SU124669A1 - Method for evaluating the effects of optical radiation on plants - Google Patents

Method for evaluating the effects of optical radiation on plants

Info

Publication number
SU124669A1
SU124669A1 SU615162A SU615162A SU124669A1 SU 124669 A1 SU124669 A1 SU 124669A1 SU 615162 A SU615162 A SU 615162A SU 615162 A SU615162 A SU 615162A SU 124669 A1 SU124669 A1 SU 124669A1
Authority
SU
USSR - Soviet Union
Prior art keywords
plants
radiation
evaluating
effects
optical radiation
Prior art date
Application number
SU615162A
Other languages
Russian (ru)
Inventor
И.И. Свентицкий
Original Assignee
И.И. Свентицкий
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by И.И. Свентицкий filed Critical И.И. Свентицкий
Priority to SU615162A priority Critical patent/SU124669A1/en
Application granted granted Critical
Publication of SU124669A1 publication Critical patent/SU124669A1/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

Известные способы оценки действи  оптического излучени  на растени  (по интенсивности фотосинтетически активной радиации, по интегральной облученности и др.) сложны и недостаточно точны.The known methods for assessing the effect of optical radiation on plants (by the intensity of photosynthetically active radiation, by integral irradiance, etc.) are complex and not accurate enough.

Предлагаемый способ облучени  отличаетс  от известных тем, что измер ют ту часть поглощаемой растени ми энергии излучени , котора  используетс  в растении в процессе фотосинтеза и соответствует спектральной чувствительности среднего растени  данного вида.The proposed irradiation method differs from those known in that it measures the part of the radiation energy absorbed by plants that is used in a plant during photosynthesis and corresponds to the spectral sensitivity of the average plant of a given species.

Дл  осуи;ествлени  способа применен фотоэлектрический фотометр с разлагающей излучение в спектр призмой или дифракционной рещеткой и щелевой диафрагмой, выдел ющей излучение требуемой области спектра.A photoelectric photometer with a prism or diffraction grating and a slit diaphragm emitting radiation of the required spectral region was used to inspect the method.

Сущность предлагаемого способа заключаетс  в том, что о вли нии оптического излучени  на накопление растени ми органического вещества суд т по той энергии оптического излучени , котора  может быть непосредственно использована растени ми в процессе фотосинтеза. Эта часть излучени  определ етс  предварительно теоретически или экспериментально .The essence of the proposed method is that the effect of optical radiation on the accumulation of organic matter by plants is judged by the optical energy that can be directly used by plants during photosynthesis. This part of the radiation is determined theoretically or experimentally.

Лучистый поток, оцененный по спектральной чувствительности растени , названный фитопотоком, представл ет собой ту часть мощности излучени , котора  при наиболее благопри тных услови х может быть эффективно использована растением в процессе фотосинтеза.The radiant flux, estimated by the spectral sensitivity of the plant, called the phytocurrent, is that part of the radiation power that can be effectively used by the plant during photosynthesis under the most favorable conditions.

Избрав в качестве эталонного излучение с длиной волны 680 ммк, за единицу фитопотока принимают фит, чис тенно |равный фитопотоку однородного излучени  с длиной волны 680 ммк и мощностью 1 вг.Having selected radiation with a wavelength of 680 microns as a reference, they take a fit for a unit of a phytoflow, which is distinctly equal to a uniform flow of a uniform radiation with a wavelength of 680 mmk and a power of 1 Vg.

Непосредственное измерение фитооблученности можно осуществить прибором - фитофотометром, спектральна  чувствительность которого будет соответствовать спектральной чувствительности растени .A direct measurement of phyto-irradiation can be carried out with a phyto-photometer, whose spectral sensitivity will correspond to the spectral sensitivity of the plant.

Принципиальна  схема оптической части фитофотометра представлена на чертеже.A schematic diagram of the optical part of the phytophotometer is shown in the drawing.

SU615162A 1958-12-29 1958-12-29 Method for evaluating the effects of optical radiation on plants SU124669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU615162A SU124669A1 (en) 1958-12-29 1958-12-29 Method for evaluating the effects of optical radiation on plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU615162A SU124669A1 (en) 1958-12-29 1958-12-29 Method for evaluating the effects of optical radiation on plants

Publications (1)

Publication Number Publication Date
SU124669A1 true SU124669A1 (en) 1959-11-30

Family

ID=48396107

Family Applications (1)

Application Number Title Priority Date Filing Date
SU615162A SU124669A1 (en) 1958-12-29 1958-12-29 Method for evaluating the effects of optical radiation on plants

Country Status (1)

Country Link
SU (1) SU124669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU179245U1 (en) * 2018-01-09 2018-05-07 Общество с ограниченной ответственностью "Научно-техническое предприятие "ТКА" Spectroradiometer for measuring photosynthesis photon flux density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU179245U1 (en) * 2018-01-09 2018-05-07 Общество с ограниченной ответственностью "Научно-техническое предприятие "ТКА" Spectroradiometer for measuring photosynthesis photon flux density

Similar Documents

Publication Publication Date Title
Bilger et al. Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field
Kok Absorption changes induced by the photochemical reaction of photosynthesis
GB763556A (en) Improved method of and apparatus for spectrochemical analysis
JPS56103304A (en) Electro optical inspecting device
Sosik Bio-optical modeling of primary production: consequences of variability in quantum yield and specific absorption
SU124669A1 (en) Method for evaluating the effects of optical radiation on plants
Haig The spectral sensibility of Avena
Stern Light measurements in pastures.
GB1217946A (en) Monitoring the concentration of optically permeable solutions
SU144047A1 (en) Instrument for luminescence analysis
GB1189840A (en) Improvements in or relating to Colorimeters
JPS56145323A (en) Spectrophotometer
SU138396A1 (en) Automatic color pyrometer
SU473898A1 (en) Device for measuring the area of mine workings
Schmidt et al. INDUCTION KINETICS OF DELAYED LUMINESCENCE IN PHOTOSYNTHETIC ORGANISMS AS MEASURED BY AN LED‐BASED PHOSPHORIMETER
SU126619A1 (en) The method of measuring the cross-sectional area of bulk bodies
JPS5272271A (en) Surface inspection device for high temperature objects
NISULESCU et al. New methods for determination SO2 emissions
JPS5240193A (en) Dividing lens and automatic analysis device with it
SU146073A1 (en) Instrument for monitoring optical optical material blanks in the region of 2.6-2.9 microns
JPS5694242A (en) Measuring method for concentration of impurity in semiconductor
SU133336A1 (en) Method for determining the density of paper during its production
Sun et al. The design of signal acquisition and processing of Rotational Raman temperature measuring lidar system
JPS5574447A (en) Method of measuring impurity concentration distribution of semiconductor wafer
SU1625834A1 (en) Method for manufacturing heat sensitive element