JP6762861B2 - Sulfide-based solid electrolyte and sodium battery - Google Patents

Sulfide-based solid electrolyte and sodium battery Download PDF

Info

Publication number
JP6762861B2
JP6762861B2 JP2016234390A JP2016234390A JP6762861B2 JP 6762861 B2 JP6762861 B2 JP 6762861B2 JP 2016234390 A JP2016234390 A JP 2016234390A JP 2016234390 A JP2016234390 A JP 2016234390A JP 6762861 B2 JP6762861 B2 JP 6762861B2
Authority
JP
Japan
Prior art keywords
sulfide
solid electrolyte
based solid
sodium
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016234390A
Other languages
Japanese (ja)
Other versions
JP2017208324A (en
Inventor
重雄 竹内
重雄 竹内
了次 菅野
了次 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Ricoh Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd, Tokyo Institute of Technology NUC filed Critical Ricoh Co Ltd
Publication of JP2017208324A publication Critical patent/JP2017208324A/en
Application granted granted Critical
Publication of JP6762861B2 publication Critical patent/JP6762861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、硫化物系固体電解質、及びこれを用いたナトリウム電池に関する。 The present invention relates to a sulfide-based solid electrolyte and a sodium battery using the same.

ナトリウム二次電池は、低環境負荷材料のナトリウムを背景に低コストの次世代電池として期待されている。現在、大規模の電力貯蔵用として昼夜の負荷平準などに用いられるナトリウム−硫黄電池(NaS電池)は、β−アルミナ結晶体が固体電解質として用いられているが、固体電解質のナトリウムイオン導電性を確保するため、その作動温度は300℃以上の高温に限られる。 Sodium secondary batteries are expected as low-cost next-generation batteries against the background of sodium, which is a low environmental load material. Currently, in sodium-sulfur batteries (NaS batteries) used for day and night load leveling for large-scale power storage, β-alumina crystals are used as solid electrolytes, but the sodium ion conductivity of solid electrolytes is used. In order to ensure, the operating temperature is limited to a high temperature of 300 ° C. or higher.

このような背景の中で、常温における導電率が10−4S/cmと高いNaPSの組成を有する硫化物系固体電解質を使用することで、これまで高温でしか動作しなかったナトリウム−硫黄電池を常温で動作させることが可能となることが報告されている(例えば、非特許文献1参照)。また、導電率が7×10−4S/cmという高いナトリウム導電体が提案されている(例えば、特許文献1参照)。
また、同じく電力貯蔵用電池として期待されるリチウム二次電池用固体電解質の導電率は約10−2S/cmと約一桁大きいことが報告されている(例えば、非特許文献2参照)。
Against this background, by using a sulfide-based solid electrolyte having a composition of Na 3 PS 4 with a high conductivity of 10 -4 S / cm at room temperature, sodium that has operated only at high temperatures so far -It has been reported that a sulfur battery can be operated at room temperature (see, for example, Non-Patent Document 1). Further, a sodium conductor having a high conductivity of 7 × 10 -4 S / cm has been proposed (see, for example, Patent Document 1).
It has also been reported that the conductivity of a solid electrolyte for a lithium secondary battery, which is also expected as a power storage battery, is about 10-2 S / cm, which is about an order of magnitude higher (see, for example, Non-Patent Document 2).

本発明は、リチウム二次電池用固体電解質の導電率と同レベルの高い導電率が得られる硫化物系固体電解質を提供することを目的とする。 An object of the present invention is to provide a sulfide-based solid electrolyte that can obtain a high conductivity equal to that of a solid electrolyte for a lithium secondary battery.

前記課題を解決するための手段としての本発明の硫化物系固体電解質は、Na元素、P元素、及びS元素を含み、かつNaPSの組成を有する硫化物系固体電解質であって、
前記NaPSの結晶構造が正方晶であり、
前記NaPSの格子定数aが6.948Å以上6.970Å以下であり、
前記NaPSの格子定数cが7.087Å以上7.096Å以下である。
The sulfide-based solid electrolyte of the present invention as a means for solving the above-mentioned problems is a sulfide-based solid electrolyte containing Na element, P element, and S element and having a composition of Na 3 PS 4 .
The crystal structure of Na 3 PS 4 is tetragonal.
The lattice constant a of Na 3 PS 4 is 6.948Å or more and 6.970Å or less.
The lattice constant c of Na 3 PS 4 is 7.087 Å or more and 7.096 Å or less.

本発明によると、リチウム二次電池用固体電解質の導電率と同レベルの高い導電率が得られるナトリウム二次電池用の硫化物系固体電解質を提供することができる。 According to the present invention, it is possible to provide a sulfide-based solid electrolyte for a sodium secondary battery, which can obtain a high conductivity at the same level as the conductivity of the solid electrolyte for a lithium secondary battery.

図1は、実施例1〜4及び比較例1〜2の硫化物系固体電解質のX線回折図である。FIG. 1 is an X-ray diffraction pattern of the sulfide-based solid electrolytes of Examples 1 to 4 and Comparative Examples 1 and 2. 図2は、実施例1〜4について、図1のX線回折図からリートベルト解析で求めた格子定数aと原料仕込み組成との関係を示す図である。FIG. 2 is a diagram showing the relationship between the lattice constant a obtained by Rietveld analysis from the X-ray diffraction diagram of FIG. 1 and the raw material charging composition for Examples 1 to 4. 図3は、実施例1〜4について、図1のX線回折図からリートベルト解析で求めた格子定数cと原料仕込み組成との関係を示す図である。FIG. 3 is a diagram showing the relationship between the lattice constant c obtained by Rietveld analysis from the X-ray diffraction diagram of FIG. 1 and the raw material charging composition for Examples 1 to 4. 図4は、実施例1〜4について、導電率と原料仕込み組成との関係を示す図である。FIG. 4 is a diagram showing the relationship between the conductivity and the raw material charging composition for Examples 1 to 4. 図5は、実施例5のナトリウム二次電池について充放電サイクルを繰り返したときの放電容量の推移を示す図である。FIG. 5 is a diagram showing a transition of the discharge capacity of the sodium secondary battery of Example 5 when the charge / discharge cycle is repeated. 図6は、Na欠陥のない正方晶NaPSの結晶構造を示した図である。FIG. 6 is a diagram showing the crystal structure of tetragonal Na 3 PS 4 without Na defects. 図7は、本発明のNa欠陥を有する正方晶NaPSの結晶構造を示した図である。FIG. 7 is a diagram showing the crystal structure of the tetragonal Na 3 PS 4 having the Na defect of the present invention.

(硫化物系固体電解質)
本発明の硫化物系固体電解質は、Na元素、P元素、及びS元素を含み、かつNaPSの組成を有する硫化物系固体電解質であって、
前記NaPSの結晶構造が正方晶であり、
前記NaPSの格子定数aが6.948Å以上6.970Å以下であり、
前記NaPSの格子定数cが7.087Å以上7.096Å以下である。
更に、前記NaPSのNaが、欠陥を有することが好ましい。
(Sulfide-based solid electrolyte)
The sulfide-based solid electrolyte of the present invention is a sulfide-based solid electrolyte containing Na element, P element, and S element and having a composition of Na 3 PS 4 .
The crystal structure of Na 3 PS 4 is tetragonal.
The lattice constant a of Na 3 PS 4 is 6.948Å or more and 6.970Å or less.
The lattice constant c of Na 3 PS 4 is 7.087 Å or more and 7.096 Å or less.
Further, it is preferable that Na of Na 3 PS 4 has a defect.

なお、既知の正方晶NaPSの格子定数aは6.9520Å、格子定数cは7.0757Åである(M.Jansen and U.Henseler, Synthesis, Structure Determination, and Ionic Conductivity of Sodium Tetrathiophosphate, JOURNAL OF SOLID STATE CHEMISTRY, 99,110−119(1992)参照)。 The lattice constant a of the known tetragonal Na 3 PS 4 is 6.9520 Å, and the lattice constant c is 7.0757 Å (M. Jansen and U. Henseler, Synthesis, Structure Determination, and Ionic Synthesis, and Ionic Synthesis). OF SOLID STATE CHEMISTRY, 99, 110-119 (1992)).

本発明の硫化物系固体電解質は、従来技術では、ナトリウム二次電池用固体電解質において、リチウム二次電池用固体電解質と導電率が同レベルのものは得られていないという知見に基づくものである。
本発明者らが鋭意検討を重ねた結果、正方晶NaPSの格子定数a及び格子定数cを最適な範囲とすることにより、前記課題が解決できることを見出して、本発明を完成した。
したがって、本発明の硫化物系固体電解質は、Na元素、P元素、及びS元素を含み、かつNaPSの組成を有し、前記NaPSの結晶構造が正方晶であり、前記NaPSの格子定数aが6.948Å以上6.970Å以下であり、前記NaPSの格子定数cが7.087Å以上7.096Å以下であること、更に好ましくは前記NaPSのNaが欠陥を有することにより、リチウム二次電池用固体電解質の導電率と同レベルの高い導電率が得られ、ナトリウム二次電池用固体電解質として好適である。
The sulfide-based solid electrolyte of the present invention is based on the finding that, in the prior art, no solid electrolyte for a sodium secondary battery having the same conductivity as that of a solid electrolyte for a lithium secondary battery has been obtained. ..
As a result of diligent studies by the present inventors, they have found that the above problems can be solved by setting the lattice constant a and the lattice constant c of the tetragonal Na 3 PS 4 to the optimum range, and have completed the present invention.
Thus, the sulfide-based solid electrolyte of the present invention comprises a Na element, P element, and S elements, and has the composition Na 3 PS 4, the crystal structure of the Na 3 PS 4 is a tetragonal, the The lattice constant a of Na 3 PS 4 is 6.948 Å or more and 6.970 Å or less, and the lattice constant c of Na 3 PS 4 is 7.087 Å or more and 7.096 Å or less, more preferably the Na 3 PS 4 Since Na has a defect, a high conductivity equal to that of the solid electrolyte for a lithium secondary battery can be obtained, which is suitable as a solid electrolyte for a sodium secondary battery.

前記の格子定数範囲について、規定範囲より小さいと立体障害によりイオンが動きにくくなり、導電率が落ちてしまい、逆に規定範囲より大きいとイオンが導電する際のイオンホッピングが円滑に進まず、この場合も導電率が落ちてしまう。つまり、本発明はこの適正な格子サイズが重要となる。更に、結晶中のNa欠陥も導電性に寄与する。本発明のNa欠陥は、フレンケル欠陥に該当し、格子点イオンが格子間に移り、その後に空孔が残った欠陥のことである。これについて、図6に欠陥のない正方晶NaPS、図7に欠陥が生じてNaが移動した構造を示した。図7のNaの移動について、Na1がNa4へ移り、Na2がNa3に移る。このような欠陥による隙が存在することで、イオンが動きやすくなり、本発明の導電性が向上につながる。また、格子間に移動したNa(Na3)が、イオン導電方向、つまりc軸方向に連なり、イオン導電パスが形成していることも導電率向上に寄与すると考えられる。 Regarding the above-mentioned lattice constant range, if it is smaller than the specified range, the ions become difficult to move due to steric hindrance and the conductivity drops. On the contrary, if it is larger than the specified range, ion hopping when the ions are conducted does not proceed smoothly. In that case, the conductivity drops. That is, in the present invention, this proper grid size is important. Furthermore, Na defects in the crystal also contribute to conductivity. The Na defect of the present invention corresponds to a Frenkel defect, and is a defect in which lattice point ions are transferred between lattices and pores remain after that. Regarding this, FIG. 6 shows a tetragonal Na 3 PS 4 without defects, and FIG. 7 shows a structure in which Na moves due to defects. Regarding the movement of Na in FIG. 7, Na1 moves to Na4 and Na2 moves to Na3. The presence of a gap due to such a defect facilitates the movement of ions, leading to an improvement in the conductivity of the present invention. Further, it is considered that Na (Na3) moved between the lattices is connected in the ion conductive direction, that is, in the c-axis direction to form an ion conductive path, which also contributes to the improvement of the conductivity.

ここで、前記格子定数a及びc、Naの占有率(欠損)を求める際に使用したRietveld法について説明する。
前記Rietveld法は、粉末X線回折測定や中性子回折測定により得られた回折図形から、精度の高い多くの構造パラメーターを得ることを可能とした構造解析法である。解析は、測定により得られた回折点に対して、予測される構造モデルから算出される積分強度とピーク形状、及びプロファイルの近似により計算した回折点から当てはめ構造精密化を行うものである。
本発明においても、前記格子定数a及びc、Naの占有率(欠損)を求める際にはRietveld法を用い、解析プログラムにはZ−Rietveldを使用することができる。
Here, the Rietveld method used when determining the occupancy (deficiency) of the lattice constants a, c, and Na will be described.
The Rietveld method is a structural analysis method that makes it possible to obtain many highly accurate structural parameters from diffraction figures obtained by powder X-ray diffraction measurement or neutron diffraction measurement. In the analysis, the diffraction points obtained by the measurement are fitted with the integrated intensity and peak shape calculated from the predicted structural model, and the diffraction points calculated by approximating the profile to refine the structure.
Also in the present invention, the Rietveld method can be used when determining the occupancy (deficiency) of the lattice constants a, c, and Na, and Z-Rietveld can be used for the analysis program.

