SI9200219A - Dispersant poly(meth)acrylate viscosity index improvers - Google Patents
Dispersant poly(meth)acrylate viscosity index improvers Download PDFInfo
- Publication number
- SI9200219A SI9200219A SI9200219A SI9200219A SI9200219A SI 9200219 A SI9200219 A SI 9200219A SI 9200219 A SI9200219 A SI 9200219A SI 9200219 A SI9200219 A SI 9200219A SI 9200219 A SI9200219 A SI 9200219A
- Authority
- SI
- Slovenia
- Prior art keywords
- methacrylate
- alkyl
- polymer
- weight
- methyl
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/10—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
- C10M145/12—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
- C10M145/14—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1811—C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/20—Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
- C10M107/22—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M107/28—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1818—C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/028—Overbased salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/02—Unspecified siloxanes; Silicones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/04—Molecular weight; Molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/36—Seal compatibility, e.g. with rubber
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Emergency Medicine (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Lubricants (AREA)
Abstract
Description
(57) Predloženi izum se nanaša na kopolimere izvedene iz (a) enega ali več monomerov izbranih izmed (CrC24)alkil metakrilatov in (Ci-C24)alkil akrilatov in (b) enega ali več monomerov izbranih izmed hidroksi(C2-C6)alkil metakrilatov in hidroksi(C2-C6)alkil akrilatov, pri čemer je povprečno število atomov ogljika v alkilnih skupinah od približno 7 do 12. Ti polimeri so koristni kot aditivi mazalnim oljem za zagotavljanje izboljšanja indeksa viskoznosti, dispergirnosti ali lastnosti tekočnosti pri nizki temperaturi brez škodljivega vpliva na fluoropolimerna tesnila.(57) The present invention relates to copolymers derived from (a) one or more monomers selected from (C 1 -C 24) alkyl methacrylates and (C 1 -C 24) alkyl acrylates and (b) one or more monomers selected from hydroxy (C 2 -C 6) alkyl of methacrylates and hydroxy (C2-C6) alkyl acrylates, the average number of carbon atoms in the alkyl groups being from about 7 to 12. These polymers are useful as additives to lubricating oils to provide an improvement in the viscosity index, dispersibility or liquid properties at low temperature without detriment influences fluoropolymer seals.
Sl 9200219 ASl 9200219 A
ROHM AND HAAS ΟΟΜΡΑΝΥROHM AND HAAS ΟΟΜΡΑΝΥ
Poli(met)akrilatna dispergima sredstva za izboljšanje indeksa viskoznostiPoly (meth) acrylate dispersant viscosity index enhancers
Predloženi izum se nanaša na polimere, izvedene iz (a) enega ali več monomerov, izbranih izmed (C^-C^jalkil metakrilatov in/C^C^jalkil akrilatov in (b) enega ali več monomerov, izbranih izmed hidroksi(C2-C6)alkil metakrilatov in hidroksi (C2C6)alkil akrilatov, pri čemer je število atomov ogljika v alkilnih skupinah povprečno od približno 7 do približno 12. Ti polimeri so koristni kot aditivi mazalnim oljem za zagotavljanje izboljšanja indeksa viskoznosti, dispergirnosti in uporabnih lastnosti pri nizki temperaturi, ne da bi škodljivo vplivali na fluoropolimerna tesnila. Novi polimeri so navadno raztopljeni ali dispergirani v očiščenem mineralnem mazalnem olju za eventualno vgradnjo v mineralno ali sintetično bazno olje.The present invention relates to polymers derived from (a) one or more monomers selected from (C 1 -C 6 -alkyl methacrylates and / C 1 -C 6 -alkyl acrylates and (b) one or more monomers selected from hydroxy (C 2 -C 6 ) alkyl methacrylates and hydroxy (C 2 C 6 ) alkyl acrylates, wherein the number of carbon atoms in the alkyl groups averages from about 7 to about 12. These polymers are useful as additives to lubricating oils to provide an improvement in the viscosity, dispersibility and useful properties at low temperature without adversely affecting fluoropolymer seals New polymers are usually dissolved or dispersed in purified mineral lubricating oil for possible incorporation into mineral or synthetic base oil.
vv
Zelenim mazalnim oljem za motorje z notranjim zgorevanjem, tekočine za avtomatske prenose in hidravlične tekočine se relativno malo spremeni viskoznost v širokem temperaturnem območju, dispergirne lastnosti in dobra tekočnost pri nizkih temperaturah, vključno nizka točka tekočnosti. Indeks viskoznosti (ali VI) je merilo stopnje spremembe viskoznosti kot funkcija temperature; visoke vrednosti indeksa viskoznosti naznačujejo manjše spremembe v viskoznosti z variiranjem temperature v primerjavi z nizkimi vrednostmi indeksa viskoznosti. Aditivi za izboljšanje indeksa viskoznosti, ki imajo visoke vrednosti indeksa viskoznosti združene z dobro tekočnostjo pri nizki temperaturi dopuščajo olju, da teče pri najnižji možni temperaturi delovanja, navadno pri zagonu motorja in ko temperatura naraste, do območja delovanja, viskoznost ostane na stopnji, primerni za dober učinek.Green lubricating oil for internal combustion engines, automatic transmission fluids and hydraulic fluids has relatively little change in viscosity over a wide temperature range, dispersing properties, and good low temperature fluidity, including low liquid point. Viscosity index (or VI) is a measure of the degree of viscosity change as a function of temperature; high viscosity index values indicate smaller variations in viscosity by varying temperature compared to low viscosity index values. Viscosity index enhancement additives having high viscosity index values combined with good low temperature fluidity allow the oil to flow at the lowest possible operating temperature, usually at engine start and when the temperature rises, to the operating range, the viscosity remains at a level suitable for good effect.
Polimerne aditive, glede na razne te lastnosti, uporabljajo za izboljšanje učinka motornih mazalnih olj. Polimere alkil akrilatov ali alkil metakrilatov uspešno uporabljajo za izboljšanje indeksa viskