SK1772002A3 - Nucleoside analog, method of change of cytokine secreting from a cell and method for inhibiting the growth of hyperproliferative cells - Google Patents

Nucleoside analog, method of change of cytokine secreting from a cell and method for inhibiting the growth of hyperproliferative cells Download PDF

Info

Publication number
SK1772002A3
SK1772002A3 SK177-2002A SK1772002A SK1772002A3 SK 1772002 A3 SK1772002 A3 SK 1772002A3 SK 1772002 A SK1772002 A SK 1772002A SK 1772002 A3 SK1772002 A3 SK 1772002A3
Authority
SK
Slovakia
Prior art keywords
cell
group
pyrrolo
compound
pyrimidine
Prior art date
Application number
SK177-2002A
Other languages
Slovak (sk)
Inventor
Guangyi Wang
Esmir Gunic
Robert Tam
Zbigniew Pietrzkowski
Original Assignee
Icn Pharmaceuticals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icn Pharmaceuticals filed Critical Icn Pharmaceuticals
Publication of SK1772002A3 publication Critical patent/SK1772002A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/14Pyrrolo-pyrimidine radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Transplantation (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Saccharide Compounds (AREA)

Abstract

Compositions and methods for pyrrolo[2,3-d]pyrimidine nucleoside analogs having substituents at the C4' and C5' positions of the ribofuranose moiety are presented. Contemplated compositions exhibit, among other things, anti-cancer and immunomodulating effects at reduced cytotoxicity.

Description

Nukleozidový analóg, spôsob zmeny vylučovania cytokinu z bunky a spôsob redukcie rastu hyperproliferatívnych buniekNucleoside analogue, method of altering cytokine secretion from a cell and method of reducing hyperproliferative cell growth

Oblasť technikyTechnical field

Vynález sa týka nukleozidových analógov.The invention relates to nucleoside analogues.

Doterajší stav technikyBACKGROUND OF THE INVENTION

Nukleozidové analógy sa už dlho používajú ako antimetabolity na liečbu rakoviny a vírusových infekcií. Po vstupe do bunky sú nukleozidové analógy často fosforylované nukleozidovými cestami, v ktorých sú analógy typicky fosforylované na zodpovedajúce di- a trifosfáty. Okrem ďalších vnútrobunkových miest určenia sa trifosforylované nukleozidové analógy často používajú ako substráty pre DNA a RNA polymerázy a potom sú následne začlenené do DNA alebo RNA. Tam, kde sú trifosforylované nukleozidové analógy silnými inhibítormi polymeráz, môžu spôsobovať predčasné ukončenie vznikajúcej molekuly nukleovej kyseliny. Tam, kde sú trifosforylované nukleozidové analógy vložené do replikantov alebo transkriptov nukleovej kyseliny, môže prísť ku génovej expresii alebo porušeniu funkcie.Nucleoside analogs have long been used as antimetabolites for the treatment of cancer and viral infections. Upon entry into a cell, nucleoside analogs are often phosphorylated by nucleoside pathways, in which the analogs are typically phosphorylated to the corresponding di- and triphosphates. In addition to other intracellular sites, triphosphorylated nucleoside analogs are often used as substrates for DNA and RNA polymerases and are subsequently incorporated into DNA or RNA. Where triphosphorylated nucleoside analogues are potent polymerase inhibitors, they may cause premature termination of the nascent nucleic acid molecule. Where triphosphorylated nucleoside analogs are inserted into nucleic acid replicators or transcripts, they may result in gene expression or impaired function.

Na mnohobunkovej úrovni môžu tiež nukleozidové analógy ovplyvňovať bunkový cyklus, a predovšetkým vyžadovaným účinkom nukleozidových analógov je indukcia apoptózy nádorových buniek. Navyše, nukleozidové analógy sú tiež známe kvôli schopnosti meniť isté imunitné odpovede.At the multicellular level, nucleoside analogs may also affect the cell cycle, and in particular the desired effect of nucleoside analogs is the induction of apoptosis of tumor cells. In addition, nucleoside analogs are also known for their ability to alter certain immune responses.

V súčasnom stave techniky sú známe rôzne nukleozidové analógy s pomerne účinnou protirakovinovou aktivitou. Napríklad, známe lieky zahŕňajú inhibítory tymidylát syntézy, ako je 5-fluóruridín, inhibítory adenozín deaminázy, ktoré zahŕňajú 2-chlóradenozín a neplanocín A, ktorý je inhibítor Sadenozylhomocysteín hydrolázy. Avšak, všetky alebo takmer všetky známe nukleozidové analógy tiež znamenajú hrozbu pre normálne cicavčie bunky, a predovšetkým preto, že týmto nukleozidovým analógom chýba dostatočná výberovosť medzi normálnymi bunkami a nádorovými bunkami.Various nucleoside analogs with relatively potent anticancer activity are known in the art. For example, known drugs include thymidylate synthesis inhibitors such as 5-fluorouridine, adenosine deaminase inhibitors, including 2-chloroadenosine, and neplanocin A, which is a Sadenosylhomocysteine hydrolase inhibitor. However, all or nearly all known nucleoside analogues also pose a threat to normal mammalian cells, and in particular because the nucleoside analogue lacks sufficient selectivity between normal cells and tumor cells.

Bohužiaľ, nedostatok tejto dostatočnej výberovosti je často spájaný s rôznymi vedľajšími účinkami a často tak obmedzujú účinok takých analógových liečiv.Unfortunately, the lack of this sufficient selectivity is often associated with various side effects and thus often limits the effect of such analog drugs.

Aj keď sú v súčasnom stave techniky známe mnohé nukleozidové analógy, všetky alebo skoro všetky majú jednu alebo viacero nevýhod. Preto stále existuje potreba poskytnúť zdokonalené spôsoby a zloženie nukleozidových analógov.Although many nucleoside analogs are known in the art, all or nearly all have one or more disadvantages. Therefore, there is still a need to provide improved methods and compositions of nucleoside analogs.

Podstata vynálezuSUMMARY OF THE INVENTION

Navrhovaný vynález opisuje nukleozidové analógy so zmenami na cukrových motívoch pyrolo(2,3-d)pyrimidínových nukleozidových analógov, ktoré môžu značne obmedziť toxicitu nukleozidových analógov na cicavčie bunky, pričom tiež poskytujú značnú bunkovú toxicitu na nádorové bunky. Tieto zmeny zahŕňajú, ale nie sú obmedzené na C4' a C5' pozíciu ribofuranózových motívov. Navrhovaný vynález tiež ukazuje, že isté pyrolo(2, 3-d)pyrimidínové nukleozidové analógy majú požadované imunomodulačné účinky, ktoré zahŕňajú zvýšenie cytokínov typu 1, ako je IL-2 a potlačenie cytokínov typu 2, ako je IL-4. Tieto imunomodulačné vlastnosti sa môžu používať v protirakovinovej a protivírusovej ochrane, u autoimunitných ochorení, pri liečbe zápalu a pri bránení odhojenia štepu.The present invention describes nucleoside analogs with changes in the sugar motifs of pyrrolo (2,3-d) pyrimidine nucleoside analogs that can greatly reduce the toxicity of nucleoside analogs to mammalian cells while also providing considerable cellular toxicity to tumor cells. These changes include, but are not limited to, the C4 'and C5' positions of ribofuranose motifs. The present invention also shows that certain pyrrolo (2,3-d) pyrimidine nucleoside analogs have the desired immunomodulatory effects, including enhancement of type 1 cytokines such as IL-2 and suppression of type 2 cytokines such as IL-4. These immunomodulatory properties can be used in anticancer and antiviral protection, in autoimmune diseases, in the treatment of inflammation and in preventing graft rejection.

Z jedného hľadiska podstaty vynálezu, je nukleozidový analóg pyrolo(2, 3-d)pyrimidínový nukleozid, ktorý má štruktúru všeobecného vzorca I:In one aspect, the nucleoside analog is a pyrrolo (2,3-d) pyrimidine nucleoside having the structure of Formula I:

pričom A je 0, S alebo CH2; X je H, NH2 alebo OH; Y je H, halogén alebo NH:; Z je vybraný zo skupiny, ktorá obsahuje H, halogén, R, OH, OR, SH, SR, NH?, NHR, NR;, CN, C(0)NH-, COOH, COOR, CHjNH;, C(=NOH)NH-, a C(=NH)NH?, kde R je alkyl, alkenyl, alkinyl alebo aralkyl; R' a R' sú nezávisle vybrané zo skupiny, ktorá obsahuje H, F a OH; R4 je vybraný zo skupiny, ktorá obsahuje vodík, alkyl, alkenyl, alkinyl a aralkyl, pričom R4 má najlepšie aspoň heteroatóm alebo funkčnú skupinu; R5 je H, OH, OP(O)(OH)2, P(0) (0H)2, 0P(0)(0R’)2 alebo P(O)(OR')2, pričom R' je maskujúca skupina; a R5' je vybraný zo skupiny, ktorá obsahuje alkyl, alkenyl, alkinyl a aralkyl, pričom R5' má aspoň dva atómy uhlíka a má najlepšie aspoň heteroatóm alebo funkčnú skupinu.wherein A is O, S or CH 2 ; X is H, NH 2 or OH; Y is H, halogen or NH 2 ; Z is selected from the group consisting of H, halogen, R, OH, OR, SH, SR, NH ? NHR, NR ; CN, C (O) NH-, COOH, COOR, CH2NH ;, C (= NOH) NH-, and C (= NH) NH2, wherein R is alkyl, alkenyl, alkynyl or aralkyl; R 'and R' are independently selected from the group consisting of H, F and OH; R 4 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, and aralkyl, wherein R 4 preferably has at least a heteroatom or functional group; R 5 is H, OH, OP (O) (OH) 2 , P (O) (OH) 2 , OP (O) (OR ') 2 or P (O) (OR') 2 , wherein R 'is masking group; and R 5 'is selected from the group consisting of alkyl, alkenyl, alkynyl and aralkyl, wherein R 5 ' has at least two carbon atoms and preferably has at least a heteroatom or functional group.

Z iného hladiska podstaty vynálezu, je nukleozidový analóg pyrolo(2,3—d)pyrimidínový nukleozid, ktorý má štruktúru podlá všeobecného vzorca II:In another aspect, the nucleoside analog is a pyrrolo (2,3-d) pyrimidine nucleoside having the structure of Formula II:

pričom Z je CN, C(0)NH2, C (=NH) NH2 alebo C(=N0H)NH2a R4 a R5' sú nezávisle vybrané zo skupiny, ktorá obsahuje vodík, alkyl, alkenyl, alkinyl a aralkyl, pričom R4 a R5' nezávisle a najlepšie obsahujú aspoň heteroatóm alebo funkčnú skupinu; za podmienky, že R4 a R5’ nie sú spoločne vodík.wherein Z is CN, C (O) NH 2 , C (= NH) NH 2 or C (= NOH) NH 2 and R 4 and R 5 'are independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl and aralkyl, wherein R 4 and R 5 'independently and preferably contain at least a heteroatom or a functional group; with the proviso that R 4 and R 5 'are not together hydrogen.

Z iného hľadiska podstaty vynálezu, sa myslené zložky používajú na inhibíciu rastu nádoru alebo na pozmenenie cytokinov typu 1 a typu 2 a na produkciu chemokinov.In another aspect of the invention, the contemplated ingredients are used to inhibit tumor growth or alter type 1 and type 2 cytokines and produce chemokines.

Rôzne ciele, črty, aspekty a výhody navrhovaného vynálezu sú viac jasné z nasledujúceho podrobného opisu uprednostňovaných spracovaní navrhovaného vynálezu, spolu s príslušnými obrázkami.The various objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention, together with the accompanying drawings.

Bolo zistené, že pyrolo(2,3-d)pyrimidínové nukleozidové analógy podlá všeobecného vzorca I a II majú rôzne biologické účinky na normálne a hyperproliferativne bunky.The pyrrolo (2,3-d) pyrimidine nucleoside analogs of formulas I and II have been found to have different biological effects on normal and hyperproliferative cells.

pričom A je 0, S alebo CH2; X je H, NH2 alebo OH; Y je H, halogén alebo NH2; Z je vybraný zo skupiny, ktorá obsahuje H, halogén, R, OH, OR, SHZ SR, NH2, NHR, NR2, CN, C(O)NH2, COOH, COOR, CH2NH2, C(=NOH)NH2 a C(=NH)NH2, kde R je alkyl, alkenyl, alkinyl alebo aralkyl; R2 a R3 sú nezávisle vybrané zo skupiny, ktorá obsahuje H, F a OH; R4 je vybraný zo skupiny, ktorá obsahuje vodík, alkyl, alkenyl, alkinyl a aralkyl, pričom R4 má najlepšie aspoň heteroatóm alebo funkčnú skupinu; R5 je H, OH, OP(O)(OH)2, P(O)(OH)2, OP (O) (OR’) 2 alebo P(O)(OR')2, pričom R’ je maskujúca skupina; a R5' je vybraný zo skupiny, ktorá obsahuje alkyl, alkenyl, alkinyl a aralkyl, pričom R5' má aspoň dva atómy uhlíka a má najlepšie aspoň heteroatóm alebo funkčnú skupinu.wherein A is O, S or CH 2 ; X is H, NH 2 or OH; Y is H, halogen or NH 2 ; Z is selected from the group consisting of H, halogen, R, OH, OR, SH Z SR, NH 2 , NHR, NR 2 , CN, C (O) NH 2, COOH, COOR, CH 2 NH 2, C (= NOH) NH 2 and C (= NH) NH 2, wherein R is alkyl, alkenyl, alkynyl or aralkyl; R 2 and R 3 are independently selected from the group consisting of H, F and OH; R 4 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, and aralkyl, wherein R 4 preferably has at least a heteroatom or a functional group; R 5 is H, OH, OP (O) (OH) 2, P (O) (OH) 2 , OP (O) (OR ') 2 or P (O) (OR') 2 , wherein R 'is masking group; and R 5 'is selected from the group consisting of alkyl, alkenyl, alkynyl and aralkyl, wherein R 5 ' has at least two carbon atoms and preferably has at least a heteroatom or functional group.

Predovšetkým by malo byť uvedené, že tu používané pojmy alkyl, alkenyl, alkinyl a aralkyl sa týkajú ako lineárnych, tak rozvetvených druhov. Vzhľadom na substituenty R2 a R3 by malo byť potešitelné, že R2 aj R3 môžu byť nezávisle smerované na a- alebo β-stranu. Navyše, tam kde substituenty na C5' nie sú rovnaké, môže substitúciou na C5 vzniknúť Ralebo S-asymetrické centrum. Tu používaný pojem heteroatóm sa týka uhlíkových atómov v organickej molekule a predovšetkým myslené heteroatómy zahŕňajú halogény, dusík, kyslík a síru. Tu používaný pojem funkčná skupina, sa týka reaktívnej väzby (napríklad dvojitá alebo trojitá väzba) alebo reaktívnej skupiny (napríklad -OH, -SH, -NH2, -N3, -CN, COOH, -CHO, -C0NH2 a podobne).In particular, it should be noted that the terms alkyl, alkenyl, alkynyl and aralkyl as used herein refer to both linear and branched species. In view of the substituents R 2 and R 3, it should be appreciated that both R 2 and R 3 can be independently directed to the α- or β-side. In addition, where the substituents on C5 'are not the same, substitution at C5 may result in a R or S-asymmetric center. The term heteroatom, as used herein, refers to carbon atoms in an organic molecule, and in particular, heteroatoms include halogens, nitrogen, oxygen, and sulfur. As used herein, a functional group refers to a reactive bond (e.g., a double or triple bond) or a reactive group (e.g., -OH, -SH, -NH 2 , -N 3 , -CN, COOH, -CHO, -CONH 2, and the like) .

Predovšetkým uvažované pyrolo(2,3-d)pyrimidínové nukleozidové analógy sú tie podlá všeobecného vzorca I, pričom Z je CN, C(O)NH? alebo C(=NH)NH2 a pričom R5' má aspoň dva atómy uhlíka a je vybraný zo skupiny, ktorá obsahuje alkyl, alkenyl, alkinyl a aralkyl.Particularly contemplated pyrrolo (2,3-d) pyrimidine nucleoside analogs are those of Formula I wherein Z is CN, C (O) NH ? or C (= NH) NH 2 and wherein R 5 'has at least two carbon atoms and is selected from the group consisting of alkyl, alkenyl, alkynyl and aralkyl.

Pyrolo(2,3-d)pyrimidínový nukleozidový analóg podlá všeobecného vzorca II má nasledujúcu štruktúru:The pyrrolo (2,3-d) pyrimidine nucleoside analogue of formula II has the following structure:

pričom Z je CN, C(O)NH2, C (=NH) NH2 alebo C(=NOH)NH2a R4 a R5' sú nezávisle vybrané zo skupiny, ktorá obsahuje vodík, alkyl, alkenyl, alkinyl a aralkyl, pričom R4 a R5' nezávisle a najlepšie obsahujú aspoň heteroatóm alebo funkčnú skupinu; za podmienky, že R4 a R5' nie sú spoločne vodík; a pričom zvýšené substituenty sú definované vo všeobecnom vzorci I.wherein Z is CN, C (O) NH 2 , C (= NH) NH 2 or C (= NOH) NH 2 and R 4 and R 5 'are independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl and aralkyl, wherein R 4 and R 5 'independently and preferably contain at least a heteroatom or a functional group; with the proviso that R 4 and R 5 'are not together hydrogen; and wherein the increased substituents are as defined in Formula I.

Avšak by malo byť potešujúce, že zlúčeniny podlá podstaty navrhovaného vynálezu môžu byť tiež v inom tvare a vyjadrení, ako bolo v predchádzajúcom uvedené, a predovšetkým uvažované formy zahŕňajú formu proliečiva alebo inak pozmenené formy, v ktorých sú uvažované molekuly chemicky a/alebo enzymaticky pozmenené, aby sa dosiahlo zlepšenie farmakologických a/alebo farmakodynamických vlastností, ktoré zahŕňajú vyššiu špecificitu pre cieľové orgány, bunky alebo bunkové časti a ktoré zvyšujú polčas života v organizme.However, it should be appreciated that the compounds of the present invention may also be in a different form and expression as described above, and in particular the contemplated forms include a prodrug form or otherwise altered form in which the molecules considered are chemically and / or enzymatically altered in order to improve the pharmacological and / or pharmacodynamic properties, which include a higher specificity for the target organs, cells or cellular parts and which increase the half-life in the body.

Napríklad môžu byť vytvorené cholesterolové spojenia, ktoré by zvyšovali cieľovú špecificitu smerom k pečeni, alebo apoliproteinové spojenia, ktoré by zvyšovali prenikanie pozmeneného liečiva cez krvnú mozgovú bariéru k mozgu. V inom príklade môžu byť syntetizované komplexy receptora s ligandom, aby došlo k cieľovému smerovaniu pozmeneného liečiva k zvláštnym bunkám, ktoré majú špecifický receptor pre ligand.For example, cholesterol junctions may be established to increase the target specificity towards the liver, or apolipoprotein junctions that would increase the penetration of the altered drug through the blood brain barrier to the brain. In another example, ligand receptor complexes may be synthesized to target the altered drug to particular cells having a specific ligand receptor.