前記硫化物系固体電解質は、特に制限はなく、目的に応じて適宜選択することができるが、X線波長1.5418オングストローム(Å)のCu−Kα線による粉末X線回折測定において、17.8°、18.0°、31.0°、31.3°、36.1°、36.5°の回折角(2θ)付近に特徴的ピークを有することが好ましい。
ここで、図1に後述する実施例1〜4及び比較例1〜2の硫化物系固体電解質についての粉末X線回折図を示す。なお,NaPSの構造(正方晶又は立方晶)は、この回折パターンから同定することができる。
The sulfide-based solid electrolyte is not particularly limited and may be appropriately selected depending on the intended purpose. However, in the powder X-ray diffraction measurement using Cu-Kα rays having an X-ray wavelength of 1.5418 angstroms (Å), 17. It is preferable to have a characteristic peak near the diffraction angles (2θ) of 8 °, 18.0 °, 31.0 °, 31.3 °, 36.1 ° and 36.5 °.
Here, FIG. 1 shows a powder X-ray diffraction pattern of the sulfide-based solid electrolytes of Examples 1 to 4 and Comparative Examples 1 and 2 described later. The structure of Na 3 PS 4 (tetragonal or cubic) can be identified from this diffraction pattern.

前記硫化物系固体電解質を合成するための出発原料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ナトリウム、硫黄、リン、硫化ナトリウム(NaS)、硫化リン(P、P、P)などが挙げられる。これらは、1種類を単独で使用してもよいし、2種類以上を併用してもよい。これらの中でも、硫化ナトリウム(NaS)、五硫化二リン(P)が好ましい。 The starting material for synthesizing the sulfide-based solid electrolyte is not particularly limited and may be appropriately selected depending on the purpose, for example, sodium, sulfur, phosphorus, sodium sulfide (Na 2 S), phosphorus sulfide (P 4 S 3 , P 2 S 5 , P 4 S 7 ) and the like. One of these may be used alone, or two or more thereof may be used in combination. Of these, sodium sulfide (Na 2 S) and diphosphorus pentasulfide (P 2 S 5 ) are preferable.

前記硫化物系固体電解質の合成方法については、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記出発原料を混合した後に200℃以上500℃以下の温度で焼成することによって得られる。また、その後、600℃以上1,000℃以下の温度で焼成した後、水や氷水などを使用して試料を急冷(焼き入れ又はクエンチ)してもよいし、室温までゆっくり冷却してもよい。更に、200℃以上500℃以下の温度で焼成してもよい。この合成方法は、本発明の格子定数が大きく、かつNa欠陥を有する正方晶PSに必要となる。 The method for synthesizing the sulfide-based solid electrolyte is not particularly limited and may be appropriately selected depending on the intended purpose. For example, by mixing the starting materials and then firing at a temperature of 200 ° C. or higher and 500 ° C. or lower. can get. After that, after firing at a temperature of 600 ° C. or higher and 1,000 ° C. or lower, the sample may be rapidly cooled (quenched or quenched) using water, ice water, or the like, or slowly cooled to room temperature. .. Further, it may be fired at a temperature of 200 ° C. or higher and 500 ° C. or lower. This synthesis method, the lattice constant of the present invention is large and is required to tetragonal PS 4 with Na defects.

本明細書において、「導電率」とは、Naイオンのイオン導電率を意味する。なお、以下では「Naイオンの導電率」を単に「イオン導電率」又は「導電率」ということがある。
前記硫化物系固体電解質に起因する高い導電率が阻害されなければ、本発明の固体電解質は、前記硫化物系固体電解質以外に他の固体電解質を含んでいてもよい。
前記硫化物系固体電解質のイオン導電率は、例えば、交流インピーダンス法により測定することができる。
前記硫化物系固体電解質は、25℃でのNaイオン導電率が1.5×10−4S/cm以上が好ましく、2.0×10−4S/cm以上がより好ましい。
前記導電率は、例えば、ソーラトロン社製のインピーダンス・ゲインフェーズアナライザー(solartron1260)などを用いて測定することができる。
As used herein, the term "conductivity" means the ionic conductivity of Na ions. In the following, the "conductivity of Na ions" may be simply referred to as "ion conductivity" or "conductivity".
The solid electrolyte of the present invention may contain other solid electrolytes in addition to the sulfide-based solid electrolyte, as long as the high conductivity caused by the sulfide-based solid electrolyte is not inhibited.
The ionic conductivity of the sulfide-based solid electrolyte can be measured by, for example, the AC impedance method.
The sulfide-based solid electrolyte preferably has a Na ion conductivity at 25 ° C. of 1.5 × 10 -4 S / cm or more, and more preferably 2.0 × 10 -4 S / cm or more.
The conductivity can be measured using, for example, an impedance gain phase analyzer (solartron 1260) manufactured by Solartron.

本発明の硫化物系固体電解質は、リチウム二次電池用固体電解質の導電率と同レベルの高い導電率が得られるので、各種用途に用いることができるが、以下に説明するナトリウム電池の固体電解質として特に好適である。 The sulfide-based solid electrolyte of the present invention can be used for various purposes because it can obtain high conductivity at the same level as that of the solid electrolyte for lithium secondary batteries. However, the solid electrolyte of the sodium battery described below can be used. Is particularly suitable as.

(ナトリウム電池)
本発明のナトリウム電池は、正極、負極、及び本発明の硫化物系固体電解質を有し、更に必要に応じてその他の部材を有する。
(Sodium battery)
The sodium battery of the present invention has a positive electrode, a negative electrode, and a sulfide-based solid electrolyte of the present invention, and further has other members as required.

前記正極としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄、硫化チタン等の硫化金属、コバルト酸ナトリウム、マンガン酸ナトリウム、ニッケル酸ナトリウム等の金属酸ナトリウムなどが挙げられる。
前記負極としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ナトリウム金属、ナトリウム合金、ナトリウムイオンでドープ乃至脱ドープ可能な材料から選ばれる電極活物質を含有する電極などが挙げられる。
The positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose. For example, metals such as sulfur and titanium sulfide, sodium cobaltate, sodium manganate, sodium metallate and the like can be selected. Can be mentioned.
The negative electrode is not particularly limited and may be appropriately selected depending on the intended purpose. For example, an electrode containing an electrode active material selected from sodium metals, sodium alloys, and materials that can be doped or dedoped with sodium ions. Can be mentioned.

