SI9300622A - Integrated circuit with magnetic sensor - Google Patents

Integrated circuit with magnetic sensor Download PDF

Info

Publication number
SI9300622A
SI9300622A SI9300622A SI9300622A SI9300622A SI 9300622 A SI9300622 A SI 9300622A SI 9300622 A SI9300622 A SI 9300622A SI 9300622 A SI9300622 A SI 9300622A SI 9300622 A SI9300622 A SI 9300622A
Authority
SI
Slovenia
Prior art keywords
magnetic sensor
integrated circuit
metal layer
magnetic field
flat coil
Prior art date
Application number
SI9300622A
Other languages
Slovenian (sl)
Inventor
Janez Trontelj
Roman Opara
Anton Pletersek
Original Assignee
Fakulteta Za Elektrotehniko In
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fakulteta Za Elektrotehniko In filed Critical Fakulteta Za Elektrotehniko In
Priority to SI9300622A priority Critical patent/SI9300622A/en
Priority to EP94118310A priority patent/EP0655628A3/en
Publication of SI9300622A publication Critical patent/SI9300622A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/025Compensating stray fields

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Integrated circuit with a magnetic field sensor (MS) which is produced on a silicon substrate (S) with another integrated circuit, comprises a flat coil (T) surrounding the active region (A) of the magnetic field sensor (MS) with its inner winding and produced in a first metal layer (M1) over the silicon substrate (S). The inner winding of the flat coil (T) is connected to a connection strip (SL1) via four inner connection contacts (K1) which are arranged symmetrically with respect to the magnetic field sensor (MS). The outer winding of the flat coil (T) is connected via an outer connection contact (K2) to a connection strip (SL2). The connection strips (SL1, SL2) are produced in a second metal layer (M2). The circuit according to the invention allows accurate self-calibration of the sensitivity and, in addition, fast self-testing. Compensation of the sensitivity variation with temperature and time as well as a non-ideal symmetry of the crossed embodiment of the magnetic field sensor and also of the offset voltage is furthermore made possible. <IMAGE>

Description

Integrirano vezje z magnetnim senzorjemIntegrated circuit with magnetic sensor

Predmet izuma je integrirano vezje z magnetnim senzorjem, na katerega aktivnem področju integrirano vezje po izumu lahko ustvari referenčno magnetno polje.The subject of the invention is an integrated circuit with a magnetic sensor, in which active circuit an integrated circuit of the invention can generate a reference magnetic field.

Izum je po mednarodni klasifikaciji patentov uvrščen v razred H 01L 27/22.According to the international patent classification, the invention is classified in class H 01L 27/22.

Tehnični problem, ki ga rešuje izum, je izdelati takšno integrirano vezje z magnetnim senzorjem, da se bo s tem vezjem lahko tvorilo referenčno magnetno polje za hitro testiranje ali kalibriranje magnetnega senzorja, za kompenziranje temperaturnega in časovnega spreminjanja občutljivosti magnetnega senzorja ter za kompenziranje tako neidealnosti v simetriji križne izvedbe magnetnega senzorja kot napetosti ničenja, pri čemer pa naj ima magnetni senzor v obsegu normalnih napajalnih napetosti takšno zmogljivost kot drugi znani integrirani magnetni senzorji.A technical problem solved by the invention is to design such an integrated circuit with a magnetic sensor that it can form a reference magnetic field for rapid testing or calibration of the magnetic sensor, to compensate for the temperature and time variation of the sensitivity of the magnetic sensor, and to compensate for such non-ideality in the cross-sectional symmetry of the magnetic sensor as a discharge voltage, while the magnetic sensor, within the range of normal supply voltages, should have the same capacity as other known integrated magnetic sensors.

Znana so številna integrirana vezja z magnetnim senzorjem. Neidealnost simetrije pri križni izvedbi magnetnega senzorja in napetosti ničenja se skuša kompenzirati, tako da se ustrezajoče si elemente magnetnega senzorja izvede kar se da enake, ali pa s primernimi lastnostmi drugih elementov elektronskega integriranega vezja. Magnetni senzor se testira tako, da se magnetno polje ustvari s posebno in od integriranega vezja ločeno pripravo. Pri znanih integriranih vezjih z magnetnim senzorjem se občuti pomanjkljivost, da ni možno na preprost način ugotoviti defekta ter avtomatsko korigirati dolgotrajnih sprememb na magnetnem senzorju oziroma na spremljajočem ga elektronskem vezju.Many integrated circuits with a magnetic sensor are known. The non-ideality of symmetry in the cross design of the magnetic sensor and the voltage of the magnetic stripe shall be compensated for by matching the corresponding elements of the magnetic sensor as closely as possible, or by the corresponding properties of other elements of the electronic integrated circuit. The magnetic sensor is tested in such a way that a magnetic field is created by means of a separate and separate device from the integrated circuit. For known integrated circuits with a magnetic sensor, the disadvantage is that it is not possible to easily detect the defect and to automatically correct long-term changes on the magnetic sensor or on the accompanying electronic circuit.

