SK797A3 - Method and device for the disposal of a cation exchanger - Google Patents

Method and device for the disposal of a cation exchanger Download PDF

Info

Publication number
SK797A3
SK797A3 SK7-97A SK797A SK797A3 SK 797 A3 SK797 A3 SK 797A3 SK 797 A SK797 A SK 797A SK 797 A3 SK797 A3 SK 797A3
Authority
SK
Slovakia
Prior art keywords
cations
cation exchanger
process according
complexes
inactive
Prior art date
Application number
SK7-97A
Other languages
Slovak (sk)
Other versions
SK281355B6 (en
Inventor
Horst-Otto Bertholdt
Rainer Gassen
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of SK797A3 publication Critical patent/SK797A3/en
Publication of SK281355B6 publication Critical patent/SK281355B6/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

The invention concerns a method and device for the disposal of a cation exchanger (3) contaminated with radioactive and inactive cations. The invention calls for the inactive cations which are not bivalent to be converted into anionic complexes and these complexes to be flushed out of the exchanger (3). For this purpose, the cation exchanger (3) is connected to a feed line (4) for a complexing agent and to a discharge line (6).

Description

Oblasť technikyTechnical field

Vynález sa týka spôsobu, zneškodňovania katexu, ktorý je nasýtený rádioaktívnymi a inaktívnymi katiónmi. Vynález sa týka i zariadenia na zneškodňovanie takého katexu.The invention relates to a process for the disposal of a cation exchanger which is saturated with radioactive and inactive cations. The invention also relates to a device for the disposal of such a cation exchanger.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Katexy sa používajú pri uskutočňovaní dekontaminácie v zariadeniach jadrovej techniky. Pritom sa v katexoch zachytávajú katióny vznikajúce ako odpad pri dekontaminácii. Po bežnej dekontaminácii obsahuje katex ako rádioaktívne, tak aj inaktívne katióny. Rádioaktívnymi katiónmi sú Co, ^®Co, ^^Mn a/alebo ^.Cr. Vyskytoval sa ale môžu i iné rádioaktívne katióny. Inaktívnymi katiónmi sú spravidla katióny železa a niklu.Cation exchangers are used in decontamination in nuclear equipment. In this process, cations resulting from decontamination waste are trapped in the cation exchangers. After conventional decontamination, the cation exchanger contains both radioactive and inactive cations. Radioactive cations are Co, ^Co, ^Mn and / or ^Cr. However, other radioactive cations may also be present. Inactive cations are generally iron and nickel cations.

Po dekontaminácii zariadenia zostáva ako zvyšok nasýtený katex. Nasýtené živice nachádzajúce sa v katexe sa musia zneškodnil. . Pritom sa musia odstránil z katexovej nádrže a ňalej. spracoval. .na konečné uloženie. Stupne postupu až po uloženie na konečné. úložisko sú drahé a nákladné, pretože živice obsahujú rádioaktívne látky.After decontamination, the cation exchanger remains as a residue. Saturated resins contained in the cation exchanger must be disposed of. . In doing so, they must be removed from the cation exchange tank and beyond. processed. .for final storage. Steps of the procedure up to the final storage. repositories are expensive and expensive because the resins contain radioactive substances.

Pretože'pri zvyčajnom spôsobe dekontaminácie vzniká ako odpad veíké množstvo katiónov, musí sa zneškodňoval veíké množstvo živice a ukladal na konečné úložisko.Since a large amount of cations is produced as waste in the usual decontamination process, a large amount of resin must be disposed of and deposited at the final disposal site.

Úlohou vynálezu je poskytnúl spôsob zneškodňovania katexu, ktorý zaručuje, že vzniká ako odpad čo najmenej živice, ktorá obsahuje rádioaktívne katióny, a preto sa musí bezpečne uchovávaj v konečnom úložisku. Poskytnúť sa má aj vhodné zariadenie na zneškodňovanie katexu.SUMMARY OF THE INVENTION The object of the invention is to provide a method of disposal of a cation exchanger which ensures that as little waste as possible which contains radioactive cations is produced as waste and must therefore be safely stored in the final storage site. Appropriate cation exchanger disposal equipment should also be provided.

Podstata vynálezuSUMMARY OF THE INVENTION

Prvá menovaná úloha sa pódia vynálezu rieši tak, že inaktívne katióny, ktoré nie sú dvojmocné, sa premieňajú na aniónové komplexy a že tieto komplexy sa vymývajú z katexu.The first object of the present invention is that the non-divalent inactive cations are converted into anionic complexes and eluted from the cation exchanger.

