SU410495A1 - - Google Patents

Info

Publication number
SU410495A1
SU410495A1 SU1738358A SU1738358A SU410495A1 SU 410495 A1 SU410495 A1 SU 410495A1 SU 1738358 A SU1738358 A SU 1738358A SU 1738358 A SU1738358 A SU 1738358A SU 410495 A1 SU410495 A1 SU 410495A1
Authority
SU
USSR - Soviet Union
Prior art keywords
metal
layer
sintering
inductor
mhz
Prior art date
Application number
SU1738358A
Other languages
Russian (ru)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to SU1738358A priority Critical patent/SU410495A1/ru
Application granted granted Critical
Publication of SU410495A1 publication Critical patent/SU410495A1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)

Description

1one

Изобретение может использоватьс  в электротехнической промышленности при производстве электродов химических источников тока, например топливных элементов.The invention can be used in the electrical industry in the manufacture of electrodes of chemical current sources, such as fuel cells.

Известен способ изготовлени  подложки дл  металлокерамического электрода химического источника тока, например из никел , путем нанесени  на металлическую основу порошкообразного металла и индукционного спекани  в восстановительной среде.A known method of manufacturing a substrate for a metal-ceramic electrode is a chemical current source, for example, from nickel, by depositing a powdered metal on a metal base and induction sintering in a reducing medium.

С целью улучшени  технических характеристик электродов предлагаетс  индукционное спекание осуш,ествл ть в диапазоне электромагнитных волн 1-40 МГЦ в течение 25- 40 сек.In order to improve the technical characteristics of the electrodes, induction sintering of drying is proposed, to be established in the range of electromagnetic waves of 1–40 MHz for 25-40 sec.

Способ основан на большой концентрации электромагнитной энергии на единицу плош,ади (500 ВТ/СМ2). Слой металлического порошка , поглоща  электромагнитную энергию, превращает ее в тепловую. При этом плотность тока по стечению сло  не остаетс  посто нной , а уменьшаетс  по направлению в глубь сло . Наибольша  плотность тока приходитс  на поверхностный слой, где имеет место максимальное выделение тепловой энергии . В результате получаетс  поверхностное спекание частиц металл.ического порршка сThe method is based on a large concentration of electromagnetic energy per unit pollo, adi (500 W / CM2). A layer of metal powder, absorbing electromagnetic energy, turns it into heat. At the same time, the current density along the confluence of the layer does not remain constant, but decreases in the direction deep into the layer. The greatest current density occurs on the surface layer, where the maximum release of thermal energy takes place. The result is a surface sintering of the metal metal particles with

высокой активной поверхностью. ;,. о -I: ;.; .high active surface. ; o -I:;.; .

Предшагаемый способ позвол ет, осуществл ть нагрев изделий со скоростью., нара тани  температуры до тыс ч градусов в минуту, значительно сокращать длительность цикла.The pre-step method makes it possible to heat products with a speed of up to thous. Degrees per minute, to significantly reduce the cycle time.

Ниже приводитс  пример осуществлени  способа.The following is an example of the method.

На медную сетку (основу) размером 200Х ХЗОО мм нанос т равномерный слой медного порошка с размером частиц 10+20 мк, затем образец внос т в герметическую камеру спекани , заполненную инертным газом со смонтированиым в ней индуктором. Под плоскостью индуктора на рассто нии 2+4 мм горизонтально располагают таким образом, чтобы индуктор своей плоскостью охватывал весь спекаемый слой. Индуктор выполнен из медной пр моугольной трубки 6X4xOi6 мм с шагом 1+2 мм. В качестве источника электромагнитных волн использован генератор типа Л Д1 -061М Л 40,68 103 КГЦ. Дл  спекани  частиц образца при частотеA uniform layer of copper powder with a particle size of 10 + 20 microns is applied to the copper grid (base) with a size of 200X XZOO mm, then the sample is introduced into a hermetic sintering chamber filled with an inert gas with an inductor mounted in it. At a distance of 2 + 4 mm under the inductor plane, they are horizontally positioned so that the inductor covers the entire sinter layer with its plane. The inductor is made of a copper rectangular tube 6X4xOi6 mm with a pitch of 1 + 2 mm. As a source of electromagnetic waves used generator type L D1 -061M L 40,68 103 KHZ. For sintering sample particles at a frequency

электромагнитных волн 25+27 мгц требуетс  врем  15 сек, при этом активна  поверхность подложки увеличиваетс  в 3-4 раза.Electromagnetic waves of 25 + 27 MHz require 15 seconds, while the active surface of the substrate increases by 3-4 times.

