SI9400230A - Heating isolative material - Google Patents

Heating isolative material Download PDF

Info

Publication number
SI9400230A
SI9400230A SI9400230A SI9400230A SI9400230A SI 9400230 A SI9400230 A SI 9400230A SI 9400230 A SI9400230 A SI 9400230A SI 9400230 A SI9400230 A SI 9400230A SI 9400230 A SI9400230 A SI 9400230A
Authority
SI
Slovenia
Prior art keywords
gas
filled
insulating gas
xenon
cut
Prior art date
Application number
SI9400230A
Other languages
Slovenian (sl)
Inventor
Ales Kralj
Original Assignee
Ales Kralj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ales Kralj filed Critical Ales Kralj
Priority to SI9400230A priority Critical patent/SI9400230A/en
Publication of SI9400230A publication Critical patent/SI9400230A/en

Links

Landscapes

  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)

Abstract

The thermo-insulation material "ksenoterm" (xenotherm) is a cheap, multi-purpose, high-performance, material intended primarily for the construction of well-insulated buildings where the height of conventional insulation materials might be an obstacle regarding price, aesthetics or technical solutions. This material is made of plastic sheets with deep drawn cells filled with an insulating gas. The exterior surface is additionally protected against diffusion. Before installing the material, tiles may be cut to obtain the appropriate shape. The estimated thermo-conduction is 0.007 W/mK, with xenon as the insulating gas and at room temperature.

Description

(57) Toplotno izolacijski material ksenoterm je večnamenski, visokozmogljiv, cenen material, namenjen predvsem za gradnjo dobro izoliranih objektov kjer bi debelina konvencionalnih izolacijskih materialov predstavljala cenovno, estetsko ali tehnično oviro. Material je narejen iz plastičnih folij z globoko vlečenimi celicami, ki so napolnjene z izolacijskim plinom. Zunanja površina je dodatno zaščitena pred difuzijo. Plošče materiala je mogoče pred namestitvijo še razrezati na poljubne oblike. Ocenjena toplotna prevodnost je 0.007 W/mK, z uporabo ksenona in pri sobni temperaturi.(57) Xenotherm thermal insulation material is a multifunctional, high-performance, low-cost material intended primarily for the construction of well-insulated structures where the thickness of conventional insulating materials would present a cost, aesthetic or technical barrier. The material is made of plastic films with deeply drawn cells filled with insulating gas. The outer surface is further protected from diffusion. Panels of material can be cut into any shape before installation. The estimated thermal conductivity is 0.007 W / mK, using xenon and at room temperature.

Sl 9400230 ASl 9400230 A

tt

KRALJ AlešKING ALES

Okiškega 25Okiškog 25

61110 LJUBLJANA61110 LJUBLJANA

Toplotno izolacijski materialThermal insulation material

Predmet izuma je visoko učinkovit toplotno izolacijski material na osnovi globoko vlečenih por polnjenih s plinom.The object of the invention is a highly efficient thermal insulation material based on deeply drawn pores filled with gas.

Tehnični problem, ki ga rešuje izum je dobra izolacija objektov in naprav široke porabe, ki imajo prostorske omejitve.A technical problem solved by the invention is good insulation of consumer goods and equipment having spatial limitations.