Katex sa tým selektívne regeneruje. Rádioaktívne katióny vyskytujúce sa v katexe sú totiž všetky dvojmocné, a zostávajú preto v katexe. Tým, že inaktívne katióny sa z katexu odstraňujú, poskytuje živica v katexe znovu viac miesta na nové, dekontamináčné použitie , katexu. Pritom sa znovu dostávajú do katexu rádioaktívne a inaktívne katióny a pri druhej selektívnej regenerácii sa zasa len inaktívne katióny odstraňujú.The cation exchanger is thereby selectively regenerated. The radioactive cations present in the cation are all divalent and therefore remain in the cation. By removing the inactive cations from the cation exchanger, the resin in the cation exchanger again provides more space for a new, decontamination, cation exchange. In this case, radioactive and inactive cations re-enter the cation exchanger and, in the second selective regeneration, only inactive cations are again removed.

Striedaním dekontaminačného. použitia a.selektívnej regenerácie. sa dosiahne tá výhoda, že katex sa môže udržiavať v prevádzke dovtedy, kým nie je nasýtený takmer výlučne rádioaktívnymi katiónmi. Pretože jeho kapacita nie je ohraničená veľkými množstvami inaktívnych katiónov,poskytuje-viac miesta pre rádioaktívne katióny áko obvykle.,a preto . je- použiteľný' pre veľmi .dlhé časové úseky,v jednom Časovom intervale vzniká ako odpad výhodne málo živice, ktorá sa musí dopravovať do konečného úložiska. Vystačí sa teda s veľmi malým konečným úložiskom.Alternating decontamination. Use of selective regeneration. the advantage is achieved that the cation exchanger can be kept in operation until it is saturated almost exclusively by radioactive cations. Since its capacity is not limited by large amounts of inactive cations, it provides more space for radioactive cations as usual, and therefore. It is useful for very long periods of time, in one time interval, preferably little resin is produced as waste, which must be conveyed to the final repository. Thus, a very small final storage is sufficient.

Aniónové komplexy, ktoré sa vymyli z katexu, neobsahujú žiadne rádioaktívne zložky. Môžu sa preto odstrániť jednoduchým spôsobom. Roztok, ktorý komplexy obsahuje, sa môže napríklad odpariť.The anionic complexes which have been eluted from the cation exchanger contain no radioactive components. They can therefore be removed in a simple way. For example, the solution containing the complexes may be evaporated.

Pri .procese dekontaminácie sa môžu vytváral predovšet-In the process of decontamination, the

cimi sa malými množstvami vzdušného kyslíka oxidujú na železité katióny. Preto inaktívne katióny železa, ktoré tvoria veíkú čas£ inaktívnych katiónov, neexistujú ako dvojmocné katióny a premieňajú sa na eniónový komplex.by which small amounts of atmospheric oxygen are oxidized to ferric cations. Therefore, inactive iron cations, which form a large part of inactive cations, do not exist as divalent cations and are converted to the enion complex.

Aby sa podporila oxidácia železnatých katiónov, môže sa použií oxidačné činidlo, napríklad malé množstvo peroxidu vodíka.In order to promote the oxidation of ferrous cations, an oxidizing agent, for example a small amount of hydrogen peroxide, may be used.

Premena inaktívnych katiónov na aniónové komplexy nastáva napríklad pri teplote vyššej ako 20 °C. Premena nastáva obzvlášť pri teplote medzi 60 °C a 80 °C. Pri týchto teplotách prebieha premena obzvlášť výhodne.The conversion of inactive cations to anionic complexes occurs, for example, at a temperature above 20 ° C. The conversion occurs in particular at a temperature between 60 ° C and 80 ° C. At these temperatures the conversion is particularly advantageous.

Bo nasýteného katexu sa privádza napríklad komplexotvor ná látka, čím sa inaktívne premieňajú na aniónové komplexy.For example, a complexing agent is introduced from the saturated cation exchanger, thereby inactivatingly converting it into anionic complexes.

Komplexotvorná látka pritom premieňa na komplexy len katióny, ktoré nie sú dvojmocné. Z katiónov vyskytujúcich sa v katexe po procese dekontaminácie sú dvojmocné len aktívne katióny. Pomocou použitie komplexotvornej látky sa katex selektívne regeneruje tým, že na aniónové komplexy sa premieňajú len inaktívne katióny, zatiaíčo rádioaktívne katióny zostávajú viazané na živici katexú.The complexing agent only converts non-divalent cations into complexes. Of the cations present in the cation exchanger after the decontamination process, only the active cations are divalent. By using a complexing agent, the cation exchanger is selectively regenerated by converting only the inactive cations to the anionic complexes, while the radioactive cations remain bound to the cation exchange resin.

