SU504920A1 - Method for non-contact measurement of physical parameters of vs skripaleva media - Google Patents
Method for non-contact measurement of physical parameters of vs skripaleva mediaInfo
- Publication number
- SU504920A1 SU504920A1 SU2072704A SU2072704A SU504920A1 SU 504920 A1 SU504920 A1 SU 504920A1 SU 2072704 A SU2072704 A SU 2072704A SU 2072704 A SU2072704 A SU 2072704A SU 504920 A1 SU504920 A1 SU 504920A1
- Authority
- SU
- USSR - Soviet Union
- Prior art keywords
- radiation
- media
- physical parameters
- skripaleva
- thickness
- Prior art date
Links
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Description
33
волны ультразвуковых колебаний и толщины контролируемого материала последний начинает вести себ как упруга оболочка, совершающа вынужденные колебани с частотой заполнени ультразвуковых имнульсов, т. е. с частотой колебани , обращенной к контролируемому материалу поверхности излучател ультразвуковых колебаний. Таким образом, колеблющиес слой воздуха и контролируемый материал вл ютс св занной нагрузкой излучател ультразвуковых колебаний, эквивалентное сопротивление которой определ ет ток через него. Величина этого эквивалентного сопротивлени нагрузки зависит от упругих посто нных контролируемого материала и его толщины. Дл определени последней измен ющийс ток излучател ультразвуковых колебаний преобразуют в посто нное напр жение , а при помощи показывающего прибора определ ют толщину контролируемого материала .waves of ultrasonic vibrations and thickness of the material being monitored, the latter begins to behave like an elastic sheath, making forced oscillations with the frequency of filling ultrasonic impulses, i.e. with the frequency of oscillation facing the material being monitored of the surface of the ultrasonic oscillator. Thus, the vibrating air layer and the material being monitored are the associated load of the ultrasonic emitter, the equivalent resistance of which determines the current through it. The magnitude of this equivalent load resistance depends on the elastic constants of the material being monitored and its thickness. In order to determine the latter, the varying current of the ultrasonic oscillator is converted into a constant voltage, and the thickness of the material being monitored is determined with the help of a indicating device.
При изменении толщины контролируемого материала посто нным напр жением преобразовател 6 воздействуют на активное плечо 8 аттенюатора 3 и измен ющимс сигналом аттенюатора корректируют возбуждение излучател ультразвуковых колебаний. Коррекцию провод т в сторону уменьшени погрешпости при воздействии возмущений. Таким образом, описанный контур обратной св зи следит за изменением толщины контролируемого материала с определенным статизмом независимо от возмущающих воздействий.When the thickness of the controlled material changes, the DC voltage of the converter 6 affects the active arm 8 of the attenuator 3 and the excitation of the emitter of ultrasonic vibrations is corrected with a variable signal of the attenuator. The correction is carried out in the direction of decreasing the error when subjected to disturbances. Thus, the described feedback loop monitors the change in the thickness of the monitored material with a certain statism, regardless of disturbing influences.
