SI9400363A - Human macrophage migration inhibitory factor of nonlymphoid origin, expression of mif in e. coli and purification of recombinant protein - Google Patents

Human macrophage migration inhibitory factor of nonlymphoid origin, expression of mif in e. coli and purification of recombinant protein Download PDF

Info

Publication number
SI9400363A
SI9400363A SI9400363A SI9400363A SI9400363A SI 9400363 A SI9400363 A SI 9400363A SI 9400363 A SI9400363 A SI 9400363A SI 9400363 A SI9400363 A SI 9400363A SI 9400363 A SI9400363 A SI 9400363A
Authority
SI
Slovenia
Prior art keywords
ala
leu
mif
val
ggc
Prior art date
Application number
SI9400363A
Other languages
Slovenian (sl)
Inventor
Bojana Mozetic-Francky
Andrej Francky
Original Assignee
Mozetic Francky Bojana
Andrej Francky
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mozetic Francky Bojana, Andrej Francky filed Critical Mozetic Francky Bojana
Priority to SI9400363A priority Critical patent/SI9400363A/en
Priority to PCT/SI1995/000022 priority patent/WO1996009389A2/en
Priority to AU34895/95A priority patent/AU3489595A/en
Publication of SI9400363A publication Critical patent/SI9400363A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Abstract

According to the known cDNA sequence we used the PCR (polymerase chain reaction) technique to isolate a gene encoding human MIF from uterus endometrium The PCR product was cloned in the Escherichia coli plasmid vector pUC 19 and the nucleotide sequence was confirmed. We were able to successfully express human MIF in the bacteria Escherichia coli by use of the pKP 1500 expression plasmid. The recombinant protein accumulated intracellularly in soluble form, comprising more then 30 % of total cell protein. We have designed an original two step procedure where protein purification was accomplished by gel filtration and ion exchange chromatography. The purified recombinant MIF was used to immunise a rabbit and antibodies obtained were used for MIF detection in human tissues by immunohistochemical techniques.

Description

OPIS IZUMADESCRIPTION OF THE INVENTION

NAZIV IZUMANAME OF THE INVENTION

Humani faktor inhibicije migracije makrofagov nelimfoidnega (epitelialnega) izvora, ekspresija MIF-a v bakteriji Escherichia coli in postopek Čiščenja rekombinantnega proteinaHuman macrophage migration inhibitory factor of non-lymphoid (epithelial) origin, expression of MIF in Escherichia coli and purification of recombinant protein

OZADJE IZUMABACKGROUND OF THE INVENTION

Faktor inhibicije migracije makrofagov (MIF) je prvi odkriti limfokin. Leta 1966 so prvič pokazali, da se v z antigenom stimuliranih limfocitih tvori snov, ki inhibira migracijo makrofagov in vitro (Bloom, B. R. & Bennett, B. ( 1966 ) . Science 153, 80-82 / David, J. R. ( 1966 ) . Proč. Nati. Acad. Sci. USA 65, 72-77). To nepoznano spojino so poimenovali faktor inhibicije migracije makrofagov (macrophage migration inhibitory factor ali MIF). Kmalu zatem so odkrili, da supernatanti stimuliranih makrofagov, ki vsebujejo MIF, ne le da preprečijo gibanje makrofagov, pač pa tudi spremenijo njihovo funkcijo v smeri pospešenega uničevanja mikrobov in tumorskih celic ( Churchill, W. H. , Piessens W. F. , Sulis, C: A. , David, J.R. (1975). J. Immunol. 115, 781 / Nathan, C. F., Karnovsky, M.L., David J. R. (1971). J. Exp. Med. 133, 1356 / Nathan, C. F., Remold, H.Macrophage migration inhibition factor (MIF) is the first lymphokine detected. It was first shown in 1966 that antigen-stimulated lymphocytes form a substance that inhibits macrophage migration in vitro (Bloom, BR & Bennett, B. (1966). Science 153, 80-82 / David, JR (1966). Nati. Acad. Sci. USA 65, 72-77). This unknown compound has been called the macrophage migration inhibitory factor (MIF). Shortly after, it was discovered that supernatants of stimulated macrophages containing MIF not only prevent the movement of macrophages but also alter their function toward accelerated destruction of microbes and tumor cells (Churchill, WH, Piessens WF, Sulis, C: A., David, JR (1975) J. Immunol 115, 781 / Nathan, CF, Karnovsky, ML, David JR (1971) J. Exp Med 133, 1356 / Nathan, CF, Remold, H.

G., David, J. R. (1973). J. Exp. Med. 137, 275). MIF aktivnost so dokazali tudi v sinovialni tekočini pacientov z reumatoidnim poliartritisom (Odink, K. , Cerletti, N., Bruggen, J., Clerc, R. G., Tarcsay, L., Zwadlo, G., Gerhards, G., Schlegel, R. & Sorg, C. (1987). Nature ( London ) 330, 80-82), v supernatantih leukocitnih kultur med zavračanjem presadkov pri miškah (Al-Askari, S., David, J. R., Lawrence,G., David, J. R. (1973). J. Exp. Med. 137, 275). MIF activity has also been demonstrated in the synovial fluid of patients with rheumatoid polyarthritis (Odink, K., Cerletti, N., Bruggen, J., Clerc, R. G., Tarcsay, L., Zwadlo, G., Gerhards, G., Schlegel, R. . & Sorg, C. (1987). Nature (London) 330, 80-82), in leukocyte culture supernatants during transplant rejection in mice (Al-Askari, S., David, JR, Lawrence,

H. S. & Thomas, L. (1965). Nature ( London ) 205, 916-917 / Harrington, J. T. (1977). Celi. Immunol. 30, 261-271) ter pri številnih kroničnih vnetnih procesih ( Burmeister, G., Zwadlo, G., Michels, E., Brocker, E . & Sorg, C. ( 1984 ). Lymphokine Res. 3, 236 / Schlegel Gomez, R. , Diepgen, T. L.H. S. & Thomas, L. (1965). Nature (London) 205, 916-917 / Harrington, J. T. (1977). Whole. Immunol. 30, 261-271) and in many chronic inflammatory processes (Burmeister, G., Zwadlo, G., Michels, E., Brocker, E. & Sorg, C. (1984). Lymphokine Res. 3, 236 / Schlegel Gomez , R., Diepgen, TL

, Neumann C., Sorg, C. (1990). Arch. Dermatol. Res. 282, 374378). MIF naj bi bil tesno povezan s pojavom pozne preobčutljivosti in celične imunosti (Bloom, B. R. & Bennett, B. ( 1966 ) . Science 153, 80-82 / David, J. R. ( 1966 ) . Proč. Natl. Acad. Sci. USA 65, 72-77 / David, J. R. & David, R. A. ( 1972). Prog. Allergy 16, 300-449). Da bi lahko nedvoumno pokazali, da so zgoraj omenjene spremenjene funkcije makrofagov inducirane z MIF-om in ne s katerokoli drugo spojino, se je pojavila močna potreba po očiščenem nativnem ali (in) rekombinantnem proteinu. Nizek nivo MIF aktivnosti v nativnih vzorcih zelo otežkoča njegovo izolacijo in biokemijsko karakterizacijo in tako še do danes ni uspelo izolirati nativnega proteina v čisti obliki., Neumann C., Sorg, C. (1990). Arch. Dermatol. Really. 282, 374378). MIF is thought to be closely linked to the onset of late hypersensitivity and cellular immunity (Bloom, BR & Bennett, B. (1966). Science 153, 80-82 / David, JR (1966). Natl. Acad. Sci. USA 65 , 72-77 / David, JR & David, RA (1972) Prog. Allergy 16, 300-449). In order to demonstrate unambiguously that the above-mentioned altered macrophage functions are induced by MIF and not by any other compound, a strong need for a purified native or (and) recombinant protein has arisen. The low level of MIF activity in native samples makes it difficult to isolate and biochemical characterize it, and so far it has not been able to isolate the native protein in its pure form.

cDNA, ki kodira za humani MIF je bila prvič klonirana leta 1989. Weisser s kolegi jo je kloniral v celicah COS. Funkcionalno ekspresijsko kloniranje cDNA iz stimuliranih celic T je tako omogočilo identifikacijo klona z močno aktivnostjo inhibicije migracije makrofagov (Weisser, W. Y., Temple P. A., Witek-Giannotti J. S., Remold H. G., Clark S.C. & David J.R. ( 1989 ). Proč. Natl. Acad. Sci. USA 86, 75227526). Pokazali so tudi, da supernatanti po centrifugiranju kulture celic COS (vsebujočih rekombinantni gen, ki kodira za humani MIF) stimulirajo sintezo protiteles (Weisser, W. Y., Pozzi, L. M. , David J. R. & Titus R. G. (1992). Proč. Natl. Acad. Sci. 89, 8049-8052). Preliminarne študije infekcij z intracelularnim parazitom Leischmania donovani (Weisser, Y. W. , Pozzi, L. M. & David J. R. ( 1991 ). J. Immunol. 147, 2006-2011), kakor tudi dokazana sposobnost MIF vsebujočih supernatantov iz kultur celic COS, da aktivirajo makrofage (pri čemer slednji eksprimirajo dušikov oksid sintetazo in tvorijo dušikov oksid) prepričljivo kažejo na to, da igra novo odkriti 14 kDa velik protein zelo verjetno ključno vlogo pri celično uravnavani imunosti (Cunha F. Q., Weisser W. Y., David J. R., Moss D. W., Moncada S. & Liew F.Y. (1993). The Journal of Immunology 150, 1908 -1912 / Liew, F. Υ. , Millot, S. , Parkinson, C. , Palmer, R. M. J. , Moncada, S. (1990). J Immunol. 129, 351). V zadnjem času so poročali tudi o osrednji vlogi MIF-a pri endotoksemiji in toksičnem šoku. Leta 1993 je Wistow s kolegi izoliral MIF iz očesnih leč ( Wistow G. J., Shaughnessy, M. P., Lee, D. C., Hodin, J. & Zelenka, P. S. (1993). Proč. Natl. Acad. Sci. USA 90, 804980529), leto pred njim pa Blocki in sodelavci protein iz podganjih jeter (Blocki F. A., Schlievert P. M. & Wackett L.P. ( 1992 ). Nature 360, 269-270), ki se je s primarno strukturo humanega limfocitnega MIF-a ujemal v 25 (od 26) Nterminalnih aminokislinskih ostankih. Domnevni MIF iz podganjih jeter je izražal tako MIF kot glutation reduktazno aktivnost in naj bi povezoval kemični in imunski razstrupljevalni sistem.cDNA encoding human MIF was first cloned in 1989. Weisser and colleagues cloned it in COS cells. Functional expression of cDNA cloning from stimulated T cells has thus enabled the identification of a clone with strong macrophage migration inhibitory activity (Weisser, WY, Temple PA, Witek-Giannotti JS, Remold HG, Clark SC & David JR (1989). Sci. USA 86, 75227526). Supernatants have also been shown to stimulate antibody synthesis after centrifugation of the culture of COS cells (containing the recombinant gene encoding human MIF) (Weisser, WY, Pozzi, LM, David JR & Titus RG (1992). Nat. Acad. Sci 89, 8049-8052). Preliminary studies of infections with the intracellular parasite Leischmania donovani (Weisser, Y. W., Pozzi, L. M. & David J. R. (1991). J. Immunol. 147, 2006-2011) as well as the proven ability of MIF-containing supernatants from COS cell cultures to activate macrophages ( with the latter expressing nitric oxide synthetase and forming nitric oxide) convincingly suggest that the newly discovered 14 kDa large protein is likely to play a crucial role in cell-regulated immunity (Cunha FQ, Weisser WY, David JR, Moss DW, Moncada S. & Liew F.Y. (1993) .The Journal of Immunology 150, 1908 -1912 / Liew, F.,., Millot, S., Parkinson, C., Palmer, R. M., Moncada, S. (1990) .J Immunol. 129. 351). Recently, the central role of MIF in endotoxemia and toxic shock has also been reported. In 1993, Wistow and colleagues isolated MIF from eye lenses (Wistow GJ, Shaughnessy, MP, Lee, DC, Hodin, J. & Zelenka, PS (1993). Natl. Acad. Sci. USA 90, 804980529), year preceded by Blocki et al. rat liver protein (Blocki FA, Schlievert PM & Wackett LP (1992). Nature 360, 269-270), which matched the primary structure of human lymphocytic MIF in 25 (out of 26) Nterminal amino acid residues. The putative MIF from rat liver expressed both MIF and glutathione reductase activity and was thought to link the chemical and immune detoxification systems.

Suzuki je leta 1994 poročal o kristalizaciji in preliminarnih kristalografskih študijah MIF-a iz humanih limfocitov (Suzuki, M. , Murata E. & Tanaka I. (1994). J. Mol. Biol. 235, 1141-1143). Iz omenjenega članka se da, iz na moč skopih informacij, razbrati, da so MIF izrazili v Escherichii coli in ga očistili z afinitetno kromatografijo, pri čemer so se opirali na podatke Blockija s sodelavci. (Blocki F. A., Schlievert P. M. & Wackett L.P. ( 1992 ). Nature 360, 269-270).Suzuki reported crystallization and preliminary crystallographic studies of MIFs from human lymphocytes in 1994 (Suzuki, M., Murata E. & Tanaka I. (1994). J. Mol. Biol. 235, 1141-1143). From the aforementioned article, it can be seen from the abundance of information that MIFs were expressed in Escherichii coli and purified by affinity chromatography, based on Blocki et al. (Blocki F. A., Schlievert P. M. & Wackett L. P. (1992). Nature 360, 269-270).

Čeprav raziskave v zvezi z MIF-om danes kontinuirano naraščajo, MIF iz naravnih virov doslej še ni bil izoliran v dovolj velikih količinah, ki bi omogočile vsaj njegovo biokemijsko karakterizacijo, količine rekombinantnega MIF-a iz tkivnih kultur so nizke, informacije o ekspresiji MIF-a v bakterijah pa zelo skope. V zadnjem primeru niso dostopni nikakršni podatki o donosih, niso opisani natančni postopki izolacije in, kolikor nam je poznano, očiščen rekombinantniAlthough research on MIF is continuously increasing today, MIFs from natural sources have not been isolated in sufficient quantities to allow at least its biochemical characterization, the amounts of recombinant MIF from tissue cultures are low, but very low in bacteria. In the latter case, no yield data are available, precise isolation procedures are not described, and, as far as we know, recombinant purified

MIF še ni na trgu, dasiravno humano cDNA nekatere firme že nekaj časa prodajajo.MIF is not yet on the market and some companies have been selling it for some time.

PODROBNI OPIS IZUMADETAILED DESCRIPTION OF THE INVENTION

Konstrukcija ekspresijskih vektorjevConstruction of expression vectors

Regijo gena, ki kodira za humani MIF smo izolirali z reakcijo PCR (polymerase Chain reaction). Dvovijačno cDNA, ki je služila kot matrica pri pomnoževanju s PCR smo sintetizirali s kemikalijami in po navodilih tovarne Amersham (cDNA synthesis kit). mRNA za zgoraj omenjeno reakcijo sinteze cDNA z reverzno transkriptazo pa smo izolirali iz humanega endometrija uterusa z gvanidinium izotiocianatno metodo, ki ji je sledilo izopiknično centrifugiranje v gradientu cezijev klorid trifluoracetata in zatem še prečiščevanje totalne RNA z afinitetno kromatografijo na oligo-dt spin kolonicah.The region of the gene encoding human MIF was isolated by PCR (polymerase Chain reaction). Two-stranded cDNA, which served as a template for PCR amplification, was synthesized using chemicals and according to the instructions of the Amersham factory (cDNA synthesis kit). mRNA for the aforementioned reverse transcriptase cDNA synthesis reaction was isolated from the human uterine endometrium by the guanidinium isothiocyanate method followed by isopycnal centrifugation in a cesium chloride trifluoroacetate gradient and then purified total RNA by dye affinitis by affinity.

Uporabljeni začetni oligonukleotidi (primerji):Initial oligonucleotides used (primers):

I. : 5' GGATCCGAATTCATGCCGATGTTCATCGTAAACACCA 3’ (oligonukleotid, ki ustreza N terminalnemu delu MIF-a; mesto rezanja z restrikcijsko endonukleazo EcoRI je podčrtano, začetni /start/ kodon je prikazan s povdarjenimi črkami)I.: 5 'GGATCCGAATTCATGCCGATGTTCATCGTAAACACCA 3' (oligonucleotide corresponding to the N terminal portion of the MIF; cut site with EcoRI restriction endonuclease is underlined, start / start / codon shown in bold letters)

II. : 5' GTCGACAAGCTTTTAGGCGAAGGTGGAGTTGTTCCA 3' (oligonukleotid, ki ustreza C terminalnemu delu MIF-a; mesto rezanja z restrikcijsko endonukleazo Hindlll je podčrtano, terminalni /stop/ kodon je prikazan s povdarjenimi črkami)II. : 5 'GTCGACAAGCTTTTAGGCGAAGGTGGAGTTGTTCCA 3' (oligonucleotide corresponding to C terminal portion of MIF; Hindlll restriction endonuclease cut site underlined, terminal / stop / codon shown in bold letters)

Isti začetni oligonukleotidi v isti reakciji niso omogočili zgolj pomnoževanja s PCR, pač pa tudi kreacijo ustreznih mest na obeh straneh kodirajoče regije, prepoznavnih za rezanje z restrikcijskimi endonukleazami.The same initial oligonucleotides in the same reaction not only allowed PCR amplification, but also the creation of appropriate sites on either side of the coding region recognizable for cutting by restriction endonucleases.

Slednja so omogočila usmerjeno insercijo (kloniranje) za MIF kodirajoče regije v multipla mesta za kloniranje na različnih vektorjih Escherichie coli; kot so pUcl9 ( Messing, J. (1983). Methods in Enzymology, Vol. 101, pp. 20-78 ( Wu, R., Grossman, L. & Moldave, K., Ed. ). San Diego: Academic Press), pIN-III-ompA2 (Auerswald, E. A. , Genenger, G. , Mentele, R. , Lenzen, S. , Assfalg-Machleidt, I., Mitschang, L. , Oschkinat, H. & Fritz H. (1991). Eur. J. Biochem., 200, 131-158 / Ghrayeb, J. ,Kimura, H. ,Takahara, M. , Hsiung, H., Masui, Z. , Inouye, M. (1984). EMBO J., 3 (10), 2437-2442), pKpl500 (Miki, T., Yasukochi, T., Nagatani, H., Furuno, M., Orita, T., Yamada, H., Imoto, T., Horiuchi, T. (1987). Protein Engineering 1, 327-332) . Oligonukleotide smo sintetizirali na aparaturi Applied Biosystem DNA Synthesizer po navodilih proizvajalca. Z nasičenim amonijevim hidroksidom smo produkte sinteze ekstrahirali iz kolonic in izvršili deprotekcijo zaščitnih skupin. Nakar smo oligonukleotide očistili s poliakrilamidno gelsko elektroforezo (Sanbrook,The latter allowed targeted insertion (cloning) for MIF coding regions into multiple cloning sites on different Escherichie coli vectors; such as pUcl9 (Messing, J. (1983). Methods and Enzymology, Vol. 101, pp. 20-78 (Wu, R., Grossman, L. & Moldave, K., Ed.). San Diego: Academic Press ), pIN-III-ompA2 (Auerswald, EA, Genenger, G., Mentele, R., Lenzen, S., Assfalg-Machleidt, I., Mitschang, L., Oschkinat, H. & Fritz H. (1991) J. Biochem. 200, 131-158 / Ghrayeb, J., Kimura, H., Takahara, M., Hsiung, H., Masui, Z., Inouye, M. (1984). , 3 (10), 2437-2442), pKpl500 (Miki, T., Yasukochi, T., Nagatani, H., Furuno, M., Orita, T., Yamada, H., Imoto, T., Horiuchi. T. (1987). Protein Engineering 1, 327-332). Oligonucleotides were synthesized on an Applied Biosystem DNA Synthesizer apparatus according to the manufacturer's instructions. With saturated ammonium hydroxide, the synthesis products were extracted from the columns and deprotection of the protecting groups was carried out. The oligonucleotides were then purified by polyacrylamide gel electrophoresis (Sanbrook,

J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory ).J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory).

