SK896A3 - Alcohol to azide sn2 conversion - Google Patents

Alcohol to azide sn2 conversion Download PDF

Info

Publication number
SK896A3
SK896A3 SK8-96A SK896A SK896A3 SK 896 A3 SK896 A3 SK 896A3 SK 896 A SK896 A SK 896A SK 896 A3 SK896 A3 SK 896A3
Authority
SK
Slovakia
Prior art keywords
alkyl
azide
alcohol
group
phenyl
Prior art date
Application number
SK8-96A
Other languages
Slovak (sk)
Inventor
Andrew S Thompson
Edward J Grabowski
Original Assignee
Merck & Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck & Co Inc filed Critical Merck & Co Inc
Publication of SK896A3 publication Critical patent/SK896A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/42Radicals substituted by singly-bound nitrogen atoms having hetero atoms attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C247/00Compounds containing azido groups
    • C07C247/02Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C247/04Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton being saturated
    • C07C247/06Compounds containing azido groups with azido groups bound to acyclic carbon atoms of a carbon skeleton being saturated and containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/52Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D333/58Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Described is a process for converting an alcohol to an azide with SN2 inversion using a phosphoryl azide, e.g. diphenylphosphoryl azide (DPPA). Good yields of azide in high enantiomeric excess can be achieved specifically for benzylic alcohols and alpha-hydroxy alkyl esters. The process is carried at preferably room temperature in an inert dry aprotic solvent, e.g. toluene, and in the presence of a proton acceptor, e.g., 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to afford high yields of high enantiomeric purities.

Description

Spôsob konverzie alkoholovej skupiny na zodpovedajúci azid pomocou SN2 inverzieMethod for converting an alcohol group to the corresponding azide by SN2 inversion

Oblasť technikyTechnical field

Vynález sa týka nového spôsobu prípravy azidov zo zodpovedajúcich benzylalkoholov alebo α-hydroxyalkylesterov inverziou SN2 použitím fosforylazidu a akceptora protónov vo vhodnom rozpúšťadle.The invention relates to a novel process for the preparation of azides from the corresponding benzyl alcohols or α-hydroxyalkyl esters by inversion of SN2 using phosphoryl azide and a proton acceptor in a suitable solvent.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Syntéza perorálne účinného inhibítora elastázy nas Synthesis of an orally active elastase inhibitor nas ledu- ledu- júceho vzorca I of formula I bola opísaná v has been described in Shah S. K., Shah S. K., Dorn C. P., Dorn C. P., Finke Finke P. E., Hale J. P.E., Hale J. J., Hagman V. J., Hagman V. K., Brause K., Brause K. A., Chandler K.A., Chandler G. 0., Kissinger G. 0, Kissinger A. L., Ashe B. A.L., Ashe B. M., Veston M., Veston H., Knight V H., Knight V . B. , . B., Maycock A., L., Maycock A., L. Dellea P. S., Dellea P. S., Flecher D. Flecher D. S., Hand K. S., Hand K. M. , M., Mumford R. A. , Mumford R. A., Underwood D., Underwood D., J., Doherty J., Doherty J. B., J. J. B., J. Med . Med. Chem. 1992, 35, Chem. 1992, 35, 3745 : 3745:

(I)(I)

Priebeh prípravy úzko príbuzných aktívnych derivátov vyžadoval amín 3 v enantiomérnej forme, vyrobiteľný teoreticky cez azid 2.The preparation of closely related active derivatives required amine 3 in enantiomeric form, theoretically obtainable via azide 2.

(2^(2 ^

Prvý pokus na prípravu amínu spočíval v aktivácii alkoholu 1 známou metódou uskutočnenia na sulfonát a následnou zámenou s alkalickým azidom. Tento postup však nebolo možné použiť, pretože aktivovaný alkohol sa rozkladal pri oveľa nižších teplotách, než ktoré boli potrebné pri zámene (rozklad bol pozorovaný pri 0 °C).The first attempt to prepare an amine consisted of activating alcohol 1 by a known method of carrying out the sulfonate followed by an exchange with an alkali azide. However, this procedure could not be used because the activated alcohol decomposed at much lower temperatures than was necessary for the substitution (decomposition was observed at 0 ° C).

Z literatúry bolo známych niekoľko metód na konverziu alkoholov na azidy, pri ktorých bola zachovaná optická aktivita, u na elektróny bohatých benzylalkoholov. Najlepším predchodcom sa zdala byť zámena podľa Mitsunobu s azidovým nukleofilným činidlom. (V prvom príklade, kde sa pripravoval ekvivalentný amín za podmienok podľa Mitsunobu, sa používal ftalimid: Mitsunobu 0., Vada M., Sano T. J., Am. Chem. Soc. 1972, 94, 679. Substitúciu podľa Mitsunobu ďalej revidoval Hughes. V jeho článku je možné nájsť odkazy na premenlivosť tvorby väzieb C-N: Hughes D. L., Org. React. 1992, 42, 335). Prvýkrát sa darí zaviesť azidovú skupinu za podmienok podľa Mitsunobu za použitia kyseliny azidovodikovej ako zdroja azidu podľa Loibner H., Zbíral E., Helvetica Chimica Acta, 1977, 60, 417 a táto metóda môže byť rozšírená na chirálne a-aryletylamíny podľa Chen C. P., Prasad K., Repic 0. 0., Tetrahedron Letí, 1991, 32, 7175. Alternatívne ku kyseline azidovodikovej je možné použiť difenylfosforylazid (DPPA) podľa Lal B., Pramanik B. N., Manhas M. S., Bosse A. K., Tetrahedron Lett., 1977, 1977 a komplexu azidu zinku s bis-pyridínom podľa Viaud M. C., Rollin P., Synthesis, 1990, 130.Several methods have been known from the literature for converting alcohols to azides while maintaining optical activity in electron-rich benzyl alcohols. Mitsunobu replacement with azide nucleophilic reagent appeared to be the best precursor. (In the first example, where an equivalent amine was prepared under Mitsunobu conditions, phthalimide was used: Mitsunobu 0., Vada M., Sano TJ, Am. Chem. Soc. 1972, 94, 679. Mitsunobu substitution was further reviewed by Hughes. of his article, references can be found to the variability of CN bond formation: Hughes DL, Org. React. 1992, 42, 335). For the first time, it is possible to introduce an azide group under Mitsunobu conditions using azidic acid as the azide source according to Loibner H., Collected E., Helvetica Chimica Acta, 1977, 60, 417, and this method can be extended to chiral α-arylethylamines according to Chen CP. Prasad K., Repic 0. 0, Tetrahedron Leti, 1991, 32, 7175. Alternatively to hydrazoic acid, diphenylphosphoryl azide (DPPA) according to Lal B., Pramanik BN, Manhas MS, Bosse AK, Tetrahedron Lett., 1977, can be used. 1977 and the zinc azide complex with bis-pyridine according to Viaud MC, Rollin P., Synthesis, 1990, 130.

Aplikácia podmienok podľa Bosého a ďalších (Lal B., Pramanik B. N., Manhas M. S., Bosé A. K., Tetrahedron Lett., 1977, 1977) na náš substrát viedli nežiadúcim smerom k eliminačnému produktu 5 a recemickému azidu 4, t.j.Applying the conditions of Bose et al. (Lal B, Pramanik B N, Manhas M S, Bose A K, Tetrahedron Lett., 1977, 1977) to our substrate resulted in an undesirable direction towards elimination product 5 and recemic azide 4, i.

n3 n 3

ArAr

(PhO)2PON2/DBU)(PhO) 2 PON 2 / DBU

91% výťažok91% yield

97% ee97% ee

EtO2CN=NCO2Et' (PhO)2PON3/PPh3EtO 2 CN = NCO 2 Et 1 (PhO) 2 PON 3 / PPh 3

84% výťažok84% yield

82% ee82% ee

6-8%6-8%

Podľa modifikovanej metódy podľa Bosého boli k roztoku * dietylazodikarboxylátu a DPPA v THF pri 0 °C postupne pridávané alkohol 1 a trifenylfosfín. Po 30 minútach bol produkt *♦ izolovaný do vody. Azid 4 bol izolovaný s výťažkom 81 % s čistotou len 82 %. Nežiadúcim produktom reakcie bolo tiež 6 až 8 % olefínu 5. Naviac bol azid kontaminovaný šesťnásobkom svojej hmotnosti Mitsunobuovými vedľajšími produktami, takže bolo nutné použiť rozsiahle chromatografické čistenie. Nežiadúca strata optickej aktivity rovnako ako tvorba olefínov bola pripisovaná vysoko reakčným medziproduktom, ktoré môžu viesť k postupu reakcie rozdielnymi mechanizmami ionizačným (SNI) a substitučným (SN2).According to the modified Bose method, alcohol 1 and triphenylphosphine were added sequentially to a solution of diethyl azodicarboxylate and DPPA in THF at 0 ° C. After 30 minutes the product was isolated in water. Azide 4 was isolated in a yield of 81% with a purity of only 82%. 6 to 8% of olefin 5 was also an undesirable reaction product. In addition, azide was contaminated six times its weight with Mitsunobu byproducts, requiring extensive chromatographic purification. Unwanted loss of optical activity as well as olefin formation has been attributed to highly reactive intermediates, which can lead to reaction progress through different ionization (SN1) and substitution (SN2) mechanisms.

