SI9400457A - Measuring device for quantity of heat emitting from radiator - Google Patents

Measuring device for quantity of heat emitting from radiator Download PDF

Info

Publication number
SI9400457A
SI9400457A SI9400457A SI9400457A SI9400457A SI 9400457 A SI9400457 A SI 9400457A SI 9400457 A SI9400457 A SI 9400457A SI 9400457 A SI9400457 A SI 9400457A SI 9400457 A SI9400457 A SI 9400457A
Authority
SI
Slovenia
Prior art keywords
temperature
heater
temperature sensors
sensors
radiator
Prior art date
Application number
SI9400457A
Other languages
Slovenian (sl)
Inventor
Joachim Klein
Original Assignee
Techem Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techem Ag filed Critical Techem Ag
Publication of SI9400457A publication Critical patent/SI9400457A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The thermometer probes (7,8) communicate with the radiator (1) in a heat conducting connection. The amount of heat radiated from the radiator is computed from the measurement values of the two thermometer probes (7,8). The thermometer probes (7,8) are fitted in direct contact with the surface of the radiator. A curve is extrapolated from the probe values using a computer, which corresponds to the expected temp. profile of the radiator (1), and from which the amount of heat radiated from the radiator is computed.

Description

(57) Opisana priprava za merjenje toplote, ki jo odda grelo, po katerem teče grelno sredstvo, pri čemer se v skladu z izumom predvidi vsaj dve temperaturni tipali v enem samem okviru in sta ti tipali v neposrednem dotiku s površino grela. Iz izmerjenih vrednosti temperaturnih tipal se računsko ekstrapolira krivuljo, ki ustreza pričakovanemu temperaturnemu profilu grela. Dotod izhaja velika merilna natančnost, ki je povezana s kompaktno zgradbo priprave, in sicer enotno za različne tipe grel. Če so predvidena vsaj tri tipala, se lahko redundanco, ki dotod izhaja, uporabi za zvišanje merilne zanesljivosti kot ukrep proti prirejanju in tako naprej.(57) The apparatus described for measuring the heat emitted by the heater through which the heating medium flows, according to the invention provides for at least two temperature sensors in a single frame, which are in direct contact with the surface of the heater. From the measured values of the temperature sensors, a curve corresponding to the expected temperature profile of the heater is computationally extrapolated. This results in high measurement accuracy, which is related to the compact structure of the device, uniquely for different types of heaters. If at least three sensors are provided, the resulting redundancy can be used to increase measurement reliability as an anti-tamper and so on.

Sl 9400457 ASl 9400457 A

Techem AGTechem AG

Priprava za merjenje toplote, ki jo je oddalo greloA device for measuring the heat emitted by a heater

Izum se nanaša na pripravo za merjenje toplote, ki jo je oddalo grelo, skozi katero se preko dotočnega priključka in vračalnega priključka pretaka grelno sredstvo, pri čemer sta predvideni vsaj dve v navpični smeri drugo od drugega razmaknjeni temperaturni tipali, ki sta z grelom povezani s toplotnim prevajanjem in se na osnovi njunih merilnih vrednosti s pomočjo vezja za ovrednotenje izračunava toplota, ki jo je oddalo grelo.The invention relates to an apparatus for measuring the heat emitted by a heater through which a heating medium flows through the inlet port and the return port, provided that at least two temperature sensors spaced apart from each other are connected in a vertical manner to the heater. heat transfer, and the heat emitted by the heating circuit is calculated on the basis of their measurement values using the evaluation circuit.

Pri grelih, na katerih je treba opraviti meritev, gre fizikalno za tekočinsko zračni toplotni izmenjevalnik, tako da so v bistvu možne tri poti za določanje oddane toplote oz. moči grela:The heaters on which the measurement is to be taken are physically a liquid-air heat exchanger, so that basically three paths are available for determining the heat output or the heat exchanger. power heater:

a) Entalpijska bilanca na strani grelnega sredstvaa) Enthalpy balance on the heating agent side

Entalpijska bilanca na sredstvu za prenašanje toplote da ob primernem privzetku srednje toplotne kapacitete cp pri stalnem tlaku za grelno sredstvo opredelilno enačbo:The enthalpy balance on the heat transfer medium gives, with a reasonable default of medium heat capacity c p at constant pressure for the heating medium, the following equation:

Q = c . m . (t -1).Q = c. m. (t -1).

P \ V Γ'P \ V Γ '

Z merjenjem pretoka m grelnega sredstva in dotočne oz. vračalne temperature ty oz. t se lahko s tem natančno določi toplotno moč Q grela. Ta nastavek vodi do znanega postopka pri toplotnem števcu.By measuring the flow rate m of the heating medium and the flow or flow rate. return temperatures t y oz. t can thus precisely determine the thermal power Q of the heater. This nozzle leads to a known process for a heat meter.

b) Entalpijska bilanca na strani zrakab) Enthalpy balance on the air side

Entalpijska bilanca na strani zraka ne vodi do nikakršnega praktično uporabnega postopka, ker zrak ni pretočno omejen in s tem definicija ali merjenje masnih pretokov ali tlakov praviloma ni izvedljiva.The enthalpy balance on the air side does not lead to any practically useful process, since air is not flow-restricted and thus the definition or measurement of mass flows or pressures is generally not feasible.

c) Toplotno-izmenjevalne lastnosti grelac) Heat-exchange properties of the heater

Določanje moči grela brez neposrednega določanja volumskih pretokov predpostavlja določitev ali privzetke o toplotno-izmenjevalnih lastnostih grela, na katerem se opravlja meritve.Determining the power of the heater without directly determining the volume flows presupposes the determination or defaults on the heat-exchange properties of the heater on which the measurements are made.