Posamezen cikel pomnoževanja s PCR je potekal v naslednjih zaporedno si sledečih fazah: denaturaciji (1 minuto pri 94°C) je sledil annealing (1 minuto pri 55°C) in nato ekstenzija (2 minuti pri 72°C). 100 μΐ reakcijske mešanice pa je vsebovalo: lOraM Tris (pH 8,4), 50 mM KC1, 100 ng cDNA (predhodno za 10 minut inkubirane v vreli vodni kopeli), lgm oligonukleotid I, Ipm oligonukleotid II, deoksinukleotid trifosfate (dATP, dCTP, dGTP in dTTP; vsak posamezen nukleotid v 200 μΜ koncentraciji), 1 mM MgCl2,z 2,5 enot Taq polimeraze (Perkin Elmer). Da bi preprečili evaporacijo, smo na vrh reakcijske mešanice odpipetirali plast (100 μΐ) mineralnega olja. Pomnoževanje s PCR je potekalo v aparaturi Perkin Elmer thermo cycler. Terminalno ekstenzijo (sintezo mankajočih baznih parov) smo po 30 ciklih pomoževanja omogočili z 10 minutnim segrevanjem produkta PCR pri 72° C. Zatem smo previdno odstranili mineralno olje ter po fenolizaciji inEach PCR amplification cycle was performed in successive stages: denaturation (1 minute at 94 ° C) followed by annealing (1 minute at 55 ° C) followed by extension (2 minutes at 72 ° C). 100 μΐ of the reaction mixture contained: lOraM Tris (pH 8.4), 50 mM KC1, 100 ng cDNA (pre-incubated in boiling water bath for 10 minutes), lgm oligonucleotide I, Ipm oligonucleotide II, deoxynucleotide triphosphate (dATP, dCTP , dGTP and dTTP; each individual nucleotide in 200 μΜ concentration), 1 mM MgCl2, with 2.5 units of Taq polymerase (Perkin Elmer). To prevent evaporation, a layer (100 μΐ) of mineral oil was pipetted onto the top of the reaction mixture. PCR amplification was performed on a Perkin Elmer thermo cycler apparatus. Terminal extension (synthesis of missing base pairs) after 30 cycles of aiding was enabled by heating the PCR product at 72 ° C for 10 minutes. Subsequently, the mineral oil was carefully removed and after phenolization and

Sal, G. ; Manfioletti G. Acid. Res. 16, 9878) etanolni precipitaciji (Sanbrook, J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory ) približno 400 baznih parov velik produkt PCR rezali z restrikcijskima endonukleazama EcoRI in Hindlll vsaj 5 ur pri standardnih pogojih (Sanbrook, J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory ). Po rezanju z obema omenjenima restrikcijskima encimoma smo reakcijsko mešanico ponovno fenolizirali, DNA pa precipitirali z etanolom. Zatem smo nukleinsko kislino posušili v speed-vac koncentratorju, resuspendirali v 50 μΐ pufra TE in očistili z gelsko kromatografijo na lml spin kolonicah, napolnjenih s Sephacrylom S-300. Na enak način smo rezali in čistili tudi plazmidne vektorje Escherichie coli; s to razliko, da smo na stopnji gelske filtracije uporabili Sephacryl S-400. Inserte in vektorje smo lepili v molarnem razmerju 3:1 v korist insertov, ligacija pa je potekala 15 ur pri 15°C pri sicer standardnih pogojih (Sanbrook, J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory ). Pri določanju koncentracij vektorjev in insertov smo se posluževali fluorescenčne metode (Sanbrook, J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory ).Sal, G.; Manfioletti G. Acid. Really. 16, 9878) ethanol precipitation (Sanbrook, J., Maniatis, T. & Fritsch, EF (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory) About 400 base pairs large PCR product was cut with EcoRI and Hindlll restriction endonucleases at least 5 hours under standard conditions (Sanbrook, J., Maniatis, T. & Fritsch, EF (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory). After cutting with both of these restriction enzymes, the reaction mixture was again phenolized and the DNA precipitated with ethanol. Subsequently, the nucleic acid was dried in a speed-vac concentrator, resuspended in 50 μΐ TE buffer and purified by gel chromatography on lml spin columns filled with Sephacryl S-300. Escherichia coli plasmid vectors were cut and purified in the same manner; except that at the gel filtration step, Sephacryl S-400 was used. The inserts and vectors were glued in a molar ratio of 3: 1 in favor of the inserts, and the ligation was performed for 15 hours at 15 ° C under otherwise standard conditions (Sanbrook, J., Maniatis, T. & Fritsch, EF (1989). A laboratory manual; Cold Spring Harbor Laboratory). Fluorescence methods were used to determine the concentrations of vectors and inserts (Sanbrook, J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory).

Kompetentne celice Escherichie coli, sev DH5a (Hannahan, D. ( 1983 ). J. Mol. Biol. 160, 557-580 / Hannahan, D.Competent cells of Escherichie coli, strain DH5a (Hannahan, D. (1983). J. Mol. Biol. 160, 557-580 / Hannahan, D.

(1985). DNA cloning: a practical approach, Vol.l, pp!09-135 ( Glover, D. M. Ed.). Oxford: IRL Press), smo transformirali z 1 μΐ ligacijske mešanice. Po izolaciji plazmidne DNA (Del & Schneider C. ( 1988 ) . Nucleic smo na MIF pozitivne klone identificirali z restrikcijsko analizo. Zaporedja nukleotidov pri treh pozitivnih klonih iz treh neodvisnih reakcij PCR smo potrdili z metodo dideoksisekveniranja (Sanger, F., Nicklen, S. & Coulson (1977). Proč. Natl. Acad. Sci. USA. 74, 5463). Z izjemo enega samega različnega nukleotida, katerega različnost je imela za posledico informacijo za drugačno aminokislino, je zaporedje nukleotidov ustrezalo objavljenemu (Weisser, W. Y., Temple P. A., Witek-Giannotti J. S., Remold H. G., Clark S.C. & David J.R. ( 1989 ). Proč. Natl. Acad. Sci. USA 86, 7522-7526). Substitucija je bila enaka kot jo je opisal Wistow (Wistow G. J., Shaughnessy, M. P., Lee, D. C., Hodin, J. & Zelenka, P. S. (1993). Proč. Natl. Acad. Sci. USA 90, 8049-80529). Zaporedje nukleotidov in pripadajoče zaporedje aminokislin pa sta prikazana spodaj:(1985). DNA cloning: a practical approach, Vol.l, pp! 09-135 (Glover, D. M. Ed.). Oxford: IRL Press), transformed with 1 μΐ ligation mixture. After isolation of plasmid DNA (Del & Schneider C. (1988) Nucleic was identified on MIF positive clones by restriction analysis. Nucleotide sequences at three positive clones from three independent PCR reactions were confirmed by dideoxysequencing (Sanger, F., Nicklen, S & Coulson (1977) Away from Acad. Sci. USA. 74, 5463. With the exception of a single different nucleotide, whose diversity resulted in information for a different amino acid, the nucleotide sequence was consistent with that published (Weisser, WY. Temple PA, Witek-Giannotti JS, Remold HG, Clark SC & David JR (1989), Natl Acad. Sci USA 86, 7522-7526) The substitution was the same as described by Wistow (Wistow GJ, Shaughnessy , MP, Lee, DC, Hodin, J. & Zelenka, PS (1993), Acad. Sci. USA 90, 8049-80529) The nucleotide sequence and the corresponding amino acid sequence are shown below:

ATG Met ATG Met CCG ATG TTC ATC GTA CCG ATG TTC ATC GTA AAC ACC AAC GTG AAC ACC AAC GTG CCC Pro CCC Pro CGC GCC TCC CGC GCC TCC GTG Val 15 GTG Val 15 45 45 Pro Pro Met Met Phe Phe Ile 5 Ile 5 Val Val As n As n Thr Thr As n As n Val 10 Val 10 Arg Arg Ala Ala Ser Sir CCG CCG GAC GAC GGG GGG TTC TTC CTC CTC TCC TCC GAG GAG CTC CTC ACC ACC CAG CAG CAG CAG CTG CTG GCG GCG CAG CAG GCC GCC 90 90 Pro Pro Asp Asp Gly Gly Phe Phe Leu Leu Ser Sir Glu Glu Leu Leu Thr Thr Gin Gin Gin Gin Leu Leu Ala Ala Gin Gin Ala Ala 20 20 25 25 30 30 ACC ACC GGC GGC AAG AAG CCC CCC CCC CCC CAG CAG TAC TAC ATC ATC GCG GCG GTG GTG CAC CAC GTG GTG GTC GTC CCG CCG GAC GAC 135 135 Thr Thr Gly Gly Lys Lys Pro Pro Pro Pro Gin Gin Tyr Tyr Ile Ile Ala Ala Val Val His His Val Val Val Val Pro Pro Asp Asp 35 35 40 40 45 45 CAG CAG CTC CTC ATG ATG GCC GCC TTC TTC GGC GGC GGC GGC TCC TCC AGC AGC GAG GAG CCG CCG TGC TGC GCG GCG CTC CTC TGC TGC 180 180 Gin Gin Leu Leu Met Met Ala Ala Phe Phe Gly Gly Gly Gly Ser Sir Ser Sir Glu Glu Pro Pro Cys Cys Ala Ala Leu Leu Cys Cys 50 50 55 55 60 60 AGC AGC CTG CTG CAC CAC AGC AGC ATC ATC GGC GGC AAG AAG ATC ATC GGC GGC GGC GGC GCG GCG CAG CAG AAC AAC CGC CGC TCC TCC 225 225 Ser Sir Leu Leu His His Ser Sir Ile Ile Gly Gly Lys Lys Ile Ile Gly Gly Gly Gly Ala Ala Gin Gin As n As n Arg Arg Ser Sir 65 65 70 70 75 75 TAC TAC AGC AGC AAG AAG CTG CTG CTG CTG TGC TGC GGC GGC CTG CTG CTG CTG GCC GCC GAG GAG CGC CGC CTG CTG CGC CGC ATC ATC 270 270 Tyr Tyr Ser Sir Lys Lys Leu Leu Leu Leu Cys Cys Gly Gly Leu Leu Leu Leu Ala Ala Glu Glu Arg Arg Leu Leu Arg Arg Ile Ile 80 80 85 85 90 90 AGC AGC CCG CCG GAC GAC AGG AGG GTC GTC TAC TAC ATC ATC AAC AAC TAT TAT TAC TAC GAC GAC ATG ATG AAC AAC GCG GCG GCC GCC 315 315 Ser Sir Pro Pro Asp Asp Arg Arg Val Val Tyr Tyr Ile Ile As n As n Tyr Tyr Tyr Tyr Asp Asp Met Met As n As n Ala Ala Ala Ala 95 95 100 100 105 105

AAT GTG GGC TGG AAC AAC TCC ACC TTC GCC TAAAAT GTG GGC TGG AAC AAC TCC ACC TTC GCC TAA

360360

Asn Val Gly Trp Asn Asn Ser Thr Phe Ala * Asn Val Gly Trp Asn Asn Ser Thr Phe Ala * 110 110 115 115 Enega One izmed rekombinantnih of the recombinant plazmidov pUC19, plasmid pUC19, s klonirano za with cloned for MIF MIF kodirajočo regijo, the coding region, smo rezali z we cut with restrikcij skima restriction skim

endonukleazama EcoRI in Hindlll, posamezne fragmente pa smo po rezanju frakcionirali z agarozno gelsko elektroforezo. Liso, ki je, glede na ustrezne velikostne markerje DNA, vsebovala približno 400 baznih parov velik fragment smo izrezali iz gela, zatem pa DNA izolirali z metodo adherence na steklene delce (Vogelstein, B. & Gillespie, D. ( 1979 ). Proč. Natl. Acad. Sciu. USA 76, 615-619). Regijo, ki kodira za humani MIF pa smo nato subklonirali v ekspresijske vektorje pIN-III-ompA2 in pKP1500 po enakem postopku kot smo ga opisali zgoraj.endonucleases EcoRI and HindIII, and the individual fragments were fractionated after cutting by agarose gel electrophoresis. The fox, which, according to the corresponding DNA size markers, contained approximately 400 base pairs a large fragment was cut from the gel, and then DNA was isolated by the glass particle adhesion method (Vogelstein, B. & Gillespie, D. (1979). Natl. Acad. Sciu. USA 76, 615-619). The human MIF coding region was then subcloned into the expression vectors pIN-III-ompA2 and pKP1500 following the same procedure as described above.

Ekspresija in čiščenje rekombinantnega proteinaExpression and purification of recombinant protein

I. stopnja: Namnoževanje bakterij skih kulturLevel I: Multiplication of bacterial cultures

1 bioreaktor (Chemap LF 7/14/20), napolnjen z 10 1 sterilne juhe LB (10 g triptona, 5g kvasnega ekstrakta in 10 g NaCl na 1 gojišča) smo inokulirali z 200 ml nasičene predkulture Escherichie coli. Predkulturo smo pripravili tako, da smo 200 ml sterilnega minimalnega gojišča M9 (s 100 mg ampicilina/1 gojišča)(Sanbrook, J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory) v 500 ml erlenmajerici nacepili z 10 μΐ v glicerolu zamrznjene izhodne (stock) kulture celic E. coli, sev JM 109 (Miller, H. (1987). Methods in Enzymology 152, 145-170), transformiranih z ekspresijskim plazmidom pMEX (pKP1500 s klonirano za MIF kodirajočo regijo) in bakterije namnoževali 36 ur pri 21°C na rotacijskem stresalnem inkubatorju (140 obratov v minuti). Tik pred nacepitvijo s predkulturo smo sterilnemu gojišču v fermentorju aseptično dodali ampicilin (100 mg/1 kulture), še pred sterilizacijo z avtoklaviranjem pa smo mu dodali 15 ml Silicona 1510 (kot agens proti penjenju). Po inokulaciji je namnoževanje bakterijske kulture v fermentorju potekalo pri 37°C ob kontroliranem mešanju (600 obratov/min) in aeraciji (301/min) 2,5 do 3 ure (dokler kultura ni dosegla vrednosti absorbance pri 6oo nm med o, 5 in 1). Takrat smo kulturo inducirali z IPTG (0,5g/101 kulture) in jo pri enakih pogojih kot pred indukcijo namnoževali še 4 ure.1 bioreactor (Chemap LF 7/14/20) filled with 10 l of sterile LB soup (10 g of tryptone, 5 g of yeast extract and 10 g of NaCl per 1 medium) was inoculated with 200 ml of saturated Escherichia coli preculture. The preculture was prepared by 200 ml of sterile minimal M9 medium (with 100 mg ampicillin / 1 medium) (Sanbrook, J., Maniatis, T. & Fritsch, EF (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory) in 500 ml Erlenmeyer flask was inoculated with 10 μΐ in glycerol of frozen stock culture of E. coli cells, strain JM 109 (Miller, H. (1987). Methods in Enzymology 152, 145-170) transformed with pMEX expression plasmid (pKP1500 with cloned for MIF coding region) and bacteria were amplified for 36 hours at 21 ° C on a rotary shaker incubator (140 rpm). Ampicillin (100 mg / 1 culture) was aseptically added to the fermentor sterile medium immediately prior to preculture, and 15 ml of Silicone 1510 (as an antifoaming agent) was added aseptically before sterilization by autoclaving. After inoculation, bacterial culture in the fermenter was amplified at 37 ° C with controlled stirring (600 rpm) and aeration (301 / min) for 2.5 to 3 hours (until the culture reached absorbance at 6oo nm between o, 5 and 1). At that time, the culture was induced with IPTG (0.5g / 101 culture) and multiplied for 4 hours under the same conditions as before induction.

II. stopnja: Priprava bakterijskega celičnega lizata ure po indukciji z IPTG smo bioreaktor ohladili na 12°C, kulturo bakterij pa pretočili v steklenice, ki smo jih hranili na ledu. Bakterijske celice smo od gojišča ločili z 20 minutnim centrifugiranjem v centrifugi Sorval pri 4°C in 8000xg. Vseh 50g po centrifugiranju dobljene bakterijske biomase smo resuspendirali v 200 ml sterilizirane deionizirane vode, suspenzijo trikrat zaporedoma zamrznili in spet odtalili ter jo zatem še 1,5 minute sonicirali v ultrazvočni kopeli (70 W). Ostanke celic po razbijanju membran s kombinacijo zamrzovanja in odtaljevanja ter ultrazvoka smo odstranili s centrifugiranjem. Po 20 minutnem centrifugiranju pri 4°C in 8000xg smo supernatant prenesli v 350 ml ultrafiltracijsko celico (Amicon), opremljeno z magnetnim mešalom in filtrom ΥΜ2 (z velikostjo por, ki omogoča prehod preko membrane le proteinom manjšim od 2 kDa) in ga štirikrat skoncentrirali pri 4°C.II. stage: Preparation of bacterial cell lysate hours after induction with IPTG, the bioreactor was cooled to 12 ° C and the culture of the bacteria was poured into ice-filled bottles. The bacterial cells were separated from the culture medium by 20 minutes centrifugation in a Sorval centrifuge at 4 ° C and 8000xg. All 50g after centrifugation of the obtained bacterial biomass were resuspended in 200 ml of sterilized deionized water, the suspension was frozen three times in succession and thawed again and sonicated in an ultrasonic bath (70 W) for 1.5 minutes. Cell debris after membrane breakage by a combination of freezing and thawing and ultrasound was removed by centrifugation. After centrifugation at 4 ° C and 8000xg for 20 minutes, the supernatant was transferred to a 350 ml ultrafiltration cell (Amicon) equipped with a magnetic stirrer and a ΥΜ2 filter (with a pore size allowing only membrane less than 2 kDa to pass through the membrane) and concentrated four times. at 4 ° C.

III. stopnja: Gelska filtracijaIII. degree: Gel filtration

Stekleno kolono (premera 50 mm) smo napolnili s Sephadexom G50 do višine 1500 mm in jo uravnotežili s pufrom A (0,1 MThe glass column (50 mm in diameter) was filled with Sephadex G50 up to 1500 mm in height and equilibrated with buffer A (0.1 M

Tris pH 7,4; 0,3 M NaCl;Tris pH 7.4; 0.3 M NaCl;

skoncentriranega supernatanta nanesli na površino gela in pretoku 42ml/uro. Frakcije,of the concentrated supernatant was applied to the gel surface at a flow rate of 42ml / hour. Fractions,

lmM lmM EDTA). EDTA). Vzorec The pattern (200 ml (200 ml iz from stopnje rates 11) smo 11) we are previdno carefully ga Mrs eluirali eluted s pufrom A pri with buffer A at velikosti 14 size 14 ml smo we are ml zbirali collected

avtomatično (s frakcijskim kolektorjem). Separacija vzorca na koloni s Sephadeksom G-50 je potekala približno 32 ur pri 4°C. Količino proteinov v posameznih frakcijah smo sledili z merjenjem absorbance pri 280 nm. Glede na krivuljo, ki je kazala odvisnost med zaporedno številko posamezne frakcije in vsebnostjo proteinov v njej smo izbrali določene frakcije in jih analizirali na SDS poliakrilamidni elektroforezi in z IEF. Alikvote frakcij, odvzetih za analizo smo predhodno dializirali z mikrodializno metodo (Andrej Francky, osebna komunikacija). Kot kontrolo smo uporabili proteinske ekstrakte celic E. coli JM109, ki so vsebovale ekspresijski plazmid pKPISOO brez inserta. Frakcije, pri katerih smo z IEF, oziroma z SDS poliakrilamidno elektroforezo pokazali dovolj veliko vsebnost rekombinantnega proteina smo združili in jih na že prej omenjenem ultrafiltratorju skoncentrirali na skupen volumen 150 ml.automatic (with fractional manifold). Separation of the sample on a Sephadeks G-50 column took approximately 32 hours at 4 ° C. The amount of protein in the individual fractions was monitored by measuring the absorbance at 280 nm. According to the curve that showed the relationship between the sequence number of each fraction and the protein content therein, certain fractions were selected and analyzed by SDS polyacrylamide electrophoresis and by IEF. Aliquots of the fractions taken for analysis were previously dialyzed by the microdialysis method (Andrej Francky, personal communication). Protein extracts of E. coli JM109 cells containing the pKPISOO expression plasmid without insert were used as controls. Fractions in which IEF or SDS polyacrylamide electrophoresis showed a sufficiently high content of recombinant protein were combined and concentrated to a total volume of 150 ml on the aforementioned ultrafilter.