Je požadovaný taký spôsob konverzie alkoholu na azid, ktorý prebieha mechanizmom čistej inverzie konfigurácie SN2, čo sa prejaví vysokým výťažkom a enantiomérnou čistotou výsledného azidu.A method for the conversion of alcohol to azide is required, which proceeds through a pure inversion mechanism of the SN2 configuration, which results in high yield and enantiomeric purity of the resulting azide.

Podstata vynálezuSUMMARY OF THE INVENTION

Podstatu vynálezu tvorí spôsob konverzie alkoholovej skupiny na zodpovedajúci azid inverziou SN2. Bolo zistené, že Mitsunobuovým podmienkam, ktoré vyžadujú použitie dialkyldiazodikarboxylátu a trifenylfosfínu je možné sa vyhnúť a použitie difenyldifosforylazidu v prítomnosti organického akceptora protónov poskytuje priamo a neočakávane vynikajúce výsledky. Spôsob konverzie alkoholu na azid vysokej enantiomérnej čistoty v podstate inverziou SN2 je možné uskutočniť rozpustením alkoholu (1 ekvivalent) a DPPA (1,2 ekvivalentu) v suchom aprotickom rozpúšťadle, napríklad toluéne, na výslednú koncentráciu alkoholu približne 0,5 až 1 mol/1 a pridaním mierneho prebytku ekvivalentu 1,8-diazabicyklo[5,4,0]undec-3-enu (DBU) k zmesi. Po niekoľkohodinovom miešaní pri laboratórnej teplote sa reakčná zmes jednoducho spracuje premytím vodou a odohraním produktu. Pre vyššie uvedený príklad sa po 5 hodinovom miešaní pri teplote 23 °C izoluje azid 4 s 91 % výťažkom pomocou jednoduchého premytia vodou. Optická čistota azidu bola 97 % ee (prebytok enantioméru (enantiomeric excess) žiadaného izoméru) a eliminačného produktu 5 bolo menej než 1 %.SUMMARY OF THE INVENTION The present invention provides a process for converting an alcohol group to the corresponding azide by inversion of SN2. It has been found that Mitsunobu conditions requiring the use of dialkyldiazodicarboxylate and triphenylphosphine can be avoided and the use of diphenyl diphosphoryl azide in the presence of an organic proton acceptor gives directly and unexpectedly excellent results. The process for converting an alcohol to an azide of high enantiomeric purity by substantially inverting SN2 can be accomplished by dissolving alcohol (1 equivalent) and DPPA (1.2 equivalents) in a dry aprotic solvent such as toluene to a final alcohol concentration of about 0.5 to 1 mol / L. and adding a slight excess of 1,8-diazabicyclo [5.4.0] undec-3-ene (DBU) equivalent to the mixture. After stirring for several hours at room temperature, the reaction mixture is simply worked up by washing with water and removing the product. For the above example, after stirring for 5 hours at 23 ° C, azide 4 is isolated in 91% yield by simple water wash. The optical purity of the azide was 97% ee (the enantiomeric excess of the desired isomer) and the elimination product 5 was less than 1%.

Vynález poskytuje spôsob konverzie alkoholovej skupiny na zodpovedajúci azid inverziou SN2, ktorý obsahuje krok:The invention provides a method for converting an alcohol group to the corresponding azide by inversion SN2, comprising the step of:

reakcie uvedeného alkoholu I s fosforylazidom II v suchom inertnom aprotickom rozpúšťadle v prítomnosti akceptora protónov, ktorý je v tomto rozpúšťadle rozpustný, pri teplote od -20 °C do 100 °C, po dostatočne dlhú dobu, aby vznikol azid III, v ktorom je výsledkom inverzie SN2 hviezdičkou označený invertovaný uhlík, kde:reacting said alcohol I with phosphoryl azide II in a dry inert aprotic solvent in the presence of a proton acceptor soluble therein at a temperature of from -20 ° C to 100 ° C for a sufficient period of time to form the azide III resulting in inversion of SN2 with an asterisked inverted carbon where:

a) znamená členný aromatický(a) means aromatic

C^-Cg lineárny alebo rozvetvený alkyl, 5 až monocyklický alebo bicyklický kondenzovaný alebo heteroaromatický kruh, v ktorom môžu byť obsiahnuté nasledujúce heteroatómy: 1 až 4 dusíkové atómy, 1 atóm síry, 1 atóm kyslíka, 1 až 2 atómy dusíka a 1 atóm síry alebo 1 až 2 atómy dusíka a 1 atóm kyslíka, kde tento kruh môže byť substituovaný 1 až 3 substituentmi, označenými X, Y alebo Z, ktorými sú nezávisle vodík, halogén (Br, C1, F), trihalogén-C^alkyl, C^-Cgalkoxyskupina, NH-CO-C-^-Cgalkyl, NH-CO-fenyl, NH-CO-O-C1-Cgalkyl, NH-CO-fenyl, N(CO-C1-Cgalkyl)2, N(CO-fenyl)2, O-CO-fenyl alebo kde X a Y môžu znamenať 1,2-metyléndioxoskupinu, kde C^-Cgalkylové alebo fenylové radikály v uvedených substituentoch môžu byť ďalej substituované 1-3-halogénom, C-^-Cgalkoxylom a naviac v prípade fenylu C^-Cgalkylom;C 1 -C 8 linear or branched alkyl, a 5 to monocyclic or bicyclic fused or heteroaromatic ring, in which the following heteroatoms may be present: 1 to 4 nitrogen atoms, 1 sulfur atom, 1 oxygen atom, 1 to 2 nitrogen atoms and 1 sulfur atom or 1 to 2 nitrogen atoms and 1 oxygen atom, which ring may be substituted with 1 to 3 substituents, designated X, Y or Z, which are independently hydrogen, halogen (Br, C1, F), trihalo-C 1-6 alkyl, C C 1 -C 6 alkoxy, NH-CO-C 1 -C 6 alkyl, NH-CO-phenyl, NH-CO-OC 1 -Cgalkyl, NH-CO-phenyl, N (CO-C 1 -C 6 alkyl) 2 , N ( CO-phenyl) 2, O-CO-phenyl or wherein X and Y may be 1,2-methylenedioxy, wherein the C 1 -C 6 alkyl or phenyl radicals in said substituents may be further substituted with 1-3-halogen, C 1 -C 6 alkoxy and in the case of phenyl, C 1 -C 6 alkyl;

b) R^ znamená COOC-^ - Cgalkyl, C^-Cgalkyl, C^-Cgalkylkarbonyl a v prípade, že R3 je aromatickým alebo heteroaromatic'•y kým kruhom, R môže byťb) R 3 is COOC 1 -C 6 alkyl, C 1 -C 6 alkyl, C 1 -C 6 alkylcarbonyl, and when R 3 is aromatic or heteroaromatic while the ring may be

R5 (CH)n-COOC^-Cgalkyl, v ktorom n = 1 až 5, R3 je vodík, Cf-Cgalkyl a kde R môže byť tiež C-^-Cgalkylénový reťazec, znázornený plnou krivkou, ktorý môže v reťazci obsahovať jeden atóm síry alebo jeden atóm kyslíka, pripojený k R^, keď R3 je 5 až 10 členný monocyklický alebo bicyklický spojený aromatický kruh v orto polohe vzhľadom k uvedenej alkoholovej skupine, za vytvorenia 5 až 6 členného kondenzovaného spojeného kruhu;R 5 (CH) n -COOC 1 -C 6 alkyl, wherein n = 1 to 5, R 3 is hydrogen, C 1 -C 6 alkyl, and where R can also be a C 1 -C 6 alkylene chain, represented by a full curve, which may contain one sulfur or one oxygen atom attached to R, where R 3 is a 5 to 10 membered monocyclic or bicyclic fused aromatic ring in the ortho position with respect to said alcohol moiety to form a 5-6 membered fused ring linked;

c) R3 a R4 znamenajú nezávisle C-^-Cgalkyl alebo fenyl, ktorý môže byť substituovaný 1 až 3 substituentmi ako súc) R 3 and R 4 are independently C 1 -C 6 alkyl or phenyl which may be substituted with 1 to 3 substituents such as

C^-Cgalkoxylová skupina, halogén, trihalogén-C-^alkyl a naviac v prípade fenylu C-^-Cgalkyl;C 1 -C 6 alkoxy, halogen, trihalo-C 1-6 alkyl and, in the case of phenyl, C 1 -C 6 alkyl;

kde uvedený spôsob sa vykonáva v neprítomnosti dialkylazodikarboxylátu.wherein said method is carried out in the absence of a dialkyl azodicarboxylate.

alebo kdeor where

X a Y znamenajú nezávisle vodík, p-CFj, p-CH^, m-OCH-j, p-OCH^ a kde X a Y môžu spolu znamenať 1,2-metyléndioxoskupinu.X and Y are independently hydrogen, p-CF3, p-CH2, m-OCH3, p-OCH3, and wherein X and Y may together represent a 1,2-methylenedioxy group.