Ako komplexotvorná látka sa používa napríklad kyselina šíaveíová. Táto vytvára s inaktívnymi katiónmi, napríklad železitými, oxalátové komplexy, napríklad oxaláto-železitý komplex.As the complexing agent, for example, oxalic acid is used. This forms, with inactive cations, for example ferric, oxalate complexes, for example oxalate-ferric complex.

Ako komplexotvorná látka je vhodný najmá napríklad roztok kyseliny šlaveíovej, ktorý obsahuje viac ako 0,1 mol kyseliny šlaveíovej. Vhodný je predovšetkým jednomolový roztok kyseliny šlavelovej.As the complexing agent, for example, it is particularly suitable to use a solution of šlavelic acid which contains more than 0.1 mol of šlavelic acid. A one-molar solution of scalic acid is particularly suitable.

Pomocou použitia kyseliny šlavelovej sa dosiahne tá výhoda, že katex sa môže po selektívnej regenerácii ihneň znova použil na dekontemináciu.The use of squalic acid provides the advantage that the cation exchanger can be reused for decontemination after selective regeneration.

Zostávajúce zvyšky kyseliny šlavelovej v katexe totiž nerušia proces dekontaminácie. Výhodne je možné sa zriecl nákladného vyplachovania katexu po selektívnej regenerácii.The remaining residuals of the clavelic acid in the cation exchanger do not interfere with the decontamination process. Advantageously, expensive cation exchanger flushing after selective regeneration is possible.

Pomocou voíby vhodnej koncentrácie kyseliny šlavelovej sa dosiahne tá výhoda, že na jednej strane vystačí na selektívnu regeneráciu množstvo kyseliny šlavelovej privedené . do katexu, na druhej strane však privedený objem roztoku kyseliny šlavelovej je prispôsobený ku kapacite katexu.By selecting a suitable concentration of the tartaric acid, the advantage is achieved that, on the one hand, the amount of tartaric acid supplied is sufficient for selective regeneration. into the cation exchanger, on the other hand, the volume of the solution of the scalic acid solution fed is adapted to the cation exchanger capacity.

Aniónové komplexy vypláchnuté z katexu sa môžu oxidačné rozpadal. Na to sa môže k aniónovým komplexom v určitom priradenom stupni postupu pridával peroxid vodíka a/alebo ozón. Pri takomto oxidačnom rozpade komplexov vzniká oxid uhličitý, ktorý sa môže uvoíňoval. Okrem toho vzniká ako odpad roztok, ktorý obsahuje inaktívne katióny. Taký roztok nevyžaduje žiadne nákladné stupne zneškodňovania.Anionic complexes flushed from the cation exchanger can oxidize decay. To this end, hydrogen peroxide and / or ozone may be added to the anionic complexes at some associated process step. Such oxidative complex decomposition produces carbon dioxide which can be released. In addition, a solution is formed which contains inactive cations as waste. Such a solution requires no costly disposal steps.

Pomocou spôsobu podlá vynálezu sa dosiahne najmS tá výhoda, že katexová živica, ktorá po stupni dekontaminácie obsahuje rádioaktívne a inaktívne katióny, sa môže selektívne regeneroval, t. zn., že živica sa zbavuje inaktívnych katiónov, zatialčo rádioaktívne katióny zostávajú viazané naIn particular, the method according to the invention achieves the advantage that the cation exchange resin, which after the decontamination step contains radioactive and inactive cations, can be selectively regenerated, i. that the resin gets rid of inactive cations, while radioactive cations remain bound to

- 5 živici. Na rovnaké množstvo živice ss teda môže výhodne pomocou selektívnej regenerácie neviazal viac rádioaktívnych katiónov. Z toho vyplýva, že ako odpad vzniká menej živíc nasýtených rádioaktívnymi katiónmi, a preto sa musí pre také živice pripravil len málo priestoru na konečné uloženie.- 5 resins. Thus, it can advantageously not bind more radioactive cations to the same amount of ss resin by selective regeneration. This implies that fewer resins saturated with radioactive cations are produced as waste, and therefore little space has to be prepared for such resins for final disposal.