Alebo inak môžu byť vytvárané komplexy protilátok alebo fragmentov protilátok, ktoré zvyšujú selektívne smerovanie pozmeneného liečiva do dielčích časti buniek. V súčasnom stave techniky je známych mnoho liečiv a pozmenených foriem, a predovšetkým uvažované formy proliečiv zahŕňajú proliečiva opísané v prihláške US 60/216 418, podanej 04/17/00, a tu zahrnutej v odkazoch. V ďalších príkladoch, sa môžu k uvažovaným molekulám pridať nabité alebo nenabité skupiny, lipofilné alebo polárne skupiny, aby sa dosiahlo zvýšenie polčasu života v sére alebo v iných cieľových orgánoch a/alebo bunkách. V iných príkladoch by malo byť ocenené, že uvažované zlúčeniny, ktoré sú na C5 atóme fosforylované, môžu byť tiež di- alebo tri-fosforylované, alebo vložené ako tiofosfát.Alternatively, antibody complexes or antibody fragments may be formed that increase the selective targeting of the altered drug to the cell portions. Many drugs and altered forms are known in the art, and particularly the contemplated prodrug forms include those described in US 60/216 418, filed 04/17/00, and incorporated herein by reference. In other examples, charged or uncharged groups, lipophilic or polar groups may be added to the molecules of interest to achieve an increase in serum half-life or other target organs and / or cells. In other examples, it should be appreciated that contemplated compounds that are phosphorylated at the C 5 atom may also be di- or tri-phosphorylated, or introduced as a thiophosphate.

Aj keď sa vo všeobecnosti uprednostňuje, aby uvažované zlúčeniny mali cukrový motív v D-konfigurácii, uvažuje sa tiež, aby zlúčeniny mali cukrový motív v L-konfigurácii. Ďalšie stereochemické aspekty predovšetkým zahŕňajú R a S konfiguráciu na C5 atóme a malo by byť potešujúce, že substituenty v uvažovaných zlúčeninách môžu byť namierené do a alebo β fázy.Although it is generally preferred that the contemplated compounds have a sugar motif in the D-configuration, it is also contemplated that the compounds have a sugar motif in the L-configuration. Other stereochemical aspects in particular include the R and S configuration at the C 5 atom, and it should be appreciated that the substituents in the contemplated compounds may be directed to the α or β phase.

Ďalej by tiež malo byť potešujúce, že uvažované zlúčeniny môžu byť vo rôznych podobách, ktoré zahŕňajú tekutinu, sirup alebo gélové formy (napríklad na injekciu, prehítanie alebo na aktuálne podávanie) a tuhé formy (napríklad na prehítanie, injekciu alebo ukladanie v telesnej dutine). Napríklad tam, kde sú uvažované zlúčeniny podľa podstaty navrhovaného vynálezu nestabilné v žalúdočnom prostredí, sa konkrétne uvažuje injekcia najlepšie izotonického roztoku. Inou možnosťou môže byť vnútronosná aplikácia alebo inhalácia tekutej formy, ktorá môže byť vhodná na zabránenie kyslého rozloženia. Na druhej strane, tam kde sú uvažované zlúčeniny známe kvôli ich odolnosti k zažívaciemu rozloženiu, môžu sa uvažované formy podávať vo forme sirupu alebo tablety. V závislosti na konkrétnom použití môžu byť vytvorené uvažované zlúčeniny na aktuálne alebo kožné použitie. V súčasnom stave techniky je známych vela foriem, všetky, ktoré sú tiež uvažované sú vhodné v súlade s podstatou tu opisovaného navrhovaného vynálezu, a predovšetkým uvažované formy sú opísané v Drug Products for Clinical Trials: An Intl. Guide to Formulation, Production,Further, it should also be appreciated that the compounds contemplated may be in various forms, including liquid, syrup or gel forms (e.g., for injection, swallowing or topical administration) and solid forms (e.g., for swallowing, injection or storage in the body cavity) . For example, where the compounds of the invention are unstable in the gastric environment, the injection of the best isotonic solution is particularly contemplated. Alternatively, it may be administered by inhalation or by inhalation of a liquid form, which may be suitable to prevent acid degradation. On the other hand, where the contemplated compounds are known for their resistance to digestive disintegration, the contemplated forms may be administered in the form of a syrup or tablet. Depending on the particular use, contemplated compounds may be formulated for actual or dermal use. Many forms are known in the art, all of which are also contemplated are suitable in accordance with the spirit of the present invention described herein, and in particular the contemplated forms are described in Drug Products for Clinical Trials: An Intl. Guide to Formulation, Production

Quality Control, Donald C. Monkhouse and Christopher T. Rhodes (Editors); ISBN: 082479852X.Quality Control, Donald C. Monkhouse, and Christopher T. Rhodes (Editors); ISBN: 082479852X.

Ďalej by malo byť potešujúce, že uvažované zlúčeniny a formy môžu zahŕňať funkčné a nefunkčné prísady. Napríklad, tam kde sa požaduje podávanie liečiva cez kožu, sa môžu pridávať prostriedky na zlepšenie prenikania kožou. Alebo sa môžu kvôli synergickým alebo opačným zlepšeniam funkcie uvažovaných zlúčenín pridávať liečivé prípravky, ktoré zahŕňajú cytostatiká, protivírusové alebo imunomodulačné činidlá. Príklady nefunkčných prísad zahŕňajú výplne, antioxidanty, príchuť alebo farbivá, ktoré predovšetkým zvyšujú kvalitu uvažovaných zlúčenín.It should further be appreciated that the contemplated compounds and forms may include functional and non-functional additives. For example, where it is desired to administer the drug through the skin, agents may be added to improve skin penetration. Or, for the purpose of synergistic or reverse enhancement of function of the contemplated compounds, medicaments including cytostatics, antiviral or immunomodulatory agents may be added. Examples of non-functional additives include fillers, antioxidants, flavorings or coloring agents that primarily enhance the quality of the compounds contemplated.

Vzhladom na koncentráciu uvažovaných zlúčenín, je uprednostňovaný rozsah koncentrácie približne 1 μΜ až približne 100 μΜ, keď je meraná na mieste pôsobenia. Avšak, predovšetkým, keď je afinita uvažovaných zlúčenín nižšia ako 1 μΜ, môžu byť vhodné koncentrácie v rozsahu 999 nM až 10 nM a menej. Na druhej strane, keď uvažované zlúčeniny vykazujú pomerne krátky polčas života, alebo majú vysokú premenu, môžu byť uvažované koncentrácie 0,1 mM a 100 mM a viac. Následne, dávka uvažovaných zlúčenín sa môže značne líšiť, ale vhodné dávky sa môžu ľahko určiť in vitro alebo vo zvieracích experimentoch.Based on the concentration of the compounds contemplated, a concentration range of about 1 μΜ to about 100 μΜ is preferred when measured at the site of action. However, particularly when the affinity of the compounds of interest is less than 1 μΜ, concentrations in the range of 999 nM to 10 nM or less may be appropriate. On the other hand, when the compounds of interest show a relatively short half-life or a high conversion, concentrations of 0.1 mM and 100 mM or more can be considered. Consequently, the dosage of the contemplated compounds may vary considerably, but appropriate dosages may be readily determined in vitro or in animal experiments.

Rôzne biologické účinky ako 5'- aj 4'-modifikovaných pyrolopyrimidínových nukleozidových analógov, predovšetkým značné biologické účinky zahŕňajú moduláciu produkcie cytokinov typu 1 a typu 2, kontrolu neoplastických podmienok (napríklad redukcie DNA syntézy alebo redukcie bunkového rastu), a redukciu chemokinov a uvoľňovanie rastového faktora, tak ako je opisované nižšie.Various biological effects of both 5'- and 4'-modified pyrrolopyrimidine nucleoside analogues, in particular significant biological effects include modulation of type 1 and type 2 cytokine production, control of neoplastic conditions (e.g. reduction of DNA synthesis or reduction of cell growth), and reduction of chemokines and release of growth factor as described below.

Následne, uvažovaný spôsob zmeny vylučovania cytokinov z buniek môže obsahovať fázu, v ktorej je poskytnutá zlúčenina podľa všeobecného vzorca I a ďalej fázu, v ktorej sa nachádza bunka so zlúčeninou podlá všeobecného vzorca I v koncentrácii účinnej k zmene vylučovania cytokinov. Aj keď sú vo všeobecnosti uvažované všetky možné kombinácie substituentov vo všeobecnom vzorci I, predovšetkým uvažované zlúčeniny sú zlúčeniny podlá všeobecného vzorca I, pričom R4 a R5’ sú nezávisle vybrané zo skupiny, ktorá obsahuje vodík, alkyl, alkenyl, alkinyl a aralkyl, a pričom R4 a R5' nezávisle a najlepšie obsahujú aspoň heteroatóm a funkčné skupiny, so zvyšnými substituentami tak, ako sú definované vyššie vo všeobecnom vzorci I. Z iného hľadiska, zlúčenina používaná na zmenu vylučovania cytokínov z bunky môže byť tiež zlúčenina podľa nasledujúcej štruktúry:Consequently, the contemplated method for altering cytokine secretion from cells may comprise a phase in which a compound of formula I is provided and a phase in which a cell with a compound of formula I is present at a concentration effective to alter the cytokine secretion. Although in general all possible combinations of substituents of formula I are contemplated, especially the compounds contemplated are compounds of formula I, wherein R 4 and R 5 'are independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl and aralkyl, and wherein R 4 and R 5 'independently and preferably contain at least a heteroatom and functional groups, with the remaining substituents as defined above in formula I. In another aspect, the compound used to alter the secretion of cytokines from the cell may also be a compound according to the following structure:

Z je CN, C(O)NH2, C(=NH)NH2, C(=NNH2)NH2 alebo C(=NOH)NH2, a pričom R5 je H, OH, 0P(0) (0H)2, 0P(0) (0R')2 alebo P(0) (0R')2, pričom R' je maskujúca skupina. Uvažované cytokiny konkrétne zahŕňajú cytokiny typu 1 (napríklad IFNy) a typu 2 (napríklad IL-4) . Vzhľadom na bunky sa uvažuje, že všetky bunky známe z produkcie a/alebo vylučovania cytokínov sú vhodné, avšak, predovšetkým uvažované bunky zahŕňajú lymfocyty a rakovinové bunky (napríklad bunky prostaty).Z is CN, C (O) NH 2 , C (= NH) NH 2 , C (= NNH 2 ) NH 2, or C (= NOH) NH 2 , and wherein R 5 is H, OH, OP (0) ( 0H) 2, 0P (0) (0R ') 2 or P (0) (0R) 2, wherein R' is a masking group. Specifically, contemplated cytokines include type 1 (e.g., IFNγ) and type 2 (e.g., IL-4) cytokines. With respect to the cells, it is contemplated that all cells known from the production and / or secretion of cytokines are suitable, but, in particular, the cells contemplated include lymphocytes and cancer cells (e.g., prostate cells).

Z iného pohľadu podstaty navrhovaného vynálezu, môže spôsob znižovania rastu hyperproliferatívnych buniek obsahovať fázu, v ktorej je poskytnutá zlúčenina podľa všeobecného vzorca I a ďalšiu fázu, v ktorej sa nachádzajú hyperproliferatívne bunky so zlúčeninou v koncentrácii účinnej na redukciu rastu hyperproliferatívnych buniek. Konkrétne uprednostňované zlúčeniny zahŕňajú zlúčeniny podľa všeobecného vzorca I, pričom R4 je vybraný zo skupiny, ktorá obsahuje vodik, alkyl, alkenyl, alkinyl a aralkyl, pričom R4 najlepšie obsahuje aspoň heteroatóm alebo funkčnú skupinu, a pričom R5’ je vybraný zo skupiny, ktorá obsahuje vodik, alkyl, alkenyl, alkinyl a aralkyl, a pričom R5' má aspoň dva atómy uhlíka a najlepšie obsahuje aspoň heteroatóm alebo funkčnú skupinu s podmienkou, že R4 a R5’ nie sú spoločne vodík, a so zvyšnými substituentami tak, ako sú definované vyššie vo všeobecnom vzorci I.In another aspect, the method of reducing hyperproliferative cell growth may comprise a phase in which a compound of Formula I is provided and another phase in which hyperproliferative cells are present with the compound at a concentration effective to reduce hyperproliferative cell growth. Particularly preferred compounds include compounds of formula I wherein R 4 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, and aralkyl, wherein R 4 preferably comprises at least a heteroatom or a functional group, and wherein R 5 'is selected from containing hydrogen, alkyl, alkenyl, alkynyl and aralkyl, and wherein R 5 'has at least two carbon atoms and preferably contains at least a heteroatom or a functional group, provided that R 4 and R 5 ' are not together hydrogen, and with the remaining substituents as defined in formula I above.

Konkrétne uvažované hyperproliferatívne bunky zahŕňajú rakovinové bunky a predovšetkým uvažované rakovinové bunky sú rakovinové bunky prostaty. Aj keď sa neobmedzujeme na konkrétnu teóriu, uvažuje sa, že redukcia rastu zahŕňa redukciu DNA syntézy.Specifically, the hyperproliferative cells contemplated include cancer cells, and particularly the cancer cells contemplated are prostate cancer cells. Although not limited to a particular theory, growth reduction is believed to include reduction of DNA synthesis.

Ešte z iného pohladu podstaty navrhovaného vynálezu sa uvažuje, že spôsob redukcie uvoľňovania rastového faktora z buniek zahŕňa fázu, v ktorej je poskytovaná zlúčenina podľa všeobecného vzorca I, a ďalšiu fázu, v ktorej je prítomná bunka so zlúčeninou v koncentrácii účinnej na redukciu uvoľňovania rastového faktora. Uvažuje sa, že uvolňovanie rôznych rastových faktorov môže byť redukované tu opísaným spôsobom, avšak predovšetkým sa uvažuje o redukcii uvoľňovania VEGF. Podobne, aj keď sú uvažované všetky bunky známe z vylučovania rastových faktorov v spojitosti s tu opísaným spôsobom, konkrétne uvažované bunky zahŕňajú rakovinové bunky, a najmä rakovinové bunky prostaty.In yet another aspect of the present invention, it is contemplated that a method of reducing growth factor release from cells comprises a phase in which a compound of Formula I is provided and a further phase wherein the cell with the compound is present at a concentration effective to reduce growth factor release . It is contemplated that the release of various growth factors may be reduced in the manner described herein, but in particular consideration is given to reducing the release of VEGF. Similarly, although all cells known from secreting growth factors in conjunction with the method described herein are contemplated, the particular cells contemplated include cancer cells, and especially prostate cancer cells.

Vzhľadom na syntézu uvažovaných zlúčenín by malo byť potešujúce, že pyrolo(2,3-d)pyrimidínové nukleozidové analógy podľa podstaty navrhovaného vynálezu môžu byť syntetizované rôznymi syntetickými cestami. Nasledujúce postupy sú poskytované len na základe príkladov.With respect to the synthesis of the contemplated compounds, it should be appreciated that pyrrolo (2,3-d) pyrimidine nucleoside analogs of the nature of the present invention can be synthesized by various synthetic routes. The following procedures are provided by way of example only.

Syntéza C5'-modifikovaných pyrolo(2,3-d)pyrimidínových nukleozidových analógovSynthesis of C5'-modified pyrrolo (2,3-d) pyrimidine nucleoside analogs

Nukleozidové analógy substituované na 5’ konci sú pripravené kondenzáciou pyrolo(2,3-d)pyrimidínových báz a správne chránených 5'-substituovaných ribofuranóz. Ako je ukázané na obr. 1, zlúčenina 1 pripravená podía publikovaného postupu (Jones a kol., Methods in carbohydrate Chemistry (edited by Whistler and Moffat, vol. VI, str. 315 - 322, Academic Press, New York, (1972)), ktorá bola ošetrená rôznymi nukleofilmi ako je Grignardovo činidlo, umožnila vznik zlúčeniny 2, ktorá bola benzoovaná a následne upravená kyselinou trifluóroctovou a vzniká tak zlúčenina 4. Benzoylácia a následné spracovanie acetánhydridom/kyselinou octovou v prítomnosti kyseliny sírovej umožňuje vznik zlúčeniny 6, ktorá sa použila na kondenzáciu s pyrolo(2, 3-d)pyrimidínovými bázami.The 5 'end-substituted nucleoside analogs are prepared by condensation of pyrrolo (2,3-d) pyrimidine bases and properly protected 5'-substituted ribofuranoses. As shown in FIG. 1, compound 1 prepared according to a published procedure (Jones et al., Methods in Carbohydrate Chemistry (edited by Whistler and Moffat, vol. VI, pp. 315-322, Academic Press, New York, (1972)), which has been treated with various nucleophiles such as the Grignard reagent afforded compound 2, which was benzoated and subsequently treated with trifluoroacetic acid to give compound 4. Benzoylation followed by treatment with acetic anhydride / acetic acid in the presence of sulfuric acid afforded compound 6, which was used to condense with pyrrole ( 2,3-d) pyrimidine bases.

Zlúčenina 7 (Jones a kol., Methods in carbohydrate Chemistry (edited by Whistler and Moffat, vol. VI, str. 315 - 322, Academic Press, New York, (1972)), pripravená podľa publikovaného postupu, bola premenená na tozylátový derivát, ktorý bol redukovaný hydridom lítnym a hlinitým za vzniku zlúčeniny 8. Podobnými postupmi ukázanými na obr. 1, bola zlúčenina 8 premenená na zlúčeninu 9. Kondenzácia zlúčeniny 9 a pyrolo(2,3—d)pyrimidínu 19 a následné transformácie sú ukázané na schéme 2, ktoré poskytujú zlúčeniny 10 až 15, ako je zobrazené na obr. 2.Compound 7 (Jones et al., Methods in Carbohydrate Chemistry (edited by Whistler and Moffat, vol. VI, pp. 315-322, Academic Press, New York, (1972)), prepared according to a published procedure, was converted to a tosylate derivative which was reduced with lithium and aluminum hydride to give compound 8. By similar procedures shown in Figure 1, compound 8 was converted to compound 9. The condensation of compound 9 and pyrrolo (2,3-d) pyrimidine 19 and subsequent transformations are shown in the scheme. 2 which provides compounds 10 to 15 as shown in FIG. 2.

Ako je ukázané na obr. 3, zlúčenina 2 bola premenená na sulfonát 16, ktorý bol podrobený nukleofilnej zámene za vzniku konfiguračné obrátenej zlúčeniny 17. Porušenie ochrany izopropylidénu a následná acetylácia umožnila vznik tetraacetátu 18. Kondenzácia chránených ribofuranóz substituovaných na 5-konci s nukleozidovými bázami je zobrazená na obr. 4. 5-kyanopyrolo(2,3-d)pyrimidín 19, pripravený podľa publikovaného postupu (Tolman a kol., J. Org. Chem., 1969, 91, 2102 - 2108), bol premenený na trimetylsilylový derivát a potom bol kondenzovaný so zlúčeninou 6 v prítomnosti trimetylsilyltriflátu podobným postupom opísaným pre toyokamyzín (Sharma a kol., Nukleosides Nukleotides, 1993, 12, 643 - 648). Výsledný spojený produkt sa podrobil debrominácii prostredníctvom hydrogenácie za vzniku zlúčeniny 20. Spracovanie zlúčeniny 20 amóniom v bezvodom metanole umožnilo vznik zlúčeninám 21 a 23. Zlúčenina 21 bola oxidovaná za vzniku zlúčeniny 22. Zlúčenina 23 bola premenená na karboxamidový derivát 24. Zlúčeniny 23 a 24 boli oxidované za vzniku zlúčeniny 25. Spracovanie zlúčeniny 25 hydroxyamínom vedie k vzniku zlúčeniny 26, ktorá bola hydrogenovaná pomocou Raney Nickel za vzniku zlúčeniny 27. Alebo sa môže zlúčenina 27 pripraviť zahrievaním zlúčeniny 25 s amoniakom v tlakovej bombe.As shown in FIG. 3, compound 2 was converted to sulfonate 16, which was subjected to nucleophilic exchange to give the configuration inverse compound 17. Violation of isopropylidene protection and subsequent acetylation allowed formation of tetraacetate 18. The condensation of protected 5-terminal ribofuranoses with nucleoside bases is shown in FIG. 4. 5-Cyanopyrrolo (2,3-d) pyrimidine 19, prepared according to a published procedure (Tolman et al., J. Org. Chem., 1969, 91, 2102-2108), was converted to a trimethylsilyl derivative and then condensed with compound 6 in the presence of trimethylsilyl triflate by a similar procedure described for toyocamysin (Sharma et al., Nucleosides Nucleotides, 1993, 12, 643-648). The resulting combined product was subjected to debromination by hydrogenation to give compound 20. Treatment of compound 20 with ammonium in anhydrous methanol afforded compounds 21 and 23. Compound 21 was oxidized to give compound 22. Compound 23 was converted to the carboxamide derivative 24. Compounds 23 and 24 were oxidation to form compound 25. Treatment of compound 25 with hydroxyamine yields compound 26, which has been hydrogenated with Raney Nickel to produce compound 27. Or, compound 27 can be prepared by heating compound 25 with ammonia in a pressurized bomb.

