SU548294A1 - The method of electrochemical regeneration of ion exchanger - Google Patents

The method of electrochemical regeneration of ion exchanger

Info

Publication number
SU548294A1
SU548294A1 SU2118637A SU2118637A SU548294A1 SU 548294 A1 SU548294 A1 SU 548294A1 SU 2118637 A SU2118637 A SU 2118637A SU 2118637 A SU2118637 A SU 2118637A SU 548294 A1 SU548294 A1 SU 548294A1
Authority
SU
USSR - Soviet Union
Prior art keywords
regeneration
ion exchanger
electrochemical regeneration
magnetic field
increase
Prior art date
Application number
SU2118637A
Other languages
Russian (ru)
Inventor
Тамара Андреевна Краснова
Александр Федорович Чуднов
Владимир Дмитриевич Гребенюк
Original Assignee
Кузбасский Политехнический Институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кузбасский Политехнический Институт filed Critical Кузбасский Политехнический Институт
Priority to SU2118637A priority Critical patent/SU548294A1/en
Application granted granted Critical
Publication of SU548294A1 publication Critical patent/SU548294A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

емкости. Навеска смолы в каждом слое 2,03г. Обща  высота центральной камеры 8 см, толщина 1,4 см, ширина 2,1 см. Центральную камеру заполн ли дистиллированной водой, через катодную и анодную камеры снизу вверх, циркулировали 0,05 н. растворы соответственно кислоты и щелочи. Регенерацию проводили в течение 3 час при силе тока 300 ма. После окончани  опыта смолу послойно перегружали в колонки и оставшиес  солевые ионы вымывались 0,5 н. раствором азотной кислоты. Степень регенерации рассчитывали по содержанию соответствующих ионов.capacity. A portion of the resin in each layer 2,03g. The total height of the central chamber was 8 cm, thickness 1.4 cm, width 2.1 cm. The central chamber was filled with distilled water, 0.05 N was circulated through the cathode and anode chambers from bottom to top. solutions of acid and alkali, respectively. Regeneration was carried out for 3 hours at a current of 300 mA. After the end of the experiment, the resin was overloaded in layers into columns and the remaining salt ions were washed out 0.5 n. nitric acid solution. The degree of regeneration was calculated by the content of the corresponding ions.

Дл  проведени  регенерации по предлагаемому способу  чейку помещали между полюсами посто нного электромагнита таким образом , чтобы на поток ионов, мигрирующих между электродами, действовала сила, направленна  в соответствии с «правилом левой руки вверх  чейки.To carry out regeneration according to the proposed method, a cell was placed between the poles of a permanent electromagnet so that the flow of ions migrating between the electrodes was acted upon by the force of the left hand upward of the cell.

Схема такого расположени   чейки с указанием направлени  магнитного пол , электрического тока и «выталкивающей силы показана на фиг. 1 и 2. Результаты регенерации ионитов при наложении магнитного пол  представлены в таблице.A diagram of this arrangement of the cell, indicating the direction of the magnetic field, the electric current and the buoyancy force, is shown in FIG. 1 and 2. The results of the regeneration of ion exchangers when a magnetic field is applied are presented in the table.

Наложение посто нного магнитного пол  приводит к существенному увеличению степени регенерации ионитов и способствует равномерности распределени  последней по высоте сло  смол. При этом с увеличением напр женности магнитного пол  растет степень регенерации. Наложение магнитного пол  позвол ет также сократить продолжительность регенерации при заданной конечной степени регенерации ионита.The imposition of a constant magnetic field leads to a significant increase in the degree of regeneration of ion exchangers and contributes to the uniform distribution of the resin over the height of the resin layer. At the same time, with increasing magnetic field intensity, the degree of regeneration increases. The application of a magnetic field also makes it possible to shorten the regeneration time for a given finite degree of regeneration of the ion exchanger.

Claims (1)

Формула изобретени Invention Formula Способ электрохимической регенерации ионита, путем обработки в камере обессоливани  электродиализатора с селективными ионообменными мембранами, отличающийс  тем, что, с целью увеличени  степени регенерации, сокращени  продолжительности и повышени  равномерности регенерации по объему ионита, процесс провод т в посто нно .м магнитном поле напр женностью 500- 1000 эрстед, ориентированном перпендикул рно электрическому полю таким образом, что возникающа  в результате взаимодействи  электрического и магнитного полей результирующа  сила направлена вверх.A method of electrochemical regeneration of an ion exchanger by treating an electrodialysis apparatus with selective ion-exchange membranes in a desalting chamber, characterized in that, in order to increase the degree of regeneration, shorten the duration and increase the uniformity of regeneration over the volume of the ion exchanger, the process is carried out in a constant magnetic field of 500 - 1000 oersted, oriented perpendicular to the electric field in such a way that the resulting force between the electric and magnetic fields pointing upwards.
SU2118637A 1975-04-01 1975-04-01 The method of electrochemical regeneration of ion exchanger SU548294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU2118637A SU548294A1 (en) 1975-04-01 1975-04-01 The method of electrochemical regeneration of ion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU2118637A SU548294A1 (en) 1975-04-01 1975-04-01 The method of electrochemical regeneration of ion exchanger

Publications (1)

Publication Number Publication Date
SU548294A1 true SU548294A1 (en) 1977-02-28

Family

ID=20614362

Family Applications (1)

Application Number Title Priority Date Filing Date
SU2118637A SU548294A1 (en) 1975-04-01 1975-04-01 The method of electrochemical regeneration of ion exchanger

Country Status (1)

Country Link
SU (1) SU548294A1 (en)

Similar Documents

Publication Publication Date Title
JP5259620B2 (en) Supercapacitor desalination apparatus and manufacturing method
ATE204205T1 (en) SINGLE AND MULTIPLE ELECTROLYSIS CELLS AND ARRANGEMENTS THEREOF FOR DENITIONIZING AQUEOUS MEDIA
CN108905658B (en) Method for preparing multivalent ion exchange membrane by membrane pollution-electrodialysis deposition
JP5868421B2 (en) Electrodeionization equipment
US3597278A (en) Electrolytic cell comprising means for creating a magnetic field within the cell
TW200414922A (en) Electrodeionization apparatus
KR102268476B1 (en) Multi-channel membrane capacitive deionization with enhanced deionization performance
SU548294A1 (en) The method of electrochemical regeneration of ion exchanger
US3616385A (en) Chlorine- and chloride-free hyprochlorous acid by electrodialysis
WO2010062175A1 (en) Energy generating system and method therefor
JP2001259646A (en) Electric deionized water producer
KR100979028B1 (en) Separator Membrane for Capacitive Deionization of Waste Water or Saltwater, and Method for Deionization of Waste Water or Saltwater By Using the Separator Membrane
US3479267A (en) Inorganic ion exchange membranes for use in electrical separatory processes
JP2001259645A (en) Deionized water production method
SU791618A1 (en) Electrolyzer
SK280162B6 (en) Anode device and device for electrokinetic desalination of brickwork
SU443671A1 (en) The method of electrochemical regeneration of the mixed layer of cationic and anion-exchange fibers
JPS62136755A (en) Zinc-bromine cell
SU1119708A1 (en) Electric dialyzer for desalination of aqueous solutions
SU1042770A1 (en) Ion separation method
RU2129530C1 (en) Method for water activation
SU571296A1 (en) Method of separating similarly charged ions
GB1003572A (en) Method of producing an iron exchange membrane of high electrical conductivity and articles so produced
JPH04250882A (en) Production of pure water
SU929743A1 (en) Apparatus for deionizing materials