SU1408300A1 - Method of measuring liquid viscosity - Google Patents

Method of measuring liquid viscosity Download PDF

Info

Publication number
SU1408300A1
SU1408300A1 SU864152769A SU4152769A SU1408300A1 SU 1408300 A1 SU1408300 A1 SU 1408300A1 SU 864152769 A SU864152769 A SU 864152769A SU 4152769 A SU4152769 A SU 4152769A SU 1408300 A1 SU1408300 A1 SU 1408300A1
Authority
SU
USSR - Soviet Union
Prior art keywords
viscosity
liquid
diffusion
liquid viscosity
measuring liquid
Prior art date
Application number
SU864152769A
Other languages
Russian (ru)
Inventor
Виктор Иванович Белоиваненко
Владимир Борисович Владимиров
Original Assignee
Институт Биологии Южных Морей Им.А.О.Ковалевского
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Биологии Южных Морей Им.А.О.Ковалевского filed Critical Институт Биологии Южных Морей Им.А.О.Ковалевского
Priority to SU864152769A priority Critical patent/SU1408300A1/en
Application granted granted Critical
Publication of SU1408300A1 publication Critical patent/SU1408300A1/en

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Изобретение относитс  к способам определени  в зкости жидких сред. С целью обеспечени  измерени  в зкости проб малых объемов в исследуемую жидкость ввод т газообразный агент, производ т амперометрические измерени  его действуюп1ей концентрации по значени м диффузионного тока при наличии и отсутствии перемешивани .This invention relates to methods for determining the viscosity of liquid media. In order to ensure measurement of the viscosity of small volumes of samples, a gaseous agent is introduced into the test liquid, amperometric measurements of its effective concentration are made using diffusion current values in the presence and absence of mixing.

Description

елate

сwith

0000

соwith

Изобретение относитс  к способам определени  в зкости жидких сред и может быть использовано в биологии и медицине дл  анализа малых количеств образцов.The invention relates to methods for determining the viscosity of liquid media and can be used in biology and medicine for analyzing small amounts of samples.

Целью изобретени   вл етс  обеспе чение измерени  в зкости микроколичеств жидкости.The aim of the invention is to provide a measurement of the viscosity of micro-quantities of a liquid.

Способ основан на общности  влений направленного переноса массы и количества движени . Физическа  сущность способа состоит в том, что при амперометрии диффузный ток ионизации молекул рного кислорода, растворенно го в исследуемой жидкости, зависит не только от его парциональной концентрации , но и от диффузии в при- электродную зону разр да. Перемешива ние исследуемой жидкости обусловлива ет конвективный перенос определ емого вещества в приэлектроднуго зону разр да, и величина предельного диффузионного тока определ етс  действующим значением концентрации анализируемого газа. В отсутствие перемешивани  диффузионный ток, определ емый концентрацией анализируемого газа , ограничиваетс  величиной его молекул рной диффузии в исследуемой жидкости. Основную роль при этом играет ее в зкость. Отношение найденных значений диффузионных токов при наличии и отсутствии перемешивани  исключает таким образом вли ние исходной концентрации растворенного газа (кислорода) на результаты проводимых определений.The method is based on the generality of the phenomena of directional transfer of mass and amount of movement. The physical essence of the method is that with amperometry, the diffuse ionization current of molecular oxygen dissolved in the liquid under study depends not only on its partial concentration, but also on diffusion into the near-electrode discharge zone. The mixing of the test fluid causes the convective transfer of the substance to be determined to the near-electrode discharge zone, and the value of the limiting diffusion current is determined by the effective value of the concentration of the analyzed gas. In the absence of mixing, the diffusion current, determined by the concentration of the gas being analyzed, is limited by the value of its molecular diffusion in the liquid under study. Its main role is played by its viscosity. The ratio of the found values of diffusion currents in the presence and absence of mixing thus eliminates the influence of the initial concentration of the dissolved gas (oxygen) on the results of the determinations made.

Пример. Каплю исследуемой жидкости (30-40 мкл) помещают в ка10Example. A drop of the test liquid (30-40 μl) is placed in ka10

15,15,

2020

тодную зону электрохимической  чейки закрытого типа с полупроницаемой мембраной. При включении микропереме- шивающего устройства происходит быстрое н асьш1ение капли исследуемой жидкости кислородом воздуха, после чего измер ют диффузионный ток его ионизации . После отключени  перемешивани , когда основную роль в переносе кислорода начинает играть молекул рна  диффузи , дл  установлени  стационарного распределени  концентраций газа необходимо довольно длительное врем  пор дка часов. Установлено, что при использовании проб очень малых объемов (дес тки микролитров) дл  достижени  стабильной величины тока электрохимической  чейки достаточно времени пор дка 5 €. Искомую в зкость определ ют по отношению найденных значений и сравнению их с градуиро- вочной кривой.A closed-type electrochemical cell with a semipermeable membrane. When the micro-mixing device is turned on, a drop of the liquid under study is rapidly dried by oxygen in the air, after which the diffusion current of its ionization is measured. After disengagement, when molecular diffusion begins to play a major role in the transport of oxygen, a fairly long time, in the order of hours, is required to establish a stationary distribution of gas concentrations. It has been established that when using samples of very small volumes (tens of microliters), in order to achieve a stable value of the current of the electrochemical cell, a time of about 5 € is sufficient. The desired viscosity is determined by the ratio of the values found and their comparison with the graduation curve.