25Предмет изобретени 25 of the invention

Способ .изготовлени  подложки дл  металлокерамич ского электрода химического источника тока, например из никел , путем на .30 несени  на металлическую основу порошко3 образного металла и индукцаоннс гр . в восстановительной среде, ,()тл:1:1.арщк с   тем, что, с целью улучшени  технйческих ,р,иствк, даду,{ц,ионное спекдние рсуще . в щал|Хонеэлектромагнйтйых волн Г-40 мгЦ втеченйе 25-40 сек.A method for producing a substrate for a metal-ceramic electrode of a chemical current source, for example, from nickel, by carrying .30 a powder-shaped metal onto a metal base and inductively gr. in a reducing environment,, () TL: 1: 1.Arshk so that, in order to improve the technical, p, equ, dud, {o, ionic spectra). in schal | Honelectromagnetic waves G-40 MHz in the course of 25-40 seconds.

SU1738358A 1972-01-12 1972-01-12 SU410495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU1738358A SU410495A1 (en) 1972-01-12 1972-01-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1738358A SU410495A1 (en) 1972-01-12 1972-01-12

Publications (1)

Publication Number Publication Date
SU410495A1 true SU410495A1 (en) 1974-01-05

Family

ID=20500300

Family Applications (1)

Application Number Title Priority Date Filing Date
SU1738358A SU410495A1 (en) 1972-01-12 1972-01-12

Country Status (1)

Country Link
SU (1) SU410495A1 (en)

Similar Documents

Publication Publication Date Title
JPS5941510B2 (en) Beryllium oxide film and its formation method
JPS6440305A (en) Manufacture of superconductive ceramic material
RU2456369C1 (en) Procedure for forming titanium-boron, copper coatings on copper contact surfaces
US3738828A (en) Method of powder activation
He et al. S-C3N4 quantum dot decorated ZnO nanorods to improve their photoelectrochemical performance
SU410495A1 (en)
JPS5272170A (en) Package for semiconductor elements
SG50288G (en) Process for making an electrode for electrochemical generator and electrode thus obtained
US3932760A (en) Powder activation in an inert atmosphere
US3184400A (en) Apparatus for the treatment of substances with ultrasonic vibrations and electromagnetic radiations
RU2489515C1 (en) METHOD FOR ELECTROEXPLOSIVE SPUTTERING OF COMPOSITE COATINGS OF TiB2-Cu SYSTEM ONTO COPPER CONTACT SURFACES
Yücel et al. The Study of DC-and AC-Driven GaAs-Coupled Gas Discharge Micro Plasma Systems: Modeling and Simulation
Singh et al. Improved photoelectrochemical response of haematite by high energy Ag9+ ions irradiation
Rui et al. Characteristics of DBD micro-discharge at different pressure and its effect on the performance of oxygen plasma reactor
Svandova et al. Complex characterisation of Cr-doped α-Al for DBD applications
US3432262A (en) Method for the production of amorphous cadmium sulphide
US2819961A (en) Process for connecting a tantalum electrode pin to an electrode body
Koste Electron beam processing of interconnection structures in multi-layer ceramic modules
ES479964A1 (en) Method for manufacturing sensing elements for electron dosimeters.
Peschanskii et al. High-Frequency Phenomena in Metals During Multi-Channel Reflection of Electrons by the Sample Boundaries
RU2471284C2 (en) Method to produce power
RU2400005C1 (en) Method of creating current-conducting channels in non-conducting medium
RU2078149C1 (en) Method of treating objects of metals and their alloys
RU2132589C1 (en) Method for generation of electric current and power supply which implements said method
Kiselev et al. Multiple production of hadrons in deep-inelastic processes