Druhá stanovená úloha, poskytnúť zariadenie na zneškodňovanie katexu, sa rieši podlá vynálezu tým, že katex je spojený s napájacím potrubím na komolexotvornú látku e s vývodom.A second object of the invention is to provide a cation exchanger disposal device according to the invention in that the cation exchanger is connected to a feed line for a co-exchanger e with an outlet.

Týmto napájacím potrubím sa po ukončení dekontaminačheho použitia . privádza komplexotvorná látka na selektívnu regeneráciu katexu. Aniónové komplexy inaktívnych katiónov, vzniknuté potom n'a katexe, sa odvádzajú vývodom, pretože katex nemôže zachytávač žiadne anióny. V katexe tak vzniká znovu miesto na absorpciu katiónov počas druhého dékontaminačného použitia.This supply line is used after decontamination. introduces a complexing agent for selective cation exchange regeneration. The anionic complexes of the inactive cations formed thereafter on the cation exchanger are discharged through the outlet, since the cation exchanger cannot receive any anions. Thus, a cation absorption site is re-established in the cation exchange during the second decontamination use.

Vývod katexu je spojený napríklad so zariadením na spracovanie,do ktorého ústi potrubie na oxidačné činidlo. V tomto zariadení na úpravu sa môžu rozpadač komplexy. Pritom vzniká oxid uhličitý, ktorý sa uvoíňuje, ako aj inaktívne katióny v roztoku, ktorý sa imôže zneškodnič jednoduchými prostriedkami .The cation exchanger outlet is connected, for example, to a treatment device into which an oxidant reagent line opens. In this treatment device can disintegrate complexes. This produces carbon dioxide which is released as well as inactive cations in a solution which can be destroyed by simple means.

Katex je umiestnený napríklad v nádrži, ktorú je možné použič na konečné uloženie. Tým sa dosahuje tá výhoda, že celý katex, keň je úplne nasýtený rádioaktívnymi . .katiónmi, sa môže dopravovač na konečné úložisko. Vystačí sa výhodne bez priameho kontaktu s nasýtenou živicou katexu. Živica sa nemusí vyberač z katexu.The cation exchanger is located, for example, in a tank that can be used for final storage. This achieves the advantage that the entire cation exchanger, when fully saturated with radioactive substances. With the aid of cations, the conveyor can be used for final storage. Preferably, it is sufficient without direct contact with a saturated cation exchange resin. The resin does not need a cation exchanger.

So zariadením pódia vynálezu sa pomocou spôsobu podlá vynálezu dosiahne tá výhoda, že sa vyžaduje len malá kapacita konečného úložiska pre katexovú živicu.With the apparatus according to the invention, the advantage of the method according to the invention is that only a small capacity of the final cation exchange resin is required.

Zariadenie na zneškodňovanie katexu, ktorým sa dá uskutočňoval príslušný spôsob, sa vysvetíuje bližšie na základe nákresu.The cation exchanger disposal device by which the method can be carried out is explained in greater detail on the basis of the drawing.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Nákres ukazuje systém j,, ktorý sa má dekontaminovaí, ktorým môže byí napríklad primárny okruh jadrovej elektrárne. Na dekontamináciu sa privádza .vopred privedený'dekontemlnaČný..roztOk cei dekontamiňačný okruh 2, do ktorého je zapojený katex 3.· V katexe 3. sa zachytávajú ako rádioaktívne, tak i inaktívne katióny.The drawing shows a system to be decontaminated, which may be, for example, a primary circuit of a nuclear power plant. For decontamination, a pre-contaminated line is fed through the decontamination circuit 2 to which the cation exchanger 3 is connected. In the cation exchanger 3, both radioactive and inactive cations are captured.

Na zneškodnenie katexu 3. sa tento odpojí od dekontaminačného okruhu 2, Potom sa privedie do katexu 3 cez napájacie potrubie 4 z nádrže J? na:komplexotvornú látku komplexotvorná látka. Pomocou tejto komplexotvornej látky sa premenia inaktívne katióny na aniónové komplexy, ktoré potom katex 3 opustia.For the disposal of the cation exchanger 3, it is disconnected from the decontamination circuit 2, then it is fed into the cation exchanger 3 via the supply line 4 from the tank J? for: complexing agent complexing agent. This complexing agent converts the inactive cations into anionic complexes, which then leave the cation exchanger 3.