Claims (1)

25 Формула изобретени 25 claims Способ определени  в зкости жидкости , основанный на введении в нее газообразного агента, обеспечении контакта загазированной жидкости с электродами, образующими реакционные зоны, и измерении диффузионного тока ионизации введенного газа, отличающийс  тем, что, с целью обеспечени  измерени  в зкости микроколичеств жидкости, каплю загазированной жидкости ввод т в одну из реакционных зон и измер ют диффузионные токи ионизации при перемешивании и без него, по отношени м величин которых суд т о в зкости жидкости.A method for determining the viscosity of a fluid, based on introducing a gaseous agent into it, ensuring contact of the aerated liquid with the electrodes forming the reaction zones, and measuring the diffusion current of the ionized gas, characterized in that, in order to measure the viscosity of the liquid micro-quantities, a drop of the aerated liquid are introduced into one of the reaction zones and diffusion ionization currents are measured with and without stirring, according to the values of which the viscosity of the liquid is judged.
SU864152769A 1986-11-27 1986-11-27 Method of measuring liquid viscosity SU1408300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU864152769A SU1408300A1 (en) 1986-11-27 1986-11-27 Method of measuring liquid viscosity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU864152769A SU1408300A1 (en) 1986-11-27 1986-11-27 Method of measuring liquid viscosity

Publications (1)

Publication Number Publication Date
SU1408300A1 true SU1408300A1 (en) 1988-07-07

Family

ID=21269621

Family Applications (1)

Application Number Title Priority Date Filing Date
SU864152769A SU1408300A1 (en) 1986-11-27 1986-11-27 Method of measuring liquid viscosity

Country Status (1)

Country Link
SU (1) SU1408300A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1380837A1 (en) * 2002-07-11 2004-01-14 Lifescan, Inc. Electrochemical test strip having a plurality of reaction chambers
US6855243B2 (en) 2001-04-27 2005-02-15 Lifescan, Inc. Electrochemical test strip having a plurality of reaction chambers and methods for using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР IP 693151, кл. G 01 N 11/00, 1977. Авторское свидетельство СССР № 1221550, кл. G 01 N 11/00, 1984. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855243B2 (en) 2001-04-27 2005-02-15 Lifescan, Inc. Electrochemical test strip having a plurality of reaction chambers and methods for using the same
EP1380837A1 (en) * 2002-07-11 2004-01-14 Lifescan, Inc. Electrochemical test strip having a plurality of reaction chambers

Similar Documents

Publication Publication Date Title
US4504443A (en) Stop-flow analysis
Degn et al. Measurement of steady-state values of respiration rate and oxidation levels of respiratory pigments at low oxygen tensions. A new technique
US4490234A (en) Method for measuring ionic concentration utilizing an ion-sensing electrode
US4654197A (en) Cuvette for sampling and analysis
JP2004515784A5 (en)
RU2002121247A (en) Electrochemical method for the analysis of coagulation and device for its implementation
AU2001247614B2 (en) Lithium ion-selective electrode for clinical applications
SU1408300A1 (en) Method of measuring liquid viscosity
PL111961B1 (en) Method of determining the total contents of organic substances in gases by means of flame-type ionizing detector and apparatus for determining total contents of organic substances in gases by means of flame-type ionizing detector
CN104849335A (en) Method for detecting ionic calcium content of blood sample
JPS5933225B2 (en) Method and device for instantaneous measurement of ions in a carrier solution by potential difference
Tada et al. A new method for screening for hyperammonemia
KR920704117A (en) Fibrinogen Direct Analysis Method
US4120659A (en) Sulfur analysis
Falck Amperometric oxygen electrodes
GB2029013A (en) A method of and a device for chemical analysis
ATE327820T1 (en) CAPILLARY FORCE MIXER
Gratzl Diffusional microtitration: a technique for analyzing ultramicro samples
Mills et al. Characterisation and application of an oxygen membrane polarographic detector in a flow system for studying oxygen-evolving reactions
Ferreira et al. A microporous membrane interface for the monitoring of dissolved gaseous and volatile compounds by on-line mass spectrometry
FI59172B (en) FOERFARANDE FOER KVANTITATIV BESTAEMNING AV I VAETSKOR LOESTA GASER OCH VID FOER FOERFARANDET ANVAENDBAR GASSEPARERINGSANORDNING
SE8304989D0 (en) DEVICE FOR SEATING THE GAS PARTICULAR ACID, CARBON MONOXIDE AND CARBON DIOXIDE IN GAS OR FLUID SAMPLES, IN PARTICULAR IN THE BREATH AND IN THE BLOOD
RU2752801C1 (en) Amperometric method for measuring concentration of nitric oxide in gas mixture with nitrogen
SU1492253A1 (en) Method for determining oxygen in hydrocarbon liquids and gas mixtures
JP3375000B2 (en) Inspection device for electrode for electrochemical measurement