IV. stopnja: Ionsko izmenjevalna kromatografijaIV. degree: Ion exchange chromatography

Stekleno kolono smo napolnili z 250 ml CM celuloze, ki smo jo predhodno regenerirali po navodilih proizvajalca in suspendirali v pufru B (10 mM fosfatni pufer pH 6,4) . Nakar smo kolono ekvilibrirall z istim pufrom 24 ur pri pretoku 19 ml/uro. 75 ml koncentriranega vzorca (iz stopnje III) pa smo pred nanosom na kolono dializirali proti pufru B. Da bi odstranili nevezane proteine, smo po nanosu vzorca kolono spirali s pufrom B dokler absorbanca pri 280 nm ni ponovno padla na vrednosti nižje od 0,05, nakar smo vezane proteine eluirali z linearnim gradientom NaCl (500 ml pufra B in 500 ml pufra B z 0,3 M NaCl smo mešali v posebni gradientni posodi). Separacija je potekala pri 4°C. Frakcije (cca 6,3 ml) smo zbirali avtomatično. Elucijo proteinov smo spremljali na enak način kot smo ga opisali pri gelski filtraciji.Vse frakcije iz drugega vrha elucijskega diagrama so vsebovale visoko očiščen rekombinantni MIF. Po združitvi smo jih dializirali pri 4°C napram deionizirani vodi, skoncentrirali z ultrafiltracijo do koncentracije 5mg/ml ter shranili pri 70°C. Nekaj vzorcev smo predhodno liofilizirali.The glass column was filled with 250 ml of CM cellulose, which was previously regenerated according to the manufacturer's instructions and suspended in buffer B (10 mM phosphate buffer pH 6.4). The column was then equilibrated with the same buffer for 24 hours at a flow rate of 19 ml / hour. 75 ml of the concentrated sample (from stage III) were dialyzed against buffer B before application to the column B. To remove unbound proteins, the column was washed with buffer B after application of the sample until the absorbance at 280 nm decreased again to values below 0.05 then the bound proteins were eluted with a linear NaCl gradient (500 ml of buffer B and 500 ml of buffer B with 0.3 M NaCl were mixed in a separate gradient vessel). Separation was carried out at 4 ° C. Fractions (approximately 6.3 ml) were collected automatically. Protein elution was monitored in the same manner as that described for gel filtration. All fractions from the second peak of the elution diagram contained a highly purified recombinant MIF. After combination, they were dialyzed at 4 ° C against deionized water, concentrated by ultrafiltration to a concentration of 5mg / ml and stored at 70 ° C. Several samples were lyophilized previously.

ElektroforezaElectrophoresis

Čistost proteina smo preverjali in molekulsko težo določali z SDS poliakrilamidno elektroforezo na aparaturi Pharmacia Phast sistem, pri čemer smo uporabljali tovarniško pripravljene 8-25% poliakrilamidne gele in mešanico standardov Sigma SDS 7 za določanje molekulske teže (sedem proteinov v velikostnem redu od 14400 do 94000 Da) . Elektroforeza in barvanje proteinov z barvilom Comassie brilliant blue G-250 so potekali po navodilih proizvajalca aparature.The purity of the protein was checked and the molecular weight was determined by SDS polyacrylamide electrophoresis on a Pharmacia Phast system apparatus, using factory-prepared 8-25% polyacrylamide gels and a mixture of Sigma SDS 7 standards for molecular weight determination (seven proteins ranging in size from 14400 to 94000 Yes) . Electrophoresis and protein staining with Comassie brilliant blue G-250 were performed according to the instructions of the manufacturer of the apparatus.

Pri analizi proteinov iz totalnih celičnih lizatov smo kulturo celic centrifugirali, usedlino resuspendirali v deionizirani vodi, jo zmešali z enakim volumnom 2 krat koncentriranega pufra za SDS elektroforezo (Sanbrook, J., Maniatis, T. & Fritsch, E. F. (1989). Molecular Cloning: A laboratory manual; Cold Spring Harbor Laboratory) in mešanico segreli za 10 minut v vreli vodni kopeli. Zatem smo celice 1 minuto sonicirali v ultrazvočni kopeli (70W) in 10 minut centrifugirali v hemofugi Eppendorf pri 14000 obratih na minuto. Supernatanti po centrifugiranju, ki smo jih po potrebi redčili z 1 krat koncentriranim pufrom za SDS elektroforezo, so predstavljali vzorce za nanos na poliakrilamidne gele.In the analysis of proteins from total cell lysates, cell culture was centrifuged, the sediment was resuspended in deionized water, mixed with equal volume of 2 times concentrated SDS electrophoresis buffer (Sanbrook, J., Maniatis, T. & Fritsch, EF (1989). Molecular Cloning : A laboratory manual; Cold Spring Harbor Laboratory) and the mixture heated for 10 minutes in a boiling water bath. The cells were then sonicated for 1 minute in an ultrasonic bath (70W) and centrifuged for 10 minutes in an Eppendorf hemofuge at 14000 rpm. The supernatants after centrifugation, diluted with concentrated SDS electrophoresis buffer 1 times as appropriate, represented the samples for application to polyacrylamide gels.

Izoelektrično fokusiranje mm debel poliakrilamidni gel za izoelektrično fokusiranje ( 5% T in 5% C, 10% glicerol, 0,45% amonijev persulfat in 6,66% amfolini Pharmalyt /pH 3-10/) smo predfokusirali pri konstantni električni moči 25W (z limito napetosti 300 V) pri 7 °C. Po nanosu vzorcev (vsak vzorec smo nanašali v volumnu od 20 do 50 μΐ) in standardov (uporabljali smo Pharmaciino mešanico standardov z izoelektričnimi točkami v obmolčju od 3,5 do 9,3) pa je izoelektrično fokusiranje potekalo pri konstantni moči 25 W (z limito napetosti 1500V) približno 2 uri.Isoelectric Focusing A mm thick polyacrylamide isoelectric focusing gel (5% T and 5% C, 10% glycerol, 0.45% ammonium persulfate and 6.66% Pharmalyt ampholin / pH 3-10 /) was pre-focused at a constant electrical power of 25W ( with a voltage limit of 300 V) at 7 ° C. After application of the samples (each sample was applied in a volume of 20 to 50 μΐ) and standards (using Pharmacia's mixture of standards with isoelectric points in the range of 3.5 to 9.3), the isoelectric focusing was carried out at a constant power of 25 W (with voltage limit 1500V) approximately 2 hours.

Proteine smo po končanem IEF fiksirali s 15 minutnim namakanjem gela v 20% TCA, jih nato 5 minut barvali v raztopini za barvanje (0,2% barvilo Coomasie blue G-250, 45% metanol in 10% ocetna kislina) in zatem razbarvali v enaki raztopini ocetne kisline in metanola; v tem primeru brez dodanega barvila.After the IEF was completed, the proteins were fixed by soaking the gel for 15 minutes in 20% TCA, then stained for 5 minutes in a dye solution (0.2% Coomasie blue G-250 dye, 45% methanol and 10% acetic acid) and then stained in the same solution of acetic acid and methanol; in this case, no dye added.

Kot alternativno možnost smo včasih izbrali IEF na aparaturi Pharmacia Phast System, kjer smo uporabljali že tovarniško pripravljene gele v območju pH od 3 do 9 in fokusiranje izvajali po navodilih proizvajalca aparature.As an alternative, we sometimes chose the IEF on the Pharmacia Phast System apparatus, using pre-prepared gels in the pH range of 3 to 9, and focusing as instructed by the manufacturer of the apparatus.

Določanje N-terminalne aminokislinske sekvenceDetermination of the N-terminal amino acid sequence

Aminoterminalno sekvenco rekombinantnega proteina smo določili po Edmanovi metodi na avtomatičnem pulzirajočem tekoče-faznem proteinskem analizatorju (applied Biosystem, Foster City, CA / model 477A) z on line aminokislinskim analizatorjem (PTH, model 120A) . Sekveniranje je potekalo v urejenih (regularnih ) cikličnih programih, s kemikalijami in po navodilih proizvajalca.The amino-terminal sequence of the recombinant protein was determined by Edman method on an automatic pulsed liquid-phase protein analyzer (applied Biosystem, Foster City, CA / model 477A) with an on-line amino acid analyzer (PTH, model 120A). The sequencing was performed in regular (regular) cyclical programs, with chemicals and according to the manufacturer's instructions.

Biološki test na aktivnost inhibicije migracije makrofagovBiological test for macrophage migration inhibition activity

Biološko aktivnost rekombinantnega humanega MIF-a smo določali na budrinih peritonealnih makrofagih kot indikatorskih celicah in po metodi, ki jo je opisal Harrington s sodelavci (Harrington J. T., JR. & Stastny P. (1973). J. Immunol. 110 (3), 752-759).The biological activity of recombinant human MIF was determined on budding peritoneal macrophages as indicator cells and according to the method described by Harrington et al. (Harrington JT, JR. & Stastny P. (1973) J. Immunol. 110 (3). 752-759).

% inhibicije migracije smo izračunali na naslednji način:The% inhibition of migration was calculated as follows:

% inhibicije = 100 - (povprečna migracija testnih vzorcev/ povprečna migracija kontrol) X 100% inhibition = 100 - (average migration of test samples / average migration of controls) X 100

Pri tem se, po definiciji, vsaka inhibicija, ki preseže 20% smatra kot signifikantna.By this definition, any inhibition in excess of 20% is considered significant.

amplifikacije elektroforezo.amplification electrophoresis.

