SK9094A3 - Method of production of polyester produced by this method and its use - Google Patents
Method of production of polyester produced by this method and its use Download PDFInfo
- Publication number
- SK9094A3 SK9094A3 SK90-94A SK9094A SK9094A3 SK 9094 A3 SK9094 A3 SK 9094A3 SK 9094 A SK9094 A SK 9094A SK 9094 A3 SK9094 A3 SK 9094A3
- Authority
- SK
- Slovakia
- Prior art keywords
- ppm
- polyester
- antimony
- polycondensation
- germanium
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/83—Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/85—Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
- C08G63/86—Germanium, antimony, or compounds thereof
- C08G63/863—Germanium or compounds thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
Spôsob výroby polyesteru, polyester vyrobený týmto spôsobom a jeho použitieProcess for producing polyester, polyester produced by this process and its use
Oblasť technikyTechnical field
Vynález sa týka spôsobu výroby polyesteru alebo kopolyesteru z polyetyléntereftalátových jednotiek polykondenzáciou pomocou zmesného katalyzátora obsahujúceho viac zložiek, pričom aspoň jednou zložkou je soľ lítia alebo germánia, polyesteru vyrobeného týmto spôsobom a jeho použitia.The present invention relates to a process for the manufacture of a polyester or copolyester from polyethylene terephthalate units by polycondensation using a mixed catalyst comprising a plurality of components, wherein at least one component is a lithium or germanium salt, a polyester produced by the process and its use.
Doterajší stav technikyBACKGROUND OF THE INVENTION
Výroba polyesteru je známa. Používa sa zvyčajne kyselinová zložka, ako je kyselina tereftálová alebo jej metylester, a glykolová zložka, ako je ety 1 éng1 yko1 , ktoré sa v prvom stupni priamo zesterifikujú alebo podrobia preesterifikovaniu a v druhom výrobnom stupni sa vykoná vlastná po 1ykondenzáci a. Ku tejto polykondenzačnej reakcii sú potrebné katalyzátory, z ktorých sa pre spôsob vychádzajúci z d i mety 1terafta 1átu ukázala ako veľmi vhodná kombinácia mangánu s antimónom.The production of polyester is known. Usually an acid component, such as terephthalic acid or a methyl ester thereof, and a glycol component, such as ethylene glycol, are used which are directly cross-esterified or re-esterified in the first stage and are carried out in the second production stage after 1condensation a. Catalysts are required for this polycondensation reaction, from which a combination of manganese with antimony has proven to be very suitable for the process starting from dimethyl terephthalate.
Polyestery obsahujúce antimón sú z dôvodov ochrany životného prostredia závadné. Ťažkosti sa prejavujú predovšetkým v dvoch oblastiach. Odstraňovanie odpadov obsahujúcich antimón, z recyklácie surového glykolu (destilačný kal), je stále nákladnejšie a tým je celková výroba polyesteru nehospodárnejšia. Okrem toho vznikajú pri farbení polyesterových tkanín odpadové vody obsahujúce antimón, pretože antimón sa dôkladne na vlákno nefixuje. Dôvodom pre zvyšovanie ťažkostí je odôvodnená obava, že antimón by mohol byť zaradený do skupiny látok s preukázaným rizikom vyvolávania rakoviny.Antimony-containing polyesters are harmful for environmental reasons. Difficulties are particularly apparent in two areas. The removal of antimony-containing wastes from the recycling of crude glycol (distillation sludge) is increasingly costly, making the overall production of polyester more economical. In addition, antimony-containing waste waters are produced in the dyeing of polyester fabrics, since the antimony is not fixed firmly on the fiber. The reason for the increased difficulty is the justified concern that antimony might be included in a group of substances with a proven risk of causing cancer.
V dôsledku sprísneného zákonodarstva v početných priemyselných krajinách je odstraňovanie antimónu považovaného za toxický, stále akútnejšie. Preto sa navrhli viaceré riešenia spôsobov výroby polyesteru neobsahujúceho antimón.Due to stricter legislation in numerous industrialized countries, the removal of antimony considered toxic is increasingly acute. Therefore, several solutions have been proposed for methods of making an antimony-free polyester.