Navedeni tehnični problem je rešen z integriranim vezjem po izumu z magnetnim senzorjem, ki je skupaj z ostalim integriranim vezjem izveden na silicijevem substratu, in je značilen po tem, daje ploskovna tuljavica, ki s svojim notranjim ovojem obdaja aktivno področje magnetnega senzorja, izvedena v prvi kovinski plasti nad substratom, in da je notranji ovoj ploskovne tuljavice preko štirih simetrično glede na magnetni senzor nameščenih notranjih priključnih kontaktov povezan s priključnim trakom, ki je izveden v drugi kovinski plasti, ki je izvedena nad prvo kovinsko plastjo, in je zunanji ovoj ploskovne tuljavice preko zunanjega priključnega kontakta povezan s priključnim trakom, ki je izveden v drugi kovinski plasti.Said technical problem is solved by an integrated circuit of the invention with a magnetic sensor, which, together with the other integrated circuit, is made on a silicon substrate, characterized in that the planar coil which surrounds the active region of the magnetic sensor with its inner envelope is made in the first the metal layer above the substrate, and that the inner coil of the flat coil is symmetrically symmetrical with respect to the magnetic sensor of the mounted internal contact pins connected to a connecting strip made in the second metal layer which is made above the first metal layer and is the outer coil of the flat coil through an external connection contact connected to a connection strip made in another metal layer.

Integrirano vezje po izumu z magnetnim senzorjem je nadalje značilno po tem, da je notranji ovoj ploskovne tuljavice od aktivnega področja magnetnega senzorja oddaljen za najmanjšo tehnološko dosegljivo razdaljo in daje prva kovinska plast od dna aktivnega področja oddaljena za najmanjšo tehnološko dosegljivo razdaljo in da so ovoji ploskovne tuljavice drug od drugega oddaljeni za najmanjšo tehnološko dosegljivo razdaljo.The integrated circuit of the invention with a magnetic sensor is further characterized by the fact that the inner sheath of the flat coil is away from the active area of the magnetic sensor by a minimum technologically achievable distance and that the first metal layer is distant from the bottom of the active region by a minimum technologically achievable distance and coils away from each other for the shortest technologically achievable distance.

Integrirano vezje po izumu z magnetnim senzorjem je glede na znana vezja zanesljivejše, saj se s tvorjenjem magnetnega polja s pomočjo lastne ploskovne tuljavice lahko hitro in preprosto ugotovi prisotnost okvare. Z magnetnim poljem ploskovne tuljavice se avtomatsko korigira dolgotrajno spreminjanje tako lastnosti senzorja kot tudi spremljajoče ga elektronike, s čimer se poveča zanesljivost integriranega vezja obravnavane vrste.The integrated circuit of the invention with a magnetic sensor is, according to known circuits, more reliable, since it is possible to quickly and easily detect the presence of a fault by creating a magnetic field using its own flat coil. The magnetic field of the flat coil automatically corrects the long-term change in both the properties of the sensor and the accompanying electronics, thereby increasing the reliability of the integrated circuit of the type in question.

Izum bomo v nadaljnjem podrobno opisali na osnovi izvedbenega primera ter pripadajočega načrta, ki prikazuje na sl.l shematičen prikaz integriranega vezja po izumu z magnetnim senzorjem v pogledu zvrha, sl.2 shematičen prikaz integriranega vezja po izumu v prečnem prerezu.The invention will now be described in further detail based on an embodiment and an accompanying plan showing in FIG. 1 a schematic view of an integrated circuit of the invention with a magnetic sensor in view of the view, FIG. 2 schematically of an integrated circuit of the invention in cross section.