Amplifikacija s polimerazno verižno reakcijo (PCR) na matrici cDNA je služila za izolacijo za MIF kodirajoče regije in obenem za konstrukcijo ustreznih restrikcijskih mest na obeh straneh gena, ki so omogočila njegovo enostavno vstavitev v multipla mesta za kloniranje pri dveh različnih ekspresijskih vektorjih Escherichie coli. ProduktePolymerase chain reaction (PCR) amplification on a cDNA array served to isolate the MIF coding regions and at the same time construct suitable restriction sites on both sides of the gene that made it easy to insert into multiple cloning sites at two different Escherichia coli expression vectors. Products

DNA smo analizirali z agarozno gelsko Prvi plazmidni vektor, pKP1500 smo uporabili za ekspresijo rekombinantnega proteina v citoplazmi celic E. coli. Drugi, pIN-III-ompA2 je nosil signalno sekvenco za transport rekombinantnega proteina v periplazmatski prostor bakterije. Pri kloniranju smo natančno sledili postopkom, opisanim v poglavju Podroben opis izuma. Učinkovitost kloniranja za MIF kodirajoče regije je bila tako pri kloniranju v vektor splošne namembnosti pUC19, v mutacijski vektor p-ALTER, kakor tudi v oba omenjena ekspresijska vektorja zelo visoka. Rekombinantne klone smo lahko identificirali z restrikcijsko analizo plazmidne DNA le manjšega števila kolonij, saj je bilo kar 70 do 90 % vseh analiziranih klonov pozitivnih na MIF.DNA was analyzed by agarose gel First plasmid vector, pKP1500 was used to express recombinant protein in the cytoplasm of E. coli cells. The second, pIN-III-ompA2, carried a signal sequence to transport the recombinant protein into the periplasmic space of the bacterium. In the cloning process, the procedures described in the Detailed Description of the Invention section were closely followed. The cloning efficiency for the MIF coding regions was very high in both cloning into the pUC19 general purpose vector, into the p-ALTER mutation vector, and to both of these expression vectors. Recombinant clones could be identified by restriction analysis of plasmid DNA of only a small number of colonies, as 70 to 90% of all clones analyzed were MIF positive.

Učinkovitost ekspresije humanega rekombinantnega MIF-a v odvisnosti od različnih uporabljenih vektorjev in sevov E. coli smo določili s proteinsko analizo totalnih celičnih lizatov, oziroma ekstraktov celic. Lizate celic smo pripravili na način, ki smo ga že opisali pri SDS poliakrilamidni elektroforezi. Priprava celičnih ekstraktov je potekala na analogen način kot v drugi stopnji protokola za ekspresijo in čiščenje rekombinantnega proteina, le v bistveno manjših količinah. Vzorce smo tako pri SDS poliakrilamidni elektroforezi kot pri IEF analizirali skupaj s poznanimi standardi za določanje molekulske teže, oziroma markerji poznanih izoelektričnih točk ter skupaj s kontrolo. Kot kontrolo smo pri SDS poliakrilamidni elektroforezi uporabljali totalni lizat, pri IEF pa grobi ekstrakt celic E. coli JM109 z ekspresijskim vektorjem brez inserta. Pri kulturah celic, ki so vsebovale v ekspresijski vektor pIN III-ompA2 klonirano za MIF kodirajoče zaporedje baz s proteinsko analizo celičnih lizatov, oziroma ekstraktov ni bilo mogoče detektirati rekombinantnega proteina. Nasprotno pa se je pri analizi kultur bakterijskih celic z vsebovanim rekombinantnim plazmidom pMEX (vektor pKP1500 s kloniranim genom, ki kodira za MIF) v primerjavi s kontrolo pojavila nova močna proteinska lisa. Slednja je pri SDS poliakrilamidni elektroforezi potovala s hitrostjo, ki je, glede na ustrezne standarde, ustrezala pričakovani (hitrosti potovanja približno 12,5 kDa velikega proteina). Z IEF smo s pomočjo kontrole in ustreznih standardov humanemu rekombinantnemu MIF-u določili izoelektrično točko 7,0.The expression efficiency of human recombinant MIF depending on the different vectors and E. coli strains used was determined by protein analysis of total cell lysates and cell extracts, respectively. Cell lysates were prepared as described previously with SDS polyacrylamide electrophoresis. The preparation of the cell extracts was performed in an analogous manner to that of the second stage of the protocol for the expression and purification of the recombinant protein, only in substantially smaller amounts. Samples were analyzed for both SDS polyacrylamide electrophoresis and IEF together with known molecular weight standards or markers of known isoelectric points and together with controls. As a control, total lysate was used in SDS polyacrylamide electrophoresis, and coarse E. coli JM109 cell extract with an expression vector without insert was used in IEF. In cell cultures containing pIN III-ompA2 cloned into the MIF coding sequence of bases by protein analysis of cell lysates or extracts, no recombinant protein could be detected. In contrast, when analyzing bacterial cell cultures containing the recombinant pMEX plasmid (pKP1500 vector with the cloned MIF coding gene), a new strong protein spot appeared compared to the control. The latter traveled at SDS polyacrylamide electrophoresis at a rate which, according to the relevant standards, corresponded to the expected one (travel speed of approximately 12.5 kDa of large protein). Using IEF, we determined the isoelectric point 7.0 using control and appropriate standards for human recombinant MIF.

Glede na rezultate proteinskih analiz smo za nadaljnje delo (za produkcijo v širokem obsegu in čiščenje rekombinantnega proteina) izbrali celice Escherichie coli JM109, transformirane s plazmidom pMEX. Da bi čimbolj zmanjšali možnost proteolitične razgradnje rekombinantnega proteina smo vse stopnje izolacije in purifikacije izvajali pri 4°C. Kot prvo stopnjo čiščenja rekombinantnega humanega MIF-a smo izbrali gelsko filtracijo z namenom, da bi se po eni strani znebili zelo velikih molekul (nukleinskih kislin kot so kromosomalna ali plazmidna DNA ter visokomolekularnih proteinov, vključno z morebitnimi polimeri, nastalimi zaradi nepravilnega zvijanja rekombinantnega proteina v heterolognem bakterijskem sistemu) in zelo majhnih (kot so različni bakterijski toksini, pirogeni, metaboliti).Potek čiščenja smo zasledovali z določanjem količine proteinov v posameznih frakcijah (preko meritev absorbance pri 280 nm) in z analizo proteinov v posameznih frakcijah z IEF, oziroma z SDS poliakrilamidno elektroforezo, kjer se je ob prisotnosti rekombinantnega proteina (glede na kontrolo in poznane ustrezne standarde) na pričakovanih mestih pojavila proteinska lisa. Frakcije, pri katerih smo po proteinski analizi presodili, da vsebujejo dovolj rekombinantnega proteina smo združili, skoncentrirali in naprej očistili z ionsko izmenjevalno kromatografijo na CM celulozi. Na tem mestu smo predhodno preizkusili učinkovitost različnih pufrov pri različnih pH-jih. Kot najbolj primeren se je pokazal 10 mM fosfatni pufer pH 6,4. Za to obstaja tudi logična razlaga, saj je izoelektrična točka humanega rekombinantnega MIF-a okrog 7,0, večina bakterijskih proteinov pa je kislih ( z izoelektričnimi točkami nižjimi od 6,3 ). Da bi se pri tem pH-ju rekombinantni MIF vezal na CM celulozo, je potrebno pH pufra natančno umeriti, oziroma, v primeru, da nastopijo težave pri vezanju na nosilec, pH pufra spustiti za 0,1 do 0,2 enoti. Elucijski diagram separacije s klasično ionsko izmenjevalno kromatografijo na CM celulozi ob uporabi 10 mM fosfatnega pufra pH 6,4 kaže le dva vrha. Prvega predstavljajo nevezane nečistoče (brez rekombinantnega proteina), v drugem piku pa se eluira le močno očiščen rekombinantni humani MIF.According to the results of the protein assays, Escherichie coli JM109 cells transformed with the pMEX plasmid were selected for further work (for the production on a large scale and purification of the recombinant protein). In order to minimize the possibility of proteolytic degradation of the recombinant protein, all isolation and purification steps were performed at 4 ° C. Gel filtration was chosen as the first stage of purification of recombinant human MIF in order to get rid of very large molecules (nucleic acids such as chromosomal or plasmid DNA and high molecular weight proteins, including any polymers resulting from improper folding of the recombinant protein). in a heterologous bacterial system) and very small (such as various bacterial toxins, pyrogens, metabolites). The purification path was followed by determination of the amount of proteins in individual fractions (via absorbance measurements at 280 nm) and analysis of proteins in individual fractions with IEF, resp. by SDS polyacrylamide electrophoresis, where protein spots appeared at the expected sites in the presence of recombinant protein (according to control and known relevant standards). Fractions that were judged to contain enough recombinant protein after protein analysis were pooled, concentrated and further purified by ion exchange chromatography on CM cellulose. At this point, we have previously tested the performance of different buffers at different pHs. Most suitable was 10 mM phosphate buffer pH 6.4. There is also a logical explanation for this, since the isoelectric point of human recombinant MIF is about 7.0 and most bacterial proteins are acidic (with isoelectric points lower than 6.3). In order to bind recombinant MIF to CM cellulose at this pH, the pH of the buffer must be carefully calibrated, or, if there are problems with binding to the carrier, the pH of the buffer should be lowered by 0.1 to 0.2 units. The elution diagram of separation using conventional ion-exchange chromatography on CM cellulose using 10 mM phosphate buffer pH 6.4 shows only two peaks. The former is unbound impurities (without recombinant protein), and in the second peak, only strongly purified recombinant human MIF is eluted.

