Li metal anode, metal separator, spring and battery top cover. - In the last stage, the battery is kept in an oxygen-free environment filled with Ar gas for 24 hours (the last stage for obtaining a Li-ion (or Na-ion) battery) in order to provide electrostatic balance in the created battery. It contains the process steps. High Capacity And Long Life Li-Ion And Na-Ion Battery And Used In These Batteries.
TR2015/04382A 2015-04-09 2015-04-09 High Capacity And Long Life Li-Ion And Na-Ion Batteries And Production Method Of Cathode Material Used In These Batteries TR201504382A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2015/04382A TR201504382A2 (en) 2015-04-09 2015-04-09 High Capacity And Long Life Li-Ion And Na-Ion Batteries And Production Method Of Cathode Material Used In These Batteries
PCT/TR2016/050096 WO2016163964A1 (en) 2015-04-09 2016-04-03 Li-ion and na-ion batteries with high capacity and long cycle life and synthesis technique of the cathode materials that are used in these batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2015/04382A TR201504382A2 (en) 2015-04-09 2015-04-09 High Capacity And Long Life Li-Ion And Na-Ion Batteries And Production Method Of Cathode Material Used In These Batteries

Publications (1)

Publication Number Publication Date
TR201504382A2 true TR201504382A2 (en) 2016-01-21

Family

ID=56121156

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2015/04382A TR201504382A2 (en) 2015-04-09 2015-04-09 High Capacity And Long Life Li-Ion And Na-Ion Batteries And Production Method Of Cathode Material Used In These Batteries

Country Status (2)

Country Link
TR (1) TR201504382A2 (en)
WO (1) WO2016163964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210257613A1 (en) * 2018-03-15 2021-08-19 Postech Academy-Industry Foundation Positive electrode active material for lithium secondary battery and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210184210A1 (en) * 2018-04-16 2021-06-17 The Regents Of The University Of California Anode material for rechargeable li-ion batteries
CN111193036B (en) * 2019-07-22 2021-12-17 杭州电子科技大学 Two-step preparation method of nitrogen-doped carbon-supported cobaltosic oxide particle catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314682B2 (en) * 2003-04-24 2008-01-01 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium batteries
US20120040247A1 (en) * 2010-07-16 2012-02-16 Colorado State University Research Foundation LAYERED COMPOSITE MATERIALS HAVING THE COMPOSITION: (1-x-y)LiNiO2(xLi2Mn03)(yLiCoO2), AND SURFACE COATINGS THEREFOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210257613A1 (en) * 2018-03-15 2021-08-19 Postech Academy-Industry Foundation Positive electrode active material for lithium secondary battery and manufacturing method therefor

Also Published As

Publication number Publication date
WO2016163964A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
Liu et al. Deterioration mechanism of LiNi 0.8 Co 0.15 Al 0.05 O 2/graphite–SiO x power batteries under high temperature and discharge cycling conditions
Tang et al. Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process
Wang et al. Improved performance all-solid-state electrolytes with high compacted density of monodispersed spherical Li1. 3Al0. 3Ti1. 7 (PO4) 3 particles
Jin et al. Lithium doped N, N-dimethyl pyrrolidinium tetrafluoroborate organic ionic plastic crystal electrolytes for solid state lithium batteries
Bi et al. High performance Cr, N-codoped mesoporous TiO 2 microspheres for lithium-ion batteries
CN105304958B (en) A kind of production method of long-life lithium-sulphur cell positive electrode
KR101587375B1 (en) Battery system, method for manufacturing battery system, and battery control apparatus
Chen et al. Acetate-based ‘oversaturated gel electrolyte’enabling highly stable aqueous Zn-MnO2 battery
JP2013041749A (en) Battery system
Yang et al. Structure and electrochemical properties of Sc3+-doped Li4Ti5O12 as anode materials for lithium-ion battery
Zhang et al. Preparation of LAGP/P (VDF-HFP) polymer electrolytes for Li-ion batteries
KR101828723B1 (en) Sulfide solid electrolyte material, battery and method for producing sulfide solid electrolyte material
US11063289B2 (en) Increasing ionic conductivity of lithium titanium thiophosphate by sintering
Wan et al. Synthesis and characterization of carbon-coated Fe3O4 nanoflakes as anode material for lithium-ion batteries
CN111725560B (en) Compound crystal, preparation method thereof, solid electrolyte material and solid lithium battery
CN104779395B (en) A kind of lithium iron phosphate positive material and preparation method thereof of three-dimensional conductive network structure
Tomita et al. Preparation of substituted compounds of lithium indium bromide and fabrication of all solid-state battery
TR201504382A2 (en) High Capacity And Long Life Li-Ion And Na-Ion Batteries And Production Method Of Cathode Material Used In These Batteries
Li et al. Heat treatment effects in oxygen-doped β-Li 3 PS 4 solid electrolyte prepared by wet chemistry method
De Luna et al. All-solid lithium-sulfur batteries: Present situation and future progress
US20190177163A1 (en) METHOD OF SYNTHESIS OF LiTi2(PS4)3
Sun et al. Enhanced low temperature electrochemical properties of Li3V2 (PO4) 3/C modified by a mixed conductive network of Ti3SiC2 and C
JP6414813B2 (en) Solid electrolyte and secondary battery
CN110729481A (en) Lithium ion battery negative active material MnxFe1-xC2O4Synthetic method and application
JP6762861B2 (en) Sulfide-based solid electrolyte and sodium battery