本発明のナトリウム電池は、一次電池であってもよく、二次電池であってもよいが、二次電池が好ましい。
前記ナトリウム電池の形状としては、容器の形状に従い、例えば、コイン型、円筒型、角型などが挙げられる。
前記その他の部材としては、例えば、セパレータ、外装缶、電極取り出し線などが挙げられる。
The sodium battery of the present invention may be a primary battery or a secondary battery, but a secondary battery is preferable.
Examples of the shape of the sodium battery include a coin type, a cylindrical type, a square type, and the like according to the shape of the container.
Examples of the other member include a separator, an outer can, an electrode take-out line, and the like.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
−硫化物系固体電解質1の作製−
アルゴン雰囲気のグローブボックス内で、出発原料の硫化ナトリウム(NaS)を22.079g、五硫化二リン(P)を1.921g量り取り、メノウ乳鉢で10分間混合後、更に振動ミルを使用して出発原料を混合した。
振動ミルとしては、CMT社製TI−100を使用し、その中には、出発原料と一緒にアルミナ製の粉砕媒体を入れて、回転数1,440rpmで30分間処理を実施した。なお、粉砕媒体としては直径5.3cm×5.5cmのロッド状のものを用いた。
その後、処理した試料0.1gを、一軸プレス機(理研精機株式会社製、P−6)を用いて、表示圧力10MPaで直径1mmのペレットを作製し、あらかじめ炭素コーティングした石英管(石英との反応を防ぐための炭素コーティング)に入れ、約30Paで真空封入した。
この真空封入された試料を、電気炉で3時間かけて450℃まで昇温し、450℃で8時間維持して、その後室温(25℃)まで徐冷した。
更に、電気炉で3時間かけて700℃まで昇温し、700℃で8時間維持して、その後試料が入った石英管を氷水に入れて急冷し、3時間保持した。
そして、それを再度電気炉で3時間かけて450℃まで昇温し、450℃で8時間維持して、その後、室温(25℃)まで徐冷した。以上により、[硫化物系固体電解質1]を得た。
得られた[硫化物系固体電解質1]の組成は、仕込み量で、Na3−5x1−x(x=0.01)であった。
(Example 1)
-Preparation of sulfide-based solid electrolyte 1-
In a glove box with an argon atmosphere, weigh 22.079 g of sodium sulfide (Na 2 S) and 1.921 g of diphosphorus pentasulfide (P 2 S 5 ) as starting materials, mix them in an agate mortar for 10 minutes, and then vibrate. The starting materials were mixed using a mill.
As the vibration mill, TI-100 manufactured by CMT was used, and a pulverizing medium made of alumina was put therein together with the starting material, and the treatment was carried out at a rotation speed of 1,440 rpm for 30 minutes. As the pulverizing medium, a rod-shaped medium having a diameter of 5.3 cm × 5.5 cm was used.
Then, 0.1 g of the treated sample was prepared into pellets having a diameter of 1 mm at a display pressure of 10 MPa using a uniaxial press machine (manufactured by Riken Seiki Co., Ltd., P-6), and a carbon-coated quartz tube (with quartz) was prepared in advance. It was placed in a carbon coating to prevent a reaction) and vacuum-sealed at about 30 Pa.
The vacuum-sealed sample was heated to 450 ° C. over 3 hours in an electric furnace, maintained at 450 ° C. for 8 hours, and then slowly cooled to room temperature (25 ° C.).
Further, the temperature was raised to 700 ° C. over 3 hours in an electric furnace, maintained at 700 ° C. for 8 hours, and then the quartz tube containing the sample was placed in ice water to quench and hold for 3 hours.
Then, the temperature was raised again to 450 ° C. over 3 hours in an electric furnace, maintained at 450 ° C. for 8 hours, and then slowly cooled to room temperature (25 ° C.). From the above, [sulfide-based solid electrolyte 1] was obtained.
The composition of the obtained [sulfide-based solid electrolyte 1] was Na 3-5 x P 1-x S 4 (x = 0.01) in terms of the amount charged.

(実施例2)
−硫化物系固体電解質2の作製−
実施例1において、出発原料の配合量を下記のように変更した以外は、実施例1と同様にして、[硫化物系固体電解質2]を作製した。
・硫化ナトリウム(NaS):2.052g
・五硫化二リン(P):1.948g
得られた[硫化物系固体電解質2]の組成は、仕込み量で、Na3−5x1−x(x=0.00)であった。
(Example 2)
-Preparation of sulfide-based solid electrolyte 2-
[Sulfide-based solid electrolyte 2] was prepared in the same manner as in Example 1 except that the blending amount of the starting material was changed as follows in Example 1.
-Sodium sulfide (Na 2 S): 2.052 g
-Phosphorus pentasulfide (P 2 S 5 ): 1.948 g
The composition of the obtained [sulfide-based solid electrolyte 2] was Na 3-5 x P 1-x S 4 (x = 0.00) in terms of the amount charged.

(実施例3)
−硫化物系固体電解質3の作製−
実施例1において、出発原料の配合量を下記のように変更した以外は、実施例1と同様にして、[硫化物系固体電解質3]を作製した。
・硫化ナトリウム(NaS):2.025g
・五硫化二リン(P):1.975g
得られた[硫化物系固体電解質3]の組成は、仕込み量で、Na3−5x1−x(x=−0.01)であった。
(Example 3)
-Preparation of sulfide-based solid electrolyte 3-
[Sulfide-based solid electrolyte 3] was prepared in the same manner as in Example 1 except that the blending amount of the starting material was changed as follows in Example 1.
-Sodium sulfide (Na 2 S): 2.025 g
-Phosphorus pentasulfide (P 2 S 5 ): 1.975 g
The composition of the obtained [sulfide-based solid electrolyte 3] was Na 3-5 x P 1-x S 4 (x = −0.01) in terms of the amount charged.

(実施例4)
−硫化物系固体電解質4の作製−
実施例1において、出発原料の配合量を下記のように変更した以外は、実施例1と同様にして、[硫化物系固体電解質4]を作製した。
・硫化ナトリウム(NaS):1.998g
・五硫化二リン(P):2.002g
得られた[硫化物系固体電解質4]の組成は、仕込み量で、Na3−5x1−x(x=−0.02)であった。
(Example 4)
-Preparation of sulfide-based solid electrolyte 4-
[Sulfide-based solid electrolyte 4] was prepared in the same manner as in Example 1 except that the blending amount of the starting material was changed as follows in Example 1.
-Sodium sulfide (Na 2 S): 1.998 g
-Phosphorus pentasulfide (P 2 S 5 ): 2.002 g
The composition of the obtained [sulfide-based solid electrolyte 4] was Na 3-5 x P 1-x S 4 (x = −0.02) in terms of the amount charged.

