SU504920A1 - Method for non-contact measurement of physical parameters of vs skripaleva media - Google Patents

Method for non-contact measurement of physical parameters of vs skripaleva media

Info

Publication number
SU504920A1
SU504920A1 SU2072704A SU2072704A SU504920A1 SU 504920 A1 SU504920 A1 SU 504920A1 SU 2072704 A SU2072704 A SU 2072704A SU 2072704 A SU2072704 A SU 2072704A SU 504920 A1 SU504920 A1 SU 504920A1
Authority
SU
USSR - Soviet Union
Prior art keywords
radiation
media
physical parameters
skripaleva
thickness
Prior art date
Application number
SU2072704A
Other languages
Russian (ru)
Inventor
Владимир Степанович Скрипалев
Original Assignee
Московский Ордена Трудового Красного Знамени Институт Стали И Сплавов
Всесоюзный научно-исследовательский и конструкторский институт "Цветметавтоматика"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский Ордена Трудового Красного Знамени Институт Стали И Сплавов, Всесоюзный научно-исследовательский и конструкторский институт "Цветметавтоматика" filed Critical Московский Ордена Трудового Красного Знамени Институт Стали И Сплавов
Priority to SU2072704A priority Critical patent/SU504920A1/en
Application granted granted Critical
Publication of SU504920A1 publication Critical patent/SU504920A1/en

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

33

волны ультразвуковых колебаний и толщины контролируемого материала последний начинает вести себ  как упруга  оболочка, совершающа  вынужденные колебани  с частотой заполнени  ультразвуковых имнульсов, т. е. с частотой колебани , обращенной к контролируемому материалу поверхности излучател  ультразвуковых колебаний. Таким образом, колеблющиес  слой воздуха и контролируемый материал  вл ютс  св занной нагрузкой излучател  ультразвуковых колебаний, эквивалентное сопротивление которой определ ет ток через него. Величина этого эквивалентного сопротивлени  нагрузки зависит от упругих посто нных контролируемого материала и его толщины. Дл  определени  последней измен ющийс  ток излучател  ультразвуковых колебаний преобразуют в посто нное напр жение , а при помощи показывающего прибора определ ют толщину контролируемого материала .waves of ultrasonic vibrations and thickness of the material being monitored, the latter begins to behave like an elastic sheath, making forced oscillations with the frequency of filling ultrasonic impulses, i.e. with the frequency of oscillation facing the material being monitored of the surface of the ultrasonic oscillator. Thus, the vibrating air layer and the material being monitored are the associated load of the ultrasonic emitter, the equivalent resistance of which determines the current through it. The magnitude of this equivalent load resistance depends on the elastic constants of the material being monitored and its thickness. In order to determine the latter, the varying current of the ultrasonic oscillator is converted into a constant voltage, and the thickness of the material being monitored is determined with the help of a indicating device.

При изменении толщины контролируемого материала посто нным напр жением преобразовател  6 воздействуют на активное плечо 8 аттенюатора 3 и измен ющимс  сигналом аттенюатора корректируют возбуждение излучател  ультразвуковых колебаний. Коррекцию провод т в сторону уменьшени  погрешпости при воздействии возмущений. Таким образом, описанный контур обратной св зи следит за изменением толщины контролируемого материала с определенным статизмом независимо от возмущающих воздействий.When the thickness of the controlled material changes, the DC voltage of the converter 6 affects the active arm 8 of the attenuator 3 and the excitation of the emitter of ultrasonic vibrations is corrected with a variable signal of the attenuator. The correction is carried out in the direction of decreasing the error when subjected to disturbances. Thus, the described feedback loop monitors the change in the thickness of the monitored material with a certain statism, regardless of disturbing influences.

Использование по предлагаемому способу одностороннего излучени  ультразвуковых колебаний и определение толщины контролируемого материала по изменению электрического тока излучател  ультразвуковых колебаний расшир ет область применени  толщинометрии в фазах прокатки. По вл етс  возможность контролировать передний и задний концы прокатываемого металла, обычно обрезаемые в отходы.The use of the proposed method of one-sided emission of ultrasonic vibrations and the determination of the thickness of the material being monitored by the change in the electric current of the ultrasonic emitter oscillator expands the scope of thickness measurement in the rolling phases. It is possible to control the front and rear ends of the rolled metal, usually cut to waste.