Tak napríklad R.Gutmann v práci, uverejnenej v časopise Text. Prax. Int., 44 (1) str.29/30, 33, 1989, navrhuje použitie glykolátu titánu, germánia alebo hliníka, namiesto glykolátu antimónu. Pritom sa definované glykoláty vyrábajú. Výroba glykolátov v oddelenom výrobnom stupni v konštantnej čistej kvalite je veľmi nákladná. O okamihu a mieste pridania polykondenzačného katalyzátora sa v práci nezmieňuje.For example, R. Gutmann in the work published in the journal Text. Practice. Int., 44 (1) p.29 / 30, 33, 1989, suggests the use of titanium, germanium or aluminum glycolate instead of antimony glycolate. The defined glycolates are produced. The production of glycolates in a separate production stage in constant pure quality is very expensive. The time and place of addition of the polycondensation catalyst is not mentioned in the work.
Použitie zmesných katalyzátorov, pozostávajúcich z dvoch alebo viacerých zložiek, pri polykondenzácii polyesterov je známe. Tak v európskom patentovom spise EP-A-0425215 sa opisuje spôsob, pri ktorom sa pri polykondenzácii používa katalyzátor z Mn/Li/Co/Sb. Lítium v spojení s antimónom má pritom po 1ykondenzáci u mierne urýchľovať.The use of mixed catalysts consisting of two or more components in the polycondensation of polyesters is known. Thus, EP-A-0425215 describes a process in which a catalyst of Mn / Li / Co / Sb is used in polycondensation. At the same time, lithium in conjunction with antimony should slightly accelerate after 1condensation.
Vo francúzskom patentovom spise FR-A-2 570 077 sa uvádza použitie germaničitanu lítneho ako katalyzátora pre polykondenzáciu. Opisná časť neobsahuje žiadny príklad uskutočnenia, z ktorého by boli zrejmé koncentrácie a spôsob pôsobenia. Germaničitan sodný, uvádzaný v príkladoch uskutočnenia, sa prostredníctvom oxidu alkalického kovu alebo uhličitanu alkalického kovu známou reakciou s oxidom germaničitým uvádza do rozpustného stavu , pričom pomer Na:Ge činí približne 0,5 : 1. Germaničitan sodný slúži na urýchlenie po1ykondenzáci e v reakčnej zmesi, neúplne inhibovanej fosforečnanovými zlúčeninami.French patent FR-A-2 570 077 discloses the use of lithium germanate as a catalyst for polycondensation. The specification does not contain any exemplary embodiment to show the concentrations and mode of action. The sodium germanite mentioned in the examples is brought to a soluble state by means of an alkali metal oxide or an alkali metal carbonate by a known reaction with germanium oxide, the Na: Ge ratio being about 0.5: 1. The sodium germanite serves to accelerate polycondensation in the reaction mixture, not completely inhibited by phosphate compounds.
Úlohou vynálezu je hospodárna výroba polyesteru neobsahujúceho antimón, bez zníženia známej kvality polyester u.SUMMARY OF THE INVENTION It is an object of the invention to economically manufacture antimony-free polyester without reducing the known quality of the polyester.
Podstata vynálezuSUMMARY OF THE INVENTION
Vynález rieši úlohu tak, že sa k reakčnej zmesi na začiatku po 1ykondenzačnej fázy pridá ako zmesný katalyzátor 10 až 75 ppm Li a 15 až 80 ppm Ge.The invention solves the problem by adding 10-75 ppm Li and 15-80 ppm Ge to the reaction mixture initially after the 1condensation phase.
Ukázalo sa, že je výhodné, pridať do taveniny 10 až 70 ppm Li, najmä 35 až 45 ppm Li, výhodne 30 až 40 ppm Li a zároveň 15 až 80 ppm Ge, najmä 15 až 40 ppm Ge pred polykondenzáciou, s výhodou bezprostredne pred po 1ykondenzáciou, v podobe glykolového roztoku.It has been found to be advantageous to add 10 to 70 ppm Li, in particular 35 to 45 ppm Li, preferably 30 to 40 ppm Li, and at the same time 15 to 80 ppm Ge, in particular 15 to 40 ppm Ge before the polycondensation, preferably immediately before after 1condensation, in the form of a glycol solution.