Poznan nastavek je izračun moči grela iz standardne toplotne moči s pomočjo karakteristike grela, namreč s pomočjo potenčnega zakona:A known nozzle is the calculation of the heater power from the standard heat output by the heater characteristic, namely by the power law:

pri čemer je At temperaturni presežek grelne ploskve:where At is the temperature excess of the heating surface:

At = t. . -1. ft heiz luftAt = t. . -1. ft heiz luft

Qn = standardna toplotna moč, Atn = standardni temperaturni presežek.Qn = standard heat output, Atn = standard temperature excess.

Karakteristika grela dobro opisuje razmere pri (glede na standardno stanje) stalnem masnem pretoku z različnimi dotočnimi temperaturami, to se pravi pri relativnih temperaturih razponih, ki bistveno ne odstopajo od standardnega stanja.The heater characteristic describes well the conditions at (relative to the standard state) constant mass flow with different flow temperatures, that is, at relative temperature ranges that do not deviate significantly from the standard state.

V tem področju je temperaturni potek po višini grela linearen, tako da dejavna temperatura grelne ploskve ustreza aritmetični sredini temperature na dotočnem priključku in vračalnem priključku.In this area, the temperature flow across the heater is linear, so that the active temperature of the heating surface corresponds to the arithmetic mean of the temperature at the inlet and return ports.

Znani elektronski razdelilniki grelnih stroškov, priprave na eno tipalo, merijo temperaturo grelne ploskve z enim temperaturnim tipalom in izračunavajo toplotno moč ob privzetku, daje temperatura prostora enaka ίχ = 20°C.Known electronic cost distributors for single sensor measurements measure the temperature of the heating surface with a single temperature sensor and calculate the heat output by default giving the room temperature equal to ί χ = 20 ° C.

Merilnemu odstopanju, ki izhaja od odstopajočih dejanskih temperatur v prostoru, se elektronski razdelilniki grelnih stroškov z dvemi temperaturnimi tipali za merjenje temperature ΐχ zraka v prostoru, priprava na dve tipali, izognejo.Measuring deviations arising from the deviant actual temperature of the room, the electronic distribution of heating expenses with two temperature sensors for measuring temperature ΐ χ air in the room, preparing for two sensors escape.

Pri močnejšem dušenju toka grelnega sredstva in pri večjem temperaturnem razponu, ki izvira dotod, pa temperaturni potek odstopa od linearne porazdelitve. Na mesto ene karakteristike grela stopi tedaj več karakteristik grela s pretokom grelnega sredstva kot parametrom.However, with a stronger attenuation of the flow of the heating medium and with a larger temperature range, which originates below, the temperature course deviates from the linear distribution. Then one characteristic of the heater enters several characteristics of the heater with the flow of the heating medium as a parameter.

Pri znanih razdelilnikih grelnih stroškov pride tukaj do sistematičnega merilnega odstopanja, ker se ne more zajeti pretoka grelnega sredstva oz. poteka temperaturne porazdelitve.With known distributors of heating costs, there is a systematic measurement deviation here, since the flow of the heating medium or the system cannot be captured. temperature distribution takes place.

Primer priprave z dvemi tipali prikazuje objavljena patentna prijava DE 31 23 336 Al. Obe temperaturni tipali sta tam nameščeni na grelu v višini dotočnega voda oz. vračalnega voda in sicer očitno brez posebnega okrova. Zaradi velike razdalje obeh tipal drugega od drugega tudi ne bi bila izvedljiva namestitev obeh tipal v enem skupnem okrovu, ki bi se vendar moral raztezati po celotni višini grelnega telesa. Namestitev tipal pa je zapletena, ker morata biti obe tipali pritrjeni ločeno drugo od drugega. Tudi ju je treba preko lastnih vodov priključiti na skupno enoto za ovrednotenje, kar je zahtevno in prav tako zapleteno. Tukaj je prav tako treba upoštevati, da mora v eni hiši praviloma biti ustrezno opremljenih mnogo grel in sicer za kar se da majhen strošek.An example of preparation with two sensors is shown in published patent application DE 31 23 336 Al. Both temperature sensors are mounted there on the heater at the height of the supply line or. return line, apparently without any special cover. Due to the large distance of the two sensors from each other, it would also not be feasible to install the two sensors in one common housing, which should, however, extend over the entire height of the heater. However, the installation of the sensors is complicated because the two sensors must be attached separately from each other. They also need to be connected to a common unit of evaluation through their own lines, which is complex and complex. It should also be borne in mind that in one house, as a rule, many heaters must be properly equipped, at a low cost.

Iz glasila Elektronik und Maschinenbau, 97, št. 3 (1980), str. 125 - 128 je razvidna zamisel, da se temperaturo grela opiše kot funkcijo temperaturnega razpona med dotočnim vodom in vračalnim vodom.From Elektronik und Maschinenbau, 97, no. 3 (1980), p. 125 - 128, the idea is to describe the temperature of the heater as a function of the temperature range between the inlet line and the return line.

