SU722721A1 - Electrolyte for electrochemical treatment of molybdene and its alloys - Google Patents

Electrolyte for electrochemical treatment of molybdene and its alloys Download PDF

Info

Publication number
SU722721A1
SU722721A1 SU782599917A SU2599917A SU722721A1 SU 722721 A1 SU722721 A1 SU 722721A1 SU 782599917 A SU782599917 A SU 782599917A SU 2599917 A SU2599917 A SU 2599917A SU 722721 A1 SU722721 A1 SU 722721A1
Authority
SU
USSR - Soviet Union
Prior art keywords
electrolyte
alloys
molybdene
electrochemical treatment
sodium
Prior art date
Application number
SU782599917A
Other languages
Russian (ru)
Inventor
Валентина Ивановна Самылина
Александр Иванович Котельников
Геннадий Иванович Мельников
Original Assignee
Предприятие П/Я Р-6816
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Предприятие П/Я Р-6816 filed Critical Предприятие П/Я Р-6816
Priority to SU782599917A priority Critical patent/SU722721A1/en
Application granted granted Critical
Publication of SU722721A1 publication Critical patent/SU722721A1/en

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

1one

Изобретение относитс  к электрофизическим и электрохимическим методам обработки и в частности может.быть использовано при электрохимической обработке молибдена и его сплавов.The invention relates to electrophysical and electrochemical processing methods and, in particular, can be used in the electrochemical processing of molybdenum and its alloys.

Известны электролиты дл  электрохимической обработки (ЭХО) молибдена и его сплавов на основе водных растворов азотнокислого натри , хлористого натри  и углекислого натри  1.Electrolytes for the electrochemical treatment (ECM) of molybdenum and its alloys are known based on aqueous solutions of sodium nitrate, sodium chloride, and sodium carbonate 1.

Однако известные электролиты в процессе электрохимической обработки молибдена быстро закисл ютс , что приводит к ускоренной коррозии оборудовани . Кроме того, в кислой среде ионы Мо восстанавливаютс  на катоде-инструменте до низших степеней окислени . Толщина налета этих соединений растет по мере увеличени  времени обработки, что снижает производительность и точность обработки.However, the known electrolytes in the process of electrochemical treatment of molybdenum quickly acidify, which leads to accelerated corrosion of equipment. In addition, in an acidic environment, Mo ions are reduced at the cathode instrument to lower oxidation states. The thickness of the plaque of these compounds increases with increasing processing time, which reduces productivity and processing accuracy.

Цель изобретени  - стабилизаци  рН электролита при одновременном снижении его коррозионной активности.The purpose of the invention is to stabilize the pH of the electrolyte while reducing its corrosivity.

Дл  этого предлагаемый электролит, кроме азотнокислого натри , дополнительно содержит натрий фосфорнокислый трехзамещенный и натрий фосфорнокислый двузамещенный , причем компоненты вз ты в следующем соотношении, вес, %:For this, the proposed electrolyte, in addition to sodium nitrate, additionally contains trisubstituted sodium phosphate and disubstituted sodium phosphate, and the components are taken in the following ratio, weight,%:

Натрий азотнокислый12,0-15,0Sodium nitrate12.0-15.0

Натрий фосфорнокислый трехзамещенный5,0-7,0Sodium phosphate trisubstituted5,0-7,0

Натрий фосфорнокислыйSodium Phosphate

двузамещенный1,2-1,6disubstituted1,2-1,6

ВодаОстальное.Water the rest.

Введение в электролит выщеуказанных компонентов снижает степень закислени  электролита в процессе ЭХО. Так, например, при пропускании через элемент предлагаемого состава 150 А час/л рН электролита не снижаетс  ниже 6 при исходном рН электролита, равном 10,2, что уменьшает коррозионное воздействие электролита на соприкасающиес  с ним металлические поверхности станка, инструмента и обрабатываемой детали.The introduction of the above mentioned components into the electrolyte reduces the degree of acidification of the electrolyte during the ECM process. So, for example, by passing an element of 150 A h / l through the cell, the pH of the electrolyte does not drop below 6 with an initial electrolyte pH of 10.2, which reduces the corrosive effect of the electrolyte on the metal surfaces of the machine, tool and workpiece in contact with it.