Использование по предлагаемому способу одностороннего излучени ультразвуковых колебаний и определение толщины контролируемого материала по изменению электрического тока излучател ультразвуковых колебаний расшир ет область применени толщинометрии в фазах прокатки. По вл етс возможность контролировать передний и задний концы прокатываемого металла, обычно обрезаемые в отходы.The use of the proposed method of one-sided emission of ultrasonic vibrations and the determination of the thickness of the material being monitored by the change in the electric current of the ultrasonic emitter oscillator expands the scope of thickness measurement in the rolling phases. It is possible to control the front and rear ends of the rolled metal, usually cut to waste.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU2072704A SU504920A1 (en) | 1974-11-15 | 1974-11-15 | Method for non-contact measurement of physical parameters of vs skripaleva media |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU2072704A SU504920A1 (en) | 1974-11-15 | 1974-11-15 | Method for non-contact measurement of physical parameters of vs skripaleva media |
Publications (1)
Publication Number | Publication Date |
---|---|
SU504920A1 true SU504920A1 (en) | 1976-02-28 |
Family
ID=20599994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU2072704A SU504920A1 (en) | 1974-11-15 | 1974-11-15 | Method for non-contact measurement of physical parameters of vs skripaleva media |
Country Status (1)
Country | Link |
---|---|
SU (1) | SU504920A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009035335A1 (en) * | 2007-09-12 | 2009-03-19 | Det Norske Veritas As | Acoustic thickness measurements using gas as a coupling medium |
-
1974
- 1974-11-15 SU SU2072704A patent/SU504920A1/en active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009035335A1 (en) * | 2007-09-12 | 2009-03-19 | Det Norske Veritas As | Acoustic thickness measurements using gas as a coupling medium |
US7975548B2 (en) | 2007-09-12 | 2011-07-12 | Det Norske Veritas As | Acoustic thickness measurements using gas as a coupling medium |
CN101855514B (en) * | 2007-09-12 | 2012-10-24 | 挪威船级社 | Acoustic thickness measurements using gas as a coupling medium |
EA018239B1 (en) * | 2007-09-12 | 2013-06-28 | Дет Норске Веритас Ас | Acoustic thickness measurements using gas as a coupling medium |
US8677823B2 (en) | 2007-09-12 | 2014-03-25 | Halfwave As | Acoustic thickness measurements using gas as a coupling medium |
EP2195611B1 (en) | 2007-09-12 | 2020-05-06 | HalfWave AS | Acoustic thickness measurements using gas as a coupling medium |
EP2195611B2 (en) † | 2007-09-12 | 2023-12-20 | Ndt Global As | Acoustic thickness measurements using gas as a coupling medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4240285A (en) | Measurement of the density of liquids | |
WO1991013328A1 (en) | Vibrating beam transducer drive system | |
CN107073521A (en) | Ultrasonic wave processing system with piezoelectric force transducer | |
CA1155197A (en) | Ultra sensitive liquid level detector and method | |
JPH03221806A (en) | Control circuit for evaporation monitor | |
SU504920A1 (en) | Method for non-contact measurement of physical parameters of vs skripaleva media | |
JPH05180657A (en) | Method and device for compensating scale coefficient of piezoelectric rate sensor | |
US2522924A (en) | Supersonic inspection apparatus | |
US4618835A (en) | Proximity sensor oscillator utilizing controlled charge | |
JPS6031400B2 (en) | Speaker characteristics measuring device | |
JPH0121452B2 (en) | ||
SU418791A1 (en) | METHOD FOR CONTROLLING THE ROUGHNESS OF THE SURFACE OF PRODUCTS IN GGT Bg ^ pmp ^ '^ g ^^ srtpa Fipd oi; -1, .g1io | |
US3990292A (en) | Frequency modulated fluidic gauge | |
SU1093963A1 (en) | Method of automatic tuning of ultrasonic converters | |
SU503127A1 (en) | Contactless Ultrasonic Thickness Gauge | |
SU849024A1 (en) | Test bed for edf exciter calibration | |
SU669186A1 (en) | Apparatus for measuring small motions and deformations | |
SU600451A1 (en) | Device for determining accelerometer amplitude-frequency characteristics | |
SU737884A1 (en) | Device for measuring electrophysical characteristics of piezoceramic resonators | |
SU729501A1 (en) | Device for measuring elastic and unelastic properties of materials | |
SU442406A1 (en) | The method of controlling the properties of substances | |
SU381020A1 (en) | METHOD OF MEASURING THE DECREMENT OF VIBRATIONS | |
SU602790A1 (en) | Method of determining imaginary and real components of mechanical structure oscillation | |
JPH0245801Y2 (en) | ||
SU1718037A1 (en) | Device for testing composite mixture compaction degree |