Polje karakteristik temperaturne porazdelitve se lahko tedaj na poznan način prevede na eno karakteristiko, če se v potenčni zakon namesto aritmetične vstavi logaritmičen temperaturni presežekThe field of temperature distribution characteristics can then be translated into one characteristic in a familiar way if a logarithmic temperature excess is inserted into the power law instead of the arithmetic one.

4tlog = tv - tr_ .4t log = tv - tr_.

To ustreza povezavi, ki jo je podal Grashoff za srednjo temperaturno razliko pri toplotnih izmenjevalnikih in je tudi pri grelih empirično potrjena - primerjaj DIN/4703.This corresponds to the link given by Grashoff for the mean temperature difference in heat exchangers and is also empirically confirmed for heaters - compare DIN / 4703.

Ta nastavek uporablja poznan postopek s tremi tipali. Z merjenjem temperature dotočnega voda, vračalnega voda in temperature zraka v prostoru se izračuna logaritmičen temperaturni presežek grela in dotod oddano toploto pri vseh masnih pretokih in temperaturnih razponih.This nozzle uses the familiar three-sensor procedure. By measuring the flow temperature, return line and room temperature, the logarithmic temperature excess of the heater and the heat delivered at all mass flows and temperature ranges are calculated.

Pri pripravi na tri tipala je pomanjkljivost v zahtevni zgradbi s temperaturnimi tipali, ki jih je treba namestiti v veliki medsebojni razdalji, in v ustreznih stroških pri povezavi s kabli. Temperaturna merilna mesta grelnega sredstva so določena na navpični višini dotočnega priključka in vračalnega priključka, tako da ni izvedljiva enotna in kompaktna zgradba priprave za različna grela - primerjaj predhodno omenjeno objavljeno patentno prijavo DE 31 23 336 Al. Nadaljnja pomanjkljivost pa je močna odvisnost merilne kakovosti od natančnosti merjenja v zraku v prostoru in do tod izvirajoči viri napak in nevarnost prirejanja.When preparing for the three sensors, the drawback is in the complex structure with temperature sensors that must be installed at a great distance from each other and at the appropriate cost in connection with the cables. The temperature measuring points of the heating means are determined at the vertical height of the inlet connection and the return connection, so that a uniform and compact structure of the preparation for the different heaters is not feasible - compare the previously mentioned published patent application DE 31 23 336 Al. Another disadvantage is the strong dependence of measurement quality on the accuracy of measurement in the air in the room and the resulting sources of error and the risk of tampering.

Glede na to je s tem naloga izuma, da predlaga postopek, s katerim je pri majhnem montažnem naporu s pomočjo kompaktno zgrajenega in za različna grela enotnega razdelilnika grelnih stroškov možno, da se zajame moč grela pri vseh obratovalnih stanjih grela z visoko natančnostjo in neobčutljivo na zunanje vplive.Accordingly, it is an object of the invention to propose a process whereby, with a small installation effort, it is possible to capture the power of the heater at all operating conditions with high precision and insensitivity at a low assembly effort by means of a compactly built and for different heater single unit heating cost. external influences.

Po izumu se nalogo reši pri pripravi z značilnostmi uvodnega dela patentnega zahtevka 1, s tem da je navpična razdalja obeh temperaturnih tipal, ki sta nameščeni v skupnem okrovu, občutno manjša od navpične razdalje dotočnega voda in vračalnega voda.According to the invention, the task is solved in the preparation with the features of the introductory part of claim 1, in that the vertical distance of the two temperature sensors housed in the common housing is significantly smaller than the vertical distance of the inlet line and return line.

S tem je po izumu možno, da se iz izmerjenih vrednosti računsko ekstrapolira krivuljo, ki ustreza pričakovanemu temperaturnemu profilu grela in iz katere se izračuna toplota, ki jo odda grelo, in sicer s pomočjo zgolj dveh v skupnem okrovu nameščenih tipal - priprava na dve tipali, pri čemer sta obe tipali v neposrednem dotiku s površino obravnavanega grela.Thus, according to the invention, it is possible to extrapolate from the measured values a curve corresponding to the expected temperature profile of the heater and from which the heat emitted by the heater is calculated, with the help of only two sensors installed in the common casing - preparation for two sensors , both sensors being in direct contact with the surface of the heater under consideration.

S pomočjo teh izmerjenih vrednosti se lahko nato sklepa na celoten potek temperature grelne ploskve, tako da se lahko enako natančno zajame vsa nastopajoča obratovalna stanja.With the help of these measured values, it can then be deduced from the whole course of the temperature of the heating surface, so that all operating conditions can be captured equally.

Postopek po izumu izrablja dejstvo, da je obratovalno stanje grela natančno določeno z določenim potekom površinske temperature. Če se s primernim merilnim postopkom določi oz. upošteva temperaturno polje na površini, se lahko natančno določi moč grela brez neposrednih sklepanj na podatke o stanju grelnega sredstva.The process of the invention takes advantage of the fact that the operating condition of the heater is precisely determined by a certain course of surface temperature. If, by appropriate measuring procedure, considering the temperature field on the surface, the power of the heater can be accurately determined without direct inference to the status of the heating medium.