Običajni komercialni izolacijski materiali so osnovani na penjenih materialih, katerih pore so polnjene bodisi z zrakom ali katerim drugim plinom, ki se je sprostil ob postopku ekspandiranja. Ti plini imajo navadno visoko toplotno prevodnost (od 0.020 do 0.030 W/mK za sobne temperature). Stene por, ki predstavljajo 1 do 5 odstotkov povšine skozi katero prehaja toplota, imajo toplotno prevodnost 0.1 do 1.0 W/mK. Tako je skupna toplotna prevodnost takšnih materialov od 0,030 do 0.050 W/mK. Drug pristop k reševanju problema predstavlja vakuumska izolacija. Tu sta znani dve rešitvi: Dewarjeva posoda z visokim vakuumom, ki ima toplotno prevodnost primerljivo z 0.0001 W/mK in posoda z dvojnimi stenami napolnjenimi z žlahtnim plinom pod majhnim absolutnim tlakom (0.01 Bar). Primerljiva toplotna prevodnost zadnje rešitve je od 0.005 do 0.009 W/mK. Slabost Dewarjeve posode je, da je draga in omejena na manjše posode in rezervoarje. Rešitev z žlahtnim plinom pod nizkim tlakom se je v zadnjem času uspela uveljaviti le za gospodinjske hladilnike, kjer je uspela približno za šestkrat zmanjšati volumen, ki pripada toplotni izolaciji. Podobno kot pri Dewarjevem principu tudi tu ni mogoče izdelati komercialnih splošno uporabljivih izolacijskih elementov, ker so vezani na vakuumirane ploščate kovinske posode v katerih je izolacijski plin. Klasični penjeni ali vlaknasti (mineralne volne) materiali zavzemajo preveč prostora za sodobne zahteve po kvalitetni izolaciji.Conventional commercial insulation materials are based on foamed materials whose pores are filled with either air or any other gas released during the expansion process. These gases typically have high thermal conductivity (0.020 to 0.030 W / mK for room temperatures). The pore walls, which represent 1 to 5 percent of the surface through which heat passes, have a thermal conductivity of 0.1 to 1.0 W / mK. Thus, the total thermal conductivity of such materials is 0.030 to 0.050 W / mK. Another approach to solving the problem is vacuum insulation. Two solutions are known here: a high vacuum Dewar tank with a thermal conductivity comparable to 0.0001 W / mK and a double wall container filled with noble gas at low absolute pressure (0.01 Bar). The comparable thermal conductivity of the last solution is from 0.005 to 0.009 W / mK. The disadvantage of Dewar's container is that it is expensive and limited to smaller vessels and tanks. The low-pressure noble gas solution has only recently been able to apply to household refrigerators, where it has managed to reduce the volume pertaining to thermal insulation by about six times. Similar to the Dewar principle, commercial generic insulation elements cannot be manufactured here because they are bonded to vacuum flat metal containers containing gas. Classic foamed or fibrous (mineral wool) materials take up too much space for modern requirements for quality insulation.

Po izumu je problem rešen z večslojno folijo iz amorfnega plasta, ki ima vlečene pore premera do 8 mm. Po končanem postopku dobimo večslojni mehurčkasti material. Izdelava poteka v atmosferi izolacijskega plina npr. ksenona, ki nam zagotovi visoke izolacijske sposobnosti. Za primer polnenja s ksenonom dobimo toplotno prevodnost 0.007 W/mK Dobljeno večplastno rezino izolacijskega materiala je potrebno še zaščititi pred uhajanjem izolacijskega plina in vdiranjem okoliškega zraka ali drugih plinov v notranjost zaradi mikro poroznosti elastomernih materialov. Ta problem je rešen s tanko aluminjasto (ali drugo) folijo z majhno prepustnostjo, ki je nalepljena na rezino z zunaje strani. Predvidena potrebna debelina aluminjaste 'folije je 0.02 mm. Aluminjasto folijo pa je potrebno z zunanje strani zaščititi še pred mehanskimi poškodbami npr. pri izdelavi ometa na zgradbi. Opisana rešitev je po načinu uporabe identična s klasičnimi penjenimi materiali, ki jih lahko na mestu uporabe razrežemo na primerne kose in oblike in take namestimo na željeno mesto. Razlika je le v tem, daje potrebno v roku 24 ur rezana mesta na rezini izolacije ponovno zaščititi z aluminjasto ali drugo folijo, ki je lahko npr. pripravljena v obliki samolepljivega traku. Izvedba izuma je prikazana s pomočjo skic.According to the invention, the problem is solved by a multilayer film of an amorphous layer having drawn pores up to 8 mm in diameter. Upon completion of the process, a multilayer bubble material is obtained. Production takes place in an atmosphere of insulating gas, e.g. xenon which provides us with high insulating ability. In the case of xenon filling, a thermal conductivity of 0.007 W / mK is obtained. The resulting multi-layer slice of the insulating material must be protected against leakage of the insulating gas and the intrusion of ambient air or other gases into the interior due to the micro porosity of the elastomeric materials. This problem is solved with thin aluminum (or other) low-permeability foil glued to the slice from the outside. The required thickness of the aluminum foil is 0.02 mm. However, the aluminum foil must be protected from the outside from mechanical damage, for example. when making plaster on a building. The described solution is identical in its use to the classic foamed materials, which can be cut into suitable pieces and shapes at the place of use and placed in the desired place. The only difference is that within 24 hours the cut points on the insulation slice need to be re-protected with aluminum or other foil, which can be e.g. prepared in the form of adhesive tape. An embodiment of the invention is shown by means of sketches.

