SI9200263A - Process for catalytic oxidation of organic impurities in waste waters - Google Patents

Process for catalytic oxidation of organic impurities in waste waters Download PDF

Info

Publication number
SI9200263A
SI9200263A SI9200263A SI9200263A SI9200263A SI 9200263 A SI9200263 A SI 9200263A SI 9200263 A SI9200263 A SI 9200263A SI 9200263 A SI9200263 A SI 9200263A SI 9200263 A SI9200263 A SI 9200263A
Authority
SI
Slovenia
Prior art keywords
liquid phase
desorption
temperatures
phases
bar
Prior art date
Application number
SI9200263A
Other languages
Slovenian (sl)
Other versions
SI9200263B (en
Inventor
Janez Levec
Albin Pintar
Original Assignee
Kemijski Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemijski Inst filed Critical Kemijski Inst
Priority to SI9200263A priority Critical patent/SI9200263B/en
Priority to CA002147253A priority patent/CA2147253A1/en
Priority to AT93924005T priority patent/ATE148429T1/en
Priority to EP93924005A priority patent/EP0664771B1/en
Priority to JP6509518A priority patent/JPH08506044A/en
Priority to ES93924005T priority patent/ES2096954T3/en
Priority to DK93924005.7T priority patent/DK0664771T3/en
Priority to PCT/DE1993/001016 priority patent/WO1994008905A1/en
Priority to DE59305357T priority patent/DE59305357D1/en
Priority to AU53683/94A priority patent/AU5368394A/en
Publication of SI9200263A publication Critical patent/SI9200263A/en
Priority to FI951788A priority patent/FI951788A/en
Publication of SI9200263B publication Critical patent/SI9200263B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Abstract

An effective process combines the adsorption of toxic organic pollutants of waste water on active coal, the desorption of the pollutants in boiling water and the oxidative decomposition of the desorbed pollutants in a dropping bed reactor.

Description

POSTOPEK ZA ČIŠČENJE INDUSTRIJSKIH ODPADNIH VODA Z NIZKO VSEBNOSTJO TOKSIČNIH ORGANSKIH SNOVIPROCEDURE FOR THE CLEANING OF INDUSTRIAL WASTE WATERS WITH LOW CONTENT OF TOXIC ORGANIC SUBSTANCES

Tehnično področje izumaTechnical field of the invention

Predloženi izum se nanaša na kemijsko tehnologijo in varstvo okolja, specifično na nov postopek za čiščenje industrijskih odpadnih voda z nizko vsebnostjo toksičnih organskih snovi, zlasti zelo toksičnih, biološko težko razgradljivih organskih snovi, ob uporabi katalitske oksidacije.The present invention relates to chemical technology and environmental protection, specifically to a new process for the treatment of industrial wastewater with a low content of toxic organic matter, in particular highly toxic, biodegradable organic matter, using catalytic oxidation.

Problem, ki ga rešuje izumThe problem solved by the invention

Obstajala je potreba po novem, tehnološko naprednem postopku za čiščenje industrijskih odpadnih voda z nizko vsebnostjo toksičnih, zlasti zelo toksičnih organskih snovi.There was a need for a new, technologically advanced process for the treatment of low-toxic industrial wastewater, especially highly toxic organic matter.

Stanje tehnikeThe state of the art

Kot najbližje stanje tehnke za pričujočo patentno prijavo navajamo patentno prijavo DE 39 38 835.2 Al in evropsko patentno prijavo 90 111 927.7 , ki obravnavata katalitsko oksidacijo toksičnih in biološko težko razgradljivih organskih spojin v industrijskih odpadnih vodah. Obe citirani patentni prijavi opisujeta proces, v katerem se kontaktira odpadno vodo s kisikom (zrakom) na ustreznem katalizatorju, ki je tudi predmet zaščite. Odpadna voda, ki zaradi povišanega tlaka v reaktorju ne upari, in kisik (zrak) prehajata skozi sloj katalizatorja sotočno navzdol, kjer se v vodi raztopljene toksične snovi oksidirajo do neškodljivega ogljikovega oksida. Proces je namenjen čiščenju odpadnih voda, ki so obremenjene z relativno visoko vsebnostjo toksičnih snovi, vendar pod mejo rentabilne rekuperacije. Slaba stran procesa je delna topnost aktivnih komponent v katalizatorju, kar znižuje življensko dobo katalizatorja, hkrati pa te komponente v odpadni vodi lahko obremenijo tudi okolje.The closest prior art to this patent application is patent application DE 39 38 835.2 Al and European patent application 90 111 927.7, which deals with the catalytic oxidation of toxic and biodegradable organic compounds in industrial wastewater. Both patent applications cite describe a process in which wastewater is contacted with oxygen (air) on a suitable catalyst, which is also subject to protection. Waste water which does not evaporate due to the elevated pressure in the reactor and oxygen (air) passes through the downstream catalyst bed where the dissolved toxic substances are oxidized to harmless carbon monoxide. The process is intended for the treatment of wastewater laden with a relatively high content of toxic substances, but below the limit of cost-effective recovery. The downside of the process is the partial solubility of the active components in the catalyst, which reduces the life of the catalyst, but at the same time these components in the wastewater can also burden the environment.