Z ukrepi po izumu se s tem izogne delovno zahtevni povezavi treh temperaturnih tipal z žicami pri uvodoma opisani znani pripravi na tri tipala. Razen tega ni več potrebno, da se vsakič vstavi temperaturno tipalo v dotočni vod oz. v vračalni vod, kar je prav tako zahtevno v aparaturnem in delovnem pogledu, kot je to bilo primer pri stanju tehnike. Namesto tega se lahko temperaturno tipalo nastavi neposredno na površino grela, in sicer na poljubno mesto, pri čemer se lahko predvidi tudi mnogo manjšo razdaljo med temperaturnimi tipali, kot to po stanju tehnike ustreza razdalji med dotočnim vodom in vračalnim vodom. Tudi pri ustrezno manjši razdalji se lahko namreč iz merilnih vrednosti z zadostno natančnostjo ekstrapolira omenjeno krivuljo. Iz tega razloga se lahko vsa temperaturna tipala, ki so v neposrednem stiku s površino grela, namesti v en sam okrov.The measures of the invention thus avoid the labor-demanding connection of the three temperature sensors to the wires in the previously described known preparation for the three sensors. In addition, it is no longer necessary to insert the temperature sensor each time into the supply line or. into the return line, which is just as demanding in hardware and work as was the case with the prior art. Alternatively, the temperature sensor can be adjusted directly to the surface of the heater at any location, and a much smaller distance between the temperature sensors can be predicted, as in the prior art corresponds to the distance between the supply line and the return line. Even at a shorter distance, the curve can be extrapolated from the measurement values with sufficient accuracy. For this reason, all temperature sensors in direct contact with the surface of the heater can be installed in a single enclosure.

Pomemben izvedbeni primer postopka po izumu je značilen po tem, da so predvidena vsaj tri temperaturna tipala. Če se tretje temperaturno tipalo prav tako dovede v neposreden stik s površino obravnavanega grela, je zatem ekstrapolacija ustrezne krivulje natančnejša in s tem tudi rezultat meritve. Lahko pa se tretje temperaturno tipalo izoblikuje tudi kot zračno tipalo in se s tem pridobi redundanco, ki se jo lahko npr. izkoristi za nadzor nad prirejanji. Tako se lahko predvidi tudi četrto tipalo, pri Čemer so tri tipala nameščena na grelu in je četrto izvedeno kot temperaturno tipalo, ki meri temperaturo v prostoru, in tako naprej.An important embodiment of the process of the invention is that at least three temperature sensors are provided. If the third temperature sensor is also brought into direct contact with the surface of the heater under consideration, then the extrapolation of the corresponding curve is more accurate and thus the result of the measurement. Alternatively, the third temperature sensor can also be designed as an air sensor, thereby obtaining redundancy, which can be e.g. used to control events. Thus, a fourth sensor can be provided whereby three sensors are mounted on the heater and the fourth is implemented as a temperature sensor that measures the temperature in the room, and so on.

Kot tretji parameter, in sicer pri dveh temperaturnih tipalih na grelu, se lahko uporabi tudi višino obeh tipal na grelu.As a third parameter, for two temperature sensors per heater, the height of both sensors per heater can also be used.

Izum je v nadaljnjem podrobneje pojasnjen s pomočjo izvedbenega primera, iz katerega izhajajo nadaljnje bistvene značilnosti. Slika shematično prikazuje pogled na grelo s temperaturnimi profili in z namestitvijo priprave po izumu z dvemi tipali.The invention is further explained in more detail by way of an embodiment which gives rise to further essential features. The figure schematically shows a view of the heater by means of temperature profiles and by the installation of a device according to the invention with two sensors.

Najprej je treba pojasniti razmisleke, ki so pomembni za predložen izum.The considerations that are relevant to the present invention should first be explained.

Iz temperaturne porazdelitve na grelu izhajajo naslednje povezave.The following distributions follow from the temperature distribution at the heater.

Temperatura vedno strogo monotono pada od dotočnega voda do vračalnega voda. Pri standardnem masnem pretoku in spremembi temperature v dotočnem vodu pride do linearnih potekov z zmanjševanim nagibom pri temperaturah v dotočnem vodu, ki postajajo nižje.The temperature is always strictly monotonous from the supply line to the return line. With standard mass flow and temperature changes in the supply line, linear trajectories occur with a reduced slope at supply line temperatures that become lower.

Pri ostajajoči stalni temperaturi v dotočnem vodu in spremembi masnega pretoka pride ob zmanjševanem masnem pretoku sprva do premic z večjim nagibom, z vse večjim dušenjem nato do nelinearnih potekov, pri katerih postaja temperaturni gradient proti vračalnemu vodu manjši.With a constant constant flow temperature and a change in the mass flow, with a decrease in the mass flow, the slope is initially higher, with increasing damping, then with non-linear runs, where the temperature gradient towards the return line becomes smaller.

Vsakemu obratovalnemu stanju grela s tem ustreza natančno določen potek tem6 perature po površini grela. Če je ta podan, je prav tako določena toplotna moč.Each operating state of the heater thus corresponds to a well-defined course of the temperature in the heater. If this is given, the thermal power is also determined.