Prídavok menej ako 10 ppm Li je nevýhodný preto, že doba priebehu polykondenzácie sa príliš predlžuje; prídavok viac ako 75 ppm má za následok drastické zníženie stupňa belosti polyméru.The addition of less than 10 ppm Li is disadvantageous because the polycondensation time is too prolonged; addition of more than 75 ppm results in a drastic reduction in the degree of whiteness of the polymer.
Molárny pomer Li : Ge v rozmedzí od asi 1 2 : 1 až do 1 : 1 sa v po 1ykondenzačnom katalyzátore ukázal ako zvlášť vhodný.The Li: Ge molar ratio ranging from about 12: 1 to 1: 1 has proven to be particularly suitable in a 1condensation catalyst.
Vyrobený polyester má obsahovať menej ako 50 ppm Li, výhodne 20 až 45 pp, Li ako aj 20 až 50 ppm Ge.The polyester produced should contain less than 50 ppm Li, preferably 20 to 45 pp, Li as well as 20 to 50 ppm Ge.
Vynález je ďalej bližšie objasnený nasledujúcimi príkladmi jeho uskutočnenia.The invention is further illustrated by the following examples.
Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION
Príklad polykondenzácie :Example of polycondensation:
Preesterifikáciätransesterification
Do autoklávu sa naváži 10,0 kg dimety1terefta 1átu (DMT), 6,1 kg ety1éng1kyko1 u (EG) a 3,4 octanu manganatého (z Mnaca.HeO) (90 ppm Mn vzťahujúc na DMT) (DMT : EG = 1 : 1,9). Preesterifikačný katalyzátor sa pri teplote 235 °C celkom blokuje pridaním 1,9 g (56 ppm P) 70 %-nej kyseliny fosforitej, čím sa skončí preesterifikačná reakcia. V priebehu gly kolovej fázy, pri ktorej sa oddestiluje prebytočný glykol, sa pri teplote 2 40°C pridá 5 g oxidu titaničitého (0,05 %, Hombitan-LWS, značkový výrobok firmy Sachtleben, SRN) a 7,5 g Iroganoxu 1010 (0,075 %, značkový výrobok firmy CIBA-GEIGY AG Švajčiarsko) v podobe suspenzie v etylénglykole. Glykolová fáza sa ukonči pri teplote 245 °C.Weigh into the autoclave 10.0 kg of dimethyl terephthalate (DMT), 6.1 kg of ethylene glycol (EG) and 3.4 of manganese acetate (from Mnaca.HeO) (90 ppm Mn based on DMT) (DMT: EG = 1: 1.9). The transesterification catalyst was completely blocked at 235 ° C by adding 1.9 g (56 ppm P) of 70% phosphoric acid to terminate the transesterification reaction. During the glycol phase, in which excess glycol is distilled off, 5 g of titanium dioxide (0.05%, Hombitan-LWS, a brand product of Sachtleben, Germany) and 7.5 g of Iroganox 1010 ( 0.075%, a brand product of CIBA-GEIGY AG Switzerland) as a suspension in ethylene glycol. The glycol phase is terminated at 245 ° C.
Po 1vkondenzác i aAfter 1condensation i
Pred vákuovou fázou, vlastnou po 1 ykondenzačnou fázou, sa v glykole zahreje a rozpusti 3,35 g (35 ppm Li) octanu lítneho (z Liac2.2 H2O) a 0,6 g (30 pp, Ge) germani č i tanú sodného a vzniknutý roztok sa pri vlastnej teplote 245 °C načerpá do autoklávu. Po dosiahnutí požadovanej viskozity (viskózny index 74,0, merajúc v zmesi o-dichlórbenzénu s fenolom 50/50 hmôt./hmôt.) sa tavenina z autoklávu vytlačí a granuluje.Before the vacuum phase proper after the 1-condensation phase, 3.35 g (35 ppm Li) of lithium acetate (from Liac2.2 H2O) and 0.6 g (30 pp, Ge) of germanium or sodium are heated and dissolved in the glycol. and the resulting solution is pumped into the autoclave at 245 ° C. After reaching the desired viscosity (viscosity index 74.0, measured in a mixture of o-dichlorobenzene with phenol 50/50 w / w), the melt is extruded from the autoclave and granulated.
Granulovaný polymér sa v dvojkuželovom sušiči suší a kryštaluje nižšie opísaným postupom :The granulated polymer is dried in a double-cone dryer and crystallized as follows:
Pri vákuu približne 8 kPa sa získaných 8 až 10 kg polyméru zahrieva 1 hodinu pri teplote 90 °C a potom ďalšiu hodinu pri teplote 115 °C. Potom sa v zahrievaní pokračuje až po dosiahnutie konečnej teploty 170 °C. Po dvoch hodinách sa vákuum zníži z 8 kPa na približne 100 pa. Po ďalších 13 hodinách sa polymér ochladí a plní do fliaš, ktoré sa vzduchotesne uzatvoria.At a vacuum of about 8 kPa, the resulting 8 to 10 kg of polymer are heated at 90 ° C for 1 hour and then at 115 ° C for an additional hour. Heating is then continued until a final temperature of 170 ° C is reached. After two hours, the vacuum is reduced from 8 kPa to about 100 Pa. After a further 13 hours the polymer is cooled and filled into bottles which are sealed airtight.
Zvlákňovanie z taveninyMelting
Vysušené a kryštalované polyméry sa nižšie opísaným spôsobom zvláknia do vlákien dtex 55F24 :The dried and crystallized polymers are spun into dtex 55F24 fibers as described below:
rýchlosť cievok : 1250 m/minbobbin speed: 1250 m / min
Vlákna sa potom v laboratórnom dĺžiacom zariadení d í ž i a v jedinom stupni na zvyškové nadíženie 28+2 %. Pritom sa vlákno vedie cez vykurovaciu plochu s teplotou 200°C. Teplota galety 1 je 85 °C. Odťahová galeta je chladná. DÍženie prebieha pri odťahovej rýchlosti 100 m/min. DÍžiaci pomer činí približne 3,3.The fibers are then reduced in a laboratory elongation apparatus in a single stage to a residual loading of 28 + 2%. In this case, the fiber is passed through a heating surface of 200 ° C. The temperature of the galette 1 is 85 ° C. The recovery galley is cold. Mining takes place at a towing speed of 100 m / min. The digestion ratio is approximately 3.3.
Výsledky skúšok s polykondenzáciami a s vláknami pripravenými zo získaných polymérov sú uvedené v tabuľke 1.The results of the tests with polycondensation and fibers prepared from the obtained polymers are shown in Table 1.
Tabuľka 1Table 1
Ako referenčný materiál pre všetky porovnávacie merania slúžil laboratórny polymér, ktorý bol vyrobený iba s germániom ako po 1 ykondenzačným katalyzátorom. Aby po 1 ykondenzáci a prebehla dostatočne rýchlo, muselo 25 ppm mangánu z preesterifikovania zostať voľných pri po 1ykondenzáci i. Nevýhodou je pritom príliš značné zožltnutie vlákna v priebehu jeho výroby.As a reference material for all comparative measurements, a laboratory polymer was used, which was produced only with germanium as the after-condensation catalyst. In order to proceed sufficiently quickly after 1 -condensation and to proceed quickly, 25 ppm of manganese from the transesterification had to remain free at 1condensation i. A disadvantage here is that the fiber is yellowed too much during its production.
V príkladoch 1 až 7 bol mangán dokonale zablokovaný kyselinou fosforitou (molárny pomer Mn : P = 1 : 1 až 1 : 1,2, s výhodou 1 : 1,11. Aby sa predsa len dosiahla požadovaná doba po 1ykondenzácie, muselo by sa pridať buď viac germánia alebo by sa musel použiť ko-kata1 yzátor.In Examples 1 to 7, manganese was completely blocked with phosphorous acid (molar ratio Mn: P = 1: 1 to 1: 1.2, preferably 1: 1.11. However, in order to achieve the desired time after 1condensation, it would have to be added either more germanium or a cocatalyst would have to be used.
Prekvapivo sa ukázalo, že lítium, pridané v podobe octanu lítneho, spolu s germániom vykazuje veľmi značnú aktivitu v polykondenzačnej fáze.Surprisingly, it has been shown that lithium, added in the form of lithium acetate, together with germanium exhibits very considerable activity in the polycondensation phase.
Pri predbežných pokusoch boli všetky vákuové fázy pri nemennej koncentrácii germánia (75 ppm) zreteľne po prevádzkovo zvyčajnú dobu po 1 ykondenzáci e 230 až 240 min.In the preliminary experiments, all the vacuum phases at a constant concentration of germanium (75 ppm) were clearly operating for the usual time after a condensation of 230 to 240 min.
