SU104819A1 - Acoustic method for detecting cavitation in hydraulic machines and other similar devices - Google Patents

Acoustic method for detecting cavitation in hydraulic machines and other similar devices

Info

Publication number
SU104819A1
SU104819A1 SU453782A SU453782A SU104819A1 SU 104819 A1 SU104819 A1 SU 104819A1 SU 453782 A SU453782 A SU 453782A SU 453782 A SU453782 A SU 453782A SU 104819 A1 SU104819 A1 SU 104819A1
Authority
SU
USSR - Soviet Union
Prior art keywords
cavitation
similar devices
hydraulic machines
acoustic method
detecting cavitation
Prior art date
Application number
SU453782A
Other languages
Russian (ru)
Inventor
С.Б. Стопский
Original Assignee
С.Б. Стопский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by С.Б. Стопский filed Critical С.Б. Стопский
Priority to SU453782A priority Critical patent/SU104819A1/en
Application granted granted Critical
Publication of SU104819A1 publication Critical patent/SU104819A1/en

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

Уже известны акустпчссюге способы обнаружени   влений кавитации, когда о возникновении н кавнтацни суд т по количесгву энергии , noTepJiHHoij ультразвуком, пос .ланным через зону кавитации на нсс.гедуе.мую деталь машины с применением ири этом лампового уси.чител .Acoustical methods of detecting cavitation are already known, when the occurrence of cavitation is judged by the amount of energy, noTepJiHHoij, by ultrasound, sent through a cavitation zone on an nss.guedu.my machine part using this lamp.

В описываемом ниже способе дл  обнаружени  кавитации используетс  ко.чебаиие среды, в KOTopofi она возиикает. Эти колебани  воспринимаютс  пьезометрическим ириелМником с преобразованием их в равный ио частоте электрический ток, по величине амплитуды которого суд т о состо  и и и кавита ци н.In the method described below, a cosmic environment is used to detect cavitation, which occurs in KOTopofi. These vibrations are perceived by a piezometric Michelin with their conversion into an electric current equal to the frequency, according to the magnitude of which the amplitude is judged on the state and cavitation of cavitations.

Как известно,  вл ние кавитации сопровождаетс  звуковыми колебани ми . Эти колебани  содержат широкий спектр частот и физически св заны с процессом кавитации.As is known, cavitation is accompanied by sound vibrations. These vibrations contain a wide range of frequencies and are physically associated with the cavitation process.

Но так как на колебани , сопровождаюш ,ие кавитацию, накладываютс  колебани , вызваннь е другими причинами, то по общему шуму (колебани м ) трудно определить характер развити  кавитации, а кавитационный коэффициент в этом случае  вл етс  показателем начала срываBut since oscillations, concomitant and non-cavitation, are superimposed by oscillations caused by other reasons, it is difficult to determine the nature of the development of cavitation from the total noise (oscillations), and the cavitation coefficient in this case is an indicator of the onset of failure

энергетических иара.метров гидромашины , иапример, турбины.energy meters of hydro machine, and, for example, turbines.

Таким образом, задача сводитс  к оиреде.иению кавнтационного коэффициента и наблюден1по за развитием кавитации. Дл  этой цели на статор манп|ны устанавливаетс  пьезометрический приемник, который, восиринима  звуковые колебани , воз1нН; аюи-1 ,ие при кавитации, преобразует их в равный но частоте колебаiinji электрический ток. Этот ток лсиливаетс  усилителем, пропускаюицгм хзкую полосу частот шума. По амп.читуде ко.:1ебаннй тока с}д т о состо нии и развитии кавитации.Thus, the task is to determine the coefficient of measurement and observe the development of cavitation. For this purpose, a piezometric receiver is installed on the manpent stator, which, as sound waves, is generated; Ayuy-1, when cavitation, converts them to an equal but oscillating frequency electric current. This current is amplified by the amplifier, passing through a band of noise frequencies. According to the amplitude of the ch. Co.: 1 banny current c} d t about the state and development of cavitation.

На чертеже изображена крива  зависимости амплитуды и-ультразвуковых колебании от коэффициента кавитации -. т. е. от режима работы гидромашины.The drawing shows the curve of the dependence of the amplitude and ultrasonic vibrations from the coefficient of cavitation -. i.e. on the operating mode of the hydraulic machine.