Ker je obratovalno stanje grela povezano z določeno temperaturno porazdelitvijo, v idealnem primeru, ko je porazdelitev temperature po površini natančno poznana, temperatura prostora kot veličina za izračunavanje ni potrebna, ker je dejavni temperaturni presežek predstavljen s potekom. To redundanco se lahko izkoristi na različne načine.Since the operating condition of the heater is related to a certain temperature distribution, ideally when the temperature distribution across the surface is known exactly, the room temperature is not required for the calculation because the active temperature excess is represented by the flow. This redundancy can be exploited in various ways.

Na sliki je shematično prikazan pogled na grelo 1. To ima dotočni vod 2, po katerem vroča voda pri npr. 90°C vteka v grelo v smeri puščice, tako kot vračalni vod 3, po katerem voda zapušča grelo v smeri puščice, pri čemer se je ohladila npr. na temperaturo 70°C.The figure schematically shows a view of heater 1. This has a supply line 2, after which hot water at e.g. 90 ° C flows into the heater in the direction of the arrow, just like the return line 3, after which the water leaves the heater in the direction of the arrow and cooled, e.g. to a temperature of 70 ° C.

Nad grelom je nanešena temperatura t, ki je izražena v °C, in desno poleg grela njegova višina H, ki je izražena v odstotkih.Above the heater is applied the temperature t, which is expressed in ° C, and to the right next to the heater its height H, which is expressed as a percentage.

Ze je bilo omenjeno, da pri nedušenem pretakanju grelnega sredstva pride do ravnega temperaturnega profila, ki je tukaj predstavljen s krivuljo 4, ki pojasnjuje, da temperatura, ki se jo ugotovi v zgornjem področju grela, t.j. blizu višine 100%, in npr. znaša 90°C, linearno pada na temperaturo v spodnjem področju grela, t.j. na višini H blizu 0%, v tem primeru na 70°C.It has already been mentioned that, when the heating medium is not flowing, a flat temperature profile is presented, which is represented here by curve 4, which explains that the temperature determined in the upper region of the heater, i.e. near 100% height, and e.g. is 90 ° C, decreasing linearly to the temperature in the lower region of the heater, i.e. at an altitude of H close to 0%, in this case at 70 ° C.

Pri dušenem pretakanju grelnega sredstva pa izhaja trebušasta krivulja 5, ki ponazarja, da temperaturni padec ni več linearen, temveč je v zgornjem področju padec temperature zelo močan in nato postaja počasnejši.However, the damping flow of the heating medium results in a belly curve 5, which shows that the temperature drop is no longer linear, but in the upper region the temperature drop is very strong and then becomes slower.

Potek obravnavane krivulje, kije prisotna pri trenutnih obratovalnih stanjih, se sedaj po izumu meri s pomočjo merilne priprave, kije nakazana pri poziciji 6.The course of the considered curve, which is present at the current operating conditions, is now measured according to the invention by means of the measuring device indicated at position 6.

Le-ta ima vsaj dve temperaturni tipali 7, 8, prednostno pa tri temperaturna tipala.It has at least two temperature sensors 7, 8 and preferably three temperature sensors.

Nadaljnje temperaturno tipalo, t.j. nato tretje ali četrto temperaturno tipalo, se lahko predvidi kot zračno tipalo - na sliki ni predstavljeno.A further temperature sensor, i.e. then a third or fourth temperature sensor can be predicted as an air sensor - not shown.

S pomočjo vsaj dveh temperaturnih tipal 7, 8 se lahko temperaturno porazdelitev, ki obstoji pri obravnavanih obratovalnih stanjih, to se pravi krivuljo 4 oz. 5, izračuna in se s tem dobi iskano toploto, ki jo je oddalo grelo.With the help of at least two temperature sensors 7, 8, the temperature distribution existing in the operating conditions in question can be called, i.e., a curve of 4 or. 5, calculates and thus obtains the required heat emitted by the heater.

ΊΊ

Prednostni izvedbeni primer postopka obstoji v tem, da se lahko določene temperature na površini uporabi za ekstrapoliranje na temperaturo sredstva v dotočnem vodu in v vračalnem vodu. Iz le-teh se nato skupaj z izmerjeno temperaturo v prostoru izračuna logaritmičen temperaturni presežek in dotod toplotno moč. Glede na znan postopek s tremi tipali je prednost tukaj, da razstavljen način vgradnje ni iA preferred embodiment of the process is that certain surface temperatures can be used to extrapolate to the temperature of the medium in the inlet line and in the return line. From these, the logarithmic temperature excess and the thermal power are calculated together with the measured temperature in the room. According to the known three-sensor procedure, the advantage here is that the disassembled mounting method is not i

potreben in da je postopek predstavljiv s kompaktnim razdelilnikom grelnih stroškov.necessary and that the process is representative of a compact heating cost manifold.

Merjenje v zraku v prostoru se lahko pri tem nadomesti tudi s sklepanjem iz temperaturnega poteka in z uporabo numerično določene temperature v prostoru.The measurement of the air in the room can also be compensated by deducing from the temperature course and by using a numerically determined temperature in the room.