Vlnovky znamenajú alfa alebo beta väzbu.Wavy lines indicate alpha or beta bond.

O mechanizme spôsobu podľa vynálezu sa predpokladá, že začína tvorbou fosfátu alkoholu a uvoľnením soli kyseliny azidovodíkovej s DBU. V substráte s relatívnym nedostatkom elektrónov bol tento fosfátový medziprodukt pozorovaný metódou NMR; pre zlúčeniny 3 a 4 v tabuľke 1 tvorí benzylový protón fosfátu pár s fosforom a objavuje sa zjavný kvartet v δ = 5,5 ppm.The mechanism of the method of the invention is believed to begin with the formation of alcohol phosphate and the release of the DBU salt of azidic acid. In a substrate with a relative electron deficiency, this phosphate intermediate was observed by NMR; for compounds 3 and 4 in Table 1, the benzylic proton of phosphate forms a pair with phosphorus and an apparent quartet appears at δ = 5.5 ppm.

Uvoľnená azidová soľ sa podobá kvartérnemu azidu amónnemu, ktorý sa do určitej miery rozpúšťa v organických rozpúšťadlách. To vedie pri laboratórnej teplote k zámene dostatočne reaktívnej fosfátovej skupiny azidom, ktorý je vo forme, rozpustnej v organickom rozpúšťadle.The liberated azide salt resembles quaternary ammonium azide, which dissolves to some extent in organic solvents. This results in the exchange of a sufficiently reactive phosphate group with azide, which is in a form soluble in an organic solvent, at room temperature.

Bolo zistené, že azid, generovaný na mieste (in situ) úplne zamení fosfát, bez toho, aby bol potrebný ďalší zdroj azidu, t.j. azidu alkalického kovu, NH^ alebo azidu sodného. Hneď ako je zámena pri konci (v zlúčeninách 3 a 4 je benzylový metín v δ = 4,3 ppm), tvorí sa soľ DBU a difenylfosfátu. Táto soľ je vo vode rozpustná a môže byť jednoducho od stranená premytím vodou, bez toho, aby bolo potrebné rozsiahle chromatografické oddeľovanie. Každý prebytok DBU je možné odstrániť kyslým praním a zvyšok je reakčný produkt azid len s malým obsahom pôvodne použitého prebytku DPPA. Analyticky čisté vzorky azidu je možné získať chromatografiou na silikagéli. Okrem jednoduchosti reakcie získame naviac proti Mitsunobuovej reakcii oveľa menej vedľajších produktov, vyšší výťažok a zachovanú enantiomérnu čistotu požadovaného inverzného produktu.It has been found that the in situ generated azide completely exchanges phosphate without the need for an additional azide source, i. alkali metal azide, NH4 or sodium azide. As soon as the exchange is complete (in compounds 3 and 4, benzyl methine is in δ = 4.3 ppm), the DBU and diphenylphosphate salt forms. This salt is water soluble and can be easily removed by washing with water without the need for extensive chromatographic separation. Any excess DBU can be removed by acidic washing and the remainder is the reaction product azide with only a small amount of the excess DPPA initially used. Analytically pure azide samples can be obtained by chromatography on silica gel. In addition to the simplicity of the reaction, in addition to the Mitsunobu reaction, much less by-products, a higher yield, and retained enantiomeric purity of the desired inverse product are obtained.

Výťažky reakcie, vykonanej týmto spôsobom, sú od 60 do 95 % teórie, počítané na východiskový alkohol.The yields of the reaction carried out in this way are from 60 to 95% of theory, calculated on the starting alcohol.

Enantiomérny prebytok (ee) je množstvo voľného žiadaného opticky aktívneho izoméru, ktoré je prítomné mimo racemát. Napríklad 96 % ee znamená, že sú prítomné 2 % každého enantioméru a 96 % čistého žiadaného enantioméru.Enantiomeric excess (ee) is the amount of free desired optically active isomer that is present outside the racemate. For example, 96% ee means that 2% of each enantiomer and 96% pure desired enantiomer are present.

Alkohol pri reakcii, vykonanej týmto spôsobom, podlieha reakčnému mechanizmu SN2, pri ktorom dôjde k inverzii uhlíka spojeného s alkoholovou skupinou na výsledný azid. Alfa alkohol teda prejde na beta azid a beta alkohol na alfa azid.The alcohol in the reaction carried out in this manner is subject to the SN2 reaction mechanism, which inverts the carbon associated with the alcohol group to the resulting azide. Thus, alpha alcohol is converted to beta azide and beta alcohol to alpha azide.

Alkohol používaný v tomto spôsobe má štruktúruThe alcohol used in this process has the structure

OHOH

Ί 9 kde R a R sú definované vyššie.Where R and R are as defined above.

Používaný termín C^-Cgalkyl znamená priame alebo vetvené alkyly ako metyl, etyl, propyl, izopropyl, n-butyl, izobutyl, s-butyl, t-butyl, pentyl, hexyl, izohexyl, heptyl, oktyl, izooktyl a podobne. S výhodou sa používa metyl.As used herein, the term C1-C6 alkyl means straight or branched alkyls such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, isohexyl, heptyl, octyl, isooctyl and the like. Preferably methyl is used.

Používaný termín C^-Cgalkoxy znamená vyššie uvedený -Cgalkylový radikál naviazaný na éterový radikál a zahrňuje: metoxy, etoxy, propoxy, izopropoxy, n-butoxy, izobutoxy, s-buxoxy, x-buXoxy, peníoxy, hexoxy, izohexoxy, hepíoxy, okxyloxy, izookxyloxy a podobne. S výhodou sa používa mexoxyAs used herein, the term C 1 -C 6 alkoxy refers to the above -C 6 alkyl radical attached to the ether radical and includes: methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, s-buxoxy, β-butoxy, poxyoxy, hexoxy, isohexoxy, hepoxy, okxyloxy , iso-oxyloxy and the like. Preferably mexo x y is used

Používaný termín halogén znamená fluór, chlór alebo bróm. S výhodou sa používa fluór.The term halogen means fluorine, chlorine or bromine. Fluorine is preferably used.

Používaný termín monocyklické alebo bicyklické kondenzované aromaxické hexeroaromaxické kruhy, používaný vo vynáleze, zahrňuje:As used herein, the term monocyclic or bicyclic fused aromaxic hexeroaromaxic rings includes:

fenyl, nafryl, pyridyl, pyrol, furyl, tienyl, izoxiazolyl, imidazolyl, benzimidazolyl, xexrazolyl, pyrazinyl, pyrimidyl, chinolyl, izochinolyl, benzofuryl, izobenzofuryl, benzojienyl, pyrazolyl, indolyl, izoindolyl, purinyl, karbazolyl, izoxazolyl, benzxiazolyl, benzoxazolyl, Xiazolyl, oxazolyl a 1,4-benzodiazepinyl, kde skupina NH v indolovej, izoindolylovej, karbazolylovj alebo benzodiazepinylovej skupine je v priebehu reakcie chránená odšxiepixeľnou -C^alkanoylovou skupinou, napríklad aceXylom. Alkanoylová skupina môže byť ľahko odsXránená bežnou miernou alkalickou hydrolýzou, napríklad sxykom s rozXokom hydroxidu sodného.phenyl, naphthyl, pyridyl, pyrrole, furyl, thienyl, isoxiazolyl, imidazolyl, benzimidazolyl, xexrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzofuryl, isobenzofuryl, benzojienyl, pyrazolyl, indolyl, isoindolyl, benzinyl, carbazolyl, Xiazolyl, oxazolyl and 1,4-benzodiazepinyl, wherein the NH group in the indole, isoindolyl, carbazolyl or benzodiazepinyl group is protected during the reaction by a triple-C 1-6 alkanoyl group, for example acetyl. The alkanoyl group can be readily removed by conventional mild alkaline hydrolysis, for example with sodium hydroxide solution.

S výhodou sa používajú aromaxické/hexeroaromaxické kruhy zo skupiny fenylu, nafxylu, furylu, tiofenylu, benzoxienylu a benzofurylu.Aromaxic / hexeroaromaxic rings from the group of phenyl, naphthyl, furyl, thiophenyl, benzoxienyl and benzofuryl are preferably used.

Alkohol sa s výhodou volí zThe alcohol is preferably selected from

OHOH

OHOH

OHOH

kde G je C2-C4alkylén, ktorý je možné nahradiť C-^-C^alkylom a zmienený alkylénový reťzec môže v kruhu obsahovať S(0)n, kde n = 0 až 2.wherein G is C 2 -C 4 alkylene which may be replaced by C 1 -C 4 alkyl and said alkylene chain may contain in the ring S (O) n where n = 0 to 2.

kde G je definované vyššiewherein G is as defined above

OHOH

R2 R 2

kde výsledkom je zodpovedajúci produkt III s invertovaným atómom uhlíka susediaceho s azidom.wherein the result is the corresponding product III with an inverted carbon atom adjacent to the azide.

Zvlášť výhodné je, pokiaľ alkohol je zo skupiny:It is particularly preferred that the alcohol is selected from:

kde X znamená vodík, p-CF^, p-CH^, m-OCH^ a kde vlnovka môže byť alfa alebo beta väzbawherein X is hydrogen, p-CF3, p-CH3, m-OCH3, and wherein the wavy line may be an alpha or beta bond

OHOH

OABOUT

OHOH

OHOH

H3CX~XCOOC2H5 H 3 C X ~ X COOC 2 H 5

kde X znamená vodík, p-CF^, p-CH^, m-OCH^ a kde X a Y môžu spolu znamenať 1,2-metyléndioxoskupinu a kde vlnovka môže byť alfa alebo beta väzba.wherein X is hydrogen, p-CF3, p-CH2, m-OCH3, and wherein X and Y may together represent a 1,2-methylenedioxy group, and wherein the wavy line may be an alpha or beta bond.

a zodpovedajúci invertovaný azid je:and the corresponding inverted azide is:

kde X znamená vodík, p-CF^, p-CH3, m-OCH3, p-OCH3 wherein X is hydrogen, p-CF ^, p-CH3, m-OCH3, p-OCH3

ν3 ν 3

H3CxIxCOOC2H5H 3 C x 1 x COOC 2 H 5

Predmetom vynálezu sú tiež nasledujúce nové zlúčeniny:The invention also relates to the following novel compounds:

kde X a Y môžu nezávisle znamenať vodík, p-CF3, p-CHj, m-OCH3, p-OCH3 a kde X a Y môžu spolu znamenať 1,2-metyléndioxoskupinu a kde vlnovka môže byť alfa alebo beta väzba.wherein X and Y may independently be hydrogen, p-CF 3 , p-CH 3, m-OCH 3 , p-OCH 3, and wherein X and Y may together represent 1,2-methylenedioxy and wherein the wavy line may be an alpha or beta bond.

Používaný fosforylazid je vzorca:The phosphorylazide used is of the formula:

(R30)(R4O)P(O)N3 kde R3 a R4 znamenajú nezávisle C^-Cgalkyl alebo fenyl, ktorý môže byť substituovaný 1 až 3 substituentmi ako sú C-^-Cgalkoxy, halogén, trihalogén-C-^alkyl a v prípade fenylu naviac C^-Cgalkyl. S výhodou znamenajú R3 a R4 oba fenyl.(R 3 0) (R 4 O) P (O) N3 wherein R 3 and R 4 are independently C ^ -Cgalkyl or phenyl optionally substituted with 1 to 3 substituents of C - ^ - alkoxy, halo, trihalo -C 1-6 alkyl and, in the case of phenyl, in addition C 1 -C 6 alkyl. Preferably R 3 and R 4 both represent phenyl.

Fosforylazidy, obsiahnuté vyššie uvedeným opisom, sú buď v danej oblasti techniky dostatočne známe alebo môžu byť pripravené v danej oblasti techniky opísanými metódami.The phosphorylazides disclosed in the above description are either well known in the art or can be prepared by methods described in the art.

Ako zástupcov fosforylazidov uvádzame:Representatives of phosphorylazides include:

difenylfosforylazid di(p-metoxyfenyl)fosforylazid di(p-fluórfenyl)fosforylazid di(p-tolyl)fosforylazid dietylfosforylazid di(n-butyl)fosforylazid di(p-CF3fenyl)fosforylazid di(2,4-dichlórfenyl)fosforylazid a ďalšie.diphenylphosphoryl azide di (p-methoxyphenyl) phosphoryl azide di (p-fluorophenyl) phosphoryl azide di (p-tolyl) phosphoryl azide diethylphosphoryl azide di (n-butyl) phosphoryl azide di (p-CF 3 phenyl) phosphoryl azide di (2,4-dichlorophenyl) phosphoryl azide and others .

S výhodou sa používa difenylfosforylazid.Preferably, diphenylphosphoryl azide is used.

Akceptorom protónov pri reakcii môžu byť: Cg-C^gdiazabicykloalkány, Cg-C10diazabicykloalkény, 1 až 5 C-j,-C3alkylom substituované guanidíny, C^-Cgheteroaromatické zlúčeniny obsahujúce dusík alebo pyridíny, mono- alebo disubstituované C1-C4alkylamíny. Všetky tieto akceptory protónov sú buď v danej oblasti dostatočne známe alebo môžu byť pripravené v danej oblasti techniky opísanými metódami.The proton acceptor useful in the process include: Cg-C ^ gdiazabicykloalkány, Cg-C 10 diazabicycloalkenes, 1-5 C, -C 3 alkyl substituted guanidines, C ^ -Cgheteroaromatické nitrogen-containing compounds or pyridine, mono- or di-C 1 -C 4 alkyl amines. All of these proton acceptors are either sufficiently known in the art or can be prepared by methods described in the art.

Ako príklady uvádzame:Examples include:

1,8-diazabicyklo[5,4,0]undec-7-en (DBU)1,8-diazabicyclo [5.4.0] undec-7-ene (DBU)

1.4- diazabicyklo[2,2,0]oktán (Dabco)1,4-diazabicyclo [2.2.0] octane (Dabco)

1.5- diazabicyklo[4,3,0]non-5-en (DBN)1,5-diazabicyclo [4.3.0] non-5-ene (DBN)

1,1-dimetylguanidín1,1-dimethylguanidine

1,1,3,3-tetrametylguanidin1,1,3,3-tetramethylguanidine

1,1,3,3,4-pentametylguanidín pyridín chinolín1,1,3,3,4-Pentamethylguanidine pyridine quinoline

4-(dimetylamino)pyridín4- (dimethylamino) pyridine

4-(dietylamino)pyridín4- (diethylamino) pyridine

S výhodou sa používa DBU a Dabco.Preferably, DBU and Dabco are used.

Pri reakcii sa používajú teploty v rozmedzí od -20 do 100 C, s výhodou od 20 do 50 °C a zvlášť výhodne teplota miestnosti.Temperatures in the range of -20 to 100 ° C, preferably 20 to 50 ° C and particularly preferably room temperature are used in the reaction.

Pre alkohol, fosforylazid a akceptor protónov sa pri reakcii používa suché, inertné, aprotické rozpúšťadlo. Použiteľné rozpúšťadlá zahrňujú ^-5~^'i2nasýten® uhľovodíky, Cg-C^Q aromatické uhľovodíky, ktoré môžu byť substituované 1 až halogénom (Br, Cl, F) alebo C-^-C^alkylovými substituentmi, 1 až 4 halogenované C^-Cg priame alebo cyklické alkány, C4-Cg priame alebo cyklické étery, C-^-C2 N,N-dialkylf ormamidy , C^-C2 N, N-dialkylacetamidy alebo C-^-C2alkylnitrily.For the alcohol, phosphoryl azide and proton acceptor, a dry, inert, aprotic solvent is used in the reaction. Useful solvents include ^ -5 ^ ~ 'i2 us the characterized ® hydrocarbons, Cg-C ^ Q substituted aromatic hydrocarbons which may be substituted by 1 to halogen (Br, Cl, F), or C - ^ - C ^ alkyl substituents, 1 to 4 halogenated C 1 -C 8 straight or cyclic alkanes, C 4 -C 8 straight or cyclic ethers, C 1 -C 2 N, N-dialkylformamides, C 1 -C 2 N, N-dialkylacetamides or C 1 -C 2 alkylnitriles.

Tieto rozpúšťadlá sú komerčne dostupné a zahrňujú hexán, benzén, toluén, m-xylén, p-xylén, naftalén, chlórbenzén, o-dichlórbenzén, metylénchlorid, chloroform, chlorid uhličitý, chlórcyklohexán, dietyléter, dioxán, tetrahydrofurán (THF), 1,2-dimetoxyetán, N,N-dimetylformamid, N,N-dietylformamid, N,N-dimetylacetamid, N,N-dietylacetamid, acetonitril a podobne. S výhodou sa používajú THF a toluén.These solvents are commercially available and include hexane, benzene, toluene, m-xylene, p-xylene, naphthalene, chlorobenzene, o-dichlorobenzene, methylene chloride, chloroform, carbon tetrachloride, chlorocyclohexane, diethyl ether, dioxane, tetrahydrofuran (THF), 1,2 dimethoxyethane, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethyl acetamide, acetonitrile and the like. Preferably, THF and toluene are used.

Reakcia sa s výhodou vykonáva v suchej inertnej atmosfére s obsahom suchého dusíka.The reaction is preferably carried out in a dry inert atmosphere containing dry nitrogen.

Používajú sa bežné aparatúry.Conventional apparatuses are used.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Nasledujúce príklady ilustrujú hlavnú myšlienku vynálezu a nesmú sa chápať ako limitujúce pre rámec alebo zmysel vynálezu.The following examples illustrate the main idea of the invention and should not be construed as limiting the scope or spirit of the invention.

Všeobecný postup azidácie, - používaný v príkladoch je nasleduj úci.The general azidation procedure used in the examples is as follows.