Syntéza C4'-modifikovaných pyrolo(2,3-d)pyrimidinových nukleozidových analógovSynthesis of C4'-modified pyrrolo (2,3-d) pyrimidine nucleoside analogs

Na obr. 5, bola zlúčenina 1 ošetrená formaldehydom v tekutom hydroxide sodnom za vzniku 4’-hydroxymetylového derivátu 28, ktorý sa selektívne chránil na poskytnutie zlúčeniny 29. Následná ochrana s DMT a odstránenie RBS umožňuje vznik zlúčeniny 31, ktorá bola premenená do rôznych substituentov. Deriváty substituované na C4, ktoré boli podrobené podobnej transformácii ako ribofuranózy substituované na C5 (schéma 1) môžu byť premenené na zlúčeninu 35, ktorá je používaná na kondenzáciu s nukleozidovými bázami.In FIG. 5, compound 1 was treated with formaldehyde in liquid sodium hydroxide to give the 4'-hydroxymethyl derivative 28, which was selectively protected to give compound 29. Subsequent protection with DMT and removal of RBS allows the formation of compound 31, which was converted to various substituents. C4-substituted derivatives that have undergone a similar transformation to the C5-substituted ribofuranoses (Scheme 1) can be converted to compound 35, which is used for coupling with nucleoside bases.

Podobne ako pyrolopyrimidínové nukleozidové analógy substituované na C5', môžu sa analógy substituované na C4' získať kondenzáciou zlúčeniny 35 so zlúčeninou 19 tak, ako je zobrazené na obr. 6. Následné transformácie umožňujú vznik C4'substituovaných pyrolopyrimidínových nukleozidov 37 až 42.Similar to the pyrrolopyrimidine nucleoside analogs substituted on C5 ', analogs substituted on C4' can be obtained by condensation of compound 35 with compound 19 as shown in FIG. 6. Subsequent transformations allow the formation of C4's-substituted pyrrolopyrimidine nucleosides 37-42.

Syntéza C2’-modifikovaných a ďalších pyrolo(2,3-d)pyrimidínových nukleozidových analógovSynthesis of C2´-modified and other pyrrolo (2,3-d) pyrimidine nucleoside analogs

Nasledujúce pyrolopyrimidínové nukleozidové analógy boli pripravené na biologické testovanie, niektoré z nich boli publikované (označované ako známe zlúčeniny), sú zobrazené na obr. 7. Známe zlúčeniny 43, 44, 52 až 55 a 57 boli pripravené podlá publikovaného postupu 1970, 92, 236 - 241).The following pyrrolopyrimidine nucleoside analogs have been prepared for biological testing, some of which have been published (referred to as known compounds), shown in FIG. 7. Known compounds 43, 44, 52-55 and 57 were prepared according to published procedure 1970, 92, 236-241).

hydrogenáciou zlúčeniny 52.hydrogenating compound 52.

(Hinshaw a kol., J. Zlúčenina 56 bola Známa zlúčenina 49(Hinshaw et al., J. Compound 56 was known compound 49

Org. Chem., pripravená (Krawczyk a kol., Nucleosides Nucleotides, 1989, 8, 97 - 115), bola spracovaná nitritom sodným za vzniku zlúčeniny 50. Známe zlúčeniny 45 a 48 boli pripravené podía publikovaného postupu (Ramasamy a kol., J. Heteroeyclic Chem. 1988, 25, 1043 - 1046).Org. Chem., Prepared (Krawczyk et al., Nucleosides Nucleotides, 1989, 8, 97-115), was treated with sodium nitrite to give compound 50. Known compounds 45 and 48 were prepared according to a published procedure (Ramasamy et al., J. Heteroeyclic Chem., 1988, 25, 1043-1046).

Zlúčenina 45 bola spracovaná amóniom s metanolom za vzniku zlúčeniny 46 a hydrogénované za vzniku zlúčeniny 47. Zlúčeniny až 63 sa pripravili zo zlúčeniny 45 podobnými postupmi, ktoré boli použité pre zlúčeninu 52 až 57. Známa zlúčenina 64 (Krawczyk a kol., Nucleosides Nucleotides, 1989, 8, 97 - 115) bola premenená na zlúčeniny 65 až 67. Známa zlúčenina 68 (Ramasamy a kol., Tetrahedron, 1986, 42, 5869 - 5878) bola premenená na zlúčeniny 69 a 70.Compound 45 was treated with ammonium with methanol to give compound 46 and hydrogenated to give compound 47. Compounds to 63 were prepared from compound 45 by similar procedures used for compound 52 to 57. Known compound 64 (Krawczyk et al., Nucleosides Nucleotides, 1989, 8, 97-115) was converted to compounds 65-67. The known compound 68 (Ramasamy et al., Tetrahedron, 1986, 42, 5869-5878) was converted to compounds 69 and 70.

Príprava ľudských T buniek a aktivácia in vitroPreparation of human T cells and activation in vitro

Periférne krvné mononukleárne bunky boli izolované z ľudských darcov centrifugáciou v hustotnom gradiente nasledovanou obohatením T buniek s použitím Lymphokwik /OnePeripheral blood mononuclear cells were isolated from human donors by density gradient centrifugation followed by T cell enrichment using Lymphokwik / One

Lambda, Canoga Park CA). Primiešané monocyty boli odstránené priľnavosťou na plastik. Prečistené T bunky boli > 99 % CD2+, < 1 % HLA-DR+ a < 5 % CD25 + a nechali sa v RPMI-AP5 (RPMI1640 médium s obsahom 5 S vlastnej plazmy, 1 % L-glutaminu, 1 % penicilín/streptomycínu a 0,05 % 2-merkaptoetanolu). Na stanovenie proteínovej úrovne cytokinov, sa T bunky (0,2 x 106 buniek v objeme 0,2 ml) aktivovali pridaním 2 ng forbolmyristátacetátu a 0,1 mg ionomycínu (PMA-ION, obidve z Calbiochem, San Diego, CA) a inkubovali sa v 96 jamkovej doštičke v prítomnosti 0 alebo 10 μΜ guanozínových nukleozidov počas 48 hodín pri 37 °C. Po aktivácii sa supernatanty analyzovali na produkciu cytokinov derivovaných z buniek. Mimobunkové cytokínové analýzyLambda, Canoga Park CA). The admixed monocytes were removed by adherence to the plastic. Purified T cells were> 99% CD2 +, <1% HLA-DR + and <5% CD25 + and left in RPMI-AP5 (RPMI1640 medium containing 5S self plasma, 1% L-glutamine, 1% penicillin / streptomycin and 0.05% 2-mercaptoethanol). To determine the protein level of cytokines, T cells (0.2 x 10 6 cells in a volume of 0.2 ml) were activated by the addition of 2 ng phorbol myristate acetate and 0.1 mg ionomycin (PMA-ION, both from Calbiochem, San Diego, CA) and were incubated in a 96-well plate in the presence of 0 or 10 μΜ guanosine nucleosides for 48 hours at 37 ° C. After activation, the supernatants were analyzed for the production of cell-derived cytokines. Extracellular cytokine analyzes

Po vhodnom zriedení s použitím ELISA gitov špecifických pre IFNy a IL-4 (Biosource, Camarillo, CA) , sa v bunkových supernatantoch stanovili hladiny ľudských cytokinov. Všetky ELISA výsledky boli vyjadrené ako pg/ml.After appropriate dilution using IFNγ and IL-4 specific ELISA (Biosource, Camarillo, CA), human cytokine levels were determined in the cell supernatants. All ELISA results were expressed as pg / ml.

Účinok pyrolo(2,3-d)pyrimidínových nukleozidových analógov na hladiny mimobunkových cytokinov u ľudských T buniekEffect of pyrrolo (2,3-d) pyrimidine nucleoside analogues on extracellular cytokine levels in human T cells

Účinok pyrolo(2,3-d)pyrimidínových nukleozidových analógov pri koncentrácii 0 a 10 μΜ na PMA/ionomycín stimulované T bunky a ich expresiu cytokinov typu 1, IFNy, a cytokinov typu 2, IL4, je zobrazený na obr. 8A a 8B pre 5 jednotlivých ľudských darcov. Hladiny cytokinov sa stanovili v bezbunkových supernatantoch metódou ELISA. Najsilnejší účinok bol nájdený uThe effect of pyrrolo (2,3-d) pyrimidine nucleoside analogs at concentrations of 0 and 10 μΜ on PMA / ionomycin-stimulated T cells and their expression of type 1 cytokines, IFNγ, and type 2 cytokines, IL4, is shown in FIG. 8A and 8B for 5 individual human donors. Cytokine levels were determined in cell-free supernatants by ELISA. The strongest effect was found in

7-b-D-ribofuranozyl-4-oxopyrolo(2,3-d)pyrimidín-5-karboxamidu. Táto zlúčenina zvýšila aktivovanú produkciu IL-4 na 498 % ± 83 a potláčala IFNy na 43 % ± 4 aktivovanej kontrolnej úrovne každého cytokinu. Údaje sú ukázané ako percento aktivovanej kontroly počítané ako pomer hladiny cytokinov aktivovaných T buniek x 100 %. Nulový účinok na hladiny cytokinov testom nukleozidov by znamenal percento aktivovanej kontroly s hodnotou 100 %. Absolútna hladina (pg/ml ± štandardná odchýlka)7-b-D-ribofuranosyl-4-oxo-pyrrolo (2,3-d) pyrimidine-5-carboxamide. This compound increased activated IL-4 production to 498% ± 83 and suppressed IFNγ to 43% ± 4 activated control levels of each cytokine. Data is shown as the percentage of activated control calculated as the ratio of the activated T cell cytokine level x 100%. A zero effect on cytokine levels by the nucleoside assay would mean a percentage of activated control of 100%. Absolute level (pg / ml ± standard deviation)

PMA-ION-indukovaného cytokinového vyučovania bola pre IFNy:PMA-ION-induced cytokine teaching was for IFNγ:

22954 ± 3391; a pre IL-4: 162 ± 40. Nepohyblivé hladiny boli pre < 30 pg/ml všetkých testovaných cytokinov.22954 ± 3391; and for IL-4: 162 ± 40. The immovable levels were for <30 pg / ml of all cytokines tested.

Bunková toxicita pyrolo(2,3-d)pyrimidinových nukleozidových analógov in vitroCellular toxicity of pyrrolo (2,3-d) pyrimidine nucleoside analogs in vitro

Pyrolo(2,3-d)pyrimidinové nukleozidové analógy navrhovaného vynálezu sú biologicky aktívne, pokiaľ naznačujú nejakú úroveň toxicity in vitro. V týchto štúdiách sa testované zlúčeniny pridali k bunkovým kultúram normálnych ľudských fibroblastov, ludských rakovinových buniek prostaty 81, ľudských melanómových rakovinových buniek 140, ludských rakovinových pľúcnych buniek 177 a ludských rakovinových buniek vaječníka R a NR (všetky dostupné od AATCC). V týchto experimentoch boli bunky pokryté s hustotou 2000 buniek na 20 μΐ média na jamku (96-jamková doštička). Testované zlúčeniny sa pridali do jamiek jedenkrát v koncentrácii v rozsahu 0,78 až 100 μΜ, hneď po nanesení buniek. Po 72 hodinovom inkubovaní sa uskutočnil kolorimetrický MTS rozbor bunkovej toxicity. EC50 sa spočítal na základe získaných údajov a výsledky sú zobrazené na obr. 9. Veľa zlúčenín naznačuje nedostatok bunkovej toxicity v koncentrácii nižšej ako 100 μΜ. V takých prípadoch je EC50 označovaný ako > 100. V iných prípadoch EC50 naznačuje koncentráciu testovaných zlúčenín potrebnú na zničenie 50 % bunkovej populácie.The pyrrolo (2,3-d) pyrimidine nucleoside analogs of the present invention are biologically active as long as they indicate some level of in vitro toxicity. In these studies, test compounds were added to cell cultures of normal human fibroblasts, human prostate cancer cells 81, human melanoma cancer cells 140, human cancer lung cells 177, and human ovarian cancer cells R and NR (all available from AATCC). In these experiments, cells were coated at a density of 2000 cells per 20 μΐ of medium per well (96-well plate). Test compounds were added to the wells once at a concentration ranging from 0.78 to 100 μΜ, immediately after cell deposition. After 72 hours incubation, a colorimetric MTS cell toxicity assay was performed. The EC 50 was calculated based on the data obtained and the results are shown in FIG. 9. Many compounds indicate a lack of cellular toxicity at a concentration of less than 100 μΜ. In such cases, the EC50 is referred to as > 100. In other cases, the EC50 indicates the concentration of test compounds required to destroy 50% of the cell population.

Pyrolo(2,3-d)pyrimidinové nukleozidové analógy inhibujú DNA syntézu v bunkách pestovaných in vitro na dávke závislým spôsobomPyrolo (2,3-d) pyrimidine nucleoside analogs inhibit DNA synthesis in cells grown in vitro in a dose-dependent manner

Analógy pyrolo(2,3-d)pyrimidinových nukleozidov inhibujú rast ludských buniek pestovaných in vitro, ktorý je meraný ako úroveň DNA. Experimentálne usporiadanie bolo rovnaké ako bolo opísané vyššie. Zlúčeniny sa jedenkrát pridali a úroveň DNA sa merala po 72 hodinách. Po tomto čase sa z jamiek s kultúrou odstránila polovica média a to sa nahradilo čistou vodou. Potom sa bunky premiestnili do -70 °C na aspoň 12 hodín. V ďalšom kroku sa bunky premiestnili späť z -70 °C do izbovej teploty a do každej jamky sa pridal 1 μΜ Hoechst 33342. Po 2 hodinách inkubácie sa meral fluorescenčný signál (360 až 530 nm) . Podľa tohto spôsobu je intenzita fluorescencie úmerná množstvu DNA vďaka prítomnosti vytvoreného komplexu DNA-Hoechst 33342. Výsledky sú zobrazené na obr. 10. Čísla vyjadrujú skupiny množstva DNA zvýšené v porovnaní s DNA na začiatku experimentu (2 hodiny po nanesení buniek) . V neopracovaných rakovinových bunkách prostaty a v normálnych bunkách sa hladiny DNA počas 72 hodín kultivácie zvýšili 5,78-krát a 4,47-krát, v tomto poradí.Analogues of pyrrolo (2,3-d) pyrimidine nucleosides inhibit the growth of human cells grown in vitro, which is measured as DNA level. The experimental set-up was the same as described above. Compounds were added once and the DNA level was measured after 72 hours. After this time, half the medium was removed from the culture wells and this was replaced with pure water. Then the cells were transferred to -70 ° C for at least 12 hours. In the next step, the cells were moved back from -70 ° C to room temperature and 1 μΜ Hoechst 33342 was added to each well. After 2 hours of incubation, the fluorescence signal (360-530 nm) was measured. According to this method, the fluorescence intensity is proportional to the amount of DNA due to the presence of the DNA-Hoechst 33342 complex formed. The results are shown in FIG. 10. The numbers represent groups of DNA amount increased compared to DNA at the beginning of the experiment (2 hours after cell deposition). In untreated prostate cancer cells and normal cells, DNA levels increased 5.78 and 4.47 times, respectively, during 72 hours of culture.

Zlúčeniny 23a(5'-R) a 23a(5'-S) inhibujú vylučovanie VEGF z rakoviny ľudskej prostaty in vitroCompounds 23a (5'-R) and 23a (5'-S) inhibit VEGF secretion from human prostate cancer in vitro

Zlúčeniny 23a(5'-R) a 23a(5'-S) sú schopné inhibície vylučovania cievneho endoteliálneho rastového faktora (VEGF) z ľudských rakovinových buniek prostaty HTB81. VEGF je rozpoznaný ako angionézny znak, keďže táto molekula je nevyhnutná pre migráciu a rast endoteliálnych buniek a tvorbu vlásočníc in vivo. Aby bola táto skutočnosť dokázaná, 0,5 x 105 buniek sa prenieslo do 5 ml kultivačného média do Petriho misky s priemerom 10 cm. Po 72 hodinách po pokrytí sa naniesli zlúčeniny. Potom sa médium odobralo a merala sa hladina VEGF s použitím VEGF Elisa Assay (R&D Systems) a vyjadrená ako pg VEGF na ml média. Výsledky sú zobrazené na obr. 11. Podľa týchto výsledkov, obidve zlúčeniny inhibujú vylučovanie VEGF v na dávke závislom spôsobe.Compounds 23a (5'-R) and 23a (5'-S) are capable of inhibiting vascular endothelial growth factor (VEGF) secretion from human HTB81 prostate cancer cells. VEGF is recognized as an angionic trait as this molecule is essential for endothelial cell migration and growth and capillary formation in vivo. To prove this, 0.5 x 10 5 cells were transferred to 5 ml culture medium in a 10 cm diameter Petri dish. 72 hours after coating, the compounds were applied. The medium was then harvested and the VEGF level was measured using VEGF Elisa Assay (R&D Systems) and expressed as pg VEGF per ml medium. The results are shown in FIG. According to these results, both compounds inhibit VEGF secretion in a dose-dependent manner.