Adsorpcija na aktivnem oglju je - kot učinkovit proces za odstranjevanje toksičnih in biološko nerazgradljivih organskih snovi - prisotna v čistilni tehniki že dalj časa (W.W. Eckenfelder Jr. et al., Chem. Engng., 2. september 1985, str. 60). S toksičnimi spojinami nasičeno oglje se regenerira s kontrolirano oksidacijo ( V.D. Mundale et al., Can. J. Chem. Eng., 69, 1991, stran 1149). Adsorbirane spojine se pri tem razgradijo, zaradi oksidativnih pogojev pa pri vsaki regeneraciji zgori tudi nekaj aktivnega oglja. Zato je prav regeneracija aktivnega oglja tisti kritični del procesa, ki najbolj zmanjšuje njegovo ekonomsko učinkovitost.Adsorption on activated carbon - as an effective process for the removal of toxic and biodegradable organic matter - has been present in the purification technique for a long time (W.W. Eckenfelder Jr. et al., Chem. Engng., September 2, 1985, p. 60). With toxic compounds, saturated charcoal is regenerated by controlled oxidation (V.D. Mundale et al., Can. J. Chem. Eng., 69, 1991, p. 1149). The adsorbed compounds break down, and due to the oxidizing conditions, some activated charcoal burns with each regeneration. That is why the regeneration of activated carbon is the critical part of the process that most diminishes its economic efficiency.

Opis rešitve problema z izvedbenimi primeri:Description of solution to the problem with implementation examples:

Sedaj pa smo ugotovili, da rešimo zgoraj navedene probleme z novim postopkom v smislu izuma, ki sestoji iz:Now we have found that we can solve the above problems with a new method of the invention, which consists of:

a) adsorpcijske faze, kjer vodno raztopino toksičnih, biološko težko razgradljivih organskih snovi vodimo do nasičenja skozi kolono, polnjeno z aktivnim ogljem, pri atmosferskem ali povišanem tlaku in temperaturah 15 do 25 °C,a) adsorption phases, where the aqueous solution of toxic, biodegradable organic substances is saturated through a column filled with activated carbon at atmospheric or elevated pressure and at temperatures of 15 to 25 ° C,

b) desorpcijske faze, kjer izvedemo regeneracijo aktivnega oglja v tekoči fazi pri atmosferskem ali povišanem tlaku in temperaturah od 80 do 150 °C, inb) desorption phases, where regeneration of activated carbon in the liquid phase is carried out at atmospheric or elevated pressure and temperatures from 80 to 150 ° C; and

c) reakcijske faze, kjer na katalizatorju, ki je predmet DE 39 38 835.2 Al in obstaja iz 20 do 40 mas. % bakrovega oksida, .15 do 25 mas. % cinkovega oksida, 2 do 4 mas. % kromovega oksida in 20 do 40 mas. % aluminijevega oksida, po desorpciji na oglju adsorbirane organske spojine katalitsko razgradimo v tekoči fazi pri povišanem tlaku, tako, da je parcialni tlak kisika najmanj 3 bar, in pri temperaturah med 120 in 200 °C, do ogljikovega dioksida, pri čemer je tok tekoče faze v adsorberju tako v adsorpcijskem kot tudi v desorpcijskoregeneracijskem ciklusu lahko usmerjen navzdol ali navzgor, tok plinaste in tekoče faze v katalitskem reaktorju je lahko sotočen v smeri navzdol ali protitočen, tako, da je tok tekoče faze usmerjen navzdol, plinaste pa navzgor.c) reaction phases where, on a catalyst subject to DE 39 38 835.2 Al and consisting of 20 to 40 wt. % copper oxide, .15 to 25 wt. % zinc oxide, 2 to 4 wt. % chromium oxide and 20 to 40 wt. % of aluminum oxide, after desorption on carbon adsorbed organic compounds, is catalytically decomposed in the liquid phase at elevated pressure such that the partial pressure of oxygen is at least 3 bar and at temperatures between 120 and 200 ° C to carbon dioxide, the flow being liquid phases in the adsorber both in the adsorption and desorption-regeneration cycles can be directed downward or upward, the flow of the gaseous and liquid phases in the catalytic reactor may be co-directed downstream or counter-current so that the liquid phase current is directed downwards and gaseous upwards.

