SU903161A1 - Method of ultrasonic welding of polymer materials - Google Patents

Method of ultrasonic welding of polymer materials Download PDF

Info

Publication number
SU903161A1
SU903161A1 SU802946080A SU2946080A SU903161A1 SU 903161 A1 SU903161 A1 SU 903161A1 SU 802946080 A SU802946080 A SU 802946080A SU 2946080 A SU2946080 A SU 2946080A SU 903161 A1 SU903161 A1 SU 903161A1
Authority
SU
USSR - Soviet Union
Prior art keywords
welding
ultrasonic
particles
ultrasonic welding
materials
Prior art date
Application number
SU802946080A
Other languages
Russian (ru)
Inventor
Иван Васильевич Мозговой
Original Assignee
Омский политехнический институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Омский политехнический институт filed Critical Омский политехнический институт
Priority to SU802946080A priority Critical patent/SU903161A1/en
Application granted granted Critical
Publication of SU903161A1 publication Critical patent/SU903161A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams

Description

(5t) СПОСОБ УПЬТРАЗВУКОВОЙ СВАРКИ ПОЛИМЕРНЫХ Изобретение относитс  к области сварки пластмасс, а именно к спосьба сварки ультразвуком материалов из. мелкодисперсных частиц и волокон. Известен способ образований соеди нений внутри полимерного материала путем разогрева его в пресс-форме с одновременным действием сдавливающег усили  и ультразвуковых колебаний 01 Недостатком способа  вл етс  то, что в результате разогрева в прессформе структурные зерна составл ющих компонентов разм гчаютс , что исключает возможность образований св зей между зернами компонентов без разрушений последних. Наиболее близким по технической сущности и достигаемому результату к изобретению  вл етс  способ ультра звуковой сварки полимерных материа лов, включающий сдавливание материала и воздействие на него ультразвуковыми колебани ми 21 , МАТЕРИАЛОВ Недостаток указанного способа заключаетс  в том, что при сварке материала в виде твердых частиц или волокон длительное непрерывное действие ультразвуковых колебаний приводит к полному разрушению структурных составл ющих и снижению прочностных свойств материала в результате перегрева и деструкции. Целью изобретени   вл етс  повышение прочности соединени  материала в виде твердых частиц или волокон. . Эта цель достигаетс  тем, что по способу ультразвуковой сварки полимерных материалов, включающему сдавливание материала и воздействие на него ультразвуковыми колебани ми, ультразвуковыми колебани ми на материал воздействуют периодически с длительностью периодов, измен ющейс  по экспоненте. При этом длительность первого периода определ ют по началу плавлени  частиц на их границах, . причем после каждого периода воздейст ВИЯ ультразвуковыми колебани ми на материал последний выдерживают под .давлением до охлаждени  материала ниже температуры кристаллизации. Это обеспечивает образование межкомпонентных соединений внутри материала без нарушени  исходной структуры . На фиг. 1 изображена схема nffot ecса образовани  межкомпонентных соединений материала; на фиг. 2 - график изменени  продолжительности включений ультразвуковых колебаний. Способ ультразвуковой сварки заклю чаетс  в следующем. Сдавленный усилием Р Материал t подвергают периодическому воздействию колебаний, передаваемых от ультразвукового инструмента 2, При этом максимум ультразвуковой энергии поглощаетс  в зоне, расположенной вблизи излучающей поверхности инструмента 2, где 8 результате граничного трени  межйу поверхност ми частиц (волокон компонентов) происходит их подплавлеWfe , что может быть зафиксировано по величине ойадки йнструмемта. Послед 4   уетанаштваетс  зкспериментапьным путем и зависит от физико-механичеекого состо ни  свариваемого матери ап . После достижени  определенной осадю или спуст  Bpeiwi { ультразвук в ключают и материал под давле1Ф16М выдерживают до полного ох атдёf Hfl и кристаллизации, с азовавшейс  частицами разм гченной прослойки Лосле затвердевани  п|гослоек l paMMt разделов меж частицами исчезает и образуетс  мо«огп4тн«й с ой h сбладащий меньшей способностью пог ощать ультразвуковые колебани , так как границы раздела,  елйщиес  основным поглотителем энергии ультраЗвуковых кoJteбaиий, исчезают. При включение второго импульса ультразвуковых колебаний эиергип ультразвука через спой hjy передаетс  слою h, в котором вновь по границам частиц в ре зультате граничного трени  выдел етс  тепло и образуютс  соединени , т.е. процесс внутреиней в слое h повтор етс  типично, как и в слое HO. Однако вследствие того, что поглощение в слое h, все же имеетс , врем  f второго импульса ультразвуковых колебаний сокращаетс  до такой продолжительности, при которой материал в слое Ьд не нагреваетс  выше температур, нарушающих его структуру, например ориентацию полимеров или полное расплавление частиц. Поэтому и толщина сло  h получаетс  меньшей h, а толщина сло  , и т.д. Следует отметить, что в реальном процессе внутренней сварки четкой границы между сло ми и т.д. We существует. Экспериментально установлено , что оптимальным, с точки зрени  получени  наибольших прочностных свойств различных материалов,  вл етс  снижение времени ультразвуковых импульсов по экспоненциальному закону, tn -Со е , где ti, и соответственно первый и последующий периоды включени  ультразвуковых колебаний; п - номер периода; Д - коэффициент поглощени  ультразвуковых колебаний в данном материале. Сущность изобретени  по сн етс  примерами выполнени  способа. П р и м 1. Заготовка невулканизованной смеси из синтетического каучука БК и СКН-26, сажи и других материалов , наход щейс  в застеклованном состо нии, готовым изделием дл  которой  вл етс  образец в виде цилиндра jgj 50 мм и высотою 20 мм, подвергалась ультразвуковой сварке при следующих режимах: Статическое давление 5 кгс/сн /Амплитуда ультразвуковых колебаний 30 мкм Частота ультразвуковых 20 КГЦ Продолжительность первого импульса ультразвуковых колебаний0 ,3с Количество импульсов п 8. В результате ультразвуковой сварки были получены следующие прочностные показатели, характеризующие материал после его сварки (см.табл.1).(5t) METHOD OF POLYMERIC ULTRAWEAK WELDING The invention relates to the field of welding of plastics, in particular to the field of ultrasonic welding of materials from. fine particles and fibers. The known method of formation of compounds inside a polymer material by heating it in a mold with simultaneous action of squeezing force and ultrasonic vibrations 01 The disadvantage of this method is that as a result of heating in the mold, the structural grains of the components are softened, which eliminates the possibility of bond formation between the grains of the components without destroying the latter. The closest in technical essence and the achieved result to the invention is the method of ultra sound welding of polymeric materials, including the compression of the material and the impact on it by ultrasonic vibrations 21, MATERIALS The disadvantage of this method is that when welding material in the form of solid particles or fibers prolonged continuous action of ultrasonic vibrations leads to the complete destruction of the structural components and the reduction of the strength properties of the material as a result of overheating and destruction instructions. The aim of the invention is to increase the strength of the compound material in the form of solid particles or fibers. . This goal is achieved by the method of ultrasonic welding of polymeric materials, including compression of the material and the impact on it of ultrasonic vibrations, ultrasonic vibrations on the material are periodically affected with a period of time varying exponentially. The duration of the first period is determined by the beginning of the melting of the particles at their boundaries,. after each period, the effect of ultrasound vibrations on the material is maintained under pressure until the material is cooled below the crystallization temperature. This ensures the formation of interconnects inside the material without disrupting the original structure. FIG. Figure 1 shows the nffot ecc diagram of the formation of interconnects of a material; in fig. 2 is a graph of the change in the duration of the inclusions of ultrasonic vibrations. The method of ultrasonic welding is as follows. The material, compressed by force P, is subjected to periodic oscillations transmitted from the ultrasonic tool 2, and the maximum ultrasonic energy is absorbed in the zone located near the radiating surface of the tool 2, where 8 the result of boundary friction between the surfaces of the particles (fiber components) occurs can be recorded in terms of the value of shrinkage. The last 4 uetanshistvatsya experimentally and depends on the physicomechanical state of the welded mother an. After reaching a certain siege or later Bpeiwi {ultrasound is turned on and the material under pressure is kept until complete Hfl and crystallization, with the Los losM soften interlayer of solidification of the g | h is less capable of absorbing ultrasonic oscillations, since the interfaces, which are the main energy absorber of the ultraSonic, disappear. When the second impulse of ultrasonic oscillations is switched on, the ultrasonic ultrasound through jay hjy is transmitted to the layer h, in which again along the boundaries of the particles, as a result of boundary friction, heat is generated and compounds are formed, i.e. the process inside the h layer repeats typically, as in the HO layer. However, due to the fact that the absorption in the layer h still exists, the time f of the second ultrasonic vibration pulse is reduced to such a time that the material in the layer B does not heat up above temperatures that violate its structure, such as orientation of the polymers or complete melting of the particles. Therefore, the layer thickness h becomes smaller than h, and the layer thickness, etc. It should be noted that in the actual process of internal welding there is a clear boundary between the layers, etc. We exist. It was established experimentally that, from the point of view of obtaining the greatest strength properties of various materials, the optimal time for ultrasonic pulses is to reduce the exponential law, tn –Co e, where ti, and the first and subsequent periods of switching on the ultrasonic vibrations, respectively; p - period number; D is the absorption coefficient of ultrasonic vibrations in a given material. The invention is illustrated by examples of the method. Example 1. A blank of an unvulcanized mixture of synthetic rubber BK and SKN-26, carbon black and other materials that were in a vitrified state, the finished product for which is a sample in the form of a jgj cylinder 50 mm and a height of 20 mm, was subjected to ultrasonic welding under the following modes: Static pressure 5 kgf / sn / Amplitude of ultrasonic vibrations 30 microns Frequency of ultrasonic 20 KHZ Duration of the first pulse of ultrasonic vibrations 0, 3 s Number of pulses n 8. As a result of ultrasonic welding were obtained strength indicators characterizing the material after its welding (see tab.1).