Zlúčeniny 23a(5'-R) a 23a(5'-S) inhibujú uvolňovanie IL-8 z rakovinových buniek ľudskej prostaty in vitroCompounds 23a (5'-R) and 23a (5'-S) inhibit the release of IL-8 from human prostate cancer cells in vitro

Zlúčeniny 23a(5'-R) a 23a(5'-S) naznačujú inhibičný účinok na vylučovanie interleukínu 8 (IL-8) z rakovinových buniek prostaty HTB81. IL-8 patria do skupiny chemoatraktantných chemokinov (typ a) , ktoré sú zahrnuté v zápalových procesoch kvôli atrakcii neutrofilov. O chemokinoch je vo všeobecnosti známe, že sú produkované rôznymi typmi rakovín. Je preukázané vo rôznych štúdiách, že inhibícia produkcie chemokinov rakovinovými bunkami je pre hostiteľa užitočná. Aby sa preukázala schopnosť týchto dvoch zlúčenín inhibovať vylučovanie IL-8 z rakovinových buniek prostaty, rakovinové bunky prostaty HTB81 sa ošetrili in vitro zlúčeninami 23a v obidvoch 5’-R a 5’-S konfiguráciách v koncentráciách, ktoré sú vyznačené v grafe. Odobraté médium z kultúry sa analyzovalo na hladinu IL-8 s použitím IL-8 ELISA Assay od R&D Systems. Podľa získaných výsledkov sú obidve zlúčeniny schopné inhibovať vylučovanie IL-8 v na dávke závislom spôsobe tak, ako je ukázané na obr. 12.Compounds 23a (5'-R) and 23a (5'-S) indicate an inhibitory effect on the secretion of interleukin 8 (IL-8) from HTB81 prostate cancer cells. IL-8 belongs to the class of chemoattractant chemokines (type a), which are involved in inflammatory processes due to the attraction of neutrophils. Chemokines are generally known to be produced by various types of cancers. It has been shown in various studies that inhibiting chemokine production by cancer cells is beneficial to the host. To demonstrate the ability of the two compounds to inhibit IL-8 secretion from prostate cancer cells, HTB81 prostate cancer cells were treated in vitro with compounds 23a in both the 5'-R and 5'-S configurations at the concentrations indicated in the graph. The harvested medium from the culture was analyzed for IL-8 level using IL-8 ELISA Assay from R&D Systems. According to the results obtained, both compounds are capable of inhibiting IL-8 secretion in a dose-dependent manner as shown in FIG. 12th

Malo by sa však oceniť, že biologické účinky uvažovaných zlúčenín nemusia byť obmedzené na konkrétne účinky, ako je opísané vyššie. Predovšetkým sa uvažuje, že zlúčeniny podľa podstaty navrhovaného vynálezu vo všeobecnosti vykazujú cytostatický účinok vo rôznych hyperproliferatívnych poruchách, ktoré zahŕňajú miestne a/alebo metastatické rakoviny (napríklad lymfómy a karcinómy), benígne hyperplazie prostaty a keratózy. Aj keď vynálezcovia našli značný biologický účinok na IL-4 (cytokin typu 2) a IFNy (cytokin typu 1) , vo všeobecnosti sa uvažuje, že zlúčeniny podľa podstaty navrhovaného vynálezu sú biologicky aktívne v modulácii cytokinov iných ako je IL-4 a IFNy. Predovšetkým sa uvažuje, že zlúčeniny môžu zvýšiť alebo znížiť expresiu/vylučovanie konkrétneho cytokinu alebo radu cytokinov. Preto sa uvažuje, že zlúčeniny podľa podstaty navrhovaného vynálezu môžu ovplyvňovať imunitný systém organizmu tak, že sa môže dosiahnuť väčšie vyjadrenie odpovede typu 1 alebo typu 2. Nakoniec sa uvažuje, že zlúčeniny podľa podstaty navrhovaného vynálezu môžu byť účinné na redukciu titra vírusu v žijúcom systéme ako priamou akciou ako inhibitor vírusovej polymerázy a/alebo nepriamo, aktiváciou imunitného systému na konkrétnu humorálnu alebo bunkovú odpoveď. Ďalej sa uvažuje, že zlúčeniny podľa podstaty navrhovaného vynálezu môžu byť tiež užitočné v redukcii odpovede imunitného systému proti allo- alebo xenotransplantátom redukciou množstva bunkovej odpovede proti allo- alebo xenotransplantátu.However, it should be appreciated that the biological effects of the contemplated compounds need not be limited to the specific effects as described above. In particular, it is contemplated that the compounds of the present invention generally exhibit cytostatic activity in a variety of hyperproliferative disorders including local and / or metastatic cancers (e.g., lymphomas and carcinomas), benign prostate hyperplasia, and keratosis. Although the inventors have found a significant biological effect on IL-4 (type 2 cytokine) and IFNγ (type 1 cytokine), it is generally considered that the compounds of the present invention are biologically active in modulating cytokines other than IL-4 and IFNγ. In particular, it is contemplated that the compounds may increase or decrease the expression / secretion of a particular cytokine or series of cytokines. Therefore, it is contemplated that the compounds of the present invention may affect the immune system of the organism so that a greater expression of the Type 1 or Type 2 response can be achieved. Finally, it is considered that the compounds of the present invention may be effective to reduce virus titer in a living system. as a direct action as a viral polymerase inhibitor and / or indirectly, by activating the immune system to a particular humoral or cellular response. It is further contemplated that the compounds of the present invention may also be useful in reducing the immune system response against allo- or xenografts by reducing the amount of cellular response against allo- or xenograft.

Prehľad obrázkov na výkresochBRIEF DESCRIPTION OF THE DRAWINGS

Obr. Fig. 1 je prvá 1 is the first ukážková Sample zahŕňajú include produkciu production zložiek ingredients vynálezu. invention. Obr. Fig. 2 je druhá 2 is the second ukážková Sample zahŕňajú include produkciu production zložiek ingredients vynálezu. invention.

syntetická schéma reakcií, ktoré podlá podstaty navrhovaného syntetická schéma reakcií, ktoré podľa podstaty navrhovanéhosynthetic scheme of reactions which, according to the nature of the proposed synthetic scheme of reactions, which according to the nature of the proposed

Obr. Fig. 3 je tretia 3 is the third ukážková Sample syntetická schéma synthetic scheme reakcií, ktoré reactions that zahŕňajú include produkciu production zložiek ingredients podľa podstaty by nature navrhovaného proposed vynálezu. invention. Obr. Fig. 4 je štvrtá 4 is the fourth ukážková Sample syntetická schéma synthetic scheme reakcií, ktoré reactions that zahŕňajú include produkciu production zložiek ingredients podľa podstaty by nature navrhovaného proposed vynálezu. invention. Obr. Fig. 5 je piata 5 is the fifth ukážková Sample syntetická schéma synthetic scheme reakcií, ktoré reactions that zahŕňajú include produkciu production zložiek ingredients podľa podstaty by nature navrhovaného proposed vynálezu. invention. Obr. Fig. 6 je šiesta 6 is the sixth ukážková Sample syntetická schéma synthetic scheme reakcií, ktoré reactions that zahŕňajú include produkciu production zložiek ingredients podľa podstaty by nature navrhovaného proposed vynálezu. invention. Obr. Fig. 7 zobrazuje ukážkové zložky podía podstaty 7 shows sample components by nature

navrhovaného vynálezu.of the present invention.

Obr. 8A a 8B sú grafy, ktoré predstavujú jednotlivo účinok zložiek podlá podstaty navrhovaného vynálezu na expresiu cytokínov typu 1 a typu 2.Fig. Figures 8A and 8B are graphs which represent the effect of the components of the present invention on the expression of type 1 and type 2 cytokines.

Obr. 9 je tabulka, ktorá znázorňuje bunkovú toxicitu rôznych zlúčenín podlá podstaty navrhovaného vynálezu.Fig. 9 is a table depicting the cellular toxicity of various compounds according to the present invention.

Obr. 10 je tabuľka, ktorá znázorňuje pomery DNA syntézy v bunkách ošetrených rôznymi zlúčeninami podlá podstaty navrhovaného vynálezu.Fig. 10 is a table depicting DNA synthesis ratios in cells treated with various compounds according to the present invention.

Obr. 11 je graf, ktorý zobrazuje potlačenie uvoľňovania VEGF ľudskými nádorovými bunkami prostaty po ošetrení zlúčeninami podľa podstaty navrhovaného vynálezu.Fig. 11 is a graph depicting the suppression of VEGF release by human prostate tumor cells after treatment with the compounds of the present invention.

Obr. 12 je graf, ktorý zobrazuje potlačenie uvoľňovania IL-8 ľudskými nádorovými bunkami prostaty po ošetrení zlúčeninami podľa podstaty navrhovaného vynálezu.Fig. 12 is a graph depicting the suppression of IL-8 release by human prostate tumor cells after treatment with the compounds of the present invention.

Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION

Nasledujúce protokoly opisujú príkladné syntézy rôznych zlúčenín podía podstaty navrhovaného vynálezu a sú myslené tak, že len ilustrujú, ale neobmedzujú tu predstavovaný vynálezcovský koncept.The following protocols describe exemplary syntheses of various compounds according to the spirit of the present invention and are intended to illustrate but not limit the inventive concept presented herein.

Príklad 1Example 1

Príprava metyl-2,3-0-izopropylidén-5(R, S)-C-etinyl-B-ribofuranozidu 2bPreparation of methyl-2,3-O-isopropylidene-5 (R, S) -C-ethynyl-B-ribofuranoside 2b

K miešanému roztoku metyl-4-C,5-0-didehydro-2,3-0izopropylidén-fi-D-ribofuranozidu (Jones a kol., Methods in Carbohydrate Chemistry, Vol. 1, str. 315 - 322, 1972, 4,0 g,To a stirred solution of methyl-4-C, 5-O-didehydro-2,3-isopropylidene-β-D-ribofuranoside (Jones et al., Methods in Carbohydrate Chemistry, Vol. 1, pp. 315-322, 1972, 4). , 0 g,

19,78 mmol) vo vodnom THF (20 ml) pri -42 °C pod argónom, sa pridala kvapka bromidu etinylhorečnatého (0,5 M v THF, 50 ml, 40 mmol). Po pridaní sa výsledná zmes pomaly zahrievala na 0 °C (cca 90 minút). Reakcia sa prerušila pridaním ľadu (50 g) v 50 ml vody a zmes sa miešala počas 30 minút. Po neutralizácii s 10 % kyselinou octovou sa zmes extrahovala dvakrát etylacetátom. Kombinovaná organická vrstva sa usušila (Na2SO4) a koncentrovala sa. Chromatografia na kremíku (etylacetát : hexány 1 : 4) umožnila vznik 3,48 g uvedenej zlúčeniny (R/S pomer 1 : 1) ako bielej tuhej látky. Nasledujúce zlúčeniny sa pripravili podobných spôsobom: metyl-2,3-0-izopropylidén-5(R)C-metyl-B-D-ribofuranozid 2a sa pripravil z metyl-4-C,5-0didehydro-2,3-0-izopropylidén-h-D-ribofuranozidu a bromidu etylhorečnatého. Metyl-2,3-0-izopropylidén-5(R)-C-vinyl-β-ϋribofuranozid 2c sa pripravil z metyl-4-C,5-0-didehydro-2,3-0izopropylidén-fi-D-ribofuranozidu a bromidu vinylhorečnatého. Metyl-5(R)-C-alyl-2,3-0-izopropylidén-5-D-ribofuranozid 2d sa pripravil z metyl-4-C,5-0-didehydro-2,3-0-izopropylidén-fi-Dribofuranozidu a bromidu alylhorečnatého.19.78 mmol) in aqueous THF (20 mL) at -42 ° C under argon, was added a drop of ethynyl magnesium bromide (0.5 M in THF, 50 mL, 40 mmol). After the addition, the resulting mixture was slowly warmed to 0 ° C (ca. 90 minutes). The reaction was quenched by the addition of ice (50 g) in 50 mL water and stirred for 30 minutes. After neutralization with 10% acetic acid, the mixture was extracted twice with ethyl acetate. The combined organic layer was dried (Na 2 SO 4 ) and concentrated. Chromatography on silica (ethyl acetate: hexanes 1: 4) gave 3.48 g of the title compound (R / S ratio 1: 1) as a white solid. The following compounds were prepared in a similar manner: methyl-2,3-O-isopropylidene-5 (R) C-methyl-BD-ribofuranoside 2a was prepared from methyl-4-C, 5-dihydro-2,3-O-isopropylidene- hD-ribofuranoside and ethyl magnesium bromide. Methyl-2,3-O-isopropylidene-5 (R) -C-vinyl-β-β-ribofuranoside 2c was prepared from methyl-4-C, 5-O-didehydro-2,3-isopropylidene-β-D-ribofuranoside and of magnesium magnesium bromide. Methyl-5 (R) -C-allyl-2,3-O-isopropylidene-5-D-ribofuranoside 2d was prepared from methyl-4-C, 5-O-didehydro-2,3-O-isopropylidene-fi- Dribofuranoside and allyl magnesium bromide.

Príklad 2Example 2

Príprava metyl-2,3-0-izopropylidén-5-0-metánsulfonyl-5(R)-Cmetyl-fi-D-ribofuranozidu 16 metyl-2,3-0-izopropylidén-5(R)-C(7,24 g, 33,17 mmol) v bezvodom °C sa pridal Výsledná reakčná hodinu, potom sa teplotePreparation of methyl-2,3-O-isopropylidene-5-O-methanesulfonyl-5 (R) -C-methyl-β-D-ribofuranoside 16 methyl-2,3-O-isopropylidene-5 (R) -C (7.24) g, 33.17 mmol) in anhydrous ° C was added to the resulting reaction hour, followed by temperature

K miešanému roztoku metyl-fl-D-ribofuranozidu 2a pyridíne (50 ml) pri metánsulfonylchlorid (3,1 ml, 39,92 mmol) zmes sa miešala pri izbovej teplote 1 ochladila na 0 °C, neutralizovala sa (10 % kyselina octová), koncentrovala sa (cca 50 %) a extrahovala sa dvakrát chloridom metylénu. Kombinovaná organická vrstva sa usušila (Na2SO4) a koncentrovala sa di sucha. Chromatografia na kremíku (4 % metanol v chloroforme) umožnila vznik 20,2 g uvedenej zlúčeniny 28 ako bielej tuhej látky.To a stirred solution of methyl-β-D-ribofuranoside 2a pyridine (50 mL) at methanesulfonyl chloride (3.1 mL, 39.92 mmol) the mixture was stirred at room temperature 1 cooled to 0 ° C, neutralized (10% acetic acid) , concentrated (ca. 50%) and extracted twice with methylene chloride. The combined organic layer was dried (Na 2 SO 4 ) and concentrated to dryness. Chromatography on silica (4% methanol in chloroform) afforded 20.2 g of compound 28 as a white solid.

Príklad 3Example 3

Príprava metyl-2,3-0-izopropylidén-5-0-acetyl-5(S) -C-metyl-fi-Dribofuranozidu 17Preparation of methyl-2,3-O-isopropylidene-5-O-acetyl-5 (S) -C-methyl-β-Dribofuranoside 17

Miešaná suspenzia metyl-2,3-0-izopropylidén-5-0-metánsulfonyl-5(R)-C-metyl-B-D-ribofuranozidu 16 (8,62 g, 29,1 mmol) a NaOAc (vodný, 3,5 g, 42,5 mmol) vo vodnom DMF (350 ml) sa zahrievala pri 125 °C pod argónom počas 4 dní. Rozpúšťadlo sa odparilo a zvyšky chromatograficky znázornení na kremíku (25 % EtOAc v hexánoch) poskytli 4,0 g uvedenej zlúčeniny 17 ako bielej tuhej látky.A stirred suspension of methyl-2,3-O-isopropylidene-5-O-methanesulfonyl-5 (R) -C-methyl-BD-ribofuranoside 16 (8.62 g, 29.1 mmol) and NaOAc (aq, 3.5 g, 42.5 mmol) in aqueous DMF (350 mL) was heated at 125 ° C under argon for 4 days. The solvent was evaporated and the residue chromatographed on silica (25% EtOAc in hexanes) afforded 4.0 g of the title compound 17 as a white solid.

Príklad 4Example 4

Príprava metyl-2,3-0-izopropylidén-4-C-hydroxymetyl-B-D-ribofuranozidu 28Preparation of methyl-2,3-O-isopropylidene-4-C-hydroxymethyl-B-D-ribofuranoside 28

K miešanému roztoku metyl-4-C,5-0-didehydro-2,3-O-izopropylidén-h-D-ribofuranozidu 1 (20,22 g, 100 ml) v dioxane (380 ml) pri teplote 0 °C sa pridala kvapka formaldehydu (37 % roztok, 76 ml) a potom 2 M NaOH (188 ml). Výsledná reakčná zmes sa miešala pri izbovej teplote počas 20 hodín, potom sa ochladila na 0 °C, neutralizovala sa (10 % kyselina octová), koncentrovala sa (cca 50 %) a extrahovala sa dvakrát chloridom metylénu. Kombinovaná organická vrstva sa vysušila (Na2SO4) a koncentrovala sa do sucha. Chromatografia na kremíku (4 % metanol v chloroforme) umožnila vznik 20,2 g uvedenej zlúčeniny 28 ako bielej tuhej látky.To a stirred solution of methyl 4-C, 5-O-didehydro-2,3-O-isopropylidene-1H-ribofuranoside 1 (20.22 g, 100 mL) in dioxane (380 mL) at 0 ° C was added a drop formaldehyde (37% solution, 76 mL) followed by 2 M NaOH (188 mL). The resulting reaction mixture was stirred at room temperature for 20 hours, then cooled to 0 ° C, neutralized (10% acetic acid), concentrated (ca. 50%) and extracted twice with methylene chloride. The combined organic layer was dried (Na 2 SO 4 ) and concentrated to dryness. Chromatography on silica (4% methanol in chloroform) afforded 20.2 g of compound 28 as a white solid.

Príklad 5Example 5

Príprava metyl-2,3-0-izopropylidén-5-deoxy-ň-D-ribofuranozidu 8Preparation of methyl-2,3-O-isopropylidene-5-deoxy-β-D-ribofuranoside 8

K miešanému roztoku metyl-2,3-0-izopropylidén-5-D-ribofuranozidu (14,2 g, 70,0 mrnol) v bezvodom pyridíne (250 ml) pri teplote 10 °C sa v dávkach (po 30 min.) pridával ptoluénsulfonylchlorid (19,1 g, 100 mmol). Výsledná zmes sa miešala pri izbovej teplote počas 18 hodín, ochladila sa na teplotu 0 °C, pozastavila sa pridaním vody (5,0 ml) a miešala sa pri izbovej teplote počas 30 minút. Rozpúšťadlo sa odparilo.To a stirred solution of methyl-2,3-O-isopropylidene-5-D-ribofuranoside (14.2 g, 70.0 mol) in anhydrous pyridine (250 mL) at 10 ° C was added in portions (after 30 min). Ptoluenesulfonyl chloride (19.1 g, 100 mmol) was added. The resulting mixture was stirred at room temperature for 18 hours, cooled to 0 ° C, quenched by the addition of water (5.0 mL), and stirred at room temperature for 30 minutes. The solvent was evaporated.

Zvyšky sa rozpustili v etylacetáte, premyli sa trikrát solným roztokom, vysušili sa (Na2SO4) a koncentrovali sa do sucha. Chromatografia na kremíku (etylacetát : hexány 1 : 3) umožnila vznik 24,1 g uvedenej zlúčeniny ako bielej tuhej látky.The residues were dissolved in ethyl acetate, washed three times with brine, dried (Na 2 SO 4 ) and concentrated to dryness. Chromatography on silica (ethyl acetate: hexanes 1: 3) afforded 24.1 g of the title compound as a white solid.

K miešanej suspenzii LiAlH4 (4,58 g, 120,5 mmol) vo vodnom dietyléteri (120 ml) sa pridal metyl-2,3-0-izopropylidén-5-0-ptoluénsulfonyl-b-D-ribofuranozid (13,1 g, 36,55 mmol) v dietyléter : toluéne (2,5 : 1, 140 ml). Výsledná zmes sa odlievala počas 22 hodín, chladila sa na izbovú teplotu, riedila sa etylacetátom (25 ml), pozastavila sa pridaním vody (5,0 ml). Rozpúšťadlo sa odparilo. Zvyšky sa rozpustili v etylacetáte, premyli sa trikrát solným roztokom, vysušili sa (Na2SO4) a koncentrovali sa do sucha. Chromatografia na kremíku (etylacetát : hexány 1 : 3) umožnila vznik 2,58 g uvedenej zlúčeniny ako bezfarebnej tekutiny.To a stirred suspension of LiAlH 4 (4.58 g, 120.5 mmol) in aqueous diethyl ether (120 mL) was added methyl 2,3-O-isopropylidene-5-O-p-toluenesulfonyl-β-ribofuranoside (13.1 g, 36.55 mmol) in diethyl ether: toluene (2.5: 1, 140 mL). The resulting mixture was poured over 22 hours, cooled to room temperature, diluted with ethyl acetate (25 mL), quenched by the addition of water (5.0 mL). The solvent was evaporated. The residues were dissolved in ethyl acetate, washed three times with brine, dried (Na 2 SO 4 ) and concentrated to dryness. Chromatography on silica (ethyl acetate: hexanes 1: 3) afforded 2.58 g of the title compound as a colorless liquid.