Alternativno se izmerjenih temperatur ne da uporabiti za ekstrapoliranje na temperaturo v dotočnem vodu in temperaturo v vračalnem vodu, temveč se logaritmičen temperaturni presežek neposredno izračunava iz izmerjenih temperatur. To se lahko izvede z modificiranjem enačbe za izračunavanje, uporabo prilagoditvenih faktorjev ali uvedbo primernega empiričnega nastavka. Ker je logaritmičen temperaturni presežek empirična funkcija temperatur v dotočnem vodu in vračalnem vodu, se lahko enakovredno veličino sestavi tudi iz drugih temperatur.Alternatively, the measured temperatures cannot be used to extrapolate to the flow temperature and the return flow temperature, but the logarithmic temperature excess is directly calculated from the measured temperatures. This can be done by modifying the calculation equation, applying the adjustment factors or introducing a suitable empirical set-up. Since the logarithmic temperature excess is an empirical function of the temperatures in the supply line and return line, the equivalent magnitude can also be composed of other temperatures.

Merjenje v zraku v prostoru se pri tem lahko nadomesti tudi s sklepanjem iz poteka temperature in uporabo numerično določenih temperatur v prostoru.Measurement in the air in the room can also be replaced by deducing from the flow of temperature and the use of numerically determined temperatures in the room.

Prav tako alternativno se uporablja meritev v zraku v prostoru skupaj z določenimi temperaturami na površini za numerično določanje pretoka grelnega sredstva. Iz temperature v dotočnem vodu, temperature v vračalnem vodu in pretoka se določi toplotno moč.Alternatively, measurement of the air in the room, together with certain temperatures on the surface, is used to numerically determine the flow of the heating medium. From the flow temperature, the return flow temperature and the flow rate, the heat output is determined.

Ta postopek se lahko uporabi tudi za neposredno določanje toplotne moči na strani grelnega sredstva iz izmerjenih vrednosti in zraka v prostoru.This procedure can also be used to directly determine the heat output on the heating medium side from the measured values and the room air.

Nadaljnji izvedbeni primer postopka obstoji v tem, da se ne gre na izračunavanje veličin grelnega sredstva temveč z določenimi temperaturami po prilagojeni krivulji grela, pri kateri so eksponent in/ali korekturni faktorji odvisni od nelinearnosti temperaturne porazdelitve.A further embodiment of the process is not to calculate the quantities of a heating medium but to a certain temperature according to a adjusted heating curve, in which the exponent and / or correction factors depend on the nonlinearity of the temperature distribution.

Redundanca, ki se jo doseže z dodatnim merjenjem v zraku v prostoru, se lahko uporabi zato, da se merjenje v zraku v prostoru preveri v pogledu prepričljivosti, da se poveča zanesljivost priprave v pogledu prirejanja. Lahko pa se reduncanco uporabi zato, da se popravi merjenje v zraku v prostoru, da se poveča natančnost merilne priprave. Ali pa se redundanco uporabi zato, da se preveri meritve v zraku v prostoru v pogledu prepričljivosti, da se poveča natančnost praga vklopa priprave.The redundancy achieved by additional measurement in the air in the room can be used to verify the measurement in the air in the room in terms of persuasiveness, to increase the reliability of the device in terms of adaptation. However, the redundancy can be used to correct the measurement in the air in the room to increase the accuracy of the measurement device. Or, redundancy can be used to verify room airborne measurements in terms of persuasiveness to increase the accuracy of the device start-up threshold.

Priprava je prednostno, kot je predstavljeno na sliki, nameščena nekako v zgornji tretjini grela, s čimer se prav tako poveča merilno natančnost.Preferably, the apparatus, as shown in the figure, is positioned somehow in the upper third of the heater, which also increases the measurement accuracy.

V nadaljnjem so zaradi ponazoritve izuma podani izračuni:In the following, the following are illustrated to illustrate the invention:

temperatura v dotočnem vodu tiR temperatura v vračalnem vodutemperature in the inlet line ti R temperature in the return line

-θ , ϋ2, ϋ3, temperatura grelne ploskve na merilnem mestu 1, 2, 3 χ , χ , x3 relativna bavpična oddaljenost merilnih mest od dotočnega priključka •θ temperatura zraka •-θ, ϋ 2 , ϋ 3 , the temperature of the heating surface at the measuring point 1, 2, 3 χ, χ, x 3 relative bavpical distance of the measuring points from the inlet connection • θ air temperature •

Q moč grelaQ power was heating up

Kp K?, Kp K4 konstanta, značilna za greloK p K ? , Kp K 4 constant characteristic of the heater

K5 konstanta, značilna za grelo in odvisna od višine vgradnje.K 5 constant characteristic for the heater and dependent on the mounting height.

1) Interpolacija temperature na dotočnem priključku in temperature na vračalnem vodu !n(VL) - ζ1) Interpolation of inlet temperature and return line temperature! N (V L ) - ζ

I) + e '2I) + e '2

II) = (Vi) ' e + 'L iii) Φ = κ1· lnII) = (Vi) ' e + ' L iii) Φ = κ 1 · ln

Iz izmerjenih vrednosti -§L, -&2 se izračuna temperaturo -θν v dovodnem vodu in temperaturo tiR v vračalnem vodu.From the measured values -§ L , - & 2 , the temperature -θ ν in the supply line and the temperature ti R in the return line are calculated.

Odtod se izračuna moč Q grela.From there, the power of Q heater is calculated.