Таблица 1Table 1

Сопротивление разрылResistance ripped

Пример 2. Заготовка из послойно расположенных нитей капронового корда и резиновой смеси в застекпованном состо нии, готовым изделием из которой  вл етс  образец . диаметром 50 мм и высотою 10 мм, подвергалс  внутренней сварке при следующих параметрах режима :,Example 2. A blank of layers of nylon cord and rubber mixture arranged in layers in a glass-clad state, the finished product of which is a sample. with a diameter of 50 mm and a height of 10 mm, was subjected to internal welding with the following mode parameters:

Вид обработкиProcessing type

Материал, полученный каландрованиемCalendered material

Материал, полученный внутренней сваркой при длительности начальных импульсовMaterial obtained by internal welding with the duration of the initial pulses

0,3 с 0,5 с 0,8.с .0.3 s 0.5 s 0.8.s.

Продолжитс ьност ь первого импульса ультразвуковых колебаний0 ,5 с Количество импульсов п 5 8 результате сварки между моново- локнами капронового корда и резиновой смесью были получены следующие пока- затёли про «ости при испытании на рёздир в кгс/см (см, табл. 2).The length of the first impulse of ultrasonic vibrations, 5 sec. The number of impulses p 5 8 as a result of welding between the monofilaments of the kapron cord and the rubber mixture, the following indicators were obtained about the rigidity when tested on a rubber wheel in kgf / cm (cm, Table 2) .

: Т а 6 л и ц а 2: T a 6 l and c a 2

Испытание На раздир, в к ГС/см (аулканиз.)Test On razdir, in to GS / cm (aulkaniz.)

2323

Claims (2)

29 2 33 79 Результаты испытаний, приведенные в таблице 2 .показывают, что оптимальным режим сварки  вл етс  при 0,5 с. Способ ультразвуковой сварки композитных материалов может найти применение в различных процессах, св занных с переработкой в издели  по ,лимерных материалов, представл ющих порошки и смеси из различных порошков и сплошных масс и частиц, волокна и смеси их с различными порошками, сплошными массами и другими веществами , наход щимис  в различном физичес ком состо нии Способ ультразвуковой сварки был .испытан при сварке между собою различ ных компонентов, вход щих в резиноткаиевую смесь, из которой впоследстШ4И были изготовлены каркасные браслеты легковых автомобильных покрышек. Покрышю1 испытывались в дорожных уело ВИЯХ и показали увеличение ходимости на 20-30 по сравнении с серийными, что позвол ет экономить сырье и труАо затраты на сумму 8-10 млн.рублей на каждый .1 млн легковых покрышек, выпускаемых в СССР. 8 61 Формула изобретени  Способ ультразвуковой сварки полимерных материалов, включающий сдавливание материала и воздействие на него ультразвуковыми колебани ми, отличающийс  тем, что, с целью повышени  прочности соединени  -материала в виде твердых частиц или волокон ультразвуковыми колебани ми на материал воздействуют периодически с длительностью периодов, измен ющейс  по эксгюненте при этом длительность первого периода определ ют по началу плавлени  частиц на их границах, причем после каждого периода воздействи  ультразвуковыми колебани ми на материал последний выдерживают под давлением до охлаждени  материала ниже температуры кристаллизации, . Источники информации, прин тые во внимание при экспертизе Т. Басов Н.И, и др. Виброформование олимеров. Л., Хими , 1979, с, 93. 29 2 33 79 The test results given in Table 2 show that the optimum welding mode is at 0.5 s. The method of ultrasonic welding of composite materials can be used in various processes related to the processing into products of individual materials, powders and mixtures of various powders and solid masses and particles, fibers and mixtures of them with various powders, solid masses and other substances. in different physical states. The method of ultrasonic welding has been tested during welding between various components that are included in the rubber-rubber mixture, from which later the frame New car tires bracelets. The pavement1 was tested in road conditions and showed an increase in mileage of 20-30 compared with serial ones, which allows saving raw materials and labor costs in the amount of 8-10 million rubles for each .1 million passenger tires produced in the USSR. 8 61 The claim of the method of ultrasonic welding of polymeric materials, including compression of the material and exposure to ultrasonic vibrations, characterized in that, in order to increase the strength of the joint material in the form of solid particles or fibers, ultrasonic vibrations on the material are periodically affected with a duration of periods, in this case, the duration of the first period is determined by the beginning of melting of the particles at their boundaries, and after each period of exposure the ultrasound and the wobbles on the latter material is maintained under pressure until material cooling below the crystallization temperature. Sources of information taken into account in the examination of T. Basov N. I., et al. Vibroforming of olimers. L., Himi, 1979, p. 93. 2. Волков С.С. и др. Сварка пластасс ультразвуком. М., Хими , 197, . (прототип).2. Volkov S.S. and others. Plastass ultrasound welding. M., Himi, 197,. (prototype).
SU802946080A 1980-06-26 1980-06-26 Method of ultrasonic welding of polymer materials SU903161A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU802946080A SU903161A1 (en) 1980-06-26 1980-06-26 Method of ultrasonic welding of polymer materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU802946080A SU903161A1 (en) 1980-06-26 1980-06-26 Method of ultrasonic welding of polymer materials