Roztok, ktorý obsahuje komplexy, sa dostáva cez vývod 6 katexu 3 do zariadenia 7 na spracovanie komplexov. Na spracovanie komplexov sa privádza do zariadenia na spracovanie 7 cez potrubie 8 oxidačné činidlo z nádrže 9 na oxidačné činidlo. Zo zariadenia 7 na spracovanie vychádza potrubie 1 0 na roztok, ktorý neobsahuje žiadne rádioaktívne látky, a potrubie 11 na plyn, napríklad na oxid uhličitý.The solution containing the complexes passes through the cation exchanger outlet 6 to the complex processing device 7. For the treatment of the complexes, an oxidizing agent is supplied from the oxidizing agent tank 9 to the treatment plant 7 via line 8. From the treatment device 7 a line 10 for a solution containing no radioactive substances and a line 11 for a gas, for example carbon dioxide, come.

Potom čo sa raz alebo viackrát vystriedal proces dekontaminácie a selektívna regenerácia katexu 2> obsahuje živica katexu 3 takmer už iba rádioaktívne katióny. Živica sá teda využila optimálne na odstránenie rádioaktívnych katiónov. Živica sa potom môže dopravil do konečného úložiska. Pomocou optimálneho využitia živice sa vystačí s veími malým úložiskom na živicu.After the decontamination and selective regeneration of the cation exchanger 2 has been replaced one or more times, the cation exchanger resin 3 contains almost only radioactive cations. The resin thus utilized optimally to remove radioactive cations. The resin can then be conveyed to the final depot. Thanks to optimum use of the resin, a very small resin storage is sufficient.

Katex J môže byl umiestnený už v prevádzke pódia príkazov v nádrži 12, ktorá sa môže použil na konečné uloženie. Potom nie je potrebné prelievanie nasýtenej živice do špeciálnej nádrže na konečné uloženie. Dokonca sa celý katex 2 bopravuje na konečné úložisko a nahrádza sa novým katexom J. Personál tak neprichádza do styku s nasýtenou živicou.The cation exchanger J may have already been placed in operation at the command stage in the tank 12, which can be used for final storage. Then it is not necessary to pour the saturated resin into a special tank for final storage. Even the entire cation exchanger 2 is reprocessed to the final storage site and replaced by a new cation exchanger J. Thus, the personnel do not come into contact with the saturated resin.

Claims (15)