2) Neposreden izračun moči grela s pomočjo dveh poljubnih temperatur grelne ploskve in temperature zraka.2) Direct calculation of the power of the heater by means of two arbitrary temperatures of the heating surface and air temperature.

1. možnostOption 1

-χ, χ2-χ1-χ, χ 2- χ 1

In lnIn ln

Q = k,Q = k,

1- e x2~xl1- e x 2 ~ x l

InIn

2. možnost = K, x2 X1Option 2 = K, x 2 X 1

\ \ 1 ln 1 ln -vxl-v x l t t

1- e1- e

Izmerjene vrednosti so vsakokrat $ , $ Φ2.The measured values are $, $ Φ 2 each .

3) Neposreden izračun moči grela s pomočjo dveh temperatur na grelni ploskvi brez merjenja temperature zraka.3) Direct calculation of the power of the heater by means of two temperatures on the heating surface without measuring the air temperature.

XiXi

K.K.

X1 x2 = k. X 1 x 2 = k.

K.K.

X1 x2 X1 x2 ΧΓΧ2 X 1 x 2 X 1 x 2 Χ Γ Χ 2

K4 konstanta, značilna za grelo} K 4 constant characteristic of the heater }

K5 konstanta, odvisna od grela in relativne višine vgradnje.K 5 constant depending on the heater and relative mounting height.

4. Korekturna oz. primerjalna vrednost za merjeno temperaturo zraka elektronskega razdelilnika grelnih stroškov po I) s pomočjo tretje temperature grelne ploskve (meri se ·θρ ΰ2, $L; dotod se izračuna flv, -frR in dotod Q).4. Corrective or. the comparative value for the measured air temperature of the electronic distributor of the heating cost according to I) by means of the third temperature of the heating surface (measured θ ρ ΰ 2 , $ L ; dot is calculated fl v , -fr R and dotod Q).

Korekturno vrednost Δρ za izmerjeno temperaturo ·θρ zraka se izračuna s pomočjo θ3:The correction value of Δ ρ for the measured temperature · θ ρ of air is calculated using θ 3 :

Pri korektni meritvi zračne temperature OL je Δρ = 0. To npr. služi očitnostnemu preverjanju.When measuring the air temperature O L correctly, Δ ρ = 0. This e.g. it serves for obvious verification.

5. Korekturna oz. primerjalna vrednost za izmerjeno zračno temperaturo elektronskega razdelilnika grelnih stroškov po II) s pomočjo tretje temperature grelne površine (meri se ·0ρ -&2, ; odtod se izračuna Q).5. Corrective or. the comparative value for the measured air temperature of the electronic distributor of the heating charges after II) by means of the third temperature of the heating surface (measured · 0 ρ - &2; hence Q is calculated).

Korekturno vrednost Δρ za izmerjeno temperaturo -frL zraka se izračuna s pomočjoThe correction value Δ ρ for the measured temperature -fr L of air is calculated using

Pri korektni meritvi zračne temperature ·θΕ je Δρ = 0.When measuring the air temperature · θ Ε correctly, Δ ρ = 0.

ZaFor

Techem AG:Techem AG:

PATENTNA PISARNAPATENT OFFICE

LJUBLJANA /U,LJUBLJANA / U,

Claims (6)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Priprava za merjenje toplote, ki jo odda grelo (1), po katerem teče grelno sredstvo preko dotočnega priključka (2) vračalnega priključka (3), pri čemer sta predvideni vsaj dve v navpični smeri drugo od drugega razmaknjeni temperaturni tipali (7, 8), ki sta z grelom (1) povezani s toplotnim prevajanjem, in iz izmerjenih vrednosti le-teh se z vezjem za ovrednotenje izračunava toplota, ki jo odda grelo (1), označena s tem, da je navpična razdalja obeh, v skupnem okrovu (6) nameščenih temperaturnih tipal (7, 8) znatno manjša od navpične razdalje (H) med dotočnim priključkom (2) in vračalnim priključkom (3).A device for measuring the heat emitted by a heater (1) through which the heating medium flows through the inlet port (2) of the return port (3), provided that at least two temperature sensors (7, spaced apart from one another) are provided in a vertical direction. 8), which are connected to the heat transfer (1), and from the measured values of these, the heat emitted by the heat transfer device (1) is calculated by means of an evaluation circuit, characterized in that the vertical distance of the two is in the total the housing (6) of the mounted temperature sensors (7, 8) is significantly smaller than the vertical distance (H) between the inlet port (2) and the return port (3). 2. Priprava po zahtevku 1, označena s tem, da so predvidena tri ali več temperaturnih tipal (7, 8).Device according to claim 1, characterized in that three or more temperature sensors (7, 8) are provided. 3. Priprava po zahtevku 1 ali 2, označena s tem, da je vsaj eno izmed temperaturnih tipal (7, 8) v neposrednem dotiku s površino grela (1).Device according to claim 1 or 2, characterized in that at least one of the temperature sensors (7, 8) is in direct contact with the surface of the heater (1). 4. Priprava po zahtevku 2 ali 3, označena s tem, da eno izmed dodatnih temperaturnih tipal meri temperaturo zraka v okolici.Device according to claim 2 or 3, characterized in that one of the additional temperature sensors measures the ambient temperature. 5. Priprava po enem izmed zahtevkov 1 do 4, označena s tem, da je vezje za ovrednotenje izvedeno tako, da iz izmerjenih vrednosti temperaturnih tipal (7, 8) ekstrapolira krivuljo (4, 5), ki ustreza odvisno od vsakokratnega pretoka grelnega sredstva skozi grelo (1) pričakovanemu temperaturnemu profilu grela (1).Device according to one of Claims 1 to 4, characterized in that the evaluation circuit is made by extrapolating from the measured values of the temperature sensors (7, 8) a curve (4, 5) corresponding to the respective flow of the heating medium through the heater (1) to the expected temperature profile of the heater (1). 6. Priprava po enem izmed zahtevkov 1 do 5, označena s tem, daje okrov (6) s temperaturnimi tipali (7, 8) nameščen na grelu (1) v zgornji tretjini grela (1).Device according to one of Claims 1 to 5, characterized in that the housing (6) with temperature sensors (7, 8) is mounted on the heater (1) in the upper third of the heater (1). ZaFor Techem AG:Techem AG: LJUBLJANA /LJUBLJANA / 24566-xii-94-mn24566-xii-94-mn
SI9400457A 1993-12-30 1994-12-28 Measuring device for quantity of heat emitting from radiator SI9400457A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4344981A DE4344981C2 (en) 1993-12-30 1993-12-30 Device for measuring the amount of heat given off by a radiator