Príklad 6Example 6

Príprava metyl-5(R)-C-alyl-5-0-benzoyl-2,3-0-izopropylidén-b-Dfuranozidu 3dPreparation of methyl-5 (R) -C-allyl-5-O-benzoyl-2,3-O-isopropylidene-b-D-furoside 3d

K miešanému roztoku metyl-5(R)-C-alyl-2, 3-O-izopropylidénβ-D-ribofuranozidu (4,49 g, 18,38 mmol) v bezvodom pyridíne (40 ml) pri teplote 0 °C sa pridával benzoylchlorid (2,7 ml, 23,0 mmol). Výsledná zmes sa miešala pri izbovej teplote počas 18 hodín, chladila sa ľadom, pozostavila sa pridaním vody (1 ml) a miešala sa pri izbovej teplote počas 30 minút. Rozpúšťadlo sa odparilo. Zvyšky sa rozpustili v etylacetáte, premyli sa trikrát solným roztokom, vysušili sa (Na4SO4) a koncentrovali sa. Chromatografia na kremíku (12 % etylacetát v hexánoch) umožnila vznik 6,26 g uvedenej zlúčeniny 3d ako bezfarebného sirupu. Nasledujúce zlúčeniny sa pripravili podobným spôsobom: metyl-5-0-benzoyl-5-(R,S)-C-etinyl-2,3-0-izopropylidén-B-D-furanozid 3b (R/S pomer 1 : 1) z metyl-5(R, S)-C-etinyl-2,3-0izopropylidén-B-D-ribofuranozidu 2b. Metyl-4-C-benzoyloxymetyl5-0-benzoyl-2,3-0-izopropylidén-Ď-D-furanozid z metyl-2,3-Oizopropylidén- 4 -C-hydroxymetyl-fi-D-ribofuranozidu .To a stirred solution of methyl 5 (R) -C-allyl-2,3-O-isopropylidene-beta-D-ribofuranoside (4.49 g, 18.38 mmol) in anhydrous pyridine (40 mL) at 0 ° C was added benzoyl chloride (2.7 mL, 23.0 mmol). The resulting mixture was stirred at room temperature for 18 hours, cooled with ice, made up by addition of water (1 mL) and stirred at room temperature for 30 minutes. The solvent was evaporated. The residues were dissolved in ethyl acetate, washed three times with brine, dried (Na 4 SO 4 ), and concentrated. Chromatography on silica (12% ethyl acetate in hexanes) afforded 6.26 g of the title compound 3d as a colorless syrup. The following compounds were prepared in a similar manner: methyl 5-O-benzoyl-5- (R, S) -C-ethynyl-2,3-O-isopropylidene-BD-furanoside 3b (R / S ratio 1: 1) from methyl -5 (R, S) -C-ethynyl-2,3-isopropylidene-BD-ribofuranoside 2b. Methyl 4-C-benzoyloxymethyl-5-O-benzoyl-2,3-O-isopropylidene-6-D-furanoside from methyl-2,3-isopropylidene-4-C-hydroxymethyl-β-D-ribofuranoside.

Príklad ΊExample Ί

Príprava metyl-5(R)-C-alyl-5-0-benzoyl-B-D-ribofuranozidu 4dPreparation of methyl-5 (R) -C-allyl-5-O-benzoyl-B-D-ribofuranoside 4d

Roztok metyl-5 (R)-C-alyl-5-0-benzoyl-2,3-O-izopropylidénβ-D-furanozidu 3d (6,2 g, 17,8 mmol) v TFA-H2O zmesi (9 : 1) sa miešal pri teplote 0 °C počas 90 minút a koncentroval sa do sucha pri 0 ’C. Zvyšok sa rozpustil v zmesi metanolu a toluénu (20 ml, 1 : 1) a koncentroval sa do sucha. Chromatograf ia na kremíku (etylacetát : hexány 1 : 1) umožnila vznik 3,70 g uvedenej zlúčeniny 4d ako bielej tuhej látky. Nasledujúce zlúčeniny sa pripravili podobným spôsobom: Metyl-5-O-benzoyl(R,S)-C-etinyl-B-D-ribofuranozid 4b (R/S pomer 1 : 1) z metyl5-O-benzoyl-(R,S)-C-etinyl-2,3-0-izopropylidén-E-D-ribofuranozidu 3b, metyl-5-0-benzoyl-4-C-benzoyloxymetyl-E-D-ribofuranozid z metyl-5-O-benzoyl-4-C-benzoyloxymetyl-2,3-izopropylidénβ-D-ribofuranozidu.A solution of methyl-5 (R) -C-allyl-5-O-benzoyl-2,3-O-isopropylidene-beta-D-furanoside 3d (6.2 g, 17.8 mmol) in TFA-H 2 O mixture (9 1) was stirred at 0 ° C for 90 minutes and concentrated to dryness at 0 ° C. The residue was dissolved in a mixture of methanol and toluene (20 mL, 1: 1) and concentrated to dryness. Chromatography on silica (ethyl acetate: hexanes 1: 1) afforded 3.70 g of the title compound 4d as a white solid. The following compounds were prepared in a similar manner: Methyl 5-O-benzoyl (R, S) -C-ethynyl-BD-ribofuranoside 4b (R / S ratio 1: 1) from methyl 5-O-benzoyl- (R, S) - C-ethynyl-2,3-O-isopropylidene-ED-ribofuranoside 3b, methyl-5-O-benzoyl-4-C-benzoyloxymethyl-ED-ribofuranoside from methyl-5-O-benzoyl-4-C-benzoyloxymethyl-2 , 3-izopropylidénβ-D-ribofuranoside.

Príklad 8Example 8

Príprava metyl-5(R)-C-alyl-2,3,5-tri-0-benzoyl-B-0-ribofuranozidu 5dPreparation of methyl-5 (R) -C-allyl-2,3,5-tri-O-benzoyl-B-O-ribofuranoside 5d

K miešanému roztoku metyl-5(R)-C-alyl-5-0-benzoyl-B-Dribofiranozidu 4d (3,60 mg, 11,68 mmol) v bezvodom pyridíne (80 ml) pri teplote 0 ’C sa pridal benzoylchlorid (3,0 ml, 25,84 mmol) . Výsledná zmes sa miešala pri izbovej teplote počas 18 hodín, ochladila sa ľadom, uhasila sa pridaním vody (1 ml), potom sa miešala pri izbovej teplote počas 30 minút. Zmes sa koncentrovala, riedila sa etylacetátom, premývala sa solným roztokom trikrát, vysušila sa (Na2SO4) a koncentrovala sa do sucha. Chromatografia na kremíku (15 % etylacetát v hexánoch) umožnila vznik 5,3 g uvedenej zlúčeniny 5d ako bezfarebného sirupu. Nasledujúce zlúčeniny sa pripravili podobným spôsobom: metyl-5 (R, S) -C-etinyl-2,3, 5-tri-0-benzoyl-B-D-ribofuranozid 5b (R/S pomer 1 : 1) z metyl-5-0-benzolyl-5(R,S)-C-etinyl-β-ϋfuranozidu 4b. Metyl-4-C-benzoyl-oxometyl-2,3,5-tri-O-benzoylβ-D-ribofuranozid z metyl-4-C-benzoyloxymetyl-5-0-benzoyl-fi-Dribofuranozidu.To a stirred solution of methyl 5 (R) -C-allyl-5-O-benzoyl-β-Dribofiranoside 4d (3.60 mg, 11.68 mmol) in anhydrous pyridine (80 mL) at 0 ° C was added benzoyl chloride (3.0 mL, 25.84 mmol). The resulting mixture was stirred at room temperature for 18 hours, cooled with ice, quenched by addition of water (1 mL), then stirred at room temperature for 30 minutes. The mixture was concentrated, diluted with ethyl acetate, washed with brine three times, dried (Na 2 SO 4 ) and concentrated to dryness. Chromatography on silica (15% ethyl acetate in hexanes) afforded 5.3 g of the title compound 5d as a colorless syrup. The following compounds were prepared in a similar manner: methyl 5 (R, S) -C-ethynyl-2,3,5-tri-O-benzoyl-BD-ribofuranoside 5b (1: 1 R / S ratio) from methyl 5- O-benzolyl-5 (R, S) -C-ethynyl-β-furanoside 4b. Methyl 4-C-benzoyl-oxomethyl-2,3,5-tri-O-benzoyl-D-ribofuranoside from methyl-4-C-benzoyloxymethyl-5-O-benzoyl-β-Dribofuranoside.

Príklad 9Example 9

Príprava l-O-metyl-2,3,5-tri-0-benzoyl-5(R)-C-vinyl-E-D-ribofuranózy 5cPreparation of 1-O-methyl-2,3,5-tri-O-benzoyl-5 (R) -C-vinyl-E-D-ribofuranose 5c

Roztok metyl-2,3-0-izopropylidén-5(R)-C-vinyl-E-D-ribofuranózy 2c (1,0 g, 4,3 mmol) v zmesi kyseliny trifluóroctovej a vody (9 : 1, obj./obj., 11 ml) sa miešal pri teplote 0 °C počas 30 minút a koncentroval sa do sucha. Zvyšok sa rozpustil v metanole a koncentroval sa do sucha (trikrát), potom sa rozpustil v pyridíne a vyparil sa, a nakoniec sa rozpustil v bezvodom pyridíne (11 ml) . K tomuto roztoku sa pridal benzoylchlorid (1,9 ml, 16 mmol). Reakčná zmes sa miešala pri teplote 25 °C počas 16 hodín a ochladila sa v ladovej vode (20 ml) . Zmes sa extrahovala dichlórmetánom (20 ml) a organická vrstva sa sušila cez sulfát sodný a koncentrovala sa do sucha. Zvyšok sa chromatografoval na kremíku (0 až 5 % etylacetát v dichlórmetáne) a vzniklo 1,0 g uvedenej zlúčeniny 5c vo forme sirupu.A solution of methyl-2,3-O-isopropylidene-5 (R) -C-vinyl-ED-ribofuranose 2c (1.0 g, 4.3 mmol) in a mixture of trifluoroacetic acid and water (9: 1, v / v) (11 mL) was stirred at 0 ° C for 30 minutes and concentrated to dryness. The residue was dissolved in methanol and concentrated to dryness (three times), then dissolved in pyridine and evaporated, and finally dissolved in anhydrous pyridine (11 mL). To this solution was added benzoyl chloride (1.9 mL, 16 mmol). The reaction mixture was stirred at 25 ° C for 16 h and cooled in ice water (20 mL). The mixture was extracted with dichloromethane (20 mL) and the organic layer was dried over sodium sulfate and concentrated to dryness. The residue was chromatographed on silica (0-5% ethyl acetate in dichloromethane) to give 1.0 g of the title compound 5c as a syrup.

Príklad 10Example 10

Príprava l-O-acetyl-2,3,5-tri-0-benzoyl-5(R)-C-alyl-D-ribofuranózy 6dPreparation of 1-O-acetyl-2,3,5-tri-O-benzoyl-5 (R) -C-allyl-D-ribofuranose 6d

K miešanému roztoku metyl-5(R)-C-alyl-2,3,5-tri-O-benzolyl-E-D-ribofuranozidu 5d (4,0 g, 7,74 mmol) v kyseline octovej (14 ml) a anhydride octovom (1,75 ml, 18,36 mmol) sa pri teplote 0 °C pridala koncentrovaná kyselina sírová (200 μΐ,To a stirred solution of methyl 5 (R) -C-allyl-2,3,5-tri-O-benzolyl-ED-ribofuranoside 5d (4.0 g, 7.74 mmol) in acetic acid (14 mL) and anhydride acetic acid (1.75 mL, 18.36 mmol) was added concentrated sulfuric acid (200 μΐ) at 0 ° C,

3,79 mmol v 4,0 ml kyseliny octovej). Výsledná zmes sa miešala pri izbovej teplote počas 20 hodín, ochladila sa na teplotu 0 °C, riedila sa studeným etylacetátom, premývala sa vodou, 5 % vodným NaHCO3 a potom solným roztokom, vysušila sa (Na2SO4) a koncentrovala sa. Chromatografia na kremíku (etylacetát v hexánoch 1 : 4) umožnila vznik 2,82 g uvedenej zlúčeniny 6d (α/β pomer 1 : 2) ako bezfarebnej peny. Nasledujúce zlúčeniny sa pripravili podobným spôsobom: l-O-acetyl-5(R,S)-C-etinyl2,3,5-tri-0-benzolyl-fl-D-ribufuranóza 6b (R/S pomer 1:1a α/β pomer 1 : 2) z metyl-5(R,S)-C-etinyl-2,3,5-tri-O-B-Dribofuranozidu 5b. l-0-acetyl-4-C-benzoyloxymetyl-2,3,5-tri-Obenzoyl-D-ribofuranóza (α/β pomer 1 : 3) z metyl-4-Cbenzoyloxymetyl-2,3,5-tri-0-benzoyl-fi-D-furanozidu. 5(R)-C22 metyl-1,2,3,5-tetra-0-acetyl-h-D-ribofuranóza z metyl-2,3-0izopropylidén-5(R)-C-metyl-fi-D-furanozidu. 1,2,3, 5-tetra-0-acetyl-5(S)-C-metyl-D-ribofuranóza 6a z metyl-5-O-acetyl-2,3-Oizopropylidén-5(R)-C-metyl-B-D-ribofuranozidu. 5-deoxy-2-l,2,3tri-O-acetyl-D-ribofuranóza 9 z metyl-5-O-acetyl-2,3-0-izopropylidén-B-D-ribofuranozidu. l-O-acetyl-2,3, 5-tri-O-benzoyl5(R)-C-vinyl-B-D-ribofuranóza 6c z metyl-2,3, 5-tri-O-benzoyl5(R)-vinyl-R-D-ribofuranozidu.3.79 mmol in 4.0 mL acetic acid). The resulting mixture was stirred at room temperature for 20 hours, cooled to 0 ° C, diluted with cold ethyl acetate, washed with water, 5% aqueous NaHCO 3 and then brine, dried (Na 2 SO 4 ) and concentrated. Chromatography on silica (ethyl acetate in hexanes 1: 4) afforded 2.82 g of the title compound 6d (α / β ratio 1: 2) as a colorless foam. The following compounds were prepared in a similar manner: 10-acetyl-5 (R, S) -C-ethynyl-2,3,5-tri-O-benzolyl-β-D-ribufuranose 6b (R / S ratio 1: 1a α / β ratio 1: 2) from methyl-5 (R, S) -C-ethynyl-2,3,5-tri-OB-Dribofuranoside 5b. 1-O-acetyl-4-C-benzoyloxymethyl-2,3,5-tri-Obenzoyl-D-ribofuranose (α / β ratio 1: 3) from methyl-4-Cbenzoyloxymethyl-2,3,5-tri-0 benzoyl-.beta.-D-ribofuranoside. 5 (R) -C22 methyl-1,2,3,5-tetra-O-acetyl-1H-ribofuranose from methyl-2,3-isopropylidene-5 (R) -C-methyl-.beta.-D-furanoside. 1,2,3,5-tetra-O-acetyl-5 (S) -C-methyl-D-ribofuranose 6a from methyl-5-O-acetyl-2,3-isopropylidene-5 (R) -C-methyl -BD-ribofuranoside. 5-deoxy-2-1,2,3-tri-O-acetyl-D-ribofuranose 9 from methyl-5-O-acetyl-2,3-O-isopropylidene-BD-ribofuranoside. 10-acetyl-2,3,5-tri-O-benzoyl 5 (R) -C-vinyl-BD-ribofuranose 6c from methyl-2,3,5-tri-O-benzoyl 5 (R) -vinyl-RD-ribofuranoside .

Príklad 11Example 11

Príprava 4-amino-6-bróm-5-kyano-7-(2,3,5-tri-0-benzoyl-5(R)-Calyl-fi-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínuPreparation of 4-amino-6-bromo-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R) -Calyl-β-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine

Suspenzia 4-amino-6-bróm-5-kyanopyrolo(2,3-d)pyrimidínu (Tol-man a kol., J. Org. Chem., 1969, 91, 2102 - 2108) (1,05 g,A suspension of 4-amino-6-bromo-5-cyanopyrrolo (2,3-d) pyrimidine (Tol-man et al., J. Org. Chem., 1969, 91, 2102-2108) (1.05 g,