Po dveh stopnjah čiščenja smo iz 10 1 bakterijske kulture (oziroma približno 50 g mokre teže bakterijskih celic) uspeli izolirati lg visoko očiščenega rekombinantnega proteina. Njegovo čistost smo ocenjevali s prisotnostjo ene same intenzivne lise na gelih po SDS poliakrilamidni elektroforezi in IEF ter s prisotnostjo enega vrha na elucijskem diagramu po separaciji na aparaturi HPLC. Identiteto proteina je potrdila določitev prvih 25 N-terminalnih aminokislin in njihovo ujemanje s predvidenim aminokislinskim zaporedjem. Testi inhibicije migracije makrofagov na peritonealnih makrofagih budre kot indikatorskih celicah so pokazali, da je protein biološko aktiven.After two purification steps, 10 l of bacterial culture (or about 50 g of wet weight of bacterial cells) were isolated from a highly purified recombinant protein. Its purity was assessed by the presence of a single intense spot on the gels after SDS polyacrylamide electrophoresis and IEF and by the presence of one peak on the elution diagram after separation on an HPLC apparatus. Protein identity was confirmed by determining the first 25 N-terminal amino acids and matching them with the predicted amino acid sequence. Macrophage migration inhibition tests on peritoneal bud macrophages as indicator cells have shown that the protein is biologically active.

ZAKLJUČEKCONCLUSION

S pomočjo ekspresijskega vektorja pKP1500 (s tac promotorjem in temperaturno občutljivim mestom začetka replikacije) smo uspešno izrazili humani MIF v bakteriji Escherichia coli. Rekombinantni protein se je kopičil intracelularno v topni obliki in je po grobi oceni predstavljal preko 30% vseh celičnih proteinov. Razvili smo originalni dvostopenjski protokol z gelsko filtracijo na prvi in ionsko izmenjevalno kromatografijo na drugi stopnji čiščenja, ki je omogočil z minimalnimi izgubami pridobiti zelo čist protein, kar smo potrdili z analizo na SDS poliakrilamidni elektroforezi, z izoelektričnim fokusiranjem proteina in s separacijo na aparaturi HPLC. Identiteto proteina smo dokazali z določitvijo N-terminalne aminokislinske sekvence, njegovo aktivnost pa s testom inhibicije migracije makrofagov. Iz 10 1 bakterijske kulture (50 gramov mokre teže bakterijskih celic) smo izolirali 1 gram visoko očiščenega in biološko aktivnega rekombinantnega humanega faktorja inhibicije migracije makrofagov. Prepričani smo, da bi bili z optimizacijo postopka končni donosi lahko še višji.Using human expression vector pKP1500 (with tac promoter and temperature-sensitive replication start site), we successfully expressed human MIF in Escherichia coli. The recombinant protein accumulated intracellularly in soluble form and represented roughly over 30% of all cellular proteins. We developed the original two-step gel filtration protocol for the first and ion exchange chromatography at the second purification step, which made it possible to obtain very pure protein with minimal losses, which was confirmed by SDS polyacrylamide electrophoresis analysis, isoelectric focusing of the protein and separation by HPLC apparatus. . Protein identity was demonstrated by determination of the N-terminal amino acid sequence and its activity by a macrophage migration inhibition assay. We isolated 1 gram of highly purified and biologically active recombinant human macrophage migration inhibitory factor from 10 1 bacterial cultures (50 grams wet weight of bacterial cells). We believe that by optimizing the process, the final yields could be even higher.

Claims (6)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Začetna oligonukleotida z zaporedjem nukleotidov1. Initial oligonucleotide with nucleotide sequence I. : 5' GGATCCGAATTCATGCCGATGTTCATCGTAAACACCA 3' inI.: 5 'GGATCCGAATTCATGCCGATGTTCATCGTAAACACCA 3' in II. : 5' GTCGACAAGCTTTTAGGCGAAGGTGGAGTTGTTCCA 3' , ki sta značilna po tem, da omogočata pomnoževanje zaporedja nukleotidov, ki kodira za MIF s polimerazno verižno reakcijo in naknadno kloniranje produkta PCR v različne vektorje.II. : 5 'GTCGACAAGCTTTTAGGCGAAGGTGGAGTTGTTCCA 3', characterized in that they allow amplification of the nucleotide sequence encoding MIF by polymerase chain reaction and subsequent cloning of the PCR product into different vectors. 2. Konstrukt ekspresijskega vektorja za ekspresijo rekombinantnega MIF-a v bakteriji Escherichia coli, imenovan pMEX, ki je značilen po tem, da vsebuje spodaj prikazano zaporedje nukleotidov, ki kodira za humani MIF2. An expression vector construct for the expression of recombinant MIF in Escherichia coli, called pMEX, characterized in that it contains the nucleotide sequence encoding human MIF shown below AT G Met AT G Met CCG ATG TTC CCG ATG TTC ATC GTA AAC ACC AAC GTG CCC CGC ATC GTA AAC ACC AAC GTG CCC CGC GCC Ala GCC Ala TCC Ser TCC Sir GTG Val 15 GTG Val 15 Pro Pro Met Met Phe Phe lle Val 5 lle Val 5 As n As n Thr Thr As n As n Val 10 Val 10 Pro Pro Arg Arg CCG CCG GAC GAC GGG GGG TTC TTC CTC CTC TCC TCC GAG GAG CTC CTC ACC ACC CAG CAG CAG CAG CTG CTG GCG GCG CAG CAG GCC GCC Pro Pro Asp Asp Gly Gly Phe Phe Leu Leu Ser Sir Glu Glu Leu Leu Thr Thr Gin Gin Gin Gin Leu Leu Ala Ala Gin Gin Ala Ala 20 20 25 25 30 30 ACC ACC GGC GGC AAG AAG CCC CCC CCC CCC CAG CAG TAC TAC ATC ATC GCG GCG GTG GTG CAC CAC GTG GTG GTC GTC CCG CCG GAC GAC Thr Thr Gly Gly Lys Lys Pro Pro Pro Pro Gin Gin Tyr Tyr lle lle Al a Al a Val Val His His Val Val Val Val Pro Pro Asp Asp 35 35 40 40 45 45 CAG CAG CTC CTC ATG ATG GCC GCC TTC TTC GGC GGC GGC GGC TCC TCC AGC AGC GAG GAG CCG CCG TGC TGC GCG GCG CTC CTC TGC TGC Gin Gin Leu Leu Met Met Al a Al a Phe Phe Gly Gly Gly Gly Ser Sir Ser Sir Glu Glu Pro Pro Cys Cys Ala Ala Leu Leu Cys Cys 50 50 55 55 60 60 AGC AGC CTG CTG CAC CAC AGC AGC ATC ATC GGC GGC AAG AAG ATC ATC GGC GGC GGC GGC GCG GCG CAG CAG AAC AAC CGC CGC TCC TCC Ser Sir Leu Leu His His Ser Sir lle lle Gly Gly Lys Lys lle lle Gly Gly Gly Gly Ala Ala Gin Gin As n As n Arg Arg Ser Sir 65 65 70 70 75 75
TAC AGC AAG CTG CTG TGC GGC CTG CTG GCC GAG CGC CTG CGC ATC 270 TAC AGC AAG CTG CTG TGC GGC CTG CTG GCC GAG CGC CTG CGC ATC 270 Tyr Tyr Ser Sir Lys Lys Leu Leu Cys Gly Leu Leu Ala Glu Arg Leu Arg Ile Leu Leu Cys Gly Leu Leu Ala Glu Arg Leu Arg Ile 80 80 85 85 90 90 AGC AGC CCG CCG GAC GAC AGG GTC TAC ATC AAC AGG GTC TAC ATC AAC TAT TAC TAT TAC GAC ATG AAC GCG GCC 315 GAC ATG AAC GCG GCC 315 Ser Sir Pro Pro As p As p Arg Val Tyr Ile Asn Arg Val Tyr Ile Asn Tyr Tyr Tyr Tyr Asp Met Asn Ala Ala Asp Met Asn Ala Ala 95 95 100 100 105 105 AAT AAT GTG GTG GGC GGC TGG AAC AAC TCC ACC TGG AAC AAC TCC ACC TTC GCC TTC GCC TAA 360 TAA 360 As n As n Val Val Gly Gly Trp Asn Asn Ser Thr Trp Asn Asn Ser Thr Phe Ala Phe Ala 110 110 115 115 druga the other zaporedja nukleotidov, ki kodirajo za zaporedja nucleotide sequences encoding sequences
aminokislin, ki se od prikazanega ne razlikujejo več kot v dvajsetih aminokislinah, vstavljeno v plazmidni vektor pKP1500 kot je prikazano na sliki 1.amino acids no different from those shown in more than twenty amino acids inserted into the plasmid vector pKP1500 as shown in Figure 1.
3. Postopek kultivacije rekombinantnih bakterijskih celic, ki je značilen po takšni kombinaciji ekspresijskega vektorja, gostiteljskega seva in pogojev namnoževanja, da omogoča v heterolognem sistemu E. coli pridobiti rekombinantni MIF v topni obliki.3. A method of culturing recombinant bacterial cells, characterized by such a combination of an expression vector, a host strain and multiplication conditions, to enable recombinant MIF to be obtained in a soluble form in the heterologous E. coli system. 4. Postopek izolacije in čiščenja rekombinantnega MIF-a, ki je značilen po tem, da vključuje kombinacijo4. A method of isolating and purifying a recombinant MIF, characterized in that it involves a combination of a. ) ekstrakcije MIF-a iz bakterijskih celic z zamrzovanjem in odtaljevanjem bakterijskih celica. ) MIF extractions from bacterial cells by freezing and thawing bacterial cells b. ) dvostopenjskega protokola čiščenja rekombinantnega proteina, ki vključuje gelsko filtracijo in ionsko izmenjevalno kromatografijob. ) a two-step purification protocol for recombinant protein, including gel filtration and ion exchange chromatography c. ) in načina sledenja in kvantifikacije rekombinantnega MIFa tekom postopka čiščenja na osnovi analiz z izoelektričnim fokusiranjem in/ali z SDS poliakrilamidno elektroforezo.c. ) and the method for tracking and quantifying recombinant MIFa during purification on the basis of isoelectric focusing and / or SDS polyacrylamide electrophoresis analyzes. 5. Zaporedje nukleotidov5. Nucleotide sequence ATG CCG ATG TTC ATG CCG ATG TTC ATC GTA AAC ATC GTA AAC ACC AAC GTG CCC ACC AAC GTG CCC CGC CGC GCC GCC TCC GTG TCC GTG 45 45 CCG GAC GGG TTC CCG GAC GGG TTC CTC TCC GAG CTC TCC GAG CTC ACC CAG CAG CTC ACC CAG CAG CTG CTG GCG GCG CAG GCC CAG GCC 90 90 ACC GGC AAG CCC ACC GGC AAG CCC CCC CAG TAC CCC CAG TAC ATC GCG GTG CAC ATC GCG GTG CAC GTG GTG GTC GTC CCG GAC CCG GAC 135 135 CAG CTC ATG GCC CAG CTC ATG GCC TTC GGC GGC TTC GGC GGC TCC AGC GAG CCG TCC AGC GAG CCG TGC TGC GCG GCG CTC TGC CTC TGC 180 180 AGC CTG CAC AGC AGC CTG CAC AGC ATC GGC AAG ATC GGC AAG ATC GGC GGC GCG ATC GGC GGC GCG CAG CAG AAC AAC CGC TCC CGC TCC 225 225 TAC AGC AAG CTG TAC AGC AAG CTG CTG TGC GGC CTG TGC GGC CTG CTG GCC GAG CTG CTG GCC GAG CGC CGC CTG CTG CGC ATC CGC ATC 270 270 AGC CCG GAC AGG AGC CCG GAC AGG GTC TAC ATC GTC TAC ATC AAC TAT TAC GAC AAC TAT TAC GAC ATG ATG AAC AAC GCG GCC GCG GCC 315 315 AAT GTG GGC TGG AAT GTG GGC TGG AAC AAC TCC AAC AAC TCC ACC TTC GCC TAA ACC TTC GCC TAA 360 360 značilno po tem, da kodira za humani characterized in that it encodes for human MIF v epitelialnih MIF in epithelial
celicah različnih tkiv, kot naprimer v epitelialnih celicah humanega endometrija uterusa.cells of different tissues, such as in the epithelial cells of the human uterine endometrium.
6. Rekombinantni MIF z zaporedjem aminokislin6. Recombinant MIF with amino acid sequence Met Pro Met Phe Ile Val Asn Thr Asn Val Pro Arg Ala Ser ValMet Pro Met Phe Ile Val Asn Thr Asn Val Pro Arg Ala Ser Val 5 10 155 10 15 Pro Asp Gly Phe Leu Ser Glu Leu Thr Gin Gin Leu Ala Gin AlaPro Asp Gly Phe Leu Ser Glu Leu Thr Gin Gin Leu Ala Gin Ala 20 25 3020 25 30 Thr Gly Lys Pro Pro Gin Tyr Ile Ala Val His Val Val Pro AspThr Gly Lys Pro Pro Gin Tyr Ile Ala Val His Val Val Pro Asp 35 40 4535 40 45 Gin Gin Leu Met Ala Phe 50 Leu Met Ala Phe 50 Gly Gly Gly Ser Ser Glu Pro Cys Ala Leu Cys Gly Ser Ser Glu Pro Cys Ala Leu Cys 55 55 60 60 Ser Sir Leu His Ser Ile Leu His Ser Ile Gly Gly Lys Ile Gly Gly Ala Lys Ile Gly Gly Ala Gin Asn Arg Ser Gin Asn Arg Ser 65 65 70 70 75 75 Tyr Tyr Ser Lys Leu Leu Sir Lys Leu Leu Cys Cys Gly Leu Leu Ala Glu Gly Leu Leu Ala Glu Arg Leu Arg Ile Arg Leu Arg Ile 80 80 85 85 90 90 Ser Sir Pro Asp Arg Val Pro Asp Arg Val Tyr Tyr Ile Asn Tyr Tyr Asp Ile Asn Tyr Tyr Asp Met Asn Ala Ala Met Asn Ala Ala 95 95 100 100 105 105 Asn Asn Val Gly Trp Asn Val Gly Trp Asn Asn Asn Ser Thr Phe Ala * Ser Thr Phe Ala * 11 110 110 115 115 ali drugimi zaporedji or other sequences aminokislin, ki amino acids that se od prikazanega from the displayed
razlikujejo več kot v dvajsetih aminokislinah, ki je značilen po tem, da je pridobljen iz E.coli po postopku iz zahtevkov 3 in 4 ali na kakršenkoli podoben način ter njegova uporaba za pripravo farmacevtskih pripravkov, diagnostičnih reagentov kakor tudi njegova uporaba v katerekoli druge namene, ki ne spadajo v okvir neaplikativnih znanstvenih raziskav.differ by more than twenty amino acids, characterized in that it is obtained from E. coli by the method of claims 3 and 4 or in any similar manner, and its use for the preparation of pharmaceutical preparations, diagnostic reagents as well as its use for any other purpose , which are outside the scope of non-applied scientific research.
SI9400363A 1994-09-19 1994-09-19 Human macrophage migration inhibitory factor of nonlymphoid origin, expression of mif in e. coli and purification of recombinant protein SI9400363A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI9400363A SI9400363A (en) 1994-09-19 1994-09-19 Human macrophage migration inhibitory factor of nonlymphoid origin, expression of mif in e. coli and purification of recombinant protein
PCT/SI1995/000022 WO1996009389A2 (en) 1994-09-19 1995-09-18 Recombinant macrophage migration inhibitory factor; expression in escherichia coli and purification of recombinant protein
AU34895/95A AU3489595A (en) 1994-09-19 1995-09-18 Recombinant macrophage migration inhibitory factor; expression in escherichia coli and purification of recombinant protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9400363A SI9400363A (en) 1994-09-19 1994-09-19 Human macrophage migration inhibitory factor of nonlymphoid origin, expression of mif in e. coli and purification of recombinant protein