PATENTOVÉ N Ä E O K YPATENT P OPS 1. Spôsob zneškodňovania, katexu /3/, ktorý je nasýtený rádioaktívnymi a inaktívnymi katiónmi, vyznačujúci sa t ý m , že na selektívnu regeneráciu katexu /3/ sa len inaktívne katióny, ktoré nie sú dvojmocné, premieňajú na anionové komplexy a tieto komplexy sa vymývajú z katexu /3/, tak>~ že tento môže prijímač dodatočné dvojmocné rádioaktívne katióny, a že po striedajúcom..sa nasýtení a-selektívnom regenerovaní sa privádza živica katexu /3/ na konečné úložisko.A method of disposal, cation exchange resin (3), which is saturated with radioactive and inactive cations, characterized in that for selective cation exchange regeneration (3), only non-divalent inactive cations are converted into anionic complexes and these complexes are converted into anionic complexes. eluted from the cation exchanger (3) so that the receiver can additionally divalent radioactive cations and that after alternating saturation and selective regeneration, the cation exchanger resin (3) is fed to the final storage site. 2. Spôsob podía nároku 1, vyznačujúci sa tým, že železnaté katióny sa oxidujú na železité katióny a že železité katióny sa premieňajú na aniónové komplexy.The process according to claim 1, characterized in that the ferrous cations are oxidized to ferric cations and the ferric cations are converted into anionic complexes. 3· Spôsob pódia nároku 2, vyznačujúci sa tým, že sa používa oxidačné činidlo na oxidáciu železnatých katiónov.The process according to claim 2, characterized in that an oxidizing agent is used for the oxidation of ferrous cations. 4. Spôsob pódia nároku 3, vyznačujúci sa tým, že ako oxidačné Činidlo sa používa malé množstvo peroxidu vodíka.The process according to claim 3, characterized in that a small amount of hydrogen peroxide is used as the oxidizing agent. 5. Spôsob pódia jedného z nárokov 1 až 4, vyznačujúci sa tým, že inaktívne katióny sa premieňajú na aniónové komplexy pri teplote vyššej akoA process according to any one of claims 1 to 4, characterized in that the inactive cations are converted into anionic complexes at a temperature higher than 20 °C.Deň: 18 ° C. 6. Spôsob pódia nároku 5, vyznačujúci sa 'f V Z t y m , že inaktívne katióny sa premieňajú na anionové komplexy pri teplote medzi 60 °C a 80 °C.6. The process according to claim 5, wherein the inactive cations are converted to anion complexes at a temperature between 60 [deg.] C. and 80 [deg.] C. 7. Spôsob pódia jedného z nárokov 1 až 6, vyznačujúci sa tým, že do nasýteného katexu /3/ sa privádza komplexotvorná látka, čím sa inaktívne vatióny premieňajú na aniónové komplexy.Method according to one of Claims 1 to 6, characterized in that a complexing agent is fed to the saturated cation exchanger (3), thereby converting the inactive into ations into anionic complexes. 8. Spôsob pódia nároku 7, vyznačujúci sa tým, že ako komplexotvorná látka sa privádza do nasýteného katexu /3/ kyselina šieveiová.The process according to claim 7, characterized in that shingioic acid is introduced into the saturated cation exchange resin (3) as complexing agent. 9. Spôsob pódia nároku 8, vyznačujúci sa tým, že ako komplexotvorná látka sa privádza roztok, ktorý obsahuje viac ako 0,1 mol kyseliny šiaveiovej.The process according to claim 8, characterized in that a solution containing more than 0.1 mol of oxalic acid is fed as complexing agent. 10. Spôsob podía nároku 9, vyznačujúci sa tým, že ako komplexotvorná látka sa privádza jednomolový roztok kyseliny šfaveiovej.Method according to claim 9, characterized in that a one-molar solution of oxalic acid is fed as the complexing agent. 11 . Spôsob podía jedného z nárokov 1 až 10, vyznačujúci sa tým, že aniónové komplexy vymyté z katexu /3/ sa oxidačné rozkladajú.11. Process according to one of Claims 1 to 10, characterized in that the anionic complexes eluted from the cation exchanger (3) are oxidatively decomposed. 12. Spôsob podía nároku 11, bv y z n e č u j ú c i sa t ý m , že k aniónovým komplexom sa pridáva peroxid vodíka a/alebo ozón, čím sa aniónové komplexy oxidačné rozpadajú.A process according to claim 11, characterized in that hydrogen peroxide and / or ozone is added to the anionic complexes, whereby the anionic complexes decompose oxidatively. 13. Zariadenie na zneškodňovanie katexu /3/ pomocou spôsobu pódia nárokov 1až12, vyznačujúce sa tým, že katex /3/ je spojený s napájacín zariadením /4/ na komplexotvorná látku a s vývodom /6/.Apparatus for the disposal of a cation exchanger (3) by a method according to claims 1 to 12, characterized in that the cation exchanger (3) is connected to a feeding device (4) for the complexing agent and to the outlet (6). 14. Zariadenie podía nároku 13, v ,y.z n a č u j ú c e sa t ý m , že vývod /6/ je spojený so zaria dení m. na. spracova nie /7/, do ktorého ústi potrubie /8/ na oxidačné činidlo.Device according to claim 13, characterized in that the outlet (6) is connected to the device. on the. processing (7) into which the pipe (8) flows into an oxidizing agent. 15. Zariadenie podlá jedného z nárokov 13 alebo 14, v yzna čujúce sa t ý q , že katex /3/ je umiestnený v nádrži /12/, ktorú je možné použil na konečné uloženie.Device according to either of Claims 13 or 14, characterized in that the cation exchanger (3) is disposed in a tank (12) which can be used for final storage.
SK7-97A 1994-07-04 1995-06-21 Method and device for the disposal of a cation exchanger SK281355B6 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4423398A DE4423398A1 (en) 1994-07-04 1994-07-04 Method and device for disposing of a cation exchanger
PCT/DE1995/000802 WO1996001478A1 (en) 1994-07-04 1995-06-21 Method and device for the disposal of a cation exchanger

Publications (2)

Publication Number Publication Date
SK797A3 true SK797A3 (en) 1997-08-06
SK281355B6 SK281355B6 (en) 2001-02-12

Family

ID=6522212

Family Applications (1)

Application Number Title Priority Date Filing Date
SK7-97A SK281355B6 (en) 1994-07-04 1995-06-21 Method and device for the disposal of a cation exchanger

Country Status (10)