4,41 mmol) a síran amónny (50 mg) v HMDS (75 ml) a v bezvodom m-xyléne (25 ml) bola pod argónom počas 18 hodín. Rozpúšťadlá sa vyparili a zvyšok sa vysušil vo vákuu. Zvyšok sa rozpustil v bezvodom 1,2-dichlóretáne (80 ml) a zmiešal sa s 1-0-acetyl2,3, 5-tri-0-benzoyl-5(R)-C-alyl-D-ribofuranózou (2,0 g, 3,67 mmol). Počas chladenia ladom sa pridal TMSOTf (1,3 ml, 7,30 mmol v 5 ml bezvodom 1,2-dichlóretáne) . Zmes sa pod argónom miešala pri izbovej teplote počas 30 minút, potom bola pod spätným tokom počas 90 hodín, ochladila sa na Iade/NaHCO3 (50 ml) a filtrovala sa. Organická vrstva sa separovala, vysušila sa (Na2SO4) a koncentrovala sa. Chromatografia na kremíku (EtOAc : hexány 2 : 3) umožnila vznik 1,81 g uvedenej zlúčeniny ako bezfarebnej tuhej látky. Nasledujúce zlúčeniny boli pripravené podobným spôsobom: 4-amino-6-bróm-5-kyano-7-(2,3,5tri-O-benzoyl-5(R, S)-C-etinyl-B-D-ribofuranozyl)pyrolo(2,3-d) pyrimidín (R/S) pomer 1 : 1) sa pripravil z l-O-acetyl-2,3,5tri-O-benzoyl-5(R, S)-C-etinyl-D-ribofuranózy a 4-amino-6-bróm5-kyanopyrolo(2, 3-d)pyrimidínu. 4-amino-6-bróm-5-kyano-7- (4benzoyloxometyl-2,3,5-tri-0-benzoyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín sa pripravil z l-O-acetyl-4-benzoyloxymetyl2,3,5-tri-O-benzoyl-D-ribofuranózy a 4-amino-6-bróm-5-kyanopyrolo(2,3-d)pyrimidínu. 4-amino-6-bróm-5-kyano-7-(1,2,3,5-tetraO-acetyl-5(R)-C-metyl-Ď-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín sa pripravil z 1,2, 3, 5-tetra-O-acetyl-5(R)-C-metyl-D-ribofu23 ranózy a 4-amino-6-bróm-5-kyanopyrolo(2, 3-d)pyrimidínu. 4amino-6-bróm-5-kyano-7-(1,2,3,5-tetra-O-acetyl-5(S)-C-metyl-βD-ribofuranozyl)pyrolo(2,3-d)pyrimidín sa pripravil z 1,2,3,5tetra-O-acetyl-5(S)-C-metyl-D-ribofuranózy a 4-amino-6-bróm-5kyanopyrolo(2,3-d)pyrimidínu. 4-amino-6-bróm-5-kyano-7-(2,3-di0-acetyl-5-deoxy-B-D-ribofuranozyl)pyrolo(2, 3-d)pyrimidín sa pripravil z 1,2, 3-tri-0-acetyl-5-deoxy-D-ribofuranózy a 4amino-6-bróm-5-kyanopyrolo(2,3-d)pyrimidínu. 4-amino-6-bróm-5kyano-7-(2,3,5-tri-0-benzoyl-5(R)-C-vinyl-fi-Dribofuranozyl)pyrolo(2,3-d)pyrimidín sa pripravil z 1-O-acetyl2,3,5-tri-0-benzoyl-5(R)-β-D-ribofuranózy a 4-amino-6-bróm-5kyanopyrolo(2,3-d)pyrimidínu.4.41 mmol) and ammonium sulfate (50 mg) in HMDS (75 mL) and anhydrous m-xylene (25 mL) were under argon for 18 hours. The solvents were evaporated and the residue was dried in vacuo. The residue was dissolved in anhydrous 1,2-dichloroethane (80 mL) and treated with 1-O-acetyl 2,3,5-tri-O-benzoyl-5 (R) -C-allyl-D-ribofuranose (2.0 g, 3.67 mmol). TMSOTf (1.3 mL, 7.30 mmol in 5 mL anhydrous 1,2-dichloroethane) was added under ice-cooling. The mixture was stirred at room temperature for 30 minutes under argon, then refluxed for 90 hours, cooled on ice / NaHCO 3 (50 mL) and filtered. The organic layer was separated, dried (Na 2 SO 4 ) and concentrated. Chromatography on silica (EtOAc: hexanes 2: 3) afforded 1.81 g of the title compound as a colorless solid. The following compounds were prepared in a similar manner: 4-amino-6-bromo-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R, S) -C-ethynyl-BD-ribofuranosyl) pyrrole (2) 3-d) pyrimidine (R / S) ratio 1: 1) was prepared from 10-acetyl-2,3,5tri-O-benzoyl-5 (R, S) -C-ethynyl-D-ribofuranose and 4- amino-6-bromo-5-cyanopyrrolo [2,3-d] pyrimidine. 4-Amino-6-bromo-5-cyano-7- (4-benzoyloxomethyl-2,3,5-tri-O-benzoyl-BD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine was prepared from 10-acetyl-4 -benzoyloxymethyl-2,3,5-tri-O-benzoyl-D-ribofuranose and 4-amino-6-bromo-5-cyanopyrrolo (2,3-d) pyrimidine. 4-amino-6-bromo-5-cyano-7- (1,2,3,5-tetra-O-acetyl-5 (R) -C-methyl-b-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine was prepared from 1,2,3,5-tetra-O-acetyl-5 (R) -C-methyl-D-ribofuranose and 4-amino-6-bromo-5-cyanopyrrolo [2,3-d] pyrimidine. 4-amino-6-bromo-5-cyano-7- (1,2,3,5-tetra-O-acetyl-5 (S) -C-methyl-β-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine prepared from 1,2,3,5-tetra-O-acetyl-5 (S) -C-methyl-D-ribofuranose and 4-amino-6-bromo-5-cyanopyrrolo (2,3-d) pyrimidine. 4-Amino-6-bromo-5-cyano-7- (2,3-di-acetyl-5-deoxy-β-ribofuranosyl) pyrrolo (2,3-d) pyrimidine was prepared from 1,2,3-tri -O-acetyl-5-deoxy-D-ribofuranose and 4 amino-6-bromo-5-cyanopyrrolo (2,3-d) pyrimidine. 4-Amino-6-bromo-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R) -C-vinyl-β-Dribofuranosyl) pyrrolo (2,3-d) pyrimidine was prepared from 1-O-acetyl-2,3,5-tri-O-benzoyl-5 (R) -β-D-ribofuranose and 4-amino-6-bromo-5-cyanopyrrolo (2,3-d) pyrimidine.

Príklad 12Example 12

Príprava 4-amino-5-kyano-7-(2,3,5-tri-0-benzoyl-5(R)-C-alyl-βD-ribofuranozyl)pyrolo(2,3-d)pyrimidínu 20ePreparation of 4-amino-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R) -C-allyl-β-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine 20e

K roztoku 4-amino-6-bróm-5-kyano-7-(2,3,5-tri-0-benzoyl5(R)-C-alyl-h-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu (738 mg, 1,0 mmol) v kyseline octovej (25 ml) sa pridal zinkový prášok (1,04 g, 16,0 mmol) v dvoch dávkach (po hodine). Reakčná zmes sa miešala pri izbovej teplote počas 20 hodín a filtrovala sa. Filtrát sa odparil do sucha a zvyšok umožnil chromatografiou na kremíku (etylacetát : hexány 1 : 1) vznik 450 mg uvedenej zlúčeniny 20e ako bezfarebnej peny. Nasledujúce zlúčeniny sa pripravili podobným spôsobom: 4-amino-5-kyano-7-(2,3,5-tri-Obenzoyl-5(R,S)-C-etinyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín (R/S pomer 1 : 1) 20b zo 4-amino-6-bróm-5-kyano-7- (2,3,5tri-O-benzoyl-5(R, S)-C-etinyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5-kyano-7-(2,3, 5-tri-O-benzoyl-5 (R)-Cvinyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín 20c zo 4-amino6-bróm-5-kyano-7-(2,3,5-tri-0-benzoyl-5(R)-C-vinyl-B-D-ribofuranozyl)pyrolo(2, 3-d)pyrimidínu .To a solution of 4-amino-6-bromo-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R) -C-allyl-1H-ribofuranosyl) pyrrolo (2,3-d) pyrimidine ( 738 mg, 1.0 mmol) in acetic acid (25 mL) was added zinc powder (1.04 g, 16.0 mmol) in two portions (after an hour). The reaction mixture was stirred at room temperature for 20 hours and filtered. The filtrate was evaporated to dryness and the residue allowed 450 mg of 20e to be obtained as a colorless foam by chromatography on silica (ethyl acetate: hexanes 1: 1). The following compounds were prepared in a similar manner: 4-amino-5-cyano-7- (2,3,5-tri-Obenzoyl-5 (R, S) -C-ethynyl-BD-ribofuranosyl) pyrrolo (2,3-d) ) Pyrimidine (R / S ratio 1: 1) 20b from 4-amino-6-bromo-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R, S) -C-ethynyl-BD -ribofuranozyl) pyrrolo (2,3-d) pyrimidine. 4-Amino-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R) -Cvinyl-BD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine 20c from 4-amino6-bromo -5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R) -C-vinyl-BD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine.

Príklad 13Example 13

Príprava 4-amino-5-kyano-7-(2,3,5-tri-0-benzoyl-5(R)-C-propylβ-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu 20fPreparation of 4-amino-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R) -C-propyl-beta-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine 20f

Suspenzia 4-amino-6-bróm-5-kyano-7-(2,3,5-tri-0-benzoyl5 (R)-C-alyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu (400 mg, koncentroval (etylacetát ako bezfarebnej peny. podobným spôsobom:Suspension of 4-amino-6-bromo-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R) -C-allyl-BD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine (400 mg, concentrated (ethyl acetate as a colorless foam. in a similar way:

x 10 Pa) počas 4 hodín. Katalyzátor sa sa (dioxán). Kombinovaný filtrát sax 10 Pa) for 4 hours. The catalyst was (dioxane). The combined filtrate was

0,54 mmol) a 10 % Pd/C (100 mg, cca 50 % vody) v dioxane (50 ml) a trietylamíne (0,5 ml) sa trepala v hydrogenačnom prístroji (H2, 1,3789 filtroval a premyl a zvyšok umožnil chromatograficky na kremíku hexány 1 : 1) vznik 340 mg uvedenej zlúčeniny 23f Nasledujúce zlúčeniny sa pripravili0.54 mmol) and 10% Pd / C (100 mg, ca. 50% water) in dioxane (50 mL) and triethylamine (0.5 mL) were shaken in a hydrogenator (H 2 , 1.78789 filtered and washed and the residue allowed to be chromatographed on silica hexanes 1: 1) to give 340 mg of the title compound 23f The following compounds were prepared

4-amino-5-kyano-7-(2, 3, 5-tri-O-benzoyl5(R, S)-C-etyl-h-D-ribofuranozyl)pyrolo(2, 3-d)pyrimidín (R/S pomer 1 : 1) 20d zo 4-amino-6-bróm-5-kyano-7-(2,3,5-tri-Obenzoyl-5(R,S)-C-etinyl-E-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5-kyano-7-(4-benzoyloxometyl-2,3,5-tri-O-benzoylβ-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín zo 4-amino-6-bróm-5kyano-7-(4-benzoyloxometyl-2,3,5-tri-0-benzoyl-h-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5-kyano-7-(1,2,3,5-tetraO-acetyl-5(R)-C-metyl-fi-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín 20 a zo 4-amino-6-bróm-5-kyano-7-(l,2,3,5-tetra-O-acetyl-5(R)C-metyl-b-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5kyano-7-(1,2,3-tri-0-acetyl-5-deoxy-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín zo 4-amino-6-bróm-5-kyano-7-(1,2,3-tri-Oacetyl-5-deoxy-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu.4-amino-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R, S) -C-ethyl-1H-ribofuranosyl) pyrrolo (2,3-d) pyrimidine (R / S ratio) 1: 1) 20d from 4-amino-6-bromo-5-cyano-7- (2,3,5-tri-Obenzoyl-5 (R, S) -C-ethynyl-ED-ribofuranosyl) pyrrole (2, 3-d) pyrimidine. 4-Amino-5-cyano-7- (4-benzoyloxomethyl-2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine from 4-amino-6-bromo-5-cyano 7- (4-benzoyloxometyl-2,3,5-tri-0-benzoyl-HD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine. 4-amino-5-cyano-7- (1,2,3,5-tetra-O-acetyl-5 (R) -C-methyl-.beta.-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine 20; 4-amino-6-bromo-5-cyano-7- (l, 2,3,5-tetra-O-acetyl-5 (R) C-methyl-bD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine . 4-Amino-5-cyano-7- (1,2,3-tri-O-acetyl-5-deoxy-BD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine from 4-amino-6-bromo-5-cyano 7- (1,2,3-tri-O-acetyl-5-deoxy-BD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine.

4-amino-5-kyano-7-(2,3-dideoxy-B-D-glyceropentofuranozyl)pyrolo (2, 3-d) pyrimidín sa pripravil zo 4-amino-5-kyano-7-(2,3dideoxy-E-D-pent-2-énfuranozyl)pyrolo(2,3-d)pyrimidínu.4-Amino-5-cyano-7- (2,3-dideoxy-BD-glyceropentofuranosyl) pyrrolo (2,3-d) pyrimidine was prepared from 4-amino-5-cyano-7- (2,3dideoxy-ED- pent-2-énfuranozyl) pyrrolo (2,3-d) pyrimidine.

Príklad 14Example 14

Príprava 4-amino-5-kyano-7-(5(R)-C-alyl-E-D-ribofuranozyl)pyrolo (2, 3-d) pyrimidínu 23ePreparation of 4-amino-5-cyano-7- (5 (R) -C-allyl-E-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine 23e

Suspenzia 4-amino-5-kyano-7-(2,3,5-tri-0-benzoyl-5(R)-Calyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu (300 mg, 0,454 mmol) v metanole (40 ml) pri teplote 0 °C bola nasýtená amóniom. Roztok stál pri izbovej teplote 2 dni. Rozpúšťadlo sa odparilo a zvyšok spolu s NaOAc (bezvodý, 20 ml) sa rozptýlil v DMF (20 ml) . Zmes sa miešala pod argónom pri teplote 120 °C počas 5 hodín. Rozpúšťadlo sa odparilo. Zvyšok sa adsorboval na kremíkový gél a vylúhoval sa kremíkovej gólovej kolóny (metanol : etylacetát 1 : 25) za vzniku 145 mg uvedenej zlúčeniny ako bezfarebnej tuhej látky.A suspension of 4-amino-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R) -Calyl-BD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine (300 mg, 0.454 mmol) ) in methanol (40 mL) at 0 ° C was saturated with ammonium. The solution was allowed to stand at room temperature for 2 days. The solvent was evaporated and the residue along with NaOAc (anhydrous, 20 mL) was suspended in DMF (20 mL). The mixture was stirred under argon at 120 ° C for 5 hours. The solvent was evaporated. The residue was adsorbed onto a silica gel and eluted with a silica goal column (methanol: ethyl acetate 1:25) to give 145 mg of the title compound as a colorless solid.

Pred zahrievaním v DMF obsahoval produkt dve hlavné zlúčeniny 21 a 23, ktoré sa môžu chromatografický oddeliť na kremíkovom géli. Zlúčenina 21 sa pripravila týmto postupom. Nasledujúce zlúčeniny sa pripravili podobným spôsobom: 4-amino-5-kyano-7(5(R)-C-propyl-5-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín 23f zoPrior to heating in DMF, the product contained two main compounds 21 and 23, which can be separated by chromatography on a silica gel. Compound 21 was prepared by this procedure. The following compounds were prepared in a similar manner: 4-amino-5-cyano-7 (5 (R) -C-propyl-5-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine 23f from

4-amino-5-kyano-7-(2,3,5-tri-0-benzoyl-5(R)-C-propyl-ň-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5-kyano-7-(5(R,S)-Cetinyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín (R/S pomer 1 :4-amino-5-cyano-7- (2,3,5-tri-0-benzoyl-5 (R) -C-propyl-p-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine. 4-amino-5-cyano-7- (5 (R, S) -Cetinyl-β-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine (R / S ratio 1:

1) 23b zo 4-amino-5-kyano-7-(2,3,5-tri-0-benzoyl-5(R, S)-Cetinyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5kyano-7-(5(R,S)-C-etyl-fi-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín (R/S pomer 1 : 1) 23d zo 4-amino-5-kyano-7-(2,3,5-tri-Obenzoyl-5(R,S)-C-etyl-E-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5-kyano-7-(4-hydroxymetyl-b-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín 33d zo 4-amino-5-kyano-7-(4-hydroxymetyl2, 3,5-tri-0-benzoyl-fi-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu.1) 23b from 4-amino-5-cyano-7- (2,3,5-tri-O-benzoyl-5 (R, S) -Cetinyl-β-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine. 4-amino-5-cyano-7- (5 (R, S) -C-ethyl-β-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine (R / S ratio 1: 1) 23d from 4-amino- 5-cyano-7- (2,3,5-tri-Obenzoyl-5 (R, S) -C-ethyl-DE-ribofuranosyl) pyrrolo (2,3-d) pyrimidine. 4-Amino-5-cyano-7- (4-hydroxymethyl-b-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine 33d from 4-amino-5-cyano-7- (4-hydroxymethyl-2,3,5-tri) -0-benzoyl-.beta.-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine.

4-amino-5-kyano-7-(5(R)-C-metyl-5-D-ribofuranozyl)pyrolo(2,3d)pyrimidín 23a (5'-R) zo 4-amino-5-kyano-7-(1,2,3,5-tetra-0acetyl-5(R)-C-metyl-E-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu.4-Amino-5-cyano-7- (5 (R) -C-methyl-5-D-ribofuranosyl) pyrrolo (2,3d) pyrimidine 23a (5'-R) from 4-amino-5-cyano-7 - (1,2,3,5-tetra-0acetyl 5 (R) -C-methyl-DE-ribofuranosyl) pyrrolo (2,3-d) pyrimidine.

4-amino-5-kyano-7-(5(S)-C-metyl-B-D-ribofuranozyl)pyrolo(2,3d)pyrimidín 23a (5'-S) zo 4-amino-5-kyano-7-(1,2,3, 5-tetra-Oacetyl-5(S)-C-metyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu.4-Amino-5-cyano-7- (5 (S) -C-methyl-BD-ribofuranosyl) pyrrolo (2,3d) pyrimidine 23a (5'-S) from 4-amino-5-cyano-7- ( 1,2,3,5-tetra-acetyl-5 (S) -C-methyl-β-ribofuranosyl) pyrrolo (2,3-d) pyrimidine.

4-amino-5-kyano-7-(5-deoxy-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín 10 zo 4-amino-5-kyano-7-(1,2,3-tri-0-acetyl-5-deoxy-fiD-ribofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5-kyano-7(5(R)-C-vinyl-fi-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín 23c zo4-Amino-5-cyano-7- (5-deoxy-BD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine 10 of 4-amino-5-cyano-7- (1,2,3-tri-O) acetyl-5-deoxy-fid-ribofuranosyl) pyrrolo (2,3-d) pyrimidine. 4-amino-5-cyano-7 (5 (R) -C-vinyl-β-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine 23c from

4-amino-5-kyano-7-(2,3,5-tri-0-benzoyl-5(R)-C-vinyl-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínu.4-amino-5-cyano-7- (2,3,5-tri-0-benzoyl-5 (R) -C-vinyl-B-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine.

Príklad 15Example 15

Príprava 4-amino-5-kyano-7-(2,3-di-0-metánsulfonyl-5-0-terc.butyldifenylsilyl-fi-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínuPreparation of 4-amino-5-cyano-7- (2,3-di-O-methanesulfonyl-5-O-tert-butyldiphenylsilyl-β-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine

K miešanému roztoku toyokamicínu 43 (5,83 g, 20,0 mmol) v bezvodom pyridíne (100 ml) sa pri teplote 0 °C pridal terc.butylchlórdifenylsilan (6,2 ml, 24,0 mmol). Výsledná zmes sa miešala pri izbovej teplote počas 18 hodín a potom sa ochladila na teplotu 0 °C, potom sa pridal metánsulfonylchlorid (3,4 ml, 44 mmol). Výsledná zmes sa miešala pri izbovej teplote počas 30 minút. Rozpúšťadlo sa odparilo. Zvyšok sa etylacetáte, premyl sa trikrát soľným roztokom, koncentroval sa.To a stirred solution of toyokamicin 43 (5.83 g, 20.0 mmol) in anhydrous pyridine (100 mL) at 0 ° C was added tert-butyl chlorodiphenylsilane (6.2 mL, 24.0 mmol). The resulting mixture was stirred at room temperature for 18 hours and then cooled to 0 ° C, then methanesulfonyl chloride (3.4 mL, 44 mmol) was added. The resulting mixture was stirred at room temperature for 30 minutes. The solvent was evaporated. The residue was ethyl acetate, washed three times with brine, concentrated.

: hexány 3 : 2) (Na2SO4) a (etylacetát: hexanes 3: 2) (Na 2 SO 4 ) and (ethyl acetate

Chromatografiou sa získalo 8,41 rozpustil v vysušil sa na kremíku g uvedenej zlúčeniny ako bezfarebnej tuhej látky.Chromatography yielded 8.41 dissolved in silica dried g of the title compound as a colorless solid.