Integrirano vezje z magnetnim senzorjem MS je na shematičen način prikazano v pogledu zvrha na sl. 1 in v prečnem prerezu na sl. 2. Magnetni senzor MS v križni izvedbi je na sicer poznan način izveden na silicijevem substratu S in je opremljen z napetostnima priključnima trakovoma SU1, SU2 in tokovnima priključnima trakovoma Sil, SI2. Vsi štirje priključni trakovi so izvedeni v drugi kovinski plasti M2, ki leži nad prvo kovinsko plastjo Ml in jo od le-te ločuje oksidna plast. Ta in druge oksidne plasti zaradi preglednosti na sl. 1 in 2 niso prikazane.The integrated circuit with the MS magnetic sensor is shown schematically in the top view of FIG. 1 and in cross section in FIG. 2. The magnetic sensor MS in the cross design is otherwise known in the known manner on the silicon substrate S and is provided with voltage connecting strips SU1, SU2 and current connecting strips Sil, SI2. All four connection strips are made in the second metal layer M2, which lies above the first metal layer Ml and is separated from it by the oxide layer. This and other oxide layers for transparency in FIG. 1 and 2 are not shown.

V prvi kovinski plasti Ml je izvedena ploskovna tuljavica T, katere notranji ovoj v najmanjši tehnološko dosegljivi razdalji D obdaja aktivno področje A magnetnega senzorja MS. Notranji ovoj ploskovne tuljavice T je preko štirih simetrično glede na magnetni senzor MS, npr. v prostorih med kraki magnetnega senzorja MS v križni izvedbi, nameščenih notranjih priključnih kontaktov KI povezan s priključnim trakom SLI. Ovoji ploskovne tuljavice T so v prvi kovinski plasti Ml razmeščeni tako, da je med njimi vsakič najmanjša tehnološko dosegljiva razdalja d. Navedeni zahtevi za razdalji D in d morata biti izpolnjeni, da je upor ploskovne tuljavice T čim manjši. Zunanji ovoj ploskovne tuljavice T je preko zunanjega priključnega kontakta K2 povezan s priključnim trakom SL2. Priključna trakova SLI, SL2 za priključitev ploskovne tuljavice T na tokovni izvor sta izvedena v drugi kovinski plasti M2.In the first metal layer Ml, a planar coil T is made, the inner sheath of which in the smallest technologically achievable distance D surrounds the active area A of the magnetic sensor MS. The inner coil of the flat coil T is symmetrically over four with respect to the magnetic sensor MS, e.g. in the spaces between the arms of the magnetic sensor MS in the cross-section, the internal terminal contacts KI connected to the SLI terminal strip are installed. The coils of the flat coils T are arranged in the first metal layer Ml such that the minimum technologically achievable distance d is between them. The stated requirements for distances D and d must be met in order to minimize the resistance of the flat coil T. The outer coil of the flat coil T is connected to the SL2 connecting strip via the external terminal contact K2. The connecting straps SLI, SL2 for connecting the flat coil T to the current source are made in another metal layer M2.

Da se kar najbolje izkoristi magnetno polje ploskovne tuljavice T, sta oddaljenost Y prve kovinske plasti Ml od površine substrata S in globina aktivnega področja A magnetnega senzorja MS kar se da majhni. Zato je oddaljenost X prve kovinske plasti Ml, torej tudi ravnine ploskovne tuljavice T, od dna aktivnega področja A tehnološko dosegljivo najmanjša. Pri tem je značilno, da je globina GS enaka približno trikratni razdalji Y. Ploskovna tuljavica T ima značilno 5 do 10 ovojev, pri čemer število ovojev zavisi predvsem od razsežnosti magnetnega senzorja MS.To maximize the use of the magnetic field of the planar coil T, the distance Y of the first metal layer Ml from the surface of the substrate S and the depth of the active region A of the magnetic sensor MS are as small as possible. Therefore, the distance X of the first metal layer Ml, ie also the plane of the plane coil T, from the bottom of the active region A is technologically achievable minimum. Typically, the depth of the GS is about three times the distance Y. The planar coil T typically has 5 to 10 sheaths, with the number of sheaths mainly dependent on the magnitude of the magnetic sensor MS.