Všeobecný postupGeneral procedure

Alkohol (1 mmol) a difenylfosforylazid (1,2 mmol) sa rozpustil v 2 ml suchého rozpúšťadla (toluén alebo THF). K zmesi pod dusíkom sa pridá nezriedený 1,8-diazabicyklo[5,4,0]-undec-7-en (1,2 mmol). Zmes sa mieša pri 20 °C až do skončenia reakcie, typicky 12 hodín. Zmes sa zriedi 3 ml toluénu a premyje sa 2x3 ml vody a 3 ml 5% HC1. Organická vrstva sa vo vákuu zakoncentruje a čistý azid sa získa chromatografiou na silikagéli. Typický výťažok je 80 až 95 % a prebytok enantioméru 80 až 99 %. Všeobecný postup je ďalej uvedený pre alkoholy typu 1-aryl-l-hydroxypropánbenzylov (Ar = aryl).The alcohol (1 mmol) and diphenylphosphoryl azide (1.2 mmol) were dissolved in 2 mL of dry solvent (toluene or THF). Undiluted 1,8-diazabicyclo [5.4.0] undec-7-ene (1.2 mmol) was added to the mixture under nitrogen. The mixture is stirred at 20 ° C until completion of the reaction, typically 12 hours. The mixture was diluted with 3 mL of toluene and washed with 2x3 mL of water and 3 mL of 5% HCl. The organic layer was concentrated in vacuo and the pure azide was obtained by silica gel chromatography. Typical yields are 80-95% and excess enantiomer 80-99%. The general procedure is further described for 1-aryl-1-hydroxypropanbenzyl alcohols (Ar = aryl).

Táto reakcia je rozšírená na celý rad alkoholov rozdielnej štruktúry, uvedených v tabuľke 1. Príklady zúčenín 1 až 5 zahrňujú rozpätie od alkoholov s nedostatkom elektrónov (para-CF^) po alkoholy bohaté na elektróny (para OMe). Benzylalkohol, naviazaný na metametoxysubstituovanú fenylovú skupinu (zlúčenina 3) bol nedávno použitý v spojení s Mitsunobuovou zámenou na demonštráciu chirálnej syntézy amínov (Chen C. P., Prasad K, Repic 0., Tetrahedron Lett., 1991, 32, 7175). Meta-metoxy substituent však v skutočnosti priťahuje elektróny (kladná Hammetova hodnota ) a je menej náchylný na racemizáciu než substituovaný fenyl (Lowry T. M., Richardson K. S., Mechanism and Theory in Organic Chemistry , 2,. vydanie Harper and Row. , 1981, str. 134). Ukázali sme použitie metódy pre všeobecnejšiu skupinu benzylalkoholov. Je jasné, že substráty nemusia byť pre úspešnú konverziu bohaté na elektróny. Zmeny elektrónovej štruktúry u rôznych substituentov na arylovom kruhu však ovplyvňujú rýchlosť kroku zámeny. Vo všetkých prípadoch sa fosfát vytvoril počas hodiny, ale zlúčenina 1 (para-CF^) vyžadovala na skončenie výmeny teplotu 40 “C, zatiaľ čo príprava zlúčeniny 1 (para-OMe) bola skončená pri teplote 0 °C v priebehu niekoľkých hodín. Zlúčeniny 7 až 9 predstavujú rozšírenie smerom k na elektróny bohatým heterocyklom.This reaction is extended to a variety of alcohols of different structure, as shown in Table 1. Examples of compounds 1 to 5 include the range from electron-deficient alcohols (para-CF 3) to electron-rich alcohols (para OMe). Benzyl alcohol coupled to the methamethoxy-substituted phenyl group (compound 3) has recently been used in conjunction with Mitsunobu exchange to demonstrate chiral amine synthesis (Chen C. P., Prasad K, Repic O., Tetrahedron Lett., 1991, 32, 7175). However, the meta-methoxy substituent actually attracts electrons (positive Hammet value) and is less susceptible to racemization than substituted phenyl (Lowry TM, Richardson KS, Mechanism and Theory in Organic Chemistry, 2nd ed. Harper and Row., 1981, p. 1). 134). We have shown the use of the method for a more general group of benzyl alcohols. It is clear that substrates need not be electron-rich for successful conversion. However, changes in the electron structure of the various substituents on the aryl ring affect the swap step rate. In all cases, the phosphate formed within an hour, but Compound 1 (para-CF 3) required a temperature of 40 ° C to complete the exchange, while the preparation of Compound 1 (para-OMe) was completed at 0 ° C within several hours. Compounds 7 to 9 represent an extension towards electron-rich heterocycles.

Racemizácia bola typicky menšia než 2 % vo všetkých príkladoch okrem zlúčeniny 5 (p-metoxyfenol) a zlúčeniny 8 (furán, substituovaný v polohe 2). V týchto príkladoch vzniklo 5 %, prípadne 10 % opačných enantiomérov. Zlúčeniny 10 až 11 ukazujú metódu za použitia rôznych medziproduktov (Blacklock T. J., Sohar S., Butcher J. V., Lamanec T., Grabowski E. J. J., J. Organ. Chem., 1993, 58, 1672). Úplnej inverzii podliehajú tak C-4 cis, ako aj trans alkoholy. Tieto diastereoméry vylučujú možnosť napadnutia azidu selektívne z a strany (Blacklock T. J., Sohar S., Butcher J. V., Lamanec T., Grabowski E. J. J., J. Organ. Chem., 1993, 58, 1672). To je v súčasnosti najvyššia úroveň stereochemickej kontroly, publikovaná na zavádzanie C-4 amínov do týchto molekúl. Metóda môže byť rozšírená na získanie chránených aminokyselín (zlúčenina 12). V tomto prípade esterová skupina dostatočne aktivuje hydroxylovú skupinu na zámenu bez priľahlého fenylového kruhu. Pre príklad zámeny a-hydroxyesteru amínovým ekvivalentom viď.: Effenberg F., Burkhard U., Villfahrt J. Angew. Chem. Int. Ed. Engl., 1983, 22, 65. Pre príklad zámeny s HN3 podľa Mitsunobu viď.: Fabiano E., Golding B. T., Sadeghi M. M., Synthesis 1987, 190. Pre príklad použitia chráneného hydroxylamínu za podmienok podľa Mitsunobu viď.: Kolasa T., Miller M. J., J. Org. Chem., 1987, 52, 4978. Pre príklad použitia p-nitrobenzénsulfonátu viď.: Hoffmann R. V., Kim H. 0., Tetrahedron 1992, 48, 3007. Na prípravu azidových derivátov aminokyselín presunom diazoskupiny viď. : Zallom J. , Roberts D. C. , J. Org. Chem. , 1981, 46, 5173. Pretože produkty sú náchylné na epimerizáciu (viď. Fabiano E., Golding B. T., Sadeghi M. M., Synthesis 1987, 190), bol použitý mierny nedostatok bázy (0,98 ekviva lentu).Racemization was typically less than 2% in all examples except compound 5 (p-methoxyphenol) and compound 8 (furan, substituted at the 2-position). In these examples, 5% and 10%, respectively, of the opposite enantiomers were formed. Compounds 10-11 show a method using various intermediates (Blacklock TJ, Sohar S, Butcher JV, Lamanec T., Grabowski EJ, J. Organ. Chem., 1993, 58, 1672). Both C-4 cis and trans alcohols are subject to complete inversion. These diastereomers exclude the possibility of azide attack selectively from the sides (Blacklock TJ, Sohar S., Butcher JV, Lamanec T., Grabowski EJJ, J. Organ. Chem., 1993, 58, 1672). This is currently the highest level of stereochemical control reported for the introduction of C-4 amines into these molecules. The method can be extended to obtain protected amino acids (compound 12). In this case, the ester group sufficiently activates the hydroxyl group at the substitution without the adjacent phenyl ring. For an example of substitution of the α-hydroxyester with an amine equivalent, see: Effenberg F., Burkhard U., Villfahrt J. Angew. Chem. Int. Ed. Engl., 1983, 22, 65. For an example of Mitsunobu HN 3 substitution see: Fabiano E., Golding BT, Sadeghi MM, Synthesis 1987, 190. For an example of the use of protected hydroxylamine under Mitsunobu conditions see: Kolasa T. Miller, MJ, J. Org. Chem., 1987, 52, 4978. For an example of the use of p-nitrobenzenesulfonate see: Hoffmann RV, Kim H. O., Tetrahedron 1992, 48, 3007. : Zallom, J., Roberts, DC, J. Org. Chem. 1981, 46, 5173. Because the products are susceptible to epimerization (see Fabiano E., Golding BT, Sadeghi MM, Synthesis 1987, 190), a slight base deficiency (0.98 equivalents of lent) was used.