Prednostna izvedba postopka v smislu izuma sestoji iz:A preferred embodiment of the process according to the invention consists of:

a) adsorpcijske faze, kjer vodno raztopino z vsebnostjo 1.0 g/1 fenola vodimo s hitrostjo 3.01/h do nasičenja skozi kolono, polnjeno z aktivnim ogljem, pri atmosferskem ali povišanem tlaku do 20 bar in temperaturah 15 do 25 °C.a) adsorption phases, where an aqueous solution containing 1.0 g / l of phenol is led at a rate of 3.01 / h to saturation through a column filled with activated carbon, at atmospheric or elevated pressures up to 20 bar and temperatures of 15 to 25 ° C.

b) desorpcijske faze, kjer izvedemo regeneracijo aktivnega oglja v tekoči fazi pri atmosferskem ali povišanem tlaku do 20 bar in temperaturah od 80 do 150 °C, inb) desorption phases, where regeneration of activated carbon in the liquid phase is carried out at atmospheric or elevated pressure up to 20 bar and temperatures from 80 to 150 ° C; and

c) reakcijske faze, kjer na katalizatorju, kije predmet DE 39 38 835.2 Al in obstaja iz 20 do 40 mas. % bakrovega oksida, 15 do 25 mas. % cinkovega oksida, 2 do 4 mas. % kromovega oksida in 20 do 40 mas. % aluminijevega oksida, po desorpciji na oglju adsorbirane organske spojine katalitsko razgradimo v tekoči fazi pri povišanem tlaku do 20 bar, tako, da je parcialni tlak kisika najmanj 3 bar, in pri temperaturah med 120 in 200 °C do ogljikovega dioksida, pri čemer je tok tekoče faze v adsorberju tako v adsorpcijskem kot tudi v desorpcijskoregeneracijskem ciklusu lahko usmerjen navzdol ali navzgor, tok plinaste in tekoče faze v katalitskem reaktorju je lahko sotočen v smeri navzdol ali protitočen, tako, daje tok tekoče faze usmerjen navzdol, plinaste pa navzgor.c) reaction phases, wherein on the catalyst, which is subject to DE 39 38 835.2 Al and is present from 20 to 40 wt. % copper oxide, 15 to 25 wt. % zinc oxide, 2 to 4 wt. % chromium oxide and 20 to 40 wt. % of alumina, after desorption on carbon adsorbed organic compounds, is catalytically decomposed in the liquid phase at an elevated pressure of up to 20 bar, such that the partial pressure of oxygen is at least 3 bar and at temperatures between 120 and 200 ° C to carbon dioxide, the liquid phase flow in the adsorber, both in the adsorption and desorption regeneration cycle, can be directed downward or upward, the gas and liquid phase flow in the catalytic reactor may be downstream or counterflow so that the liquid phase flow is downward and gaseous upward.

Izmed toksičnih, biološko težko razgradljive organskih snovi je kot primer naveden fenol, vendar je postopek v smislu izuma možno uporabiti tudi za letemu ekvivaletne toksične snovi.Of the toxic, biodegradable organic substances, phenol is mentioned as an example, but the process of the invention can also be used for the year of equivalent toxic substances.

Kombinacija adsorpcije z desorpcijsko - regeneracijskim krogom, ko se totalno oksidacijo toksičnih spojin 'izvaja ločeno, v katalitskem reaktorju, in je predmet pričujoče patentne prijave, v objavljeni patentni literaturi Še ni opisana.The combination of adsorption with the desorption - regeneration cycle, when the total oxidation of toxic compounds' is carried out separately, in a catalytic reactor and is the subject of the present patent application has not yet been described in the published patent literature.