Country Link
US (1) US5835865A (en)
EP (1) EP0769191B1 (en)
JP (1) JP3124555B2 (en)
CA (1) CA2194293C (en)
DE (2) DE4423398A1 (en)
ES (1) ES2123256T3 (en)
FI (1) FI114250B (en)
HU (1) HU220400B (en)
SK (1) SK281355B6 (en)
WO (1) WO1996001478A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818772C2 (en) * 1998-04-27 2000-05-31 Siemens Ag Process for reducing the radioactivity of a metal part
KR20010080404A (en) * 1998-11-10 2001-08-22 칼 하인쯔 호르닝어 Method for disposing of metal cations
US6711620B1 (en) * 1999-04-14 2004-03-23 Matsushita Electric Industrial Co. Event control device and digital broadcasting system
JP2003098294A (en) * 2001-09-27 2003-04-03 Hitachi Ltd Decontamination method using ozone and apparatus therefor
US20100229271A1 (en) 2007-10-12 2010-09-16 Marissen Roelof R Helmet containing polyethylene fibers
US8916090B2 (en) 2011-07-07 2014-12-23 Karl Storz Imaging, Inc. Endoscopic camera component manufacturing method
JP5489124B2 (en) * 2011-08-23 2014-05-14 日立Geニュークリア・エナジー株式会社 Waste resin treatment method and treatment system for nuclear power plant
EP2819125B1 (en) 2013-06-21 2018-08-08 Hitachi-GE Nuclear Energy, Ltd. Radioactive organic waste treatment method and system
JP6439242B2 (en) * 2013-10-24 2018-12-19 栗田工業株式会社 Decontamination method and decontamination apparatus for radioactive waste ion exchange resin
EP3065139B1 (en) 2013-10-24 2021-01-06 Kurita Water Industries Ltd. Method and apparatus for electrodeposition of radioactice co-60 and fe, and method and apparatus for decontamination of radioactive waste ion exchange resin
CN107004450B (en) 2014-11-19 2019-05-21 法玛通有限公司 Method and apparatus for recycling radionuclide from the resin material after
CN109727697B (en) * 2017-10-31 2024-04-09 中核核电运行管理有限公司 High-radioactivity waste receiving device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694681A (en) * 1952-03-07 1954-11-16 Univ Idaho Res Foundation Inc Recycling the complexing agent in the separation of ions by ion exchange
US3262883A (en) * 1962-11-13 1966-07-26 Rohm & Haas Defouling ion exchange resins by the removal of iron oxides therefrom
DE1257692B (en) * 1964-02-25 1967-12-28 Joh A Benckiss G M B H Chem Fa Regeneration of mixtures of strongly and weakly acidic ion exchangers
US3340200A (en) * 1964-09-15 1967-09-05 Stone & Webster Eng Corp Removal and disposal of radioactive contaminants in mixed ion exchange resins with alkali metal halide
US3454503A (en) * 1967-07-19 1969-07-08 Shell Oil Co Process for regenerating cation exchange resins
US3732191A (en) * 1972-02-07 1973-05-08 Goodrich Co B F Polythiol vulcanization of epihalohydrin elastomers
US3887498A (en) * 1973-03-12 1975-06-03 Morton Norwich Products Inc Method for regeneration of cation exchange resins and for removal of iron deposits therefrom
DE2358688C3 (en) * 1973-11-24 1979-02-22 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for increasing the service life of organic extractants
DE2607292C2 (en) * 1976-02-23 1985-08-29 Kraftwerk Union AG, 4330 Mülheim Process for the removal of radioactive corrosion products from ion exchange resins used in nuclear reactor operation
FR2361724A1 (en) * 1976-08-12 1978-03-10 Commissariat Energie Atomique STORAGE PROCESS FOR CONTAMINATED ION EXCHANGER RESINS
US4235713A (en) * 1978-06-06 1980-11-25 Redondo Abad Angel Luis Process for the elimination of accumulated iron in organic phases of fluid-fluid extraction that contain di-2-ethyl-hexyl phosphoric acid
US4156646A (en) * 1978-06-16 1979-05-29 The United States Of America As Represented By The United States Department Of Energy Removal of plutonium and americium from alkaline waste solutions
DE2934863A1 (en) * 1979-08-29 1981-04-09 Tetra Werke Dr.Rer.Nat. Ulrich Baensch Gmbh, 4520 Melle METHOD FOR REGENERATING ION EXCHANGERS
SE420249B (en) * 1980-01-31 1981-09-21 Asea Atom Ab SET FOR TREATMENT OF ONE IN A WASTE CIRCUIT IN A NUCLEAR REACTOR PLANT USING ORGANIC ION EXCHANGER MASS
DE3007716A1 (en) * 1980-02-29 1981-09-10 Rheinisch-Westfälisches Elektrizitätswerk AG, 4300 Essen METHOD FOR TREATING WASTE LIQUIDS CONTAINING RADIONUCLIDE FROM NUCLEAR POWER PLANTS OR THE LIKE.
CA1199043A (en) * 1982-11-05 1986-01-07 Majesty (Her) In Right Of Canada As Represented By Atomic Energy Of Canada Limited/L'energie Atomique Du Canada Limitee Radioactive waste immobilization using ion-exchange materials which form glass-ceramics
JPS59162493A (en) * 1983-03-07 1984-09-13 株式会社日立製作所 Method of removing iron oxide adhering to ion exchange resin
JPS59231493A (en) * 1983-06-15 1984-12-26 住友金属鉱山株式会社 Method of treating low level radioactive waste liquid
CS245861B1 (en) * 1984-06-01 1986-10-16 Zdenek Matejka Method of heavy metals separation from aminocarboxyl complexing substances
DE3427258A1 (en) * 1984-07-24 1986-01-30 Kraftwerk Union AG, 4330 Mülheim Device for separating off and for conditioning contaminated solids
JPS6238247A (en) * 1985-08-12 1987-02-19 Hitachi Ltd Method for regenerating ion exchange resin
GB2229312B (en) * 1989-03-14 1993-01-06 British Nuclear Fuels Plc Actinide dissolution
US5139734A (en) * 1990-11-26 1992-08-18 Westinghouse Electric Corp. Resin processing system
DE4137947C2 (en) * 1991-11-18 1996-01-11 Siemens Ag Processes for the treatment of radioactive waste