Publications (1)

Publication Number Publication Date
SI9400363A true SI9400363A (en) 1996-08-31

Family

ID=20431460

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9400363A SI9400363A (en) 1994-09-19 1994-09-19 Human macrophage migration inhibitory factor of nonlymphoid origin, expression of mif in e. coli and purification of recombinant protein

Country Status (3)

Country Link
AU (1) AU3489595A (en)
SI (1) SI9400363A (en)
WO (1) WO1996009389A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268151B1 (en) 2000-01-20 2001-07-31 Isis Pharmaceuticals, Inc. Antisense modulation of macrophage migration inhibitory factor expression
UY27304A1 (en) 2001-05-24 2002-12-31 Avanir Pharmaceuticals INHIBITORS OF THE INHIBITOR FACTOR OF MIGRATION OF MACROPHAGES AND METHODS FOR IDENTIFICATION
TW200418829A (en) 2003-02-14 2004-10-01 Avanir Pharmaceutics Inhibitors of macrophage migration inhibitory factor and methods for identifying the same
EP1861407A1 (en) 2005-03-24 2007-12-05 Avanir Pharmaceuticals Thienopyridinone derivatives as macrophage migration inhibitory factor inhibitors
JP2014530360A (en) 2011-10-07 2014-11-17 バクスター・ヘルスケヤー・ソシエテ・アノニムBaxter Healthcare SA OxMIF as a diagnostic marker

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011301A1 (en) * 1989-03-17 1990-10-04 Genetics Institute, Inc. Human macrophage migration inhibitory factor
US5328990A (en) * 1991-04-26 1994-07-12 The United States Of America As Represented By The Department Of Health And Human Services Isolation of macrophage migration inhibition factor from ocular lens
EP1741779A3 (en) * 1993-05-17 2010-03-24 The Picower Institute For Medical Research Inhibition of migration inhibitory factor in the treatment of diseases involving cytokine mediated toxicity

Also Published As

Publication number Publication date
WO1996009389A3 (en) 1996-05-23
AU3489595A (en) 1996-04-09
WO1996009389A2 (en) 1996-03-28

Similar Documents

Publication Publication Date Title
Horwitz et al. [30] Lens α-crystallin: Chaperone-like properties
Tovey et al. Cloning and sequencing of a cDNA expressing a recombinant house dust mite protein that binds human IgE and corresponds to an important low molecular weight allergen.
Quintero et al. A new family of K+ transporters from Arabidopsis that are conserved across phyla
Sen et al. Cooperative binding of Agrobacterium tumefaciens VirE2 protein to single-stranded DNA
Lin et al. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR 15 polypeptide
Hardie et al. In vitro activation of Escherichia coli prohaemolysin to the mature membrane‐targeted toxin requires HlyC and a low molecular‐weight cytosolic polypeptide
Sundström et al. The crystal structure of staphylococcal enterotoxin type D reveals Zn2+‐mediated homodimerization.
Komiyama et al. cDNA Cloning and Expression of Cry jII, the Second Major Allergen of Japanese Cedar Pollen
Van Eldik et al. Synthesis and expression of a gene coding for the calcium-modulated protein S100 beta and designed for cassette-based, site-directed mutagenesis.
EP1780270B1 (en) A detoxifizyme having activity of transforming aflatoxin and the gene encodes thereof
EP0495052A1 (en) Allergens of alder pollen and applications thereof
Komano et al. Purification of Sarcophaga (fleshfly) lectin and detection of sarcotoxins in the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina
EP1531160A1 (en) Recovery of a heat shock protein
Krokowski et al. Acquisition of a stable structure by yeast ribosomal P0 protein requires binding of P1A–P2B complex: in vitro formation of the stalk structure
JP2982908B2 (en) DNA encoding human FK506 binding protein
SI9400363A (en) Human macrophage migration inhibitory factor of nonlymphoid origin, expression of mif in e. coli and purification of recombinant protein
Van Heeke et al. Recombinant bovine heart mitochondrial F1-ATPase inhibitor protein: overproduction in Escherichia coli, purification, and structural studies
Chow et al. Characterization of Pen n 13, a major allergen from the mold Penicillium notatum
CA2574449C (en) Variants of group 1 allergens from poaceae having reduced allergenicity and maintained t-cell reactivity
EP0811687A2 (en) Polypeptides having l-asparaginase activity
Chaudhry et al. Isolation and characterization of a novel copper‐inducible metallothionein gene of a ciliate, Tetrahymena tropicalis lahorensis
Mozetič-Francky et al. High-yield expression and purification of recombinant human macrophage migration inhibitory factor
JP3172968B2 (en) Multimeric forms of IL-16, methods for producing them and their use
JP2016141678A (en) Human hmgb1 binder, human hmgb1 removal device and novel polypeptide
JPH10504452A (en) Novel topoisomerase IV, corresponding nucleotide sequences and uses thereof