Izvedbo postopka prikazujemo na osnovi priložene Slike 1. Odpadno vodo, ki vsebuje raztopljene toksične organske spojine npr. fenol, dovajamo skozi vod 1 in ventil 2 v kolono (absorber) 3, ki je napolnjena z granulami aktivnega oglja. Tok skozi kolono je lahko gravitacijski ali forsiran z razliko tlakov, lahko je usmerjen navzdol ali navzgor (glej skico) . Potem, ko se pri delovni temperaturi (okoli 25 °C) sloj aktivnega oglja nasiti z organskimi spojinami ( preboj !), tok odpadne vode skozi to kolono prekinemo in ga po vodu 7 preusmerimo v kolono 9 s svežim oziroma regeneriranim ogljem, ventil 2 na vodu 1 in ventil 4 na odvodu 5 pa zapremo. Vklopimo grelec 13 adsorberja in reaktorja, odpremo ventila 6 na vodu 7 in 14 na vodu 15 ter poženemo črpalko 12, da voda, v kateri se dviga temperatura, kroži skozi reaktor in adsorber. Ko v sistemu krožeča voda doseže željeno temperaturo (130 - 150 °C ), pričnemo z uvajanjem kisika (zraka) skozi vod 8 v reaktor 9. V reaktorju imamo torej opraviti z dvofaznim tokom ( kisik in voda ) medtem, ko v adsorberju z enofaznim (voda). Reaktor lahko obratuje v sotoku ali protitoku obeh faz, tlak je enak v obeh kolonah - do 20 bar. Zaradi povišane temperature se na oglju pri nižji temperaturi adsorbirane spojine sedaj desorbirajo v ločilniku (separator 10) v tok krožeče vode. Pri prehodu te vode skozi sloj katalizatorja se desorbirane organske spojine razgradijo (oksidirajo) do ogljikovega dioksida (plinska faza 11). Proces desorpcije - regeneracije s katalitskim sežigom v tekoči fazi je zaključen, ko v iztoku adsorberja oziroma reaktorja pade koncentracija organskih spojin pod željeno mejo. Dodati velja, da organskih spojin ni treba popolnoma desorbirati z aktivnega oglja oziroma razgraditi v reaktorju. V tem primeru se bo pač ustrezno zmanjšala adsorpcijska kapaciteta oglja. Zavedati se je treba, da so pri nizkih koncentracijah kontaktni časi na katalizatorju za enako stopnjo razgradnje bistveno daljši ( višji sloj katalizatorja ) kot pri visokih koncentracijah.The process is shown on the basis of the accompanying Figure 1. Waste water containing dissolved toxic organic compounds e.g. phenol, is fed through conduit 1 and valve 2 into a column (absorber) 3 filled with activated carbon granules. The flow through the column can be gravitational or forced with a pressure difference, it can be directed down or up (see sketch). After a layer of activated charcoal is saturated with organic compounds (breakthrough) at operating temperature (about 25 ° C), the wastewater flow through this column is interrupted and redirected through line 7 to fresh or regenerated charcoal column 9, valve 2 to close line 1 and valve 4 at outlet 5. Turn on the heater 13 of the adsorber and reactor, open the valves 6 on line 7 and 14 on line 15, and start the pump 12 so that the water in which the temperature rises flows through the reactor and adsorber. When the circulating water reaches the desired temperature (130 - 150 ° C) in the system, the introduction of oxygen (air) through the line 8 into the reactor 9 is started. (water). The reactor can be operated in the sump or counterflow of both phases, the pressure is the same in both columns - up to 20 bar. Due to the elevated temperature, the adsorbed compounds on the carbon at lower temperature are now desorbed in a separator (separator 10) into the circulating water stream. As this water passes through the catalyst bed, the desorbed organic compounds are degraded (oxidized) to carbon dioxide (gas phase 11). The process of desorption - regeneration with catalytic incineration in the liquid phase is completed when the concentration of organic compounds falls below the desired limit in the effluent of the adsorber or reactor. It should be added that organic compounds do not need to be completely desorbed from activated carbon or decomposed in a reactor. In this case, the adsorption capacity of the charcoal will be reduced accordingly. It should be borne in mind that at low concentrations the contact times on the catalyst are substantially longer (higher catalyst bed) for the same degradation rate than at high concentrations.

Opisani proces, ki je v nekem smislu kombinacija adsorpcije in katalitske oksidacije , izrablja bistvene prednosti posameznega procesa. Pri resorpciji regeneraciji aktivnega oglja nimamo več neželenega izgorevanja oglja, iz katalizatoija izlužene aktivne komponente pa ne pridejo v vodotok, saj krožijo v zaprtem krogu. Ker so te komponente aktivne tudi kot homogeni katalizatoiji, je deaktivacija katalizatorja mnogo počasnejša kot v primeru neposrednega prehoda odpadne vode skozi sloj katalizatorja. Zaradi predhodnega koncentriranja toksičnih spojin na aktivnem oglju so tudi sloji katalizatorja nižji.The process described, which in a sense is a combination of adsorption and catalytic oxidation, takes advantage of the essential benefits of each process. With resorption of activated carbon regeneration, we no longer have unwanted charcoal combustion, and the active components extracted from the catalytic converter do not enter the watercourse as they circulate in a closed circle. Since these components are also active as homogeneous catalysts, deactivation of the catalyst is much slower than in the case of direct passage of wastewater through the catalyst bed. Due to the pre-concentration of toxic compounds on activated carbon, the catalyst layers are also lower.

Primer l:Example l:

Skozi adsorpcijsko kolono (premera 3.2 cm ), napolnjeno s 130 grami aktivnega oglja ( povprečni premer zrn 1.6 mm, višina sloja 38 cm ) smo vodili vodno raztopino fenola ( koncentracija 500 mg/1) s hitrostjo 250 ml/min, dokler mase oglja nismo zasitili s fenolom - 4.5 g fenola na 100 g suhega oglja. Stopnjo zasičenosti sloja oglja smo zasledovali s stalnim merjenjem koncentracije fenola (HPLC ) v raztopini, ki je zapuščala adsorber. Ko se je fenol pojavil v iztoku adsorberja ( konc. manjša kot 0.2 mg/1) smo smatrali, da je bilo oglje zasičeno s fenolom. Proces adsorbcije smo izvajali pri atmosferskem tlaku in sobni temperaturi (22 °C ). Hitrost kroženja vode je bila 18 ml/min. V reaktor (premera 3.2 cm), ki smo ga napolnili z 800 grami (premer zrn 0.6 mm, višina sloja 90 cm ) v patentu P 39 38 835.2 opisanega katalizatorja, smo pričeli uvajati kisik potem, ko je krožeča voda dosegla temperaturo 130 °C. Kisik smo uvajali pri tlaku 7.7 bar s hitrostjo 1400 ml/min. Ob tem se je dvignil tudi tlak v adsorberju na 7.7 bar. Vročo vodo ( 130 °C) smo občrpavali 30 minut.V tem času je koncentracija fenola v raztopini v izstopnem toku reaktorja, ki smo jo zasledovali s HPLC in TOC analizatorjem , padla pod vrednost 10 mg/1, z aktivnega oglja pa je bil praktično desorbiran ves fenol (ravnotežje!). Tako regeneriran sloj je bil pripravljen za obdelavo nove šarže modelne raztopine. Po petih adsorpcijskih in desorpcijsko - regeneracijskih ciklusih, z ločeno oksidaciijo fenola, se adsorpcijske lastnosti oglja v sloju niso spremenile. V vodi, ki je zapuščala adsorber po vsakokratnem desorpcijsko-regeneracijskem ciklusu, praktično nismo zasledili oksidacijskih intermedianov niti kovin, ki so se eventualno izlužile iz katalizatorja.An aqueous solution of phenol (500 mg / l concentration) at a rate of 250 ml / min was passed through an adsorption column (3.2 cm in diameter) filled with 130 grams of activated carbon (average grain diameter 1.6 mm, layer height 38 cm) until the charcoal mass was reached saturated with phenol - 4.5 g of phenol per 100 g of dry charcoal. The degree of saturation of the charcoal layer was monitored by continuous measurement of phenol concentration (HPLC) in the solution leaving the adsorber. When phenol appeared in the adsorber effluent (conc. Less than 0.2 mg / l), the carbon was considered to be saturated with phenol. The adsorption process was carried out at atmospheric pressure and room temperature (22 ° C). The water circulation rate was 18 ml / min. Oxygen was introduced into the reactor (3.2 cm diameter), which was filled with 800 grams (grain diameter 0.6 mm, layer height 90 cm) in the patent P 39 38 835.2 described after circulating water reached a temperature of 130 ° C. . Oxygen was introduced at a pressure of 7.7 bar at a speed of 1400 ml / min. The pressure in the adsorber also increased to 7.7 bar. Hot water (130 ° C) was pumped for 30 minutes. During this time, the concentration of phenol in the solution in the reactor outlet stream, followed by HPLC and TOC analyzer, fell below 10 mg / l and was practically from carbon desorbed all phenol (balance!). The thus regenerated layer was prepared to process a new batch of model solution. After five adsorption and desorption - regeneration cycles, with separate phenol oxidation, the adsorption properties of charcoal in the layer did not change. In the water leaving the adsorber after each desorption-regeneration cycle, we practically did not find any oxidizing intermediates or metals that eventually leached from the catalyst.

PRIMER 2EXAMPLE 2

Regeneracijo s fenolom nasičenega sloja oglja v adsorberju (v skladu s PrimeromRegeneration with the phenol of a saturated layer of charcoal in an adsorber (according to Primer

1) smo izvedli z demineralizirano vodo pri povišani temperaturi in tlaku. Skozi nasičen sloj smo vodili vodo pri temperaturi 150° C in tlaku 10 bar in s HPLC merili koncentracijo v iztoku tekočine iz adsorberja. Po začetnem porastu (Slika1) was carried out with demineralized water at elevated temperature and pressure. Water was passed through a saturated layer at a temperature of 150 ° C and a pressure of 10 bar and the HPLC concentration of the adsorber fluid outflow was measured. After the initial rise (Fig

2) je koncentracija nato enakomerno padala do vrednosti 1.5 g/1, kjer smo proces desorbcije oziroma regeneracije oglaja prekinili. Z ustreznim vrednotenjem površine pod krivuljo (Slika 2) in produkta le-te z volumskim pretokom vode, smo ugotovili, daje desorbirano 26.7 g fenola oz., daje na aktivnem oglju po desorbciji na oglju ostalo še 5.6 g fenola. Ali drugače povedano, z dvigom temperature smo regenerirali 90% adsorpcijske kapacitete uporabljenega oglja.2) the concentration then steadily decreased to 1.5 g / l, where the process of desorption or regeneration of the charcoal was interrupted. By appropriately evaluating the area under the curve (Figure 2) and the product thereof by volume flow of water, it was found that 26.7 g of phenol was desorbed or 5.6 g of phenol remained on activated carbon after desorption on charcoal. In other words, by raising the temperature, we regenerated 90% of the adsorption capacity of the charcoal used.