Also Published As

Publication number Publication date
DE4423398A1 (en) 1996-01-11
FI114250B (en) 2004-09-15
JPH10502450A (en) 1998-03-03
EP0769191A1 (en) 1997-04-23
HU9700015D0 (en) 1997-02-28
EP0769191B1 (en) 1998-09-23
ES2123256T3 (en) 1999-01-01
HU220400B (en) 2002-01-28
CA2194293A1 (en) 1996-01-18
HUT77579A (en) 1998-06-29
DE59503719D1 (en) 1998-10-29
CA2194293C (en) 2002-01-29
WO1996001478A1 (en) 1996-01-18
US5835865A (en) 1998-11-10
FI970040A0 (en) 1997-01-03
SK281355B6 (en) 2001-02-12
JP3124555B2 (en) 2001-01-15
FI970040A (en) 1997-01-03

Similar Documents

Publication Publication Date Title
US4287002A (en) Nuclear reactor decontamination
DE60024306T2 (en) METHOD FOR TREATING RADIOACTIVE GRAPHITE
SK797A3 (en) Method and device for the disposal of a cation exchanger
JPH0310919B2 (en)
US4628837A (en) Method and apparatus for processing spent ion exchange resin
KR102122163B1 (en) Methods for decontaminating the metal surfaces of nuclear facilities
CA2186617C (en) Method and device for disposing of a solution containing an organic acid
US5122268A (en) Apparatus for waste disposal of radioactive hazardous waste
CA2329814C (en) Method for reducing the level of radioactivity of a metal part
US5958247A (en) Method for disposing of a solution containing an organic acid
US6444276B2 (en) Method for decontaminating a surface of a component
JP2008089451A (en) Method and device for treating laundry waste liquid
JP3105384B2 (en) Treatment method of oxalic acid-containing aqueous solution, radioactive cladding decontamination treatment apparatus and decontamination method
US20220020507A1 (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
JP3656602B2 (en) Treatment method of chemical decontamination waste liquid
JPH02287299A (en) Treatment of radioactive carbon
JP2728335B2 (en) Decomposition method of organic matter in radioactive liquid waste
US20010031232A1 (en) Method for disposing of metal cations
JPH01193699A (en) Treatment of decontamination waste liquid
JPH0910779A (en) Denitrification treatment of organic nitrogen-containing waste solution
SIMPSON et al. DECONTAMINATION FOR FREE RELEASE XA9743746
JP2000065989A (en) Method for chemical decontamination of radioactive contaminant
JPS60187898A (en) Oxidative destruction treating method of radioactive waste liquor
CA2118829A1 (en) Cleaning process
JPH0947751A (en) Denitrifying method of organic nitrogen-containing waste water