SU968595A1 - Method of determining semiconductor crystal shape - Google Patents
Method of determining semiconductor crystal shape Download PDFInfo
- Publication number
- SU968595A1 SU968595A1 SU802983427A SU2983427A SU968595A1 SU 968595 A1 SU968595 A1 SU 968595A1 SU 802983427 A SU802983427 A SU 802983427A SU 2983427 A SU2983427 A SU 2983427A SU 968595 A1 SU968595 A1 SU 968595A1
- Authority
- SU
- USSR - Soviet Union
- Prior art keywords
- crystal
- shape
- sample
- magnetic field
- semiconductor
- Prior art date
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
(54) СПОСОБ ОПРЕДЕЛЕНИЯ ФОРМЫ ПОЛУПРОВОДНИКОВОГО(54) METHOD FOR DETERMINING THE FORM OF A SEMICONDUCTOR
КРИСТАЛЛАCRYSTAL
.Изобретение относитс к неразруШсОощему контролю и может быть использовано при производстве полупроводниковых кристаллов. .The invention relates to non-destructive testing and can be used in the manufacture of semiconductor crystals. .
Известен способ определени кристалла, заключающийс в том,, что на исследуемый образец воздействуют ультразвуковыми колебани ми под разными углами и затем по спектру отраженных сигналов оценивают форму инородного тела в однородной среде 1.The known method of determining a crystal is that the sample under study is affected by ultrasonic vibrations from different angles and then the shape of the foreign body in a homogeneous medium 1 is estimated from the spectrum of the reflected signals.
Недостатком известнбго способа вл етс то, что при близких значени х плотностей включений и однород ной среды отрахсенный сигнал будет слабо различим на уровне помех, что приводит к неточност м определени формы кристаллов.A disadvantage of the known method is that at close values of the density of inclusions and a homogeneous medium, the insured signal will be poorly distinguishable at the level of interference, which leads to inaccuracies in determining the shape of crystals.
Наиболее близким по технической су1цности к изобретению вл етс способ определени формы полупроводникового кристалла путем воздействи на него переменным ма нитным полем, йозбуждают в полупровЪдниковом материале вихревые токи и анализируют полученный сигнал 2.The closest in terms of technical significance to the invention is a method for determining the shape of a semiconductor crystal by acting on it with a variable magnetic field, stimulating eddy currents in a semiconductor material, and analyzing the received signal 2.
Однако известным способом не- возможно точно определить форму монокристалла так как вихревые токиHowever, it is not possible in a known manner to accurately determine the shape of a single crystal, since the eddy currents
навод тс как в монокристаллической так и в поликрйсталлической среде и измер етс их среднее значение. Целью изобретени вл етс определение формы монокристаллического кристалла, наход щегос в поликристаллической среде.are induced both in monocrystalline and in polycrystalline medium and their mean value is measured. The aim of the invention is to determine the shape of a single crystal crystal in a polycrystalline medium.
Поставленна цель достигаетс тем, что согласно способу определе10 ни форма полупроводникового .кристалла путем воздействи на него магнитным полем с последующим анализом полученного сигнала, дл воздействи на образец используют посто н15 ное магнитное поле, дополнительно образец размещают в электростатическом поле, направление которого пёр.пендикул рно к направлению вектора, напр женности магнитного тюл , пово20 рачивают кристалл вокруг оси, параллельной направлению вектора напр женности электростатического пол на 360, получгиот-зависимость силы тока от угла поворота кристалла иThe goal is achieved by the method of determining the shape of a semiconductor crystal by exposing it to a magnetic field and then analyzing the received signal, to influence a sample using a constant magnetic field, the sample is additionally placed in an electrostatic field whose direction is perpendicular to the direction of the vector, the intensity of the magnetic tul, rotate the crystal around an axis parallel to the direction of the vector of the intensity of the electrostatic field by 360 Iot-dependence of current strength on the angle of rotation of the crystal and
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU802983427A SU968595A1 (en) | 1980-09-23 | 1980-09-23 | Method of determining semiconductor crystal shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU802983427A SU968595A1 (en) | 1980-09-23 | 1980-09-23 | Method of determining semiconductor crystal shape |
Publications (1)
Publication Number | Publication Date |
---|---|
SU968595A1 true SU968595A1 (en) | 1982-10-23 |
Family
ID=20918264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU802983427A SU968595A1 (en) | 1980-09-23 | 1980-09-23 | Method of determining semiconductor crystal shape |
Country Status (1)
Country | Link |
---|---|
SU (1) | SU968595A1 (en) |
-
1980
- 1980-09-23 SU SU802983427A patent/SU968595A1/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR860003492A (en) | Method and device for measuring thickness of thin metal film deposited on conductive support | |
US2607223A (en) | Apparatus for measuring rate of fluid flow | |
US4363244A (en) | Fluid velocity meter | |
US4290016A (en) | Method and apparatus for establishing magnetization levels for magnetic particle testing or the like | |
SU968595A1 (en) | Method of determining semiconductor crystal shape | |
US3693440A (en) | Electromagnetic flowmeter | |
JPH07218472A (en) | Method and equipment for measuring saturated magnetic flux density | |
Pashagin et al. | Indication of magnetic fields with the use of galvanic currents in magnetic-powder nondestructive testing | |
FR2352307A1 (en) | Magnetic field measurement with bar-type magnetometer - uses several magnetometers aligned at predetermined intervals inside bar-shaped housing | |
SU913169A1 (en) | Method of determination of assymmetrical dispersed particle electrical characteristics | |
GB1070859A (en) | Apparatus for the measurement of changes in diameter of wire or tubular metal and a method for the determination of the corrosion of such metal | |
RU2335774C1 (en) | Velocity transducer with out-of-interface signal forming zone | |
RU2054685C1 (en) | Device for measuring electric conductivity and density of liquid electrolytes | |
SU746362A1 (en) | Apparatus for measuring thin magnetic film anisotropy field intensity | |
SU1064252A1 (en) | Device for measuring ferromagnetic material magnetic property antisotropy | |
SU1310619A1 (en) | Method of measuring thickness of surface of processed layers of ferromagnetic electroconductive articles | |
SU1083140A1 (en) | Method of touch-free measuring of cylinder-shaped conductive non-magnetic specimen electrical conductivity | |
SU1160334A1 (en) | Device for analysing electrostatic properties of non-metal materials | |
SU1155973A2 (en) | Towed electric probe | |
SU554490A1 (en) | Method of measuring magnetite content in ore | |
SU1308946A2 (en) | Device for measuring voltages of pulsed electric field along three orthogonal directions | |
SU737897A1 (en) | Method of measuring coercive force of thin cylindrical magnetic films | |
SU845122A1 (en) | Method of contact-free measuring of electric conductivity and magnetic permeability of conducting specimens | |
SU1059426A1 (en) | Device for determination of wave parameters | |
SU560193A1 (en) | Magnetic field measurement method |