PRIMER 3EXAMPLE 3

Regeneracijo s fenolom nasičenega sloja oglja v adsorberju (v skladu s Primerom 1) smo izvedli s katalitsko oksidacijo v tekoči fazi. V ta namen smo uporabili kapalni reaktor notranjega premera 34 mm, napolnjen s 730 g ( povprečni premer zrn 0.56 mm, višina sloja 81 cm) katalizatorja, opisanega v DE-patentu P39 38 835.2. Vklopili smo gretje in vključili črpalko. Hitrost kroženja vode je znašala 21/h. Kisik smo uvajali pri celotnem tlaku 11 bar s hitrostjo 2 1/min. Pri tem se je dvignil tudi tlak v adsorberju na 11 bar. Vročo vodo ( 150° C) smo odčrpavali 10 ur. Koncentracija fenola v krožeči vodi, spremljana s tekočinsko kromatografijo visoke ločljivosti - HPLC, je v tem času znžala na 0.8 g/1, kar ustreza 90% regeneraciji sloja aktivnega oglja v adsorberju. Tako regeneriran sloj aktivnega oglja v adsorberju je bil pripravljen za obdelavo nove šarže modelne raztopine. Po petih adsorpcijskih in desorpcijsko - regeneracijskih ciklusih, z ločeno katalitsko oksidacijo fenola se adsorpcijske lastnosti oglja v sloju niso spremenile. Koncentraciji izluženih bakrovih in cinkovih ionov v vodi, ki kroži v regeneracijsko - oksidacijskem ciklusu, sta po prvem ciklusu znašali 20 in 32 mg/1, po petem ciklusu pa nista presegli 25 in 40 mg/1.Regeneration with the phenol of the saturated carbon layer in the adsorber (according to Example 1) was carried out by liquid phase catalytic oxidation. For this purpose, a 34 mm internal diameter drip reactor filled with 730 g (average grain diameter 0.56 mm, layer height 81 cm) of the catalyst described in DE-patent P39 38 835.2 was used. We switched on the heating and turned on the pump. The water speed was 21 / h. Oxygen was introduced at a total pressure of 11 bar at a rate of 2 l / min. The pressure in the adsorber also increased to 11 bar. Hot water (150 ° C) was pumped for 10 hours. The concentration of phenol in circulating water, followed by high-performance liquid chromatography (HPLC), during this time was reduced to 0.8 g / l, corresponding to 90% regeneration of the activated carbon layer in the adsorber. The regenerated activated carbon layer in the adsorber was then prepared to process a new batch of model solution. After five adsorption and desorption - regeneration cycles, with separate catalytic oxidation of phenol, the adsorption properties of charcoal in the layer did not change. Concentrations of leached copper and zinc ions in water circulating in the regeneration - oxidation cycle were 20 and 32 mg / l after the first cycle, but did not exceed 25 and 40 mg / l after the fifth cycle.

Claims (2)