Publications (1)

Publication Number Publication Date
SI9400457A true SI9400457A (en) 1995-06-30

Family

ID=6506531

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9400457A SI9400457A (en) 1993-12-30 1994-12-28 Measuring device for quantity of heat emitting from radiator

Country Status (10)

Country Link
EP (1) EP0669524B1 (en)
AT (1) ATE181769T1 (en)
CZ (1) CZ291559B6 (en)
DE (2) DE4344981C2 (en)
DK (1) DK0669524T3 (en)
ES (1) ES2135522T3 (en)
HU (1) HU215858B (en)
PL (1) PL174593B1 (en)
SI (1) SI9400457A (en)
SK (1) SK282137B6 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756104C5 (en) * 1997-12-17 2014-09-11 Ista International Gmbh Method for controlling the flow temperature of a central heating system or a heating circuit
DE19858307C2 (en) * 1998-12-17 2003-05-15 Viterra Energy Services Ag Method and device for determining the volume flow or the flow rate and / or the temperature of a medium flowing through a pipe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8053304V0 (en) * 1980-06-17 1980-06-17 Fiat Ricerche HEAT METER DEVICE
BE892583A (en) * 1982-03-22 1982-07-16 Hermant Rene Counter for cost sharing coefficient for heating installation - is driven from series of thermostats attached to radiator and operating at different temperatures, and enclosed by baffled ventilation paths

Also Published As

Publication number Publication date
ES2135522T3 (en) 1999-11-01
DE59408445D1 (en) 1999-08-05
PL306592A1 (en) 1995-07-10
DE4344981A1 (en) 1995-07-06
EP0669524B1 (en) 1999-06-30
HU215858B (en) 1999-03-29
SK148894A3 (en) 1995-07-11
CZ298594A3 (en) 1995-07-12
ATE181769T1 (en) 1999-07-15
CZ291559B6 (en) 2003-04-16
PL174593B1 (en) 1998-08-31
HUT68865A (en) 1995-08-28
EP0669524A1 (en) 1995-08-30
DK0669524T3 (en) 1999-11-22
DE4344981C2 (en) 1997-07-24
SK282137B6 (en) 2001-11-06

Similar Documents

Publication Publication Date Title
US7418878B2 (en) Universal sensor controller for a thermal anemometer
US8417482B2 (en) Self contained boiler sensor
US20100280788A1 (en) Integrated multi-sensor component
US4982605A (en) Air flow monitor and temperature compensating circuit therefor
US4779458A (en) Flow sensor
US6474155B1 (en) Constant-temperature-difference flow sensor
EP0890828A1 (en) Method and apparatus for detecting and controlling mass flow
US8266957B2 (en) Thermal flow measuring apparatus including RTD sensor
US6658931B1 (en) Fluid flow sensing and control method and apparatus
CA1256572A (en) Process and device for the determination of the thermal resistance of contaminated heat exchange elements of thermodynamic apparatuses; in particular of power station condensers
US7054767B2 (en) Thermal mass flowmeter apparatus and method with temperature correction
US9063016B2 (en) Fail safe multi-sensor component
JP2009517658A (en) Electronic trace material detector
US4618266A (en) Measurement of energy in flowing fluid
US4412647A (en) Measuring use of heat or the like at individual zones supplied from one source
EA035722B1 (en) Method and device for determining heat output of a heater
US3265301A (en) Absolute humidity control and indication apparatus
US4845984A (en) Temperature compensation for a thermal mass flow meter
RU99116301A (en) FLOW REGULATION FITTINGS
PL206710B1 (en) Gas meter
SI9400457A (en) Measuring device for quantity of heat emitting from radiator
EP0957348A1 (en) Sensor
JP3188752B2 (en) Pirani vacuum gauge
JP2964186B2 (en) Thermal flow meter
DE2906186B1 (en) Device for measuring the heat flow in closed heat transport systems

Legal Events

Date Code Title Description
IF Valid on the event date
KO00 Lapse of patent

Effective date: 20110810