Príklad 16Example 16

Príprava 4-amino~5-kyano-7-(5-0-terc.-butyldifenylsilyl-2,3didehydro-2,3-dideoxy-B-D-ribofuranozyl)pyrolo(2,3-d)pyrimidínuPreparation of 4-amino-5-cyano-7- (5-O-tert-butyldiphenylsilyl-2,3didehydro-2,3-dideoxy-β-D-ribofuranosyl) pyrrolo (2,3-d) pyrimidine

Prášok telúru (640 mg, 5,0 mmol) sa pod argónom utesnil a zmiešal sa s trietylborohydrátom lítnym (1,0 M v THF, 11,25 ml, 11,25 mmol). Zmes sa miešala pri izbovej teplote počas 6 hodín a potom sa ochladila na 5 °C a pridal sa 4-amino-5-kyano-7(2,3-di-O-metánsulfony1-5-0-terc.-butyldifenylsilyl-h-D-ribofuranozyl)pyrolo(2,3-d)pyrimidín (1,40 g, 2,09 mmol) v THF (12 ml) . Výsledná zmes sa miešala pri izbovej teplote počas 18 hodín a potom sa ochladila ľadom, zahasila sa pridaním vody (0 °C, 5 ml) a potom sa miešala pri izbovej teplote počas 30 minút. Rozpúšťadlo sa odparilo a zvyšok sa získal etylacetátom. Výťažky sa koncentrovali a zvyšok sa chromatografoval na kremíku (15 % etylacetát v hexánoch) a vzniklo 640 mg uvedenej zlúčeniny akobezfarebnej peny.Tellurium powder (640 mg, 5.0 mmol) was sealed under argon and treated with lithium triethyl borohydrate (1.0 M in THF, 11.25 mL, 11.25 mmol). The mixture was stirred at room temperature for 6 hours and then cooled to 5 ° C and 4-amino-5-cyano-7 (2,3-di-O-methanesulfonyl-5-O-tert-butyldiphenylsilyl-hD) was added. (Ribofuranosyl) pyrrolo (2,3-d) pyrimidine (1.40 g, 2.09 mmol) in THF (12 mL). The resulting mixture was stirred at room temperature for 18 hours and then cooled with ice, quenched by the addition of water (0 ° C, 5 mL) and then stirred at room temperature for 30 minutes. The solvent was evaporated and the residue was obtained with ethyl acetate. The yields were concentrated and the residue was chromatographed on silica (15% ethyl acetate in hexanes) to give 640 mg of the title compound as a colorless foam.

Príklad 17Example 17

Príprava 4-amino-5-kyano-7-(2,3-didehydro-2,3-dideoxy-B-Dribofuranozyl)pyrolo(2,3-d)pyrimidínu 49Preparation of 4-amino-5-cyano-7- (2,3-didehydro-2,3-dideoxy-β-dribofuranosyl) pyrrolo (2,3-d) pyrimidine 49

K miešanému roztoku 4-amino-5-kyano-7-(5-0-terc.-butyldifenylsilyl-2, 3-didehydro-2,3-dideoxy-B-D-ribofuranozyl)pyrolo (2, 3-d) pyrimidínu (2,55 g, 5,32 mmol) v bezvodom THF (100 ml) pri teplote 5 °C sa pridal tetrabutylamóniumfluorid (1,0 M v THF, 6,6 ml). Výsledná zmes sa miešala pri izbovej teplote počas 3 hodín a koncentrovala sa. Chromatografia na kremíku (6 % metanol v etylacetáte) umožnila vznik 1,09 g uvedenej zlúčeniny 49 ako bezfarebnej tuhej látky.To a stirred solution of 4-amino-5-cyano-7- (5-O-tert-butyldiphenylsilyl-2,3-didehydro-2,3-dideoxy-β-ribofuranosyl) pyrrolo (2,3-d) pyrimidine (2) , 55 g, 5.32 mmol) in anhydrous THF (100 mL) at 5 ° C was added tetrabutylammonium fluoride (1.0 M in THF, 6.6 mL). The resulting mixture was stirred at room temperature for 3 hours and concentrated. Chromatography on silica (6% methanol in ethyl acetate) afforded 1.09 g of the title compound 49 as a colorless solid.

Príklad 18Example 18

Príprava 5-kyano-7-(5(R)-C-metyl-B-D-ribofuranozyl)pyrolo (2,3—Preparation of 5-cyano-7- (5 (R) -C-methyl-β-D-ribofuranosyl) pyrrolo (2,3-

d)-4-pyrimidónu 25ad) -4-pyrimidone 25a

K miešanému roztoku 4-amino-5-kyano-7-(5(R)-C-metyl-fi-Dribofuranozyl)pyrolo(2,3-d)pyrimidínu (306 mg, 1,0 mmol) vo vode (30 ml) a kyseline octovej (2,0 ml) sa pri teplote 55 °C pridal v dávkach nitrit sodný (590 mg, 8,55 mmol). Výsledná zmes sa miešala pri teplote 70 °C počas 3 hodín a pridalo sa viac nitritu sodného (300 mg, 4,30 mmol). Zmes sa ďalej miešala pri rovnakej teplote počas ďalších 18 hodín. Rozpúšťadlo sa vyparilo a zvyšok umožnil chromatografiou na kremíku (12 % metanol v metylénchloride) vznik 210 mg uvedenej zlúčeniny 25a (5'-R) ako bezfarebnej tuhej látky. Podobným spôsobom sa pripravili aj nasledujúce zlúčeniny: 4-amino-5-kyano-7-(5 (S)-Cmetyl-h-D-ribofuranozyl)pyrolo(2,3-d)-4-pyrimidón 25a (5*—S) zo amino-5-kyano-7-(5(S)-C-metyl-b-D-ribofuranozyl)pyrolo(2,3-d)4-pyrimidínu. 4-amino-5-kyano-7-(β-D-arabinofuranozyl)pyrolo(2,3-d)-4-pyrimidón 58 zo 4-amino-5-kyano-7-(5-deoxy-h-Darabinofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5-kyano-7-(5deoxy-B-D-ribofuranozyl)pyrolo(2,3-d)-4-pyrimidón 11 zo 4amino-5-kyano-7-(5-deoxy-B-D-ribofuranozyl) pyrolo(2,3-d)-4-pyrimidínu. 4-amino-5-kyano-7-(2,3-dideoxy-2, 3-didehydro-E-D-glycero-pentofuranozyl)pyrolo(2,3-d)-4-pyrimidón 50 zo 4-amino-5kyano-7-(2,3-dideoxy-E-D-pent-2-enofuranozyl)pyrolo(2,3-d)pyrimidínu. 4-amino-5-kyano-7-(2,3-dideoxy-E-D-glycero-pentofuranozyl)pyrolo(2,3-d)-4-pyrimidón 65 zo 4-amino-5-kyano-7-(2,3dideoxy-B-D-glyceropentofuranozyl)pyrolo(2, 3-d)pyrimidínu. 4amino-5-kyano-7-(2-deoxy-E-D-furanozyl)pyrolo(2,3-d)-4-pyrimidón 69 zo 4-amino-5-kyano-7-(2-deoxy-E-D-eritropentofuranozyl)pyrolo(2,3-d)pyrimidínu.To a stirred solution of 4-amino-5-cyano-7- (5 (R) -C-methyl-β-Dribofuranosyl) pyrrolo (2,3-d) pyrimidine (306 mg, 1.0 mmol) in water (30 mL) ) and acetic acid (2.0 mL) at 55 ° C were added in portions sodium nitrite (590 mg, 8.55 mmol). The resulting mixture was stirred at 70 ° C for 3 hours and more sodium nitrite (300 mg, 4.30 mmol) was added. The mixture was further stirred at the same temperature for an additional 18 hours. The solvent was evaporated and the residue allowed chromatography of silicon (12% methanol in methylene chloride) to give 210 mg of said compound 25a (5'-R) as a colorless solid. The following compounds were prepared in a similar manner: 4-Amino-5-cyano-7- (5 (S) -Cmethyl-1H-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone 25a (5 * -S) from amino-5-cyano-7- (5 (S) -C-methyl-bD-ribofuranosyl) pyrrolo (2,3-d) pyrimidine-4. 4-Amino-5-cyano-7- (β-D-arabinofuranosyl) pyrrolo (2,3-d) -4-pyrimidone 58 from 4-amino-5-cyano-7- (5-deoxy-h-Darabinofuranosyl) pyrrolo (2,3-d) pyrimidine. 4-amino-5-cyano-7- (5-deoxy-BD-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone 11 of 4 amino-5-cyano-7- (5-deoxy-BD-ribofuranosyl) pyrrole ( 2,3-d) pyrimidine-4-. 4-Amino-5-cyano-7- (2,3-dideoxy-2,3-didehydro-ED-glyceropentofuranosyl) pyrrolo (2,3-d) -4-pyrimidone 50 of 4-amino-5-cyano-7 - (2,3-dideoxy-DE-pent-2-enofuranosyl) pyrrolo (2,3-d) pyrimidine. 4-amino-5-cyano-7- (2,3-dideoxy-ED-glyceropentofuranosyl) pyrrolo (2,3-d) -4-pyrimidone 3dideoxy-BD-glyceropentofuranosyl) pyrrolo [2,3-d] pyrimidine. 4 amino-5-cyano-7- (2-deoxy-ED-furanosyl) pyrrolo (2,3-d) -4-pyrimidone 69 of 4-amino-5-cyano-7- (2-deoxy-ED-eritropentofuranosyl) pyrrolo (2,3-d) pyrimidine.

Príklad 19Example 19

Príprava 7-(5(R)-C-metyl-B-D-ribofuranozyl) pyrolo(2,3-d)-4-pyrimidón-5-karboxamidoxímu 24 aPreparation of 7- (5 (R) -C-methyl-β-D-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone-5-carboxamidoxime 24 a

Miešaná suspenzia 5-kyano-7-(5-(R)-C-metyl-B-D-ribofuranozyl)pyrolo(2,3-d)-4-pyrimidónu (240 mg, 0, 784 mmol), hydroxylaminohydrochloridu (163 mg, 2,352 mmol) a uhličitanu draselného (162 mg, 1,176 mmol) v etanole (50 ml) bola pod spätným tokom pod argónom počas 18 hodín. Zrazenina sa filtrovala a premývala sa horúcim etanolom. Filtrát sa koncentroval a zvyšok umožnil chromatograficky na kremíku (20 % metanol v metylénchloride) vznik 170 mg uvedenej zlúčeniny 26a (5'-R) ako bezfarebnej tuhej látky. Podobne sa pripravili aj nasledujúce zlúčeniny: 4-amino-5-kyano-7-(β-D-arabinofuranozyl)pyrolo(2,3-d)-4-pyrimidón-5-karboxamidoxím 60 zo 4-amino-5kyano-7-(5-deoxy-E-D-arabinofuranozyl)pyrolo(2,3-d)-4-pyrimidónu. 4-amino-5-kyano-7-(5-deoxy-B-D-ribofuranozyl)pyrolo(2,3-d)4-pyrimidón-5-karboxamidoxím 13 zo 4-amino-5-kyano-7-(5-deoxyβ-D-ribofuranozyl)pyrolo(2,3-d)-4-pyrimidónu. 4-amino-5-kyano7-(2,3-didehydro-2,3-dideoxy-B-D-ribofuranozyl)pyrolo(2,3-d)-4pyrimidón-5-karboxamidoxím 51 zo 4-amino-5-kyano-7-(2,3didehydro-2,3-dideoxy-fi-D-ribofuranozyl)pyrolo(2,3-d)-4-pyrimidónu. 4-amino-5-kyano-7-(2-deoxy-E-D-ribofuranozyl)pyrolo(2,3d)-4-pyrimidón-5-karboxamidoxím zo 4-amino-5-kyano-7-(2-deoxyβ-D-ribofuranozyl)pyrolo(2,3-d)-4-pyrimidónu.A stirred suspension of 5-cyano-7- (5- (R) -C-methyl-BD-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone (240 mg, 0.784 mmol), hydroxylamine hydrochloride (163 mg, 2.352 mmol) and potassium carbonate (162 mg, 1.176 mmol) in ethanol (50 mL) were refluxed under argon for 18 hours. The precipitate was filtered and washed with hot ethanol. The filtrate was concentrated and the residue allowed to chromatograph on silica (20% methanol in methylene chloride) to give 170 mg of the title compound 26a (5'-R) as a colorless solid. Similarly, the following compounds were prepared: 4-amino-5-cyano-7- (β-D-arabinofuranosyl) pyrrolo (2,3-d) -4-pyrimidone-5-carboxamidoxime 60 of 4-amino-5-cyano-7- (5-deoxy-DE-arabinofuranosyl) pyrrolo (2,3-d) -4-pyrimidone. 4-Amino-5-cyano-7- (5-deoxy-BD-ribofuranosyl) pyrrolo (2,3-d) 4-pyrimidone-5-carboxamidoxime 13 of 4-amino-5-cyano-7- (5-deoxyb) D-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone. 4-Amino-5-cyano-7- (2,3-didehydro-2,3-dideoxy-β-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone-5-carboxamidoxime 51 of 4-amino-5-cyano-7 - (2,3didehydro-2,3-dideoxy-.beta.-D-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone. 4-Amino-5-cyano-7- (2-deoxy-ED-ribofuranosyl) pyrrolo (2,3d) -4-pyrimidone-5-carboxamidoxime from 4-amino-5-cyano-7- (2-deoxyβ-D) -ribofuranozyl) pyrrolo (2,3-d) -4-pyrimidone.

Príklad 20Example 20

Príprava 7-(5(R)-C-metyl-fi-D-ribofuranozyl)pyrolo(2,3-d)-4-pyrimidón-5-karboxamidín-hydrochloridu 27aPreparation of 7- (5 (R) -C-methyl-β-D-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone-5-carboxamidine hydrochloride 27a

Suspenzia 7-(5 (R)-C-metyl-B-D-ribofuranozyl)pyrolo(2,3-d)4-pyrimidón-5-karboxamidoxímu (110 mg, 0,324 mmol), chloridu amónneho (20 mg, 0,374 mmol) a Raney niklu (50 % kal vo vode, 200 mg) vo vode (75 ml) sa trepala v hydrogenačnom prístroji (H2, 3,447 x 105 Pa) pri izbovej teplote počas 18 hodín. Katalyzátor sa filtroval a premýval sa (teplá voda). Celkový filtrát sa koncentroval a produkt sa rekryštalizoval z metanolu za vzniku 100 mg uvedenej zlúčeniny 27a (5’-R) ako bezfarebnej tuhej látky. Nasledujúce zlúčeniny sa pripravili podobným spôsobom: 4-amino-5-kyano-7-(β-D-arabinofuranozyl)pyrolo(2,3d)-4-pyrimidón-5-karboxamidín hydrochlorid 63 zo 4-amino-5kyano-7-(5-deoxy-fi-D-arabinofuranozyl)pyrolo(2,3-d)-4-pyrimidón-5-karboxamidoxímu. 4-amino-5-kyano-7-(5-deoxy-fi-D-ribofuranozyl)pyrolo(2,3-d)-4-pyrimidón-5-karboxamidín hydrochlorid 15 zo 4-amino-5-kyano-7-(5-deoxy-B-D-ribofuranozyl)pyrolo(2,3-d)4-pyrimidón-5-karboxamidoxímu. 4-amino-5-kyano-7-(2-deoxy-fi-Dribofuranozyl)pyrolo(2,3-d)-4-pyrimidón-5-karboxamidín hydrochlorid 70 zo 4-amino-5-kyano-7-(2-deoxy-fi-D-ribofuranozyl)pyrolo(2,3-d)-4-pyrimidón-5-karboxamidoxímu.A suspension of 7- (5 (R) -C-methyl-BD-ribofuranosyl) pyrrolo (2,3-d) 4-pyrimidone-5-carboxamidoxime (110 mg, 0.324 mmol), ammonium chloride (20 mg, 0.374 mmol) and Nickel Raney (50% sludge in water, 200 mg) in water (75 mL) was shaken in a hydrogenation apparatus (H 2 , 3.447 x 10 5 Pa) at room temperature for 18 hours. The catalyst was filtered and washed (warm water). The total filtrate was concentrated and the product was recrystallized from methanol to give 100 mg of said compound 27a (5'-R) as a colorless solid. The following compounds were prepared in a similar manner: 4-amino-5-cyano-7- (β-D-arabinofuranosyl) pyrrolo (2,3d) -4-pyrimidone-5-carboxamidine hydrochloride 63 from 4-amino-5-cyano-7- ( 5-deoxy-.beta.-D-arabinofuranosyl) pyrrolo (2,3-d) -4-pyrimidone-5-carboxamidoxime. 4-Amino-5-cyano-7- (5-deoxy-β-D-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone-5-carboxamidine hydrochloride 15 of 4-amino-5-cyano-7- (5-deoxy-BD-ribofuranosyl) pyrrolo (2,3-d) 4-pyrimidone-5-carboxamidoxime. 4-Amino-5-cyano-7- (2-deoxy-β-Dribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone-5-carboxamidine hydrochloride 70 from 4-amino-5-cyano-7- (2 deoxy-.beta.-D-ribofuranosyl) pyrrolo (2,3-d) -4-pyrimidone-5-carboxamidoxime.

Tak tu boli zahrnuté konkrétne spracovania a použitie pyrolo(2,3-d)pyrimidin nukleozidových analógov. Avšak by malo byť zrejmé odborníkom v tomto odbore, že veľa nielen už opísaných zmien je tiež možných, bez opustenia tu opisovaného vynálezcovského konceptu. Preto nie je podstata navrhovaného vynálezu obmedzovaná, okrem podstaty pripojených nárokov. Navyše, vo vysvetlení ako špecifikácie a nárokov, všetky pojmy by mali byť vysvetlené v širšom možnom spôsobe v súlade s obsahom. Konkrétne, pojmy obsahuje a obsahujúci by mali byť vysvetlené ako týkajúce sa prvkov, zložiek, alebo fáz nevylučujúcim spôsobom tak, aby naznačovali, že uvedené prvky, zložky alebo fázy môžu byť prítomné, alebo použité, alebo kombinované s inými prvkami, zložkami alebo fázami, ktoré nie sú presne uvedené.Thus, the particular processing and use of pyrrolo (2,3-d) pyrimidine nucleoside analogs have been included herein. However, it should be apparent to those skilled in the art that many of the not only described changes are also possible without departing from the inventive concept described herein. Accordingly, the spirit of the present invention is not limited to the scope of the appended claims. In addition, in the explanation of the specification and claims, all terms should be explained in a broader manner in accordance with the contents. In particular, the terms include and should be construed as referring to elements, components or phases in a non-exclusive manner to indicate that said elements, components or phases may be present or used, or combined with other elements, components or phases, which are not specified.