Na skici (1) je prikazan prostorski izgled treh plastičnih folij z globoko vlečenimi valjastimi celicami. Valjaste celice so premera 6 do 12 mm z globino do 5 mm. Debelina sten celice je predvidoma od 0.01 do 0.03 mm. Na skici (1) prav tako vidimo način zlaganja posameznih folij v sloje. Pravilno zložene folije tvorijo homogeno strukturo medsebojno ločenih celic, ki so za en sloj označene na skici (2) z (a),(b) in (c). Spoj (d) je tesen, tako da preprečuje prost pretok izolacijskega plina. En sloj izolacijskega materiala torej tvorita dve nasprotno obrnjeni in stisnjeni foliji z globoko vlečenimi celicami. Sloje nato naprej zlagamo v rezino željene debeline. Rezino izolacijskega materiala nato z obeh strani oblečemo še v zaščitne folije kot kaze skica (3). Na skici (3) je z (e) označena rezina sestavljena iz slojev izolacijskega materiala, z oznako (f) je označen končni sloj iz plastične folije, ki zaključi zadnjo površino, z oznako (g) je označen protidifuzijski zaščitni sloj, ki je predvidoma narejen iz 0.02 mm debele aluminijaste folije in končno oznaka (h), ki označuje sloj, ki ščiti sloj (g) pred mehanskimi poškodbami. Izbira materiala za zaščitni sloj (h) je odvisna od namena izolacije. Za elemente, kjer je sloj (g) zaščiten že z konstrukcijo elementa (npr. stene gospodinjskega hladilnika), je sloj (h) nepotreben. Rezine izolacijskega materiala se izdelajo v kvadratne plošče z robom npr, 1.5 m. Stranske robove rezine je potrebno dodatno zaščititi z zaščitnimi sloji (g) in (h). Vsi dosedaj opisani postopki se izvajajo v atmosferi plina, ki ga želimo imeti v celični strukturi in po potrebi pri povišani temperaturi. Povišanje temperature je potrebno, če se opisani material izdeluje za uporabo pri višjih temperaturah. Trenutno znani najprimernejši plin za polnitev je ksenon. Ima najmanjšo toplotno prevodnost pri veliki kemični stabilnosti in nestrupenosti. Zaščitni sloj (g) za zaščito stranskih robov mora biti iz materiala z toplotno prevodnostjo pod 20 W/mK, da ne povzroča toplotnega mostu. Rezine tako izdelanega izolacijskega materiala je mogoče rezati v poljubne oblike. Omejitev predstavlja le potreba po zaščiti odrezane površine proti difuzijski degeneraciji notranjosti. Zaščita se predvidoma izvede s samoleplivo folijo, ki izpolnjuje zahteve za folije (g) in (h). Predvidoma je na voljo 24 ur med rezanjem in izvedbo ponovne zatesnitve rezanega robu. Plošče toplotne izolacije se lahko potem pritrjujejo na konstrukcije z oblikovnimi in lepljenimi zvezami.Sketch (1) shows the spatial appearance of three plastic films with deeply drawn cylindrical cells. The cylindrical cells are 6 to 12 mm in diameter with a depth of 5 mm. The wall thickness of the cell is estimated to be 0.01 to 0.03 mm. In (1), we also see a way to stack individual foils into layers. Properly folded films form a homogeneous structure of cells separated from each other, which are indicated for a single layer in (2) by (a), (b) and (c). Compound (d) is tight so as to prevent the free flow of insulating gas. Thus, one layer of insulating material is formed by two inverted and compressed films with deeply drawn cells. The layers are then further folded into a slice of the desired thickness. The slice of the insulation material is then coated on both sides with protective film as shown in the drawing (3). In the drawing (3), (e) the slice is made up of layers of insulating material, the mark (f) indicates the final layer of plastic film that completes the rear surface, and the mark (g) indicates the anti-diffusion protective layer, which is intended made of 0.02 mm thick aluminum foil and finally a mark (h) indicating a layer that protects the layer (g) from mechanical damage. The choice of material for the protective layer (h) depends on the purpose of the insulation. For elements where layer (g) is already protected by the construction of the element (eg, the walls of a household refrigerator), layer (h) is unnecessary. Slices of insulating material are made into square panels with an edge of, for example, 1.5 m. The side edges of the slice must be further protected by the protective layers (g) and (h). All the procedures described so far are performed in the atmosphere of the gas that we want to have in the cellular structure and, if necessary, at elevated temperature. A temperature rise is required if the material described is manufactured for use at higher temperatures. Currently, the best known filling gas is xenon. It has the lowest thermal conductivity at high chemical stability and non-toxicity. The protective layer (g) for protecting the side edges must be of a material with a thermal conductivity below 20 W / mK in order not to cause a thermal bridge. Slices of such insulating material can be cut into any shape. The only limitation is the need to protect the severed surface against the diffuse degeneration of the interior. The protection is presumably carried out with a self-adhesive foil that meets the requirements for foils (g) and (h). It is foreseen that there will be 24 hours between the cutting and the re-sealing of the cut edge. The thermal insulation panels can then be attached to structures with molded and glued joints.

Aleš KRALJAleš KRALJ

Claims (1)

Večnamenski toplotno izolacijski material s celično strukturo napolnjeno splinom značilen po tem, da ima celično strukturo izdelano z mehanskim postopkom plastičnega preoblikovanja in da ima celice napolnjene s posebej izbranim plinom.Multipurpose thermal insulation material with a cell structure filled with gas, characterized in that it has a cell structure made by a mechanical plastic transformation process and that the cells are filled with a specially selected gas. Aleš KRALJ /JAles KRALJ / J SkicaSketch Aleš KRALJAleš KRALJ IzvlečekExcerpt Toplotno izolacijski material je večnamenski, visokozmogljiv, cenen material, namenjen predvsem za gradnjo dobro izoliranih objektov kjer bi debelina konvencionalnih izolacijskih materialov predstavljala cenovno, estetsko ali tehnično oviro. Material je narejen iz plastičnih folij z globoko vlečenimi celicami, ki so napolnjene z izolacijskim plinom. Zunaja površina je dodatno zaščitena pred difuzijo Plošče materiala je mogoče pred namestitvijo še razrezati na poljubne oblike. Ocenjena toplotna prevodnost je 0.007 W/mK, z uporabo ksenona in pri sobni temperaturi.Thermal insulation material is a multifunctional, high-performance, low-cost material designed primarily for the construction of well-insulated structures where the thickness of conventional insulation materials would represent a cost, aesthetic or technical barrier. The material is made of plastic films with deeply drawn cells filled with insulating gas. The outer surface is further protected from diffusion. The panels of material can be cut into any shape before installation. The estimated thermal conductivity is 0.007 W / mK, using xenon and at room temperature.
SI9400230A 1994-05-20 1994-05-20 Heating isolative material SI9400230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9400230A SI9400230A (en) 1994-05-20 1994-05-20 Heating isolative material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9400230A SI9400230A (en) 1994-05-20 1994-05-20 Heating isolative material

Publications (1)

Publication Number Publication Date
SI9400230A true SI9400230A (en) 1994-12-31

Family

ID=20431396

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9400230A SI9400230A (en) 1994-05-20 1994-05-20 Heating isolative material

Country Status (1)

Country Link
SI (1) SI9400230A (en)

Similar Documents

Publication Publication Date Title
EP1265746B1 (en) Evacuated jacket for thermal insulation and process for manufacturing the same
US10253918B2 (en) Insulated storage and transportation containers
KR20030019473A (en) Evacuated panel for thermal insulation of a body having non-planar surfaces
US20020144482A1 (en) Shapeable vacuum insulation panel containing a single core component
US9975686B2 (en) Vacuum insulation panel and container comprising vacuum insulation panels
US20170276287A1 (en) Vacuum heat insulation body
EP2993040A1 (en) Outer cover material for vacuum insulator and high-performance vacuum insulator comprising same
EP2963329A1 (en) Vacuum thermal insulation material
CN106662286A (en) Vacuum heat-insulating material, and heat-insulating container, dwelling wall, transport machine, hydrogen transport tanker, and lng transport tanker equipped with vacuum heat-insulating material
JP5907204B2 (en) Manufacturing method of vacuum insulation
TW494207B (en) Evacuated panel for thermal insulation of cylindrical bodies
US10633855B2 (en) Aerogel containing foam board
SI9400230A (en) Heating isolative material
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
US20030091776A1 (en) Tubular thermoinsulating device and processes for the manufacture thereof
EP1916465B1 (en) Vacuumed heat barrier
CN111801525B (en) Vacuum heat insulating material and heat insulating box
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
KR101749397B1 (en) Vacuum Insulation Panel
CN1439086A (en) Evacuated panel for thermal insulation of cylindrical bodies
JP7305922B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP2008157300A (en) Heat insulating sheet and heat insulating sheet composite body