1. Postopek za čiščenje idustrijskih odpadnih voda z nizko vsebnostjo toksičnih organskih snovi, označen s tem, da sestoji iz:1. A process for the purification of industrial wastewater with a low content of toxic organic matter, characterized in that it consists of: a) adsorpcijske faze, kjer vodno raztopino toksičnih biološko težko razgradljivih organskih snovi vodimo do nasičenja skozi kolono, polnjeno z aktivnim ogljem, pri atmosferskem ali povišanem tlaku in temperaturah 15 do 25 °C,a) adsorption phases, where the aqueous solution of toxic biodegradable organic matter is saturated through a column filled with activated carbon at atmospheric or elevated pressure and temperatures of 15 to 25 ° C, b) desorpcijske faze, kjer izvedemo regeneracijo aktivnega oglja v tekoči fazi pri atmosferskem ali povišanem tlaku in temperaturah od 80 do 150 °C, inb) desorption phases, where regeneration of activated carbon in the liquid phase is carried out at atmospheric or elevated pressure and temperatures from 80 to 150 ° C; and c) reakcijske faze, kjer na katalizatorju, kic) reaction phases where on the catalyst which 15 obstaja iz 20 do 40 mas. % bakrovega oksida, 15 do 25 mas. % cinkovega oksida, 2 do 4 mas. % kromovega oksida in 20 do 40 mas. % aluminijevega oksida, po desorpciji na oglju adsorbirane organske spojine katalitsko razgradimo v tekoči fazi pri povišanem tlaku, tako, da je parcialni tlak kisika najmanj 3 bar, in15 exists from 20 to 40 wt. % copper oxide, 15 to 25 wt. % zinc oxide, 2 to 4 wt. % chromium oxide and 20 to 40 wt. % of alumina, after desorption on carbon adsorbed organic compounds, is catalytically decomposed in the liquid phase at elevated pressure such that the partial pressure of oxygen is at least 3 bar, and 20 pri temperaturah med 120 in 200 °C, do ogljikovega dioksida, pri čemer je tok tekoče faze v adsorberju tako v adsorpcijskem kot tudi v desorpcijskoregeneracijskem ciklusu lahko usmerjen navzdol ali navzgor, tok plinaste in tekoče faze v katalitskem reaktorju je lahko sotočen v smeri navzdol ali protitočen, tako, daje tok tekoče faze usmerjen navzdol, plinaste pa navzgor.20 at temperatures between 120 and 200 ° C, up to carbon dioxide, the liquid phase in the adsorber being in the adsorption as well as the desorption regeneration cycle can be directed downwards or upwards, the gas and liquid phase flows in the catalytic reactor may be downstream or countercurrent, so that the flow of the liquid phase is directed downward and gaseous upward. 2. Postopek po zahtevku 1, označen s tem, da sestoji izA method according to claim 1, characterized in that it consists of a) adsorpcijske faze, kjer vodno raztopino z vsebnostjo 1.0 g/1 fenola vodimo s hitrostjo 3.01/h do nasičenja skozi kolono, polnjeno z aktivnim ogljem, pri atmosferskem ali povišanem tlaku do 20 bar in temperaturah 15 do 25 °C,a) adsorption phases, where an aqueous solution containing 1.0 g / l of phenol is led at a rate of 3.01 / h to saturation through a column filled with activated carbon, at atmospheric or elevated pressure of up to 20 bar and temperatures of 15 to 25 ° C, b) desorpcijske faze, kjer izvedemo regeneracijo aktivnega oglja v tekoči fazi pri atmosferskem ali povišanem tlaku do 20 bar in temperaturah od 80 do 150 °C, inb) desorption phases, where regeneration of activated carbon in the liquid phase is carried out at atmospheric or elevated pressure up to 20 bar and temperatures from 80 to 150 ° C; and c) reakcijske faze, kjer na katalizatorju, ki obstaja iz 20 do 40 mas. % bakrovega oksida, 15 do 25 mas. % cinkovega oksida, 2 do 4 mas/ % kromovega oksida in 20 do 40 mas. % aluminijevega oksida, po desorpciji na oglju adsorbirane organske spojine katalitsko razgradimo v tekoči fazi pri povišanem tlaku do 20 bar, tako, da je parcialni tlak kisika najmanj 3 bar, in pri temperaturah med 120 in 200 °C do ogljikovega dioksida, pri čemer je tok tekoče faze v adsorberju tako v adsorpcijskem kot tudi v desorpcijskoregeneracijskem ciklusu lahko usmerjen navzdol ali navzgor, tok plinaste in tekoče faze v katalitskem reaktorju je lahko sotočen v smeri navzdol ali protitočen, tako, daje tok tekoče faze usmerjen navzdol, plinaste pa navzgor.c) reaction phases, wherein on a catalyst consisting of from 20 to 40 wt. % copper oxide, 15 to 25 wt. % zinc oxide, 2 to 4 wt /% chromium oxide and 20 to 40 wt. % of alumina, after desorption on carbon adsorbed organic compounds, is catalytically decomposed in the liquid phase at an elevated pressure of up to 20 bar, such that the partial pressure of oxygen is at least 3 bar and at temperatures between 120 and 200 ° C to carbon dioxide, the liquid phase flow in the adsorber, both in the adsorption and desorption regeneration cycle, can be directed downward or upward, the gas and liquid phase flow in the catalytic reactor may be downstream or counterflow so that the liquid phase flow is downward and gaseous upward.
SI9200263A 1992-10-19 1992-10-19 Process for catalytic oxidation of organic impurities in waste waters SI9200263B (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
SI9200263A SI9200263B (en) 1992-10-19 1992-10-19 Process for catalytic oxidation of organic impurities in waste waters
ES93924005T ES2096954T3 (en) 1992-10-19 1993-10-19 PROCEDURE FOR THE TREATMENT OF INDUSTRIAL WASTEWATER CURRENTS WITH TOXIC ORGANIC IMPURITIES IN REDUCED CONCENTRATIONS.
AT93924005T ATE148429T1 (en) 1992-10-19 1993-10-19 METHOD FOR TREATING INDUSTRIAL WASTEWATER WITH TOXIC ORGANIC CONTAMINANTS IN LOW CONCENTRATIONS
EP93924005A EP0664771B1 (en) 1992-10-19 1993-10-19 Process for treating industrial waste waters with low concentrations of toxic organic pollutants
JP6509518A JPH08506044A (en) 1992-10-19 1993-10-19 Method for treating industrial wastewater containing low concentrations of toxic organic pollutants
CA002147253A CA2147253A1 (en) 1992-10-19 1993-10-19 Process for treating industrial waste waters with low concentrations of toxic organic pollutants
DK93924005.7T DK0664771T3 (en) 1992-10-19 1993-10-19 Process for the treatment of low-level toxic organic pollutants in industrial wastewater
PCT/DE1993/001016 WO1994008905A1 (en) 1992-10-19 1993-10-19 Process for treating industrial waste waters with low concentrations of toxic organic pollutants
DE59305357T DE59305357D1 (en) 1992-10-19 1993-10-19 METHOD FOR TREATING INDUSTRIAL WASTEWATER WITH TOXIC ORGANIC IMPURITIES IN LOW CONCENTRATION
AU53683/94A AU5368394A (en) 1992-10-19 1993-10-19 Verfahren zur behandlung von industriellen abwassern mit toxischen organischen verunreinigungen in niedriger konzentration
FI951788A FI951788A (en) 1992-10-19 1995-04-13 Method for the treatment of industrial effluents containing toxic organic pollutants in low concentrations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9200263A SI9200263B (en) 1992-10-19 1992-10-19 Process for catalytic oxidation of organic impurities in waste waters

Publications (2)

Publication Number Publication Date
SI9200263A true SI9200263A (en) 1994-06-30
SI9200263B SI9200263B (en) 2000-04-30

Family

ID=20431016

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9200263A SI9200263B (en) 1992-10-19 1992-10-19 Process for catalytic oxidation of organic impurities in waste waters

Country Status (11)

Country Link
EP (1) EP0664771B1 (en)
JP (1) JPH08506044A (en)
AT (1) ATE148429T1 (en)
AU (1) AU5368394A (en)
CA (1) CA2147253A1 (en)
DE (1) DE59305357D1 (en)
DK (1) DK0664771T3 (en)
ES (1) ES2096954T3 (en)
FI (1) FI951788A (en)
SI (1) SI9200263B (en)
WO (1) WO1994008905A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU776320B2 (en) * 2000-05-11 2004-09-02 Trident Trade Waste Treatment Pty. Ltd. Waste water treatment apparatus
JP2017000992A (en) * 2015-06-15 2017-01-05 東洋紡株式会社 Water treatment system
CN114684952B (en) * 2020-12-31 2023-08-01 中国石油化工股份有限公司 Method and device for treating low COD sewage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI64793C (en) * 1977-01-27 1984-01-10 Degussa FOERFARANDE FOER RENING AV AVFALLSVATTEN SOM INNEHAOLLER FENOLFENOLDERIVAT ELLER FENOL OCH FORMALDEHYD
DE3938835A1 (en) * 1989-11-23 1991-05-29 Sued Chemie Ag METHOD FOR THE OXIDATION OF ORGANIC IMPURITIES IN SEWAGE

Also Published As

Publication number Publication date
FI951788A0 (en) 1995-04-13
EP0664771A1 (en) 1995-08-02
ES2096954T3 (en) 1997-03-16
SI9200263B (en) 2000-04-30
CA2147253A1 (en) 1994-04-28
DK0664771T3 (en) 1997-02-17
DE59305357D1 (en) 1997-03-13
FI951788A (en) 1995-04-13
WO1994008905A1 (en) 1994-04-28
ATE148429T1 (en) 1997-02-15
JPH08506044A (en) 1996-07-02
AU5368394A (en) 1994-05-09
EP0664771B1 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
Sheintuch et al. Comparison of catalytic processes with other regeneration methods of activated carbon
JP3383302B2 (en) Removal of cyanide from water
US6149820A (en) Catalyst, process and process unit for the abatement of noxious compounds in water
JPS5919757B2 (en) Wastewater treatment method
RO113441B1 (en) Catalytic process and apparatus for treating gas flow
JP3519740B2 (en) Method and catalyst for oxidizing H2S present at low concentration in gas to sulfur by contact route
JPH0283081A (en) Method for treating waste water containing volatile and chemically oxidiling contaminated material and non-volatile material
SI9200263A (en) Process for catalytic oxidation of organic impurities in waste waters
CN110386692B (en) Auxiliary agent wastewater treatment process
JP2000117272A (en) Waste water treatment
JP3652618B2 (en) Wastewater treatment method
JP6428992B2 (en) Wastewater treatment system
JPH11300374A (en) Treatment of waste water
JPH07185540A (en) Adsorbent for waste water treatment, treatment of waste water using the same and method of regenerating adsorbent
JP4223706B2 (en) Wastewater treatment method
KR100465521B1 (en) Method of treating wastewater using catalytic wet oxidation process
JP2004230269A (en) Wastewater treatment method and apparatus therefor
JP3272714B2 (en) Wastewater treatment method
JPH0523678A (en) Waste water treatment
JPH07265870A (en) Treatment of dithionate ion-containing water
JP3825144B2 (en) Wastewater treatment method
JP4038873B2 (en) Method for treating wastewater containing volatile compounds
JPH0461987A (en) Treatment of waste water containing ammonium nitrate
JPS6351730B2 (en)
RU2176618C1 (en) Method of purification of liquids and device for carrying it out