(比較例1)
−比較硫化物系固体電解質1の作製−
アルゴン雰囲気のグローブボックス内で、出発原料の硫化ナトリウム(NaS)を22.025g、五硫化二リン(P)を1.975g量り取り、メノウ乳鉢で10分間混合後、更に振動ミルを使用して出発原料を混合した。
振動ミルには、CMT社製TI−100を使用し、その中には、試料と一緒にアルミナ製の粉砕媒体を入れて、回転数1,440rpmで30分間処理を実施した。なお、粉砕媒体としては直径5.3cm×5.5cmのロッド状のものを用いた。
その後、処理した試料0.1gを、一軸プレス機(理研精機株式会社製、P−6)を用いて、表示圧力10MPaで直径1mmのペレットを作製し、あらかじめ炭素コーティングした石英管(石英との反応を防ぐための炭素コーティング)に入れ、約30Paで真空封入した。
この真空封入された試料を、電気炉で3時間かけて450℃まで昇温し、450℃で8時間維持して、その後室温まで徐冷した。
また、更に、電気炉で3時間かけて700℃まで昇温し、700℃で8時間維持して、その後試料が入った石英管を氷水に入れて急冷し、3時間保持した。以上により、[比較硫化物系固体電解質1](正方晶NaPS)を作製した。
得られた[比較硫化物系固体電解質1]の組成は、仕込み量で、Na3−5x1−x(x=−0.01)であった。
(Comparative Example 1)
-Preparation of comparative sulfide-based solid electrolyte 1-
Weigh 22.025 g of sodium sulfide (Na 2 S) and 1.975 g of diphosphorus pentasulfide (P 2 S 5 ) as starting materials in a glove box with an argon atmosphere, mix them in an agate mortar for 10 minutes, and then vibrate. The starting materials were mixed using a mill.
A TI-100 manufactured by CMT was used as the vibration mill, and a pulverizing medium made of alumina was put therein together with the sample, and the treatment was carried out at a rotation speed of 1,440 rpm for 30 minutes. As the pulverizing medium, a rod-shaped medium having a diameter of 5.3 cm × 5.5 cm was used.
Then, 0.1 g of the treated sample was prepared into pellets having a diameter of 1 mm at a display pressure of 10 MPa using a uniaxial press machine (manufactured by Riken Seiki Co., Ltd., P-6), and a carbon-coated quartz tube (with quartz) was prepared in advance. It was placed in a carbon coating to prevent a reaction) and vacuum-sealed at about 30 Pa.
The vacuum-sealed sample was heated to 450 ° C. over 3 hours in an electric furnace, maintained at 450 ° C. for 8 hours, and then slowly cooled to room temperature.
Further, the temperature was further raised to 700 ° C. over 3 hours in an electric furnace, maintained at 700 ° C. for 8 hours, and then the quartz tube containing the sample was placed in ice water to quench and hold for 3 hours. From the above, [Comparative Sulfide-based Solid Electrolyte 1] (Tetragonal Na 3 PS 4 ) was prepared.
The composition of the obtained [Comparative Sulfide-based Solid Electrolyte 1] was Na 3-5 x P 1-x S 4 (x = −0.01) in terms of the amount charged.

(比較例2)
−比較硫化物系固体電解質2の作製−
アルゴン雰囲気のグローブボックス内で、出発原料の硫化ナトリウム(NaS)を22.105g、五硫化二リン(P)を1.895gは量り取り、メノウ乳鉢で10分間混合後、更に振動ミルを使用して出発原料を混合した。
振動ミルには、CMT社製TI−100を使用し、その中には、試料と一緒にアルミナ製の粉砕媒体を入れて、回転数1,440rpmで30分間処理を実施した。なお、粉砕媒体としては直径5.3cm×5.5cmのロッド状のものを用いた。
その後、処理した試料0.1gを、一軸プレス機(理研精機株式会社製、P−6)を用いて、表示圧力10MPaで直径1mmのペレットを作製し、あらかじめ炭素コーティングした石英管(石英との反応を防ぐための炭素コーティング)に入れ、約30Paで真空封入した。
この真空封入された試料を、電気炉で3時間かけて450℃まで昇温し、450℃で8時間維持して、その後、室温(25℃)まで徐冷した。
また、更に、電気炉で3時間かけて700℃まで昇温し、700℃で8時間維持して、その後試料が入った石英管を氷水に入れて急冷し、3時間保持した。以上により、[比較硫化物系固体電解質2](立方晶NaPS)を作製した。
得られた[比較硫化物系固体電解質2]の組成は、仕込み量で、Na3−5x1−x(x=0.02)であった。
(Comparative Example 2)
-Preparation of comparative sulfide-based solid electrolyte 2-
Weigh 22.105 g of sodium sulfide (Na 2 S) and 1.895 g of diphosphorus pentasulfide (P 2 S 5 ) as starting materials in a glove box with an argon atmosphere, mix them in an agate mortar for 10 minutes, and then add more. The starting materials were mixed using a vibration mill.
A TI-100 manufactured by CMT was used as the vibration mill, and a pulverizing medium made of alumina was put therein together with the sample, and the treatment was carried out at a rotation speed of 1,440 rpm for 30 minutes. As the pulverizing medium, a rod-shaped medium having a diameter of 5.3 cm × 5.5 cm was used.
Then, 0.1 g of the treated sample was prepared into pellets having a diameter of 1 mm at a display pressure of 10 MPa using a uniaxial press machine (manufactured by Riken Seiki Co., Ltd., P-6), and a carbon-coated quartz tube (with quartz) was prepared in advance. It was placed in a carbon coating to prevent a reaction) and vacuum-sealed at about 30 Pa.
The vacuum-sealed sample was heated to 450 ° C. over 3 hours in an electric furnace, maintained at 450 ° C. for 8 hours, and then slowly cooled to room temperature (25 ° C.).
Further, the temperature was further raised to 700 ° C. over 3 hours in an electric furnace, maintained at 700 ° C. for 8 hours, and then the quartz tube containing the sample was placed in ice water to quench and hold for 3 hours. From the above, [Comparative Sulfide-based Solid Electrolyte 2] (cubic Na 3 PS 4 ) was prepared.
The composition of the obtained [Comparative Sulfide-based Solid Electrolyte 2] was Na 3-5 x P 1-x S 4 (x = 0.02) in terms of the amount charged.

次に、作製した各硫化物系固体電解質について、以下のようにして、結晶構造、格子定数a、格子定数c、Naの占有率(欠損)、及び導電率を測定した。結果を表1及び表2に示した。 Next, the crystal structure, lattice constant a, lattice constant c, Na occupancy (deficiency), and conductivity of each of the produced sulfide-based solid electrolytes were measured as follows. The results are shown in Tables 1 and 2.

<結晶構造>
実施例1〜4と比較例1〜2で得られた硫化物系固体電解質について、X線波長1.5418オングストローム(Å)のCu−Kα線による粉末X線回折測定装置(Smart−Lab、Rigaku社製)により、図1に示すX線回折パターンを求め、この回折パターンから結晶構造を同定することができる。
<Crystal structure>
For the sulfide-based solid electrolytes obtained in Examples 1 to 4 and Comparative Examples 1 and 2, powder X-ray diffraction measuring devices (Smart-Lab, Rigaku) using Cu-Kα rays having an X-ray wavelength of 1.5418 angstroms (Å). The X-ray diffraction pattern shown in FIG. 1 can be obtained, and the crystal structure can be identified from this diffraction pattern.