Z príkladov 1 až 7 je zrejmé, že je octan lítny ako ko-katalyzátor spolu s germániom veľmi vhodný pre polykondenzáciu. Pridaním lítia sa doba polykondenzácie mohla tak značne skrátiť, že sa zároveň umožnilo zníženie potrebného množstva germánia. Obsah germánia bolo možné znížiť o viac ako polovicu. Tento spôsob je zvlášť výhodný pre výrobu lesklých po 1 yesterových výrobkov.It can be seen from Examples 1 to 7 that lithium acetate as a co-catalyst together with germanium is very suitable for polycondensation. By adding lithium, the polycondensation time could be shortened so much that it was also possible to reduce the required amount of germanium. The germanium content could be reduced by more than half. This method is particularly advantageous for producing glossy polyester products.
Ako kombinácia mnoho lítia a málo germánia (príklad 1 a 2), tak aj kombinácia s takmer rovnakým množstvom lítia a germánia (príklad 7) vykazujú priaznivé doby polykondenzácie. Nevýhodou pri príklade 1 a 2 je príliš silné sfarbenie v žltej oblasti na vlákne ( veľká hodnota Db). vlákno z príkladu 7 je ako svetlejšie (kladná hodnota DL), tak aj neutrálnejšie vo farbe (nižšia hodnota Da a Db).Both the combination of many lithium and low germanium (examples 1 and 2), as well as the combination with almost equal amounts of lithium and germanium (example 7) exhibit favorable polycondensation times. The disadvantage of Examples 1 and 2 is that the color is too strong in the yellow area on the fiber (high Db value). the fiber of Example 7 is both lighter (positive DL) and more neutral in color (lower Da and Db).
(Zistila sa ďalšia formula katalyzátora pre lesklý polye ty 1énterefta 1 át bez antimónu.)(An additional antimony-free glossy catalyst formulation for shiny polyethylene terephthalate was found.)
Priemyselná využiteľnosťIndustrial usability
Spôsob podľa vynálezu je vhodný pre hospodárnu výrobu p o lyesteru neobsahujúceho antimón bez zníženia známej kvality polyesteru. Polyester, vyrobený spôsobom podľa vynálezu, sa môže využiť na výrobu fliaš, fólii, filmov, vlákien, vlákienok a tvarových te1 i es.The process according to the invention is suitable for the economical production of antimony-free polyesters without reducing the known quality of the polyester. The polyester produced by the process of the invention can be used to produce bottles, films, films, fibers, fibers and shaped bodies.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH134892 | 1992-04-27 | ||
PCT/CH1993/000105 WO1993022367A1 (en) | 1992-04-27 | 1993-04-21 | Method of producing a polyester, and use of the polyester thus produced |
Publications (1)
Publication Number | Publication Date |
---|---|
SK9094A3 true SK9094A3 (en) | 1994-08-10 |
Family
ID=4208378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK90-94A SK9094A3 (en) | 1992-04-27 | 1993-04-21 | Method of production of polyester produced by this method and its use |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0591488A1 (en) |
JP (1) | JPH06509386A (en) |
AR (1) | AR246751A1 (en) |
AU (1) | AU3886593A (en) |
CA (1) | CA2111969A1 (en) |
CZ (1) | CZ17494A3 (en) |
HU (1) | HU212446B (en) |
PL (1) | PL306375A1 (en) |
SK (1) | SK9094A3 (en) |
TW (1) | TW227006B (en) |
WO (1) | WO1993022367A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HU212900B (en) * | 1991-01-16 | 1996-12-30 | Schweizerische Viscose | Process for producing polyesters and using thereof |
DE69331734T2 (en) * | 1992-12-04 | 2003-05-08 | Toray Industries, Inc. | POLYESTER FILM FOR THERMAL LAMINATION |
BG100572A (en) * | 1995-06-01 | 1996-12-31 | Enichem S.P.A. | Low speed crystallization polyesters and catalytic system for their preparation |