S priključitvijo integrirane ploskovne tuljavice T na tokovni izvor se okoli nje ustvari referenčno magnetno polje, kije v neposredni bližini tuljavičine ravnine in torej tudi v aktivnem področju A usmerjeno pravokotno na to ravnino. Gostota magnetnega polja v aktivnem področju A je natančno določena s parametri ploskovne tuljavice T ter s permeabilnostjo silicija. Zato je z vezjem po izumu možna natančna samokalibracija občutljivosti in tudi hitro preskušanje vezja po izumu. V vezju po izumu se s tvorjenjem primernega magnetnega polja lahko kompenzira temperaturno in časovno spreminjanje občutljivosti magnetnega senzorja ter neidealnosti tako v simetriji križne izvedbe magnetnega senzorja MS kot tudi napetost ničenja. V obsegu normalnih napajalnih napetosti magnetnega senzorja ima integrirano vezje po izumu z magnetnim senzorjem takšno zmogljivost kot drugi znani integrirani magnetni senzorji.By connecting the integrated plane coil T to the current source, a reference magnetic field is created around it, which is in the immediate vicinity of the coil plane, and therefore also in the active region A directed perpendicularly to that plane. The magnetic field density in active area A is precisely determined by the parameters of the flat coil T and the permeability of silicon. Therefore, accurate sensitivity self-calibration and also rapid testing of the circuit according to the invention are possible with the circuit of the invention. In the circuit of the invention, the formation of a suitable magnetic field can compensate for the temperature and time variation of the sensitivity of the magnetic sensor and the non-ideality of both the symmetry of the cross-sectional design of the magnetic sensor MS and the voltage of the charge. Within the range of normal supply voltage of a magnetic sensor, the integrated circuit of the invention with a magnetic sensor has the same capacity as other known integrated magnetic sensors.

ZaFor

Fakulteta za elektrotehniko in računalništvo:Faculty of Electrical Engineering and Computer Science:

FATENTRA PISARNAFATENTRA PISARNA

Claims (4)

Patentni zahtevkiPatent claims 1. Integrirano vezje z magnetnim senzorjem (MS), ki je skupaj z ostalim integriranim vezjem izveden na silicijevem substratu (S), označeno s tem, da je ploskovna tuljavica (T), s svojim notranjim ovojem obdajajoča aktivno področje (A) magnetnega senzorja (MS), izvedena v prvi kovinski plasti (Ml) nad substratom (S), da je notranji ovoj ploskovne tuljavice (T) preko štirih simetrično glede na magnetni senzor (MS) nameščenih notranjih priključnih kontaktov (KI) povezan s priključnim trakom (SLI), ki je izveden v drugi kovinski plasti (M2), ki je izvedena nad prvo kovinsko plastjo (Ml), in je zunanji ovoj ploskovne tuljavice (T) preko priključnega kontakta (K2) povezan s priključnim trakom (SL2), ki je izveden v drugi kovinski plasti (M2).An integrated magnetic sensor (MS) circuit coupled with the other integrated circuit on a silicon substrate (S), characterized in that the planar coil (T) encloses the active region (A) of the magnetic sensor with its inner envelope (MS), made in the first metal layer (Ml) above the substrate (S), that the inner coil of the flat coil (T) is connected to the connecting strip (SLI) symmetrically with respect to the magnetic sensor (MS) of the mounted internal contact pins (KI) ), which is made in the second metal layer (M2), which is made above the first metal layer (Ml), and the outer sheath of the flat coil (T) is connected to the connecting strip (SL2) by the connecting contact (K2). in another metal layer (M2). 2. Integrirano vezje po zahtevku 1, označeno s tem, da je notranji ovoj ploskovne tuljavice (T) od aktivnega področja (A) magnetnega senzorja (MS) oddaljen za najmanjšo tehnološko dosegljivo razdaljo (D).An integrated circuit according to claim 1, characterized in that the inner sheath of the flat coil (T) is spaced from the active area (A) of the magnetic sensor (MS) by a minimum technologically achievable distance (D). 3. integrirano vezje po zahtevku 2, označeno s tem, da je prva kovinska plast (Ml) od dna aktivnega področja (A) oddaljena za najmanjšo tehnološko dosegljivo razdaljo (X).An integrated circuit according to claim 2, characterized in that the first metal layer (Ml) is spaced from the bottom of the active region (A) by a minimum technologically achievable distance (X). 4. Integrirano vezje po zahtevku 3, označeno s tem, da so ovoji ploskovne tuljavice (T) drug od drugega oddaljeni za najmanjšo tehnološko dosegljivo razdaljo (d).An integrated circuit according to claim 3, characterized in that the sheaths of the flat coils (T) are spaced from each other by the minimum technologically achievable distance (d).
SI9300622A 1993-11-30 1993-11-30 Integrated circuit with magnetic sensor SI9300622A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI9300622A SI9300622A (en) 1993-11-30 1993-11-30 Integrated circuit with magnetic sensor
EP94118310A EP0655628A3 (en) 1993-11-30 1994-11-21 Integrated circuit with a magnetic field sensor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9300622A SI9300622A (en) 1993-11-30 1993-11-30 Integrated circuit with magnetic sensor