<格子定数a、格子定数c、及びNaの占有率(欠損)>
実施例1〜4及び比較例1〜2で得られた硫化物系固体電解質について、図1に示すX線回折パターンからRietveld法を用い、解析プログラムにはZ−Rietveldを使用して、格子定数a、格子定数c、及びNaの占有率(欠損)を求めた。
具体的には、測定で得られたX線回折図形に,仮定される構造モデルから算出される回折図形を当てはめてカーブフィッティングすることにより、格子定数a、格子定数c、及びNaの占有率(欠損)を求めた。
図2は、実施例1〜4について、図1のX線回折図からリートベルト解析で求めた格子定数aと原料仕込み組成との関係を示す図である。
図3は、実施例1〜4について、図1のX線回折図からリートベルト解析で求めた格子定数cと原料仕込み組成との関係を示す図である。
図4は、実施例1〜4について、導電率と原料仕込み組成との関係を示す図である。
図6は、比較例2のNa欠陥のない正方晶NaPSの結晶構造を示した図である。
図7は、実施例1〜4及び比較例1のNa欠陥を有する正方晶NaPSの結晶構造を示した図である。
<Lattice constant a, lattice constant c, and Na occupancy (deficiency)>
For the sulfide-based solid electrolytes obtained in Examples 1 to 4 and Comparative Examples 1 and 2, the Rietveld method was used from the X-ray diffraction pattern shown in FIG. 1, and Z-Rietveld was used for the analysis program, and the lattice constant was used. The occupancy rate (deficiency) of a, the lattice constant c, and Na was determined.
Specifically, by applying the diffraction pattern calculated from the assumed structural model to the X-ray diffraction pattern obtained by the measurement and performing curve fitting, the occupancy rates of the lattice constant a, the lattice constant c, and Na ( Deficiency) was calculated.
FIG. 2 is a diagram showing the relationship between the lattice constant a obtained by Rietveld analysis from the X-ray diffraction diagram of FIG. 1 and the raw material charging composition for Examples 1 to 4.
FIG. 3 is a diagram showing the relationship between the lattice constant c obtained by Rietveld analysis from the X-ray diffraction diagram of FIG. 1 and the raw material charging composition for Examples 1 to 4.
FIG. 4 is a diagram showing the relationship between the conductivity and the raw material charging composition for Examples 1 to 4.
FIG. 6 is a diagram showing the crystal structure of the tetragonal Na 3 PS 4 without Na defects of Comparative Example 2.
FIG. 7 is a diagram showing the crystal structure of tetragonal Na 3 PS 4 having Na defects in Examples 1 to 4 and Comparative Example 1.

<導電率>
実施例1〜4と比較例1〜2で得られた硫化物系固体電解質について、交流インピーダンス法により25℃でのNaイオン導電率を測定した。
まず、アルゴン雰囲気のグローブボックス内で、試料ペレットの両面に、金粉末(ニラコ社製、樹状、粒径約10μm)を約10mg載せて、均一にペレット表面上に分散させ、表示圧力30MPa(成型圧力約560MPa)で成型した。その後、得られたペレットを、アルゴン雰囲気を維持できる密閉式電気化学セルに入れた。
測定には、周波数応答解析装置FRA(Frequency Response Analyzer)として、ソーラトロン社製のインピーダンス・ゲインフェーズアナライザー(solartron1260)を用い、恒温装置として小型環境試験機(Espec corp、SU−241)を用いた。
測定は交流電圧10mV〜1,000mV、周波数範囲1Hz〜10MHz、積算時間0.2秒間、温度25℃の条件で、高周波領域から測定を開始し、導電率を求めた。
<Conductivity>
The sulfide-based solid electrolytes obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were measured for Na ion conductivity at 25 ° C. by an AC impedance method.
First, in a glove box with an argon atmosphere, about 10 mg of gold powder (Niraco, dendritic, particle size of about 10 μm) was placed on both sides of the sample pellet and uniformly dispersed on the pellet surface, and the display pressure was 30 MPa ( Molding was performed at a molding pressure of about 560 MPa). The resulting pellets were then placed in a closed electrochemical cell capable of maintaining an argon atmosphere.
For the measurement, an impedance gain phase analyzer (solartron1260) manufactured by Solartron was used as a frequency response analyzer FRA (Freequency Response Analyzer), and a small environmental tester (Espec corp, SU-241) was used as a constant temperature device.
The measurement was started from a high frequency region under the conditions of an AC voltage of 10 mV to 1,000 mV, a frequency range of 1 Hz to 10 MHz, an integration time of 0.2 seconds, and a temperature of 25 ° C., and the conductivity was determined.

表1の結果から、実施例1〜4は、格子定数aが6.948Å〜6.970Å、格子定数cが7.087Å〜7.096Åであり、導電率が高くなることがわかった。
実施例1〜4の中で最も高い導電率を示す実施例2の導電率は、3.393×10−3[S/cm]であり、比較例1及び2と比べて、30倍〜2,000倍も導電率が高かった。
更に、表2の結果から、通常の正方晶NaPSのNa1、Na2の占有率が100%以下となる。つまりNa1、Na2が欠陥を有することで、導電率が高くなることがわかった。
From the results in Table 1, it was found that in Examples 1 to 4, the lattice constant a was 6.948Å to 6.970Å and the lattice constant c was 7.087Å to 7.096Å, and the conductivity was high.
The conductivity of Example 2, which shows the highest conductivity among Examples 1 to 4, is 3.393 × 10 -3 [S / cm], which is 30 times to 2 times that of Comparative Examples 1 and 2. The conductivity was 000 times higher.
Furthermore, from the results in Table 2, the occupancy rate of Na1 and Na2 of ordinary tetragonal Na 3 PS 4 is 100% or less. That is, it was found that the conductivity is increased by having defects in Na1 and Na2.