Claims (17)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Nukleozidový analóg, vyznačujúci sa tým, že má všeobecný vzorec I:1. A nucleoside analogue having the formula (I): pričom A je O, S alebo CH2; X je H, NH2 alebo OH; Y je H, halogén alebo NH2;wherein A is O, S or CH 2 ; X is H, NH 2 or OH; Y is H, halogen or NH 2 ; Z je vybraný zo skupiny, ktorá obsahuje H, halogén, R, OH, OR, SH, SR, NH2, NHR, NR2, CN, C(O)NH2, COOH, COOR, CH2NH2, C(=NOH)NH2 a C(=NH)NH2, kde R je alkyl, alkenyl, alkinyl alebo aralkyl;Z is selected from the group consisting of H, halogen, R, OH, OR, SH, SR, NH 2 , NHR, NR 2 , CN, C (O) NH 2 , COOH, COOR, CH 2 NH 2 , C ( = NOH) NH 2 and C (= NH) NH 2 , wherein R is alkyl, alkenyl, alkynyl or aralkyl; R2 a R3 sú nezávisle vybrané zo skupiny, ktorá obsahuje H, F a OH;R 2 and R 3 are independently selected from the group consisting of H, F and OH; R“1 je vybraný zo skupiny, ktorá obsahuje vodik, alkyl, alkenyl, alkinyl a aralkyl, pričom R4 má najlepšie aspoň heteroatóm alebo funkčnú skupinu;R 11 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl and aralkyl, wherein R 4 preferably has at least a heteroatom or a functional group; R5 je H, OH, OP(O)(OH)2, P(O)(OH)2, OP (O) (OR') 2 alebo P(O)(OR')2, pričom R' je maskujúca skupina; aR 5 is H, OH, OP (O) (OH) 2 , P (O) (OH) 2 , OP (O) (OR ') 2 or P (O) (OR') 2 , wherein R 'is masking group; and R5' je vybraný zo skupiny, ktorá obsahuje alkyl, alkenyl, alkinyl a aralkyl, pričom R5' má aspoň dva atómy uhlíka a má najlepšie aspoň heteroatóm alebo funkčnú skupinu.R 5 'is selected from the group consisting of alkyl, alkenyl, alkynyl and aralkyl, wherein R 5 ' has at least two carbon atoms and preferably has at least a heteroatom or a functional group. 2. Nukleozidový analóg podlá nároku 1, vyznačujúci sa tým, že Z je CN, C(O)NH2, alebo C(=NH)NH2 a pričom R5' má aspoň dva atómy uhlíka a je vybraný zo skupiny, ktorá obsahuje alkyl, alkenyl, alkinyl a aralkyl.The nucleoside analogue of claim 1, wherein Z is CN, C (O) NH 2 , or C (= NH) NH 2, and wherein R 5 'has at least two carbon atoms and is selected from the group consisting of alkyl, alkenyl, alkynyl and aralkyl. 3. Nukleozidový analóg podľa nároku 1, má štruktúru:The nucleoside analogue of claim 1, having the structure: vyznačujúci sa tým, že pričom Z je CN, C(O)NH2, C (=NH) NH2 alebo C(=NOH)NH2acharacterized in that wherein Z is CN, C (O) NH 2 , C (= NH) NH 2 or C (= NOH) NH 2, and R4 a R5' sú nezávisle vybrané zo skupiny, ktorá obsahuje vodík, alkyl, alkenyl, alkinyl a aralkyl, pričom R4 a R5' nezávisle a najlepšie obsahujú aspoň heteroatóm alebo funkčnú skupinu; za podmienky, že R4 a R5' nie sú spoločne vodík.R 4 and R 5 'are independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl and aralkyl, wherein R 4 and R 5 ' independently and preferably contain at least a heteroatom or a functional group; with the proviso that R 4 and R 5 'are not together hydrogen. 4. Spôsob zmeny vylučovania cytokinu z bunky, vyznačujúci sa tým, že obsahuje poskytovanú zlúčeninu podľa všeobecného vzorca II; a pričom A je 0, S alebo CH2; X je H, NH2 alebo OH; Y je H, vodík alebo NH2;4. A method for altering cytokine secretion from a cell comprising the provided compound of Formula II; and wherein A is O, S or CH 2 ; X is H, NH 2 or OH; Y is H, hydrogen or NH 2 ; Z je vybraný zo skupiny, ktorá obsahuje H, vodík, R, OH, OR, SH, SR, NH2, NHR, NR2, CN, C(O)NH2, COOH, COOR, CH2NH2, C(=NOH)NH2 a C(=NH)NH2, pričom R je alkyl, alkenyl alebo aralkyl;Z is selected from the group consisting of H, hydrogen, R, OH, OR, SH, SR, NH 2 , NHR, NR 2 , CN, C (O) NH 2 , COOH, COOR, CH 2 NH 2 , C ( = NOH) NH 2 and C (= NH) NH 2 wherein R is alkyl, alkenyl or aralkyl; R2 alebo R3 sú nezávisle vybrané zo skupiny, ktorá obsahuje H, F a OH;R 2 or R 3 are independently selected from the group consisting of H, F and OH; R4 a R5' sú nezávisle vybrané zo skupiny, ktorá obsahuje vodík, alkyl, alkenyl, alkinyl a aralkyl, pričom R4 a R5' nezávisle a najlepšie obsahujú aspoň heteroatóm alebo funkčnú skupinu;R 4 and R 5 'are independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl and aralkyl, wherein R 4 and R 5 ' independently and preferably contain at least a heteroatom or a functional group; R5 je H, OH, OP(OHOH);, P(O)(OH);, OP (O) (OR' ) , alebo P (0) (OR' ) 2, pričom R' je maskujúca skupina; a predstavuje bunku so zlúčeninou v koncentrácii účinnej na zmenu vylučovania cytokinu.R 5 is H, OH, OP (OHOH); P (O) (OH) ; , OP (O) (OR '), or P (O) (OR') 2 , wherein R 'is a masking group; and represents a cell with the compound at a concentration effective to alter cytokine secretion. 5. Spôsob podlá nároku 4, vyznačujúci sa tým, že cytokin je cytokin typu 1.The method of claim 4, wherein the cytokine is a type 1 cytokine. 6. Spôsob podlá nároku 5, vyznačujúci sa tým, že cytokin typu 1 je IFNy.The method of claim 5, wherein the type 1 cytokine is IFNγ. 7. Spôsob podlá nároku 4, vyznačujúci sa tým, že cytokin je cytokin typu 2.The method of claim 4, wherein the cytokine is a type 2 cytokine. 8. Spôsob podlá nároku 7, vyznačujúci sa tým, že cytokin typu 2 je IL-4 .The method of claim 7, wherein the type 2 cytokine is IL-4. 9. Spôsob lymfocyt. 9. Method lymphocyte. podľa by nároku claim 4, 4. vyznačujúci characterized sa the tým, že because of bunka cell je is a 10. Spôsob 10. Method podľa by nároku claim 4, 4. vyznačujúci characterized sa the tým, že because of bunka cell je is a rakovinová cancer bunka. cell. 11. Spôsob 11. Method podľa by nároku claim 10, 10. vyznačujúci characterized sa the tým, že because of rakovinová cancer
bunka je rakovinová bunka prostaty.the cell is a prostate cancer cell.
12. Spôsob zmeny vylučovania cytokinu z bunky, vyznačujúci sa tým, že obsahuje poskytovanú zlúčeninu podlá všeobecného vzorca III:12. A method of altering cytokine secretion from a cell comprising the compound of formula III provided: C(=NH)NH2,C (= NH) NH 2, C(=NNH2)NH alebo pričom Z je CN, C(0)NH2,C (= NNH 2) NH 2 R, or wherein Z is CN, C (0) NH2, C(=N0H)NH2,C (= NOOH) NH 2 , OP(O)(OR')ž alebo pričom R5 je H, OH, OP(O)(OH)2, P(O)(OH)2,OP (O) (OR ') 2 or wherein R 5 is H, OH, OP (O) (OH) 2 , P (O) (OH) 2 , P(O)(OR')2, pričom R' je maskujúca skupina; a predstavuje bunku so zlúčeninou v koncentrácii účinnej na zmenu vylučovania cytokinu.P (O) (OR ') 2, wherein R' is a masking group; and represents a cell with the compound at a concentration effective to alter cytokine secretion. 13. Spôsob redukcie rastu hyperproliferatívnej bunky, vyznačujúci sa tým, že obsahuje poskytujúcu zlúčeninu podľa všeobecného vzorca IV:13. A method for reducing the growth of a hyperproliferative cell comprising: pričom A je 0, S alebo CH2; X je H, NH2 alebo OH; Y je H, vodík alebo NH2;wherein A is O, S or CH 2 ; X is H, NH 2 or OH; Y is H, hydrogen or NH 2 ; Z je vybraný zo skupiny, ktorá obsahuje H, vodík, R, OH, OR, SH, SR, NH2, NHR, NR2, CN, C(O)NH2, COOH, COOR, CH2NH2, C(=NOH)NH2a C(=NH)NH2, kde R je alkyl, alkenyl alebo aralkyl;Z is selected from the group consisting of H, hydrogen, R, OH, OR, SH, SR, NH 2 , NHR, NR 2 , CN, C (O) NH 2 , COOH, COOR, CH 2 NH 2 , C ( = NOH) NH 2 and C (= NH) NH 2 , wherein R is alkyl, alkenyl or aralkyl; R2 alebo R3 sú nezávisle vybrané zo skupiny, ktorá obsahuje H, F a OH;R 2 or R 3 are independently selected from the group consisting of H, F and OH; R4 je vybraný zo skupiny, ktorá obsahuje vodík, alkyl, alkenyl, alkinyl a aralkyl, pričom R4 najlepšie obsahuje aspoň heteroatóm alebo funkčnú skupinu;R 4 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl and aralkyl, wherein R 4 preferably comprises at least a heteroatom or a functional group; R5' je vybraný zo skupiny, ktorá obsahuje vodík, alkyl, alkenyl, alkinyl a aralkyl, pričom R5' má aspoň dva atómy uhlíka a najlepšie obsahuje aspoň heteroatóm alebo funkčnú skupinu;R 5 'is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl and aralkyl, wherein R 5 ' has at least two carbon atoms and preferably contains at least a heteroatom or a functional group; R5 je H, OH, OP(O)(OH)2, P(O)(OH)2, OP (0) (OR') 2 alebo P(O)(OR')2, pričom R* je maskujúca skupina; s podmienkou, že R4 a R5' nie sú spoločne vodík; a predstavuje hyperproliferatívnu bunku so zlúčeninou v koncentrácii účinnej na redukciu rastu hyperproliferatívnej bunky.R 5 is H, OH, OP (O) (OH) 2 , P (O) (OH) 2 , OP (O) (OR ') 2 or P (O) (OR') 2 , wherein R * is masking group; with the proviso that R 4 and R 5 'are not together hydrogen; and represents a hyperproliferative cell with a compound at a concentration effective to reduce hyperproliferative cell growth. 14. Spôsob podľa nároku 13, vyznačujúci sa tým, že hyperproliferatívna bunka je rakovinová bunka.The method of claim 13, wherein the hyperproliferative cell is a cancer cell. 15. Spôsob podlá nároku 14, vyznačujúci sa tým, že rakovinová bunka je rakovinová bunka prostaty.The method of claim 14, wherein the cancer cell is a prostate cancer cell. 16. Spôsob podľa nároku 13, vyznačujúci sa tým, že redukcia rastu zahŕňa redukciu syntézy DNA.16. The method of claim 13, wherein the reduction in growth comprises a reduction in DNA synthesis. 17. Spôsob redukcie uvoľňovania rastového faktora z bunky, vyznačujúci sa tým, že obsahuje poskytovanú zlúčeninu podľa nároku 1; a predstavuje bunku so zlúčeninou v koncentrácii účinnej na redukciu uvoľňovania rastového faktora.17. A method of reducing the release of growth factor from a cell comprising the provided compound of claim 1; and represents a cell with the compound at a concentration effective to reduce growth factor release. 18. Spôsob podľa nároku 17, vyznačujúci sa tým, že rastový faktor je VEGF.The method of claim 17, wherein the growth factor is VEGF. 19. Spôsob podlá nároku 17, vyznačujúci sa tým, že bunka je rakovinová bunka.19. The method of claim 17, wherein the cell is a cancer cell. 20. Spôsob podľa nároku 18, vyznačujúci sa tým, že rakovinová bunka je rakovinová bunka prostaty.The method of claim 18, wherein the cancer cell is a prostate cancer cell.
SK177-2002A 1999-08-27 2000-08-17 Nucleoside analog, method of change of cytokine secreting from a cell and method for inhibiting the growth of hyperproliferative cells SK1772002A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15123399P 1999-08-27 1999-08-27
PCT/US2000/022674 WO2001027114A1 (en) 1999-08-27 2000-08-17 PYRROLO[2,3-d]PYRIMIDINE NUCLEOSIDE ANALOGS

Publications (1)

Publication Number Publication Date
SK1772002A3 true SK1772002A3 (en) 2002-10-08

Family

ID=22537871

Family Applications (1)

Application Number Title Priority Date Filing Date
SK177-2002A SK1772002A3 (en) 1999-08-27 2000-08-17 Nucleoside analog, method of change of cytokine secreting from a cell and method for inhibiting the growth of hyperproliferative cells

Country Status (18)

Country Link
EP (1) EP1212326A4 (en)
JP (1) JP2003511454A (en)
KR (1) KR20020092904A (en)
CN (1) CN1384834A (en)
AU (1) AU769578B2 (en)
BR (1) BR0013642A (en)
CA (1) CA2381297A1 (en)
HR (1) HRP20020163A2 (en)
HU (1) HUP0301875A2 (en)
IL (1) IL147908A0 (en)
MX (1) MXPA02001753A (en)
NO (1) NO20020931L (en)
PL (1) PL354094A1 (en)
RU (1) RU2002103501A (en)
SI (1) SI20819A (en)
SK (1) SK1772002A3 (en)
WO (1) WO2001027114A1 (en)
ZA (1) ZA200201567B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455508B1 (en) * 2000-02-15 2002-09-24 Kanda S. Ramasamy Methods for treating diseases with tirazole and pyrrolo-pyrimidine ribofuranosyl nucleosides
US7638496B2 (en) 2000-02-15 2009-12-29 Valeant Pharmaceuticals North America Nucleoside analogs with carboxamidine modified monocyclic base
JP2003183283A (en) * 2001-12-18 2003-07-03 Takeda Chem Ind Ltd Condensed indole compound, method for producing the same and application of the same
US20050182252A1 (en) 2004-02-13 2005-08-18 Reddy K. R. Novel 2'-C-methyl nucleoside derivatives
CN101851241B (en) * 2010-07-02 2012-05-23 西安交通大学 Anti-tumor compound and preparation method and application thereof
EA025341B1 (en) 2010-09-22 2016-12-30 Алиос Биофарма, Инк. Substituted nucleotide analogs
CN102286048A (en) * 2011-06-24 2011-12-21 吉林大学 4-amino-6-(3-(3-bromophenyl) phenyl-5-cyano-7-(beta-L-xylofuranose) pyrrolo [2,3-d] pyrimidine, like derivatives and application for preparing antitumor drugs
US9073960B2 (en) 2011-12-22 2015-07-07 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
CA2860234A1 (en) 2011-12-22 2013-06-27 Alios Biopharma, Inc. Substituted phosphorothioate nucleotide analogs
WO2013142124A1 (en) 2012-03-21 2013-09-26 Vertex Pharmaceuticals Incorporated Solid forms of a thiophosphoramidate nucleotide prodrug
US9441007B2 (en) 2012-03-21 2016-09-13 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
USRE48171E1 (en) 2012-03-21 2020-08-25 Janssen Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
NZ630805A (en) 2012-03-22 2016-01-29 Alios Biopharma Inc Pharmaceutical combinations comprising a thionucleotide analog
EP3623364A1 (en) 2014-02-13 2020-03-18 Ligand Pharmaceuticals, Inc. Prodrug compounds and their uses
CN106687118A (en) 2014-07-02 2017-05-17 配体药物公司 Prodrug compounds and uses thereof
AR104326A1 (en) * 2015-05-04 2017-07-12 Lilly Co Eli 5-SUBSTITUTED NUCLEOSID COMPOUNDS
MX2018003212A (en) * 2015-09-23 2018-07-06 Merck Sharp & Dohme 4'-substituted nucleoside reverse transcriptase inhibitors and preparations thereof.
JP2021509907A (en) 2018-01-09 2021-04-08 リガンド・ファーマシューティカルズ・インコーポレイテッド Acetal compounds and their therapeutic use
EP3794012B1 (en) 2018-05-15 2023-10-18 Illumina Inc. Compositions and methods for chemical cleavage and deprotection of surface-bound oligonucleotides
KR20210145787A (en) 2019-04-02 2021-12-02 알리고스 테라퓨틱스 인코포레이티드 Compounds targeting PRMT5
KR102639275B1 (en) * 2021-06-08 2024-02-21 퓨쳐메디신 주식회사 Nucleoside derivative having kinase multiple target inhibiting activity and pharmaceutical composition for preventing and treating cancer comprising the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988338A (en) * 1974-04-24 1976-10-26 Wisconsin Alumni Research Foundation 4-Substituted amino-2-substituted thio-pyrrolo-[2,3-d]pyrimidine derivatives
US4892865A (en) * 1987-12-01 1990-01-09 The Regents Of The University Of Michigan Pyrrolo[2,3-d]pyrimidine nucleosides as antiviral agents
US5674998A (en) * 1989-09-15 1997-10-07 Gensia Inc. C-4' modified adenosine kinase inhibitors
CA2154681A1 (en) * 1993-02-03 1994-08-18 Mark David Erion Adenosine kinase inhibitors comprising lyxofuranosyl derivatives
US5665721A (en) * 1995-06-07 1997-09-09 Abbott Laboratories Heterocyclic substituted cyclopentane compounds
CN1233254A (en) * 1996-10-16 1999-10-27 Icn药品公司 Purine L-nucleosides, analogs and uses thereof

Also Published As

Publication number Publication date
RU2002103501A (en) 2003-09-10
EP1212326A1 (en) 2002-06-12
AU7061800A (en) 2001-04-23
CA2381297A1 (en) 2001-04-19
NO20020931D0 (en) 2002-02-26
WO2001027114A1 (en) 2001-04-19
JP2003511454A (en) 2003-03-25
KR20020092904A (en) 2002-12-12
HRP20020163A2 (en) 2004-02-29
AU769578B2 (en) 2004-01-29
IL147908A0 (en) 2002-08-14
NO20020931L (en) 2002-02-26
BR0013642A (en) 2002-05-07
HUP0301875A2 (en) 2003-09-29
ZA200201567B (en) 2003-07-30
SI20819A (en) 2002-08-31
EP1212326A4 (en) 2003-08-20
PL354094A1 (en) 2003-12-29
MXPA02001753A (en) 2002-10-23
CN1384834A (en) 2002-12-11

Similar Documents

Publication Publication Date Title
SK1772002A3 (en) Nucleoside analog, method of change of cytokine secreting from a cell and method for inhibiting the growth of hyperproliferative cells
KR100811927B1 (en) Nucleoside analogs with carboxamidine modified monocyclic base
EP1027359B9 (en) Monocyclic l-nucleosides, analogs and uses thereof
Mansuri et al. Preparation of 1-(2, 3-dideoxy-. beta.-D-glycero-pent-2-enofuranosyl) thymine (d4T) and 2', 3'-dideoxyadenosine (ddA): general methods for the synthesis of 2', 3'-olefinic and 2', 3'-dideoxy nucleoside analogs active against HIV
US6525191B1 (en) Conformationally constrained L-nucleosides
KR20030032944A (en) Pyrido [2,3-d]pyrimidine and pyrimido[4,5-d]pyrimidine nucleosides
US5384310A (en) 2&#39;-fluoro-2-haloarabinoadinosines and their pharmaceutical compositions
SI20024A (en) Purine l-nucleosides, analogs and uses thereof
AU2001273670A1 (en) Pyrido(2,3-d)pyrimidine and pyrimido(4,5-d)pyrimidine nucleosides
HRP20000275A2 (en) Chemical compounds
JP2004529979A (en) Pyrrolo [2,3-d] pyrimidine nucleoside analogs
Kini et al. Synthesis and antiviral activity of certain guanosine analogs in the thiazolo [4, 5-d] pyrimidine ring system
Baker et al. An evaluation of certain chain-extended analogs of 9-. beta.-D-arabinofuranosyladenine for antiviral and cardiovascular activity
Girgis et al. 9‐Deazapurine nucleosides. The synthesis of certain N‐5‐β‐d‐ribofuranosylpyrrolo [3, 2‐d] pyrimidines
DE20220947U1 (en) New pyrrolo(2,3-d)pyrimidine nucleoside analogs useful as immunomodulators for treatment of cancer and autoimmune diseases
Gosselin et al. Unusual Nucleoside Synthons and Oligonucleotide Synthesis