Publications (1)

Publication Number Publication Date
SU903161A1 true SU903161A1 (en) 1982-02-07

Family

ID=20904251

Family Applications (1)

Application Number Title Priority Date Filing Date
SU802946080A SU903161A1 (en) 1980-06-26 1980-06-26 Method of ultrasonic welding of polymer materials

Country Status (1)

Country Link
SU (1) SU903161A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435863A (en) * 1992-04-21 1995-07-25 Branson Ultrasonics Corporation Method for processing workpieces by ultrasonic energy
US5658408A (en) * 1992-04-21 1997-08-19 Branson Ultrasonics Corporation Method for processing workpieces by ultrasonic energy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435863A (en) * 1992-04-21 1995-07-25 Branson Ultrasonics Corporation Method for processing workpieces by ultrasonic energy
US5658408A (en) * 1992-04-21 1997-08-19 Branson Ultrasonics Corporation Method for processing workpieces by ultrasonic energy

Similar Documents

Publication Publication Date Title
US5855706A (en) Simultaneous amplitude and force profiling during ultrasonic welding of thermoplastic workpieces
Isayev et al. Effect of oscillations during extrusion on rheology and mechanical properties of polymers
US5846377A (en) Method for processing workpieces by ultrasonic energy
CA2094425C (en) Method and apparatus for processing workpieces by ultrasonic energy
US6020277A (en) Polymeric strands with enhanced tensile strength, nonwoven webs including such strands, and methods for making same
SU903161A1 (en) Method of ultrasonic welding of polymer materials
EP0340671B1 (en) Process and apparatus for controlling the machine parameters in friction welding
CA2123330A1 (en) Ribbed clothlike nonwoven fabric and process for making same
US4075046A (en) Tipped lace
JPH089165B2 (en) Method for producing oriented discontinuous fiber reinforced composite material and apparatus for carrying out the method
WO2009018803A1 (en) Method for joining and joined connection of two components made of a metal material with strengthening anf heat treatment of at least a part of at least one component before joining
KR950702651A (en) QUENCHING AND COAGULATION OF FILAMENTS IN AN ULTRASONIC FIELD
DE60005729T2 (en) Process for cleaning or coring a casting
US5039462A (en) Method and apparatus for producing biaxially oriented polymer sheet
DE1953037A1 (en) Plastic molding
DE3218920A1 (en) Arrangement for ultrasonic welding
Amza et al. Contributions Regarding Plastic Materials Ultrasonic Welding used in Automotive Industry
Matsuoka Effects of ultrasonic vibration on the compaction molding of polymeric powders
DE3116498A1 (en) Articles lined and padded with PVC-based film material
SU973383A1 (en) Method of friction welding of polymeric articles
EP3672785A1 (en) Alternative joining method
JPS6140506Y2 (en)
JP2000140529A (en) Production of filter bag
RU2112628C1 (en) Process of manufacture of abrasive tools
DE102010021659A1 (en) Process for producing a granulate from a mineral melt