(実施例5)
<ナトリウム電池の作製>
−電極の作製−
電極活物質としてTiS粉末(和光純薬工業株式会社製)、導電剤としてアセチレンブラック(電気化学工業株式会社製)、及び電極形成剤としてポリフッ化ビニリデン(PVdF、株式会社クレハ製、#1300)を、電極活物質:導電剤:電極形成剤=8:1:1(質量比)の組成となるようにそれぞれ秤量した。
まず、前記電極形成剤をメノウ乳鉢に加え、そこへ溶剤としてのN−メチル−2−ピロリドン(NMP、東京化成工業株式会社製)を適量加えて充分に混合して前記電極形成剤が溶解したことを確認した後、更に前記電極活物質及び前記導電剤を加えて充分に混合することにより電極合剤ペーストを得た。
次に、得られた電極合剤ペーストを、銅箔にアプリケータを用いて100μmの厚みで塗布し、これを真空乾燥機に入れ、溶剤を除去させながら、十分に乾燥することによって電極シートを得た。
得られた電極シートをロールプレスにて十分に圧着した後、電極打ち抜き機で直径1.0cmに打ち抜くことにより、ナトリウム電池用正極を得た。
(Example 5)
<Manufacturing sodium batteries>
-Preparation of electrodes-
TiS 2 powder (manufactured by Wako Pure Chemical Industries, Ltd.) as an electrode active material, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, and polyvinylidene fluoride (PVdF, manufactured by Kureha Co., Ltd., # 1300) as an electrode forming agent. Weighed so as to have a composition of electrode active material: conductive agent: electrode forming agent = 8: 1: 1 (mass ratio).
First, the electrode-forming agent was added to a Menou dairy pot, and an appropriate amount of N-methyl-2-pyrrolidone (NMP, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a solvent was added thereto and sufficiently mixed to dissolve the electrode-forming agent. After confirming that, the electrode active material and the conductive agent were further added and sufficiently mixed to obtain an electrode mixture paste.
Next, the obtained electrode mixture paste was applied to a copper foil to a thickness of 100 μm using an applicator, placed in a vacuum dryer, and sufficiently dried while removing the solvent to obtain an electrode sheet. Obtained.
The obtained electrode sheet was sufficiently crimped with a roll press and then punched to a diameter of 1.0 cm with an electrode punching machine to obtain a positive electrode for a sodium battery.

−固体電解質の作製−
実施例2で作製した硫化物系固体電解質2を用いて、直径1.0cm、厚み0.70mmの円板状の固体電解質Aを作製した。
-Preparation of solid electrolyte-
Using the sulfide-based solid electrolyte 2 prepared in Example 2, a disk-shaped solid electrolyte A having a diameter of 1.0 cm and a thickness of 0.70 mm was prepared.

−ナトリウム二次電池の作製−
コインセル(宝泉株式会社製)の下側パーツの窪みに、正極としての上記電極の活物質面を上に向けて置き、前記固体電解質A、及び負極としてナトリウム金属(関東化学株式会社製)を組み合わせて、ナトリウム二次電池を作製した。なお、電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
-Manufacturing sodium secondary batteries-
Place the active material surface of the electrode as the positive electrode facing up in the recess of the lower part of the coin cell (manufactured by Hosen Co., Ltd.), and place the solid electrolyte A and sodium metal (manufactured by Kanto Chemical Co., Ltd.) as the negative electrode. Combined to produce a sodium secondary battery. The batteries were assembled in a glove box with an argon atmosphere.

<ナトリウム二次電池の評価>
ナトリウム二次電池の充放電条件として、充電はレストポテンシャルから2.5Vまで1.0mA/cmで定電流充電を行った。放電は1.0mA/cmで定電流放電を行い、電圧1.3Vでカットオフした。この充放電を50サイクル繰り返し、その放電容量の推移を図5に示した。なお、放電容量は、TOSCAT3100(東洋システム株式会社製)を用いて測定した。
図5の結果から、放電容量は安定的に推移したことから、本発明で用いる硫化物系固体電解質は、ナトリウム二次電池として問題なく使用できることが明らかであった。
<Evaluation of sodium secondary battery>
As a charging / discharging condition of the sodium secondary battery, constant current charging was performed at 1.0 mA / cm 2 from the rest potential to 2.5 V. The discharge was a constant current discharge at 1.0 mA / cm 2 and cut off at a voltage of 1.3 V. This charge / discharge was repeated for 50 cycles, and the transition of the discharge capacity is shown in FIG. The discharge capacity was measured using TOSCAT3100 (manufactured by Toyo System Co., Ltd.).
From the results shown in FIG. 5, since the discharge capacity remained stable, it was clear that the sulfide-based solid electrolyte used in the present invention could be used as a sodium secondary battery without any problem.

本発明の態様は、例えば、以下のとおりである。
<1> Na元素、P元素、及びS元素を含み、かつNaPSの組成を有する硫化物系固体電解質であって、
前記NaPSの結晶構造が正方晶であり、
前記NaPSの格子定数aが6.948Å以上6.970Å以下であり、
前記NaPSの格子定数cが7.087Å以上7.096Å以下であることを特徴とする硫化物系固体電解質である。
<2> 前記硫化物系固体電解質の正方晶NaPSのNaが、欠陥を有する前記<1>に記載の硫化物系固体電解質である。
<3> X線波長1.5418ÅのCu−Kα線による粉末X線回折測定において、17.8°、18.0°、31.0°、31.3°、36.1°、及び36.5°の回折角(2θ)付近にピークを有する前記<1>から<2>のいずれかに記載の硫化物系固体電解質である。
<4> 交流インピーダンス法により測定した25℃でのNaイオン導電率が、1.5×10−4S/cm以上である前記<1>から<3>のいずれかに記載の硫化物系固体電解質である。
<5> 正極、負極、及び前記<1>から<4>のいずれかに記載の硫化物系固体電解質を有することを特徴とするナトリウム電池である。
<6> ナトリウム二次電池である前記<5>に記載のナトリウム電池である。
Aspects of the present invention are, for example, as follows.
<1> A sulfide-based solid electrolyte containing Na element, P element, and S element and having a composition of Na 3 PS 4 .
The crystal structure of Na 3 PS 4 is tetragonal.
The lattice constant a of Na 3 PS 4 is 6.948Å or more and 6.970Å or less.
It is a sulfide-based solid electrolyte characterized by having a lattice constant c of Na 3 PS 4 of 7.087 Å or more and 7.096 Å or less.
<2> The tetragonal Na 3 PS 4 Na of the sulfide-based solid electrolyte is the sulfide-based solid electrolyte according to <1>, which has a defect.
<3> In powder X-ray diffraction measurement using Cu-Kα rays with an X-ray wavelength of 1.5418Å, 17.8 °, 18.0 °, 31.0 °, 31.3 °, 36.1 °, and 36. The sulfide-based solid electrolyte according to any one of <1> to <2>, which has a peak near a diffraction angle (2θ) of 5 °.
<4> The sulfide-based solid according to any one of <1> to <3> above, wherein the Na ion conductivity at 25 ° C. measured by the AC impedance method is 1.5 × 10 -4 S / cm or more. It is an electrolyte.
<5> A sodium battery characterized by having a positive electrode, a negative electrode, and the sulfide-based solid electrolyte according to any one of <1> to <4>.
<6> The sodium battery according to <5>, which is a sodium secondary battery.

前記<1>から<4>のいずれかに記載の硫化物系固体電解質、及び前記<5>から<6>のいずれかに記載のナトリウム電池によると、従来における前記諸問題を解決し、前記本発明の目的を達成することができる。 According to the sulfide-based solid electrolyte according to any one of <1> to <4> and the sodium battery according to any one of <5> to <6>, the above-mentioned problems in the prior art can be solved. The object of the present invention can be achieved.