Производительность и точность обработки остаютс  посто нными в течением всего времени электрохимической обработки.Performance and precision of processing remain constant throughout the entire time of electrochemical processing.

Claims (1)

1. Татаринова О. М. Исследование обрабатываемости молибденового сплава ВМ-1 при высоких плотност х тока. Электронна  обработка материалов, № 4, 1975, с. 12 - 15.1. Tatarinova OM. Investigation of the machinability of molybdenum alloy VM-1 at high current densities. Electronic processing of materials, No. 4, 1975, p. 12 - 15.
SU782599917A 1978-04-04 1978-04-04 Electrolyte for electrochemical treatment of molybdene and its alloys SU722721A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU782599917A SU722721A1 (en) 1978-04-04 1978-04-04 Electrolyte for electrochemical treatment of molybdene and its alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU782599917A SU722721A1 (en) 1978-04-04 1978-04-04 Electrolyte for electrochemical treatment of molybdene and its alloys

Publications (1)

Publication Number Publication Date
SU722721A1 true SU722721A1 (en) 1980-03-25

Family

ID=20757608

Family Applications (1)

Application Number Title Priority Date Filing Date
SU782599917A SU722721A1 (en) 1978-04-04 1978-04-04 Electrolyte for electrochemical treatment of molybdene and its alloys

Country Status (1)

Country Link
SU (1) SU722721A1 (en)

Similar Documents

Publication Publication Date Title
ES8501884A1 (en) Electrochemical method of testing for surface-characteristics, and testing apparatus for use in the method.
Streicher The dissolution of aluminum in sodium hydroxide solutions
GB2020478A (en) Galvanic Primary Cell
SU722721A1 (en) Electrolyte for electrochemical treatment of molybdene and its alloys
MY100681A (en) Process for electrolytic treatment of a metal by liquid power feeding.
JPS5629153A (en) Measuring method of exposed iron part for coated steel plate or its processed product
FR2381594A1 (en) ELECTROCHEMICAL MACHINING PROCESS OF POLYPHASIC ALLOYS
Liu Electroanalytical Techniques in Molten Lithium Sulfate-Potassium Sulfate Eutectic
Rundle et al. Electron Deficient Compounds: The structure of dimethylberyllium
SU819233A1 (en) Solution for electrochemical treatment of copper deposits
Shimizu et al. Determination of diffusion coefficients of anions at a rotating silver disk electrode
JPS6480014A (en) Electrolyte
JPH0798296A (en) Measuring method for concentration of additive in electroless copper plating liquid
Vandenbruwaene et al. Rotating Ring‐Disk Study of the Cu (II)/Cu (O) System on a Gold Electrode in Sulphuric Acid Solution
EP0026207A1 (en) Production of lead from ores and concentrates.
SU598721A1 (en) Electrochemical machining method
SU766812A1 (en) Electrolyte for electrochemical dimensional machining
Tyler et al. Polarographic Analysis of Copper and Zinc in Brass Plate A Rapid Control Method
SU619845A1 (en) Electrochemical method of determining microquantities of carbon
SU505954A1 (en) Electrochemical method of analyzing ions on a vibrating solid electrode
RU1807378C (en) Method of coulometric analysis of cadmium in mercury-containing materials
SU933816A1 (en) Aqueous copper-plating electrolyte
SU1684653A1 (en) Inversion voltammetric method of determination of cyanuric acid
JPS5573899A (en) Electrochemical treatment of metal surface
SU984788A1 (en) Electrolyte for electrochemical machining of titanium and its alloys