US6953768B2 (en) | 2002-11-26 | 2005-10-11 | Teck Cominco Metals Ltd. | Multi-component catalyst system for the polycondensation manufacture of polyesters |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3651017A (en) * | 1967-12-29 | 1972-03-21 | Kurashiki Rayon Co | Process for the preparation of polyesters |
US3635900A (en) * | 1969-10-28 | 1972-01-18 | Fmc Corp | Polyester condensation process using alkali metal germanates |
-
1993
- 1993-04-21 CA CA 2111969 patent/CA2111969A1/en not_active Abandoned
- 1993-04-21 JP JP5518809A patent/JPH06509386A/en active Pending
- 1993-04-21 TW TW82103064A patent/TW227006B/zh active
- 1993-04-21 AU AU38865/93A patent/AU3886593A/en not_active Abandoned
- 1993-04-21 PL PL30637593A patent/PL306375A1/en unknown
- 1993-04-21 SK SK90-94A patent/SK9094A3/en unknown
- 1993-04-21 CZ CZ94174A patent/CZ17494A3/en unknown
- 1993-04-21 EP EP93907749A patent/EP0591488A1/en not_active Withdrawn
- 1993-04-21 WO PCT/CH1993/000105 patent/WO1993022367A1/en not_active Application Discontinuation
- 1993-04-21 HU HU9400236A patent/HU212446B/en not_active IP Right Cessation
- 1993-04-26 AR AR32482293A patent/AR246751A1/en active
Also Published As
Publication number | Publication date |
---|---|
EP0591488A1 (en) | 1994-04-13 |
WO1993022367A1 (en) | 1993-11-11 |
CA2111969A1 (en) | 1993-11-11 |
HU9400236D0 (en) | 1994-05-30 |
AU3886593A (en) | 1993-11-29 |
HUT69043A (en) | 1995-08-28 |
AR246751A1 (en) | 1994-09-30 |
JPH06509386A (en) | 1994-10-20 |
TW227006B (en) | 1994-07-21 |
CZ17494A3 (en) | 1994-06-15 |
HU212446B (en) | 1996-06-28 |
PL306375A1 (en) | 1995-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6277947B1 (en) | Process of producing polytrimethylene terephthalate (PTT) | |
US6608167B1 (en) | Bis(2-hydroxyethyl isosorbide); preparation, polymers derived therefrom, and enduses thereby | |
KR100343406B1 (en) | Polyester resin composition | |
US5559205A (en) | Sulfonate-containing polyesters dyeable with basic dyes | |
US4016142A (en) | Process for the control of carboxyl end groups in fiber-forming polyesters | |
KR20040030060A (en) | Catalyst for polyester production and process for producing polyester with the same | |
US4079046A (en) | Multiple polyesterification process | |
US20080064797A1 (en) | Process For The Production Of Polyethylene Terephthalate Copolyester, Copolyester Obtained Thereby And Its Use And Catalyst Useful In The Process | |
US4668732A (en) | Polyester composition and process for producing the same | |
US3936389A (en) | Bis glycol ester of sodium sulfo isophthalic acid from its dimethyl ester | |
KR19990067538A (en) | Thermally Stable Polyesters Prepared Using Antimony Compounds as Catalysts | |
US3899470A (en) | Continuous process for preparation of basic dyeable polyester | |
DE10330774A1 (en) | Flame retardant modified, phosphorus-containing copolyesters, their use and processes for their preparation | |
US3752866A (en) | Polycarbonate modified polyesters of reduced carboxyl groups | |
SK9094A3 (en) | Method of production of polyester produced by this method and its use | |
US3313862A (en) | Modification of polyethylene terephthalate with polycarbonate | |
JP4342211B2 (en) | Polyester and method for producing the same | |
JP2003113232A (en) | Method for producing polyester and polyester | |
US5523381A (en) | Production of polyesters of improved whiteness | |
US3377320A (en) | Process of using germanium dioxide as a polyester condensation catalyst | |
SK70896A3 (en) | Polyesters with slow crystallization and catalytic system for their preparation | |
US3310532A (en) | Method for preparation of modified polyesters having fiber- and film-forming properties | |
PT2406299E (en) | Process for making polyethylene terephthalate | |
US3823117A (en) | Tribenzylamine moiety containing polyesters | |
US3344115A (en) | Optical brightening of a polyester by incorporating 2, 5-dimethoxy terephthalic acidtherein |