Рост интенсивности ультразвуковых колебаний, характеризующийс  кривой а соответствует росту интенсивности кавитации. Порог, с которого рост интенсивности колебаний прекращаетс  или происходит падение колебаний, соответствует режиМ} гидромашины, при которой начн нают падать энергетические показатели .The increase in the intensity of ultrasonic vibrations, characterized by the curve a, corresponds to an increase in the intensity of cavitation. The threshold from which the increase in the oscillation intensity ceases or the oscillation decreases, corresponds to the mode} of the hydraulic machine, at which the energy indices begin to fall.

Такой способ позвол ет примен ть более простую аппарат ру п уменьшает врем , затраченное на обнаруженпе кавитации.Such a method allows the use of a simpler apparatus and reduces the time spent on cavitation detection.

Ире д м е т и з о б р е т е и н  Ire dmete and z obrete n and

Акустический способ обнаружени  кавитации в гилТ.ромашинах и других подобных устройствах с пспользованпем звуковых ко,теба1пп 1 среды, вAcoustic method of detecting cavitation in gilT. Machines and other similar devices with sound systems that are used in media, in

которой возникает кавитаци , отл и чающий с   тем, что, с целью применени  более цростои аппаратуры , эти колебани  воспринимают пьезометрическнм приемником с преобразованием их в равный ио частоте электрический ток, по ве.чичине амплитуды которого после пропуска его через усилитель, пропускающий узкую полосу частот шума, суд т о состо нии и развитии кавитации .in which cavitation occurs, which, in order to use more hardware, these vibrations perceive the piezometric receiver with their conversion into an equal to the frequency electric current, according to the magnitude of which, after passing it through the amplifier, passing a narrow frequency band noise, judged on the condition and development of cavitation.

SU453782A 1956-01-12 1956-01-12 Acoustic method for detecting cavitation in hydraulic machines and other similar devices SU104819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU453782A SU104819A1 (en) 1956-01-12 1956-01-12 Acoustic method for detecting cavitation in hydraulic machines and other similar devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU453782A SU104819A1 (en) 1956-01-12 1956-01-12 Acoustic method for detecting cavitation in hydraulic machines and other similar devices

Publications (1)

Publication Number Publication Date
SU104819A1 true SU104819A1 (en) 1956-11-30

Family

ID=48378292

Family Applications (1)

Application Number Title Priority Date Filing Date
SU453782A SU104819A1 (en) 1956-01-12 1956-01-12 Acoustic method for detecting cavitation in hydraulic machines and other similar devices

Country Status (1)

Country Link
SU (1) SU104819A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472038C2 (en) * 2009-07-17 2013-01-10 ЭйчЭмДи Сил/Лесс Пампс Лимитед Pump actuated through magnetic coupling and equipped with non-contact vapour detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472038C2 (en) * 2009-07-17 2013-01-10 ЭйчЭмДи Сил/Лесс Пампс Лимитед Pump actuated through magnetic coupling and equipped with non-contact vapour detector

Similar Documents

Publication Publication Date Title
Pal et al. Detecting & locating leaks in water distribution polyethylene pipes
JPS599842B2 (en) Damage detection device for rotating bodies
RU2012127282A (en) METHOD AND DEVICE FOR MONITORING Torsional Oscillations of a Rotating Shaft of a Turbine Engine
CN107024537A (en) A kind of insulator non-destructive testing technology based on resonance Principles of Acoustics
JP2012122740A (en) Cavitation detector
SU104819A1 (en) Acoustic method for detecting cavitation in hydraulic machines and other similar devices
JP2010249637A (en) Method for detecting state of fluid and state detecting device
WO2018193617A1 (en) Vibration detection device and abnormality determination system
RU2640956C1 (en) Device of ultrasonic controlling state of products
JPS6223819B2 (en)
RU2732469C1 (en) Method for detection of gas turbine engine blade crack
RU2619812C1 (en) Method of non-destructive testing of hidden defects in technically complex structural element which is not accessible and device for its implementation
RU1795363C (en) Method for determining acoustic cavitation threshold in liquid
CN219641637U (en) Ultrasonic guided wave detection device for oil and gas pipeline
SU785740A1 (en) Apparatus for monitoring quality of resilient elements by free oscillation method
SU440598A1 (en) Ultrasound attenuation measurement method
US2911617A (en) Silica gel as underwater noise source
SU442417A1 (en) Low Frequency Ultrasonic Transducer
JPS58100729A (en) Confirming method for normality of cooling material leakage detector
SU800672A1 (en) Method of vibration diagnosis of machine tools
SU1619163A1 (en) Method of ultrasonic inspection of articles
JPS5676360A (en) Detector for tool failure
SU422197A1 (en) Device for receiving infrasonic oscillations
SU894404A1 (en) Method of diagnosis of bearings and device for effecting same
SU413387A1 (en)