Claims (1)

Формула изобретени Invention Formula Способ бесконтактного измерени  физических параметров сред, например толщины проката, путем излучени  ультразвуковых колебаний , основанный на измерении параметров контролируемого материала в полупространстве излучени , отличающий с  тем, что, с целью обеспечени  измерени  толщины в процессе заправки контролируемого материала в прокатный стан, величину параметра определ ют по выпр мленному току излучени , измен ющемус  в зависимости от суммарного сопротивлени  излучению контролируемого материала и указанного полупространства излучени , при импульсном режиме излучени .A method for contactless measurement of physical parameters of media, such as rolled thickness, by emitting ultrasonic vibrations based on measuring parameters of a controlled material in a radiation half-space, which, in order to measure thickness in the process of charging a controlled material to a rolling mill, the parameter value is determined over the rectified radiation current, which changes depending on the total resistance to radiation of the controlled material and the specified half-space radiation, with pulsed radiation mode.
SU2072704A 1974-11-15 1974-11-15 Method for non-contact measurement of physical parameters of vs skripaleva media SU504920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU2072704A SU504920A1 (en) 1974-11-15 1974-11-15 Method for non-contact measurement of physical parameters of vs skripaleva media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU2072704A SU504920A1 (en) 1974-11-15 1974-11-15 Method for non-contact measurement of physical parameters of vs skripaleva media

Publications (1)

Publication Number Publication Date
SU504920A1 true SU504920A1 (en) 1976-02-28

Family

ID=20599994

Family Applications (1)

Application Number Title Priority Date Filing Date
SU2072704A SU504920A1 (en) 1974-11-15 1974-11-15 Method for non-contact measurement of physical parameters of vs skripaleva media

Country Status (1)

Country Link
SU (1) SU504920A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035335A1 (en) * 2007-09-12 2009-03-19 Det Norske Veritas As Acoustic thickness measurements using gas as a coupling medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035335A1 (en) * 2007-09-12 2009-03-19 Det Norske Veritas As Acoustic thickness measurements using gas as a coupling medium
US7975548B2 (en) 2007-09-12 2011-07-12 Det Norske Veritas As Acoustic thickness measurements using gas as a coupling medium
CN101855514B (en) * 2007-09-12 2012-10-24 挪威船级社 Acoustic thickness measurements using gas as a coupling medium
EA018239B1 (en) * 2007-09-12 2013-06-28 Дет Норске Веритас Ас Acoustic thickness measurements using gas as a coupling medium
US8677823B2 (en) 2007-09-12 2014-03-25 Halfwave As Acoustic thickness measurements using gas as a coupling medium
EP2195611B1 (en) 2007-09-12 2020-05-06 HalfWave AS Acoustic thickness measurements using gas as a coupling medium
EP2195611B2 (en) 2007-09-12 2023-12-20 Ndt Global As Acoustic thickness measurements using gas as a coupling medium

Similar Documents

Publication Publication Date Title
US4240285A (en) Measurement of the density of liquids
WO1991013328A1 (en) Vibrating beam transducer drive system
CN107073521A (en) Ultrasonic wave processing system with piezoelectric force transducer
CA1155197A (en) Ultra sensitive liquid level detector and method
JPH03221806A (en) Control circuit for evaporation monitor
SU504920A1 (en) Method for non-contact measurement of physical parameters of vs skripaleva media
JPH05180657A (en) Method and device for compensating scale coefficient of piezoelectric rate sensor
US2522924A (en) Supersonic inspection apparatus
US4618835A (en) Proximity sensor oscillator utilizing controlled charge
JPS6031400B2 (en) Speaker characteristics measuring device
JPH0121452B2 (en)
SU418791A1 (en) METHOD FOR CONTROLLING THE ROUGHNESS OF THE SURFACE OF PRODUCTS IN GGT Bg ^ pmp ^ '^ g ^^ srtpa Fipd oi; -1, .g1io
US3990292A (en) Frequency modulated fluidic gauge
SU1093963A1 (en) Method of automatic tuning of ultrasonic converters
SU503127A1 (en) Contactless Ultrasonic Thickness Gauge
SU849024A1 (en) Test bed for edf exciter calibration
SU669186A1 (en) Apparatus for measuring small motions and deformations
SU600451A1 (en) Device for determining accelerometer amplitude-frequency characteristics
SU737884A1 (en) Device for measuring electrophysical characteristics of piezoceramic resonators
SU729501A1 (en) Device for measuring elastic and unelastic properties of materials
SU442406A1 (en) The method of controlling the properties of substances
SU381020A1 (en) METHOD OF MEASURING THE DECREMENT OF VIBRATIONS
SU602790A1 (en) Method of determining imaginary and real components of mechanical structure oscillation
JPH0245801Y2 (en)
SU1718037A1 (en) Device for testing composite mixture compaction degree