Primárny alkohol v zlúčenine 13 tvoril azid v toluéne alebo THF pri teplote miestnosti veľmi pomaly (5% konverzia po 24 hodinách). Použitie podmienok, výhodnejších na zámenu SN2 (DMF pri 65 °C po dobu 3 hodín), viedlo k úplnému dokončeniu tvorby azidu. (Pokiaľ boli zmiešané DPPA a DBU v polárnom rozpúšťadle, ako CH3CN alebo DMF bez prítomnosti alkoholu, dochádzalo k vývoju plynu. Báza by vždy mala byť pridávaná ako posledná). Sekundárny alkohol tvoril azid s nízkym výťažkom dokonca aj za tvrdších podmienok (zlúčenina 14, DMF pri 125 °C po dobu 18 hodín). Tento substrát však tvorí azid s dobrým výťažkom za podmienok podľa Mitsunobu (Lal B., Pramanik B. N., Manhas M. S., Bosé A. K., Tetrahedron Lett., 1977, 1977). Tieto pozorovania dovoľujú zoradenie relatívnych reaktivít za použitia podmienok podľa Mitsunobu v porovnaní s metódou podľa vynálezu. V Mitsunobuovej reakcii sa reaktívnym medziproduktom javí byť alkoxyfosfónium (Hughes D. L., Org. React., 1992, 42, 335). Tento vysoko reaktívny medziprodukt dovolí ľahkú zámenu neaktivovaného sekundárneho alkoholu. Takéto vysoko reaktívne medziprodukty nemusia byť vhodné, pokiaľ je substrátom opticky aktívny na elektróny bohatý benzylakohol. V takomto prípade má vhodne vyváženú reaktivitu fosfát, takže racemizácia je ešte potlačená a zámena s azidom prebehne hladko pri teplotách medzi 0 až 25 C.The primary alcohol in compound 13 formed azide in toluene or THF at room temperature very slowly (5% conversion after 24 hours). The use of conditions more preferred for SN2 exchange (DMF at 65 ° C for 3 hours) resulted in complete completion of azide formation. (When DPPA and DBU were mixed in a polar solvent such as CH 3 CN or DMF in the absence of alcohol, gas evolution occurred. The base should always be added last). The secondary alcohol formed a low yield azide even under harsh conditions (compound 14, DMF at 125 ° C for 18 hours). However, this substrate forms azide with good yield under Mitsunobu conditions (Lal B., Pramanik BN, Manhas MS, Bosé AK, Tetrahedron Lett., 1977, 1977). These observations allow the relative reactivities to be aligned using Mitsunobu conditions as compared to the method of the invention. In the Mitsunobu reaction, the reactive intermediate appears to be alkoxyphosphonium (Hughes DL, Org. React., 1992, 42, 335). This highly reactive intermediate permits easy exchange of the non-activated secondary alcohol. Such highly reactive intermediates may not be suitable if the substrate is optically active electron-rich benzyl alcohol. In such a case, the phosphate is suitably balanced so that the racemization is still suppressed and the azide exchange proceeds smoothly at temperatures between 0-25 ° C.

Všeobecný postupGeneral procedure

_____ n3 _____ n 3

ArAr

Tabuľka 1Table 1

Zlúčenina ALKOHOL________AZlDb________VÝŤAŽOKCompound ALCOHOL________AZ1D b ________ Yield

X = meta-OMee 97.5% eeX = meta-OMe e 97.5% ee

X = para-CH3® 97% eeX = para-CH 3 ® 97% ee

X = para-OMe® 99.4f% eeX = para-OMe ® 99.4 f % ee

99.5% ee99.5% ee

OHOH

OABOUT

97.4% ee®97.4% ee®

98.7% ee98.7% ee

94.3% ee94.3% ee

94%94%

96.0% ee96.0% ee

87.6% ee87.6% ee

89%89%

91%91%

80%80%

96.9% ee96.9% ee

Tabuľka 1 - pokračovanieTable 1 - continued

Zlúčenina ALKOHOL·3 . AZIDb_________VÝŤAŽOK , ,Compound ALCOHOL · 3 . AZID b _________ EXTRACT,,

99.6% es ®·9 99.6% es ® · 9

N.N.

71.3% es71.3%

92%92%

OHOH

2:98h cislrans2:98 h cislrans

92%92%

Tabuľka 1 - pokračovanieTable 1 - continued

Zlúčenina compound alkohol3 alcohol 3 AZIDb AZID b VÝŤAŽOK YIELD OH OH n3 n 3 12 12 ^CO2Et^ CO 2 Et CO2EtCO 2 Et 87% 87% 99% eej 99% eej 98% eei k 98% ee ik 13 13 n- dekanol n-decanol n-decylazid n decylazid 88% 88% 14 14 cholesterol cholesterol cholesterylazid cholesterylazid 20% 20%

a) Optická čistota bola stanovená plynovou chromatografiou na kolóne Cyclodex-B.(a) Optical purity was determined by gas chromatography on a Cyclodex-B column.

b) Pomer enantiomérov bol stanovený HPLC na reverznej fáze po redukcii azidu na amin pomocou LiAlH^ a premene arninu na metylkarbamát (metyl chloroformát, trietylamín). Všetky príklady boli porovnávané s nezávisle racemickými vzorkami.b) The ratio of enantiomers was determined by reverse phase HPLC after reduction of the azide to the amine with LiAlH 4 and conversion of the amine to methyl carbamate (methyl chloroformate, triethylamine). All examples were compared to independently racemic samples.

c) Alkohol bol pripravený cestou enantioselektívnej redukcie ketónu (Mathre D. J., Thompson A. S., Douglas A. V., Hoogsteen K., Caroll J. D., Corley E. G., Grabowski E. J. J., J. Org. Chem. , 1993, 58, 2880.c) The alcohol was prepared via enantioselective ketone reduction (Mathre, D.J., Thompson, A.S., Douglas, A.V., Hoogsteen, K., Caroll, JD., Corley, E.G., Grabowski, E.J., J. Org. Chem., 1993, 58, 2880.

d) Alkohol bol komerčný (Aldrich).d) The alcohol was commercial (Aldrich).

e) Alkohol bol pripravený cestou adície asymetrického dialkylzinku podľa postupu v: Yoshioka M. , Kawakita T. , Ohno M., Tetrahedron Lett., 1989, 30, 1657 a Takahashie) The alcohol was prepared via the addition of asymmetric dialkylzinc according to the procedure of: Yoshioka M., Kawakita T., Ohno M., Tetrahedron Lett., 1989, 30, 1657 and Takahashi

H., Kawakita T., Yoshioka M., Kobayashi S., Ohno M., tiež tam, 1989, 30, 7095.H., Kawakita T., Yoshioka M., Kobayashi S., Ohno M., also there, 1989, 30, 7095.

f) Optická čistota bola stanovená na kolóne chiracel OD.f) Optical purity was determined on a chiracel OD column.

g) Optická čistota bola stanovená na kolóne chiracel OB.g) Optical purity was determined on a chiracel OB column.

h) Pomer u alkoholu bol stanovený HPLC na reverznej fáze, pomer u azidu bol stanovený NMR.h) The alcohol ratio was determined by reverse phase HPLC, the azide ratio was determined by NMR.

i) Azidácie prebiehali v THF.i) Azidations were in THF.

j) Optická čistota bola braná podľa údajov firmy Aldrich.j) Optical purity was taken according to Aldrich data.

k) Pomer enantiomérov bol stanovený na kolóne chiracel crownpack (CR+) po redukcii azidu na amin trifenylfosfinom .k) The ratio of enantiomers was determined on a chiracel crownpack (CR +) column after reduction of the azide to the amine with triphenylphosphine.

Teploty varu (topenia) a optickej otáčavosti azidov v tabuľke 1 sú nasledujúce.The boiling points and the optical rotation of the azides in Table 1 are as follows.

Zlúčenina Teplota varu/tlak Otáčavosť (°C/kPa)Compound Boiling point / pressure Rotation (° C / kPa)

1 1 65/0,07 65 / 0.07 [a]D2^=-69,4 (c=l,02, hexán)[a] D ^ 2 = - 69.4 (c = 02, hexane) 2 2 105-110/2,00 105-110 / 2.00 [a]D2^=-115,1 (c=l,02, hexán)[α] D 2 = - 115.1 (c = 1.02, hexane) 3 3 95/0,13 95 / 0.13 [a]D2^=+155,5 (c=l,0, hexán)[a] D ^ 2 = + 155.5 (c = 0, hexane) 4 4 [a]D2^=+170,5 (c=l,0, hexán)[a] D ^ 2 = + 170.5 (c = 0, hexane) 5 5 110/0,08 110 / 0.08 [a]D22=+141,2 (c=0,99, hexán)[α] D 22 = + 141.2 (c = 0.99, hexane) 6 6 140/2,00 140 / 2.00 [a]D2^=-25,3 (c=l,l, hexán)[a] D ^ 2 = - 25.3 (c = l, hexane) 7 7 100/4,00 100 / 4.00 [a]D2^=+99,2 (c=l,0, hexán)[a] D ^ 2 = + 99.2 (c = 0, hexane) 8 8 105/4,67 105 / 4.67 [a]D25=+96,7 (c=l,0, hexán)[a] 2 5 = + 96.7 (c = 0, hexane) 9 9 [a]D25=_i25 (c=l,02, hexán)[a] 2 5 = _i25 (c = 02, hexane) 1010 topenia 118 - melting 118 - 119 119 [a]D2$=-232 (c=l,13, metanol)[α] D 2 = -232 (c = 1, 13, methanol) 11 11 topenia 99 - melting 99 - 101 101 [a]D25=_53,9 (c=l,02, metanol)[a] 2 5 = _53,9 (c = 02, methanol) 12 12 105 -110/13, 105 -110/13, 33 33 [a]D25=+i7,5 (c=1,03, hexán)[a] 2 5 = + i7,5 (c = 1.03, hexane)