国際公開第2013/133020号パンフレットInternational Publication No. 2013/133020 Pamphlet

A.Hayashi et.al, Superionic Glass−Ceramic Electrolytes for Room−Temperature Rechargeable Sodium Batteries,Nature Communications,3 (2012)856:1−5A. Hayashi et. al, Superior Glass-Ceramic Electrolytes for Room-Temperature Rechargeable Batteries, Nature Communications, 3 (2012) 856: 1-5 Noriaki Kamaya, et.al, A lithium superionic conductor,Nature Materials,10,682−686(2011)Noriaki Kamaya, et. al, Aluminum superionic conductor, Nature Materials, 10, 682-686 (2011)

Claims (6)

Na元素、P元素、及びS元素を含み、かつNaPSの組成を有する硫化物系固体電解質であって、
前記NaPSの結晶構造が正方晶であり、
前記NaPSの格子定数aが6.948Å以上6.970Å以下であり、
前記NaPSの格子定数cが7.087Å以上7.096Å以下であることを特徴とする硫化物系固体電解質。
A sulfide-based solid electrolyte containing Na element, P element, and S element and having a composition of Na 3 PS 4 .
The crystal structure of Na 3 PS 4 is tetragonal.
The lattice constant a of Na 3 PS 4 is 6.948Å or more and 6.970Å or less.
A sulfide-based solid electrolyte characterized in that the lattice constant c of Na 3 PS 4 is 7.087 Å or more and 7.096 Å or less.
前記硫化物系固体電解質の正方晶NaPSのNaが、欠陥を有する請求項1に記載の硫化物系固体電解質。 The sulfide-based solid electrolyte according to claim 1, wherein the tetragonal Na 3 PS 4 Na of the sulfide-based solid electrolyte has a defect. X線波長1.5418ÅのCu−Kα線による粉末X線回折測定において、17.8°、18.0°、31.0°、31.3°、36.1°、及び36.5°の回折角(2θ)付近にピークを有する請求項1から2のいずれかに記載の硫化物系固体電解質。 In powder X-ray diffraction measurements with Cu-Kα rays with an X-ray wavelength of 1.5418Å, 17.8 °, 18.0 °, 31.0 °, 31.3 °, 36.1 °, and 36.5 ° The sulfide-based solid electrolyte according to any one of claims 1 to 2, which has a peak near the diffraction angle (2θ). 交流インピーダンス法により測定した25℃でのNaイオン導電率が、1.5×10−4S/cm以上である請求項1から3のいずれかに記載の硫化物系固体電解質。 The sulfide-based solid electrolyte according to any one of claims 1 to 3, wherein the Na ion conductivity at 25 ° C. measured by an AC impedance method is 1.5 × 10 -4 S / cm or more. 正極、負極、及び請求項1から4のいずれかに記載の硫化物系固体電解質を有することを特徴とするナトリウム電池。 A sodium battery comprising a positive electrode, a negative electrode, and a sulfide-based solid electrolyte according to any one of claims 1 to 4. ナトリウム二次電池である請求項5に記載のナトリウム電池。 The sodium battery according to claim 5, which is a sodium secondary battery.
JP2016234390A 2016-05-13 2016-12-01 Sulfide-based solid electrolyte and sodium battery Active JP6762861B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016097317 2016-05-13
JP2016097317 2016-05-13

Publications (2)

Publication Number Publication Date
JP2017208324A JP2017208324A (en) 2017-11-24
JP6762861B2 true JP6762861B2 (en) 2020-09-30

Family

ID=60417324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234390A Active JP6762861B2 (en) 2016-05-13 2016-12-01 Sulfide-based solid electrolyte and sodium battery

Country Status (1)

Country Link
JP (1) JP6762861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172898B (en) * 2018-01-02 2020-10-27 北京理工大学 Composite electrolyte, preparation method thereof and all-solid-state sodium ion battery
JPWO2022009811A1 (en) 2020-07-09 2022-01-13

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737627B2 (en) * 2010-11-17 2015-06-17 公立大学法人大阪府立大学 ION CONDUCTIVE GLASS CERAMIC, PROCESS FOR PRODUCING THE SAME, AND ALL-SOLID REPAIR
US9634360B2 (en) * 2011-07-26 2017-04-25 Japan Science And Technology Agency All-solid-state secondary cell
JP5990703B2 (en) * 2012-03-06 2016-09-14 国立研究開発法人科学技術振興機構 ION CONDUCTIVE GLASS CERAMIC, PROCESS FOR PRODUCING THE SAME, AND ALL-SOLID BATTERY CONTAINING THE SAME
US10439198B2 (en) * 2013-10-03 2019-10-08 Japan Science And Technology Agency Solution for forming layer that contains solid electrolyte for all-solid-state alkali metal secondary batteries, coated active material particles, electrode, all-solid-state alkali metal secondary battery and method for manufacturing same

Also Published As

Publication number Publication date
JP2017208324A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP5957144B2 (en) Sulfide-based solid electrolyte for lithium-ion battery
JP5985120B1 (en) Sulfide solid electrolyte and solid electrolyte compound for lithium ion battery
Hayashi et al. High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4
KR101807583B1 (en) Sulfide-based solid electrolyte for lithium ion batteries
JP5701741B2 (en) Sulfide-based solid electrolyte
Kim et al. Electrochemical behavior of Ge and GeX2 (X= O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium
RU2703445C1 (en) Cathode mixture, completely solid-state accumulator and method of producing cathode mixture
JP6564443B2 (en) Solid electrolyte derived from a single element and method for producing the same
JP7196625B2 (en) Sulfide solid electrolyte particles, manufacturing method thereof, and all-solid battery
JP2020167151A (en) Sulfide solid electrolyte, sulfide solid electrolyte precursor, all-solid-state battery and method for producing sulfide solid electrolyte
KR102381363B1 (en) Li6P2S8I SOLID ELECTROLYTE AND LITHIUM ION BATTERY INCLUDING THE SAME
JP2019212447A (en) Positive electrode composite and manufacturing method thereof
KR20190040195A (en) Sulfide solid electrolyte
Gutiérrez-Pardo et al. Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte?
JP6762861B2 (en) Sulfide-based solid electrolyte and sodium battery
JP6414813B2 (en) Solid electrolyte and secondary battery
JP2020173992A (en) Sulfide solid electrolyte, manufacturing method of sulfide solid electrolyte, electrode body, and all-solid-state battery
JP7156048B2 (en) Sulfide solid electrolyte particles and all-solid battery
JP2016103418A (en) Positive electrode active material for all-solid type lithium secondary battery, and method for manufacturing all-solid type lithium secondary battery
JP6285317B2 (en) All solid state battery system
JP6758191B2 (en) Manufacturing method of positive electrode active material for power storage device and electrode sheet
CN114503304A (en) Use of transition metal sulphide compounds in positive electrodes of solid-state batteries
PL242060B1 (en) Alloy of rare earth radical system, method for producing it and applications

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6762861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150