Publications (1)

Publication Number Publication Date
SI9300622A true SI9300622A (en) 1995-06-30

Family

ID=20431285

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9300622A SI9300622A (en) 1993-11-30 1993-11-30 Integrated circuit with magnetic sensor

Country Status (2)

Country Link
EP (1) EP0655628A3 (en)
SI (1) SI9300622A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE258311T1 (en) * 1997-03-24 2004-02-15 Em Microelectronic Marin Sa MEASURING METHOD FOR DETECTING A SHORT CIRCUIT BETWEEN THE TURNS OF A COIL INTEGRATED ON A CHIP AND INTEGRATED CIRCUIT TAILORED TO SUCH A MEASURING METHOD
CH692162A5 (en) 1997-03-24 2002-02-28 Em Microelectronic Marin Sa Measuring method for detecting a short circuit between turns of a coil integrated on a chip, and integrated circuit structure suitable for such a measuring method.
GB2353362B (en) * 1999-08-19 2003-10-08 Bayerische Motoren Werke Ag A transducer
CN1314975C (en) 2001-04-09 2007-05-09 皇家菲利浦电子有限公司 Integrated circuit with power supply test interface
MY165848A (en) * 2012-03-26 2018-05-17 Silterra Malaysia Sdn Bhd Parallel stacked symmetrical and differential inductor
SI25817A (en) 2019-03-07 2020-09-30 Univerza V Ljubljani, Fakulteta Za Elektrotehniko A magnetic sensor that includes generating a test dynamic magnetic field

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH651151A5 (en) * 1979-11-27 1985-08-30 Landis & Gyr Ag MEASURING CONVERTER FOR MEASURING A MAGNETIC FIELD, IN PARTICULAR GENERATED BY A MEASURING CURRENT.
CH660237A5 (en) * 1982-04-08 1987-03-31 Landis & Gyr Ag Arrangement for detecting the zero crossing of a magnetic field
US5247278A (en) * 1991-11-26 1993-09-21 Honeywell Inc. Magnetic field sensing device

Also Published As

Publication number Publication date
EP0655628A3 (en) 1995-11-02
EP0655628A2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
KR101429356B1 (en) Electronic device comprising hall effect region with three contacts
US10107871B2 (en) Monolithic three-axis magnetic field sensor and its manufacturing method
US8134361B2 (en) Magnetic sensor including magnetic field detectors and field resistors arranged on inclined surfaces
US10353020B2 (en) Manufacturing method for integrated multilayer magnetoresistive sensor
US20170123016A1 (en) Monolithic three-axis linear magnetic sensor and manufacturing method thereof
CN102057290B (en) Magnetoimpedance sensor element
EP2878940B1 (en) MEMS pressure sensor field shield layout for surface charge immunity in oil filled packaging
CN1251171A (en) Magnetic current sensor
US20150135854A1 (en) Mems pressure sensor field shield layout for surface charge immunity in oil filled packaging
WO2021131606A1 (en) Magnetic sensor
US7759955B2 (en) Method and device for position detection using connection pads
JP2015015390A (en) Offset voltage correction method of hall device and hall sensor employing the same
SI9300622A (en) Integrated circuit with magnetic sensor
JP7485045B2 (en) Pressure sensor structure, pressure sensor device, and method for manufacturing pressure sensor structure
US9664753B2 (en) Hall-effect-based magnetic field sensor having an improved output bandwidth
EP3282484B1 (en) Voltage controlled resistor
US11249131B2 (en) Test apparatus and testing method using the same
JP4055005B2 (en) Manufacturing method of magnetic sensor
US20050280107A1 (en) Self aligned hall with field plate
US20070047172A1 (en) Monolithic arrangement, especially an integrated circuit, with a floating electrode
CN113945872A (en) Z-axis gradient magnetic field sensor chip
EP3794649A1 (en) Vertical hall elements having reduced offset and method of manufacturing thereof
US6861717B2 (en) Device for defecting a magnetic field, magnetic field measure and current meter
Andrä et al. Current measurements based on thin-film magnetoresistive sensors
KR100241236B1 (en) Magnetic sensor with hall element using temperature compensating resistance