Claims (8)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Spôsob konverzie alkoholovej skupiny na zodpovedajúci azid inverziou SN2, vyznačujúci sa tým, že obsahuje krok: A method for converting an alcohol group to the corresponding azide by inversion SN2, comprising the step of: OH (II) reakcie uvedeného alkoholu I s fosforylazidom II v suchom inertnom aprotickom rozpúšťadle v prítomnosti akceptora protónov, ktorý je v tomto rozpúšťadle rozpustný, pri teplote od -20 °C do 100 °C, po dostatočne dlhú dobu, aby vznikol azid III, v ktorom je výsledkom inverzie SN2 hviezdičkou označený invertovaný uhlík, kde:OH (II) reacting said alcohol I with phosphoryl azide II in a dry inert aprotic solvent in the presence of a proton acceptor soluble therein, at a temperature of from -20 ° C to 100 ° C, for a sufficiently long time to form azide III, in which SN2 inversion results in an asterisk indicating inverted carbon, where: a) R1 znamená C^-Cg lineárny alebo rozvetvený alkyl, 5 aža) R1 is C ^ -C straight or branched alkyl of 5 to 10 členný monocyklický alebo bicyklický kondenzovaný aromatický alebo heteroaromatický kruh, v ktorom môžu byť obsiahnuté nasledujúce heteroatómy: 1 až 4 dusíkové atómy, 1 atóm síry, 1 atóm kyslíka, 1 až 2 atómy dusíka a 1 atóm síry alebo 1 až 2 atómy dusíka a 1 atóm kyslíka, kde tento kruh môže byť substituovaný 1 až 3 substituentmi, označenými X, Y alebo Z, ktorými sú nezávisle vodík, halogén (Br, C1, F), trihalogén-C-^alkyl, C?i-Cgalkoxyskupina, NH-CO-C^-Cgalkyl, NH-CO-fenyl, NH-CO-O-C-L-Cgalkyl, NH-CO-fenyl, N (CO-C1-Cgalkyl) 2, N(CO-fenyl)2, O-CO-fenyl alebo kde X a Y môžu znamenať 1,2-metyléndioxoskupinu, kde Cl-Cg alkylové alebo fenylové radikály v uvedených substituentoch môžu byť ďalej substituované 1-3-halogén, C^-Cgalkoxylom a naviac v prípade fenylu C-^-Cgalkylom;A 10 membered monocyclic or bicyclic fused aromatic or heteroaromatic ring in which the following heteroatoms may be present: 1-4 nitrogen atoms, 1 sulfur atom, 1 oxygen atom, 1-2 nitrogen atoms and 1 sulfur atom, or 1 to 2 nitrogen atoms, and 1 an oxygen atom, wherein this ring may be substituted with 1 to 3 substituents, designated X, Y or Z, which are independently hydrogen, halogen (Br, Cl, F), trihalo-C 1-6 alkyl, C 1 -C 6 alkoxy, NH- CO-C 1 -C 8 alkyl, NH-CO-phenyl, NH-CO-OCL-C 8 alkyl, NH-CO-phenyl, N (CO-C 1 -C 8 alkyl) 2 , N (CO-phenyl) 2, O-CO- phenyl or wherein X and Y may be 1,2-methylenedioxy, wherein the C1 -C6 alkyl or phenyl radicals in said substituents may be further substituted with 1-3-halo, C1-C6 alkoxy and, in the case of phenyl, C1-C6-alkyl ; b) R^ znamená COOC-^-Cgalkyl , C^-Cgalkyl, C^-Cgalkylkarbonyl a v prípade, že je aromatickým alebo heteroaromaticO kým kruhom, R môže byťb) R 1 represents COOC 1 -C 6 alkyl, C 1 -C 6 alkyl, C 1 -C 6 alkylcarbonyl, and when it is aromatic or heteroaromatic while the ring, R may be R5 (CH)n-COOC1-Cgalkyl, v ktorom n = 1 až 5, R$ j e vodík,R 5 (CH) n -COOC 1 -C 8 alkyl wherein n = 1 to 5, R 8 is hydrogen, C-^-Cgalkyl a kde R^ môže byť tiež -C^alkylénový reťazec, znázornený plnou krivkou, ktorý môže v reťazci obsahovať jeden atóm síry alebo jeden atóm kyslíka, pripojený k R^, keď R^ je 5 až 10 členný monocyklický alebo bicyklický spojený aromatický kruh v orto polohe vzhľadom k uvedenej alkoholovej skupine, za vytvorenia 5 až 6 členného kondenzovaného spojeného kruhu;And wherein R ^ may also be a -C ^ alkylene chain, represented by a full curve, which may contain one sulfur atom or one oxygen atom in the chain, attached to R ^ when R ^ is a 5-10 membered monocyclic or a bicyclic fused aromatic ring at an ortho position relative to said alcohol group to form a 5 to 6 membered fused fused ring; c) R^ a R4 znamenajú nezávisle C^-Cgalkyl alebo fenyl, ktorý môže byť substituovaný 1 až 3 substituentmi ako sú C-£-Cgalkoxylová skupina, halogén, trihalogén-C^alkyl a naviac v prípade fenylu Cj-Cgalkyl;c) R 1 and R 4 are independently C 1 -C 6 alkyl or phenyl, which may be substituted with 1 to 3 substituents such as C 1 -C 6 alkoxy, halogen, trihalo-C 1-6 alkyl and, in addition, for C 1 -C 6 alkyl; kde uvedený spôsob sa vykonáva v neprítomnosti dialkylazodikarboxylátu.wherein said method is carried out in the absence of a dialkyl azodicarboxylate. 2. Spôsob konverzie podľa nárokuConversion method according to claim Q sa t ý m, že oba radikály R aQ is characterized in that both radicals R a 1,1 R4 v y z n a č u sú fenyly.R 4 are phenyls. 3. Spôsob konverzie podľa sa t ý m, že teplota je nároku3. The conversion method according to claim 1, wherein the temperature is a claim 1, v y v rozmedzí 20 až 50 °C.1, ranging from 20 to 50 ° C. 4. Spôsob konverzie podľa sa t ý m, že akceptorom guanidín, ktorý c4. A method according to any one of the preceding claims, wherein the guanidine acceptor, which c bicykloalkán alebo alkén, nároku 1, vy protónov jbicycloalkane or alkene according to claim 1; je Cg až C-^Q diazaje 1 až 5 substituovaný až Cg alkylom, zlúčenina alebo pyridín,is a C 8 -C 10 diazate of 1 to 5 substituted with a C 8 alkyl, compound or pyridine, C4 až Cg heteroaromatická dusíkatá mono alebo disubstituovaný ažC4 to C8 heteroaromatic nitrogen mono or disubstituted to C 4 alkylamínom.C 4 alkylamine. 5. Spôsob konverzie podľa nároku 1, vyznačuj ú c i sa t ý m, že rozpúšťadlom je Cg až nasýtený uhľovodík, Cg až C1Q aromatický uhľovodík, ktorý môže mať ako substituenty 1 až 3 halogény alebo až C 4 alkyly, 1 až 4 halogenovaný C-^ až Cg alkán, C4 až Cg priamy alebo cyklický éter, N,N-di-Ci-C2 alkylformamid, N,N-di-C^-C2 alkylacet26 amid, až C2 alkylnitril.5. The method of conversion according to claim 1, wherein D is C characterized in that the solvent is a saturated hydrocarbon to Cg, Cg and C 1Q aromatic hydrocarbon, which may have as substituents 1 to 3 halogens, or-C 4 alkyl groups, halogenated 1-4 C 1 -C 8 alkane, C 4 -C 8 straight or cyclic ether, N, N-di-C 1 -C 2 alkylformamide, N, N-di-C 1 -C 2 alkyl acet26 amide, to C 2 alkylnitrile. 6. Spôsob konverzie podľa nároku 1, vyznačuj ú ci sa t ý m, že zvyškom je aromatický alebo heteroaromatický kruh zo skupiny: fenyl, naftyl, pyridyl, pyrol, furyl, tienyl, izotiazolyl, imidazolyl, benzimidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, chinolyl, izochinolyl, benzofuryl, izobenzofuryl, benzotienyl, pyrazolyl, indolyl, izoindolyl, purinyl, karbazolyl, izoxazolyl, benztiazolyl, benzoxazolyl, tiazolyl, oxazolyl a 1,4-benzodiazepinyl, kde skupina NH v indolovej, izoindolylovej, karbazolylovj alebo benzodiazepinylovej skupine je v priebehu reakcie chránená odštiepiteľnou C^-C^alkanoylovou skupinou.6. The process of claim 1 wherein the radical is an aromatic or heteroaromatic ring selected from the group: phenyl, naphthyl, pyridyl, pyrrole, furyl, thienyl, isothiazolyl, imidazolyl, benzimidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzofuryl, isobenzofuryl, benzothienyl, pyrazolyl, indolyl, isoindolyl, purinyl, carbazolyl, isoxazolyl, benzothiazolyl, benzoxazolyl, thiazolyl, oxazolyl, and 1,4-benzodiazepinyl, wherein the NH group in the indole, isoindolyl, benzyl, isoindolyl, or benzyl group is protected by a leaving C 1 -C 4 alkanoyl group during the reaction. 7. Spôsob konverzie podľa nároku 1, vyznačuj ú ci sa tým, že alkoholom I je alkohol zo skupiny:Conversion method according to claim 1, characterized in that the alcohol I is an alcohol from the group: OH kde G je C2“C4alkylén, ktorý je možné nahradiť C^-C^alkylom a zmienený alkylénový reťzec môže v kruhu obsahovať S(0)n, kde n = 0 až 2.OH wherein G is C 2 -C 4 alkylene which can be replaced by C 1 -C 4 alkyl and said alkylene chain may contain in the ring S (O) n where n = 0 to 2. OH kde G je definované vyššieOH wherein G is as defined above RR OH ^/^^^,00201*09 alkyl, a výsledkom reakcie je zodpovedajúci azid III s invertovaným atómom uhlíka, ktorý susedí s azoskupinou.OH, R @ 1, R @ 1 O, R @ 1 O, alkyl, and the result of the reaction is the corresponding azide III with an inverted carbon atom adjacent to the azo group. 8. Spôsob konverzie podľa nároku 7, vyznačuj ú ci sa tým, že alkoholom I je alkohol zo skupiny:Conversion method according to claim 7, characterized in that the alcohol I is an alcohol from the group: OH kde X znamená vodík, p-CF3, p-CH^, m-OCH^ a kde vlnovka môže byť alfa alebo beta väzbaOH wherein X is hydrogen, p-CF 3 , p-CH 3, m-OCH 3, and wherein the wavy line may be an alpha or beta bond OABOUT OHOH OHOH OH • tOH • t HaC^cooCsHg kde X znamená vodík, p-CF^, p-CH3, m-0CH3 a kde X a Y môžu spolu znamenať 1,2-metyléndioxoskupinu a kde vlnovka môže byť alfa alebo beta väzba.HaC ^ cooCsHg wherein X is hydrogen, p-CF ^, p-CH3, m-0CH 3, and wherein X and Y together can represent 1,2-metyléndioxoskupinu and wherein the wavy line indicates an alpha or beta bond. a zodpovedajúci invertovaný azid je:and the corresponding inverted azide is: kde X znamená vodík, p-CFj, p-CH-j, m-OCHg, p-OCHjwherein X is hydrogen, p-CF3, p-CH3, m-OCH3, p-OCH3 N3 N 3 N3 ν3 N 3 ν 3 RR Ν3 η3ο^όοοο2η5 aleboΝ 3 η 3 ο ^ όοοο 2 η 5 or Y kde X a Y nezávisle znamenajú vodík, p-CF^, p-CHj, m-OCH^, p-OCH^, kde X a Y môžu spolu znamenať 1,2-metyléndioxoskupinu kde vlnovka môže byť alfa alebo beta väzba.Y wherein X and Y independently represent hydrogen, p-CF 4, p-CH 3, m-OCH 4, p-OCH 4, wherein X and Y may together represent a 1,2-methylenedioxy group wherein the wavy line may be an alpha or beta bond.
SK8-96A 1993-07-08 1994-07-05 Alcohol to azide sn2 conversion SK896A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/089,315 US5391772A (en) 1993-07-08 1993-07-08 Converting an alcohol to an azide with SN 2 inversion using a phosphoryl azide
PCT/US1994/007524 WO1995001970A1 (en) 1993-07-08 1994-07-05 Alcohol to azide sn2 conversion

Publications (1)

Publication Number Publication Date
SK896A3 true SK896A3 (en) 1996-07-03

Family

ID=22216969

Family Applications (1)

Application Number Title Priority Date Filing Date
SK8-96A SK896A3 (en) 1993-07-08 1994-07-05 Alcohol to azide sn2 conversion

Country Status (8)

Country Link
US (1) US5391772A (en)
CN (1) CN1062268C (en)
AU (1) AU7254994A (en)
BR (1) BR9406927A (en)
CZ (1) CZ5196A3 (en)
FI (1) FI960050A (en)
SK (1) SK896A3 (en)
WO (1) WO1995001970A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986088A (en) * 1997-03-25 1999-11-16 Eisai Co., Ltd. Process for the preparation of azide derivatives
ES2177415B1 (en) * 2000-09-04 2004-10-16 Ragactives, S.L. PROCEDURE FOR OBTAINING 4-ALQUILAMINO-5, 6-DIHIDRO-4H-TIENO- (2,3B) -TIOPIRAN-2-SULFONAMIDE-7-DIOXIDES, AND INTERMEDIATES.
US7070941B2 (en) * 2003-11-17 2006-07-04 Board Of Regents, The University Of Texas System Methods and compositions for tagging via azido substrates
US8841468B2 (en) * 2010-06-23 2014-09-23 Physical Sciences, Inc. Synthesis of an azido energetic alcohol
WO2014073001A1 (en) * 2012-11-07 2014-05-15 Council Of Scientific & Industrial Research 2, 2'-bis (4-hydroxyphenyl) alkyl azides and process for the preparation thereof
CN104341360A (en) * 2013-07-31 2015-02-11 南京长澳医药科技有限公司 A rufinamide preparing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157129A (en) * 1990-04-18 1992-10-20 Merck & Co., Inc. Enantiospecific synthesis of s-(+)-5,6-dihydro-4-(r-amino)-4h-thieno(2,3-b)thiopyran-2-sulfonamide-7,7-dioxide

Also Published As

Publication number Publication date
CZ5196A3 (en) 1996-06-12
FI960050A0 (en) 1996-01-05
WO1995001970A1 (en) 1995-01-19
AU7254994A (en) 1995-02-06
US5391772A (en) 1995-02-21
CN1126992A (en) 1996-07-17
BR9406927A (en) 1996-09-10
FI960050A (en) 1996-01-05
CN1062268C (en) 2001-02-21

Similar Documents

Publication Publication Date Title
Thompson et al. Direct conversion of activated alcohols to azides using diphenyl phosphorazidate. A practical alternative to Mitsunobu conditions
SU1333234A3 (en) Method of producing the derivatives of n-phenylbenzamide or salts thereof
US4297282A (en) Resolution of mercaptopropionic acids
JPS6327462A (en) Manufacture of o-substituted hydroxylamine
SK896A3 (en) Alcohol to azide sn2 conversion
KR20060003878A (en) Process for the preparation of n-substituted 2-cyanopyrrolidines
UA125595C2 (en) Intermediates useful for the synthesis of a selective inhibitor against protein kinase and processes for preparing the same
EP0845455B1 (en) Addition salts of N-acyl aspartic acid and alpha-arylalkylamines and process for the optical resolution of alpha-arylalkylamines
US3580923A (en) Resolution process
AU758207B2 (en) Cathecol hydrazone derivatives, process for preparing the same and pharmaceutical composition containing the same
WO2009133789A1 (en) PROCESS FOR PRODUCING α-FLUORO-β-AMINO ACIDS
JPH0421691A (en) Production of phosphatidylcholine derivative and its analog and their intermediate
NZ560972A (en) Process and methods for the preparation of optically active cis-2-hydroxymethyl-4-(cytosin-1' -yl)-1,3-oxathiolane or pharmaceutically acceptable salts thereof
IL174219A (en) Process for the preparation of enantiopure intermediates using yeast cholesterase
JPS5982365A (en) Novel racemic resolution keto compound and manufacture
US6127362A (en) 9,10-diazatricyclo[4,4,1,12,5 ] decane and 2,7-diazatricyclo [4,4,0,03,8 ] decane derivatives having analgesic activity
CN115594613B (en) Edison intermediate and preparation method thereof
EP3242879B1 (en) Novel process for the preparation of dipeptidyl peptidase-4 (dpp-4) enzyme inhibitor
JP2000503993A (en) Method for producing N- (3-amino-4-chlorophenyl) acylamide
IE840740L (en) Preparing aminonitriles.
US5011973A (en) Novel process for producing bischoline-disulfonate derivatives
KR100315053B1 (en) Tetraalkylfluoroformamidinium trifluoroacetate and preparation process of same
KR101962516B1 (en) Sitagliptin intermediate, method of synthesizing the sitagliptin intermediate, and method of synthesizing sitagliptin using the sitagliptin intermediate
JP2689600B2 (en) Optical resolution of α-isopropyl-p-chlorophenylacetic acid
KR950001685B1 (en) Process for the preparation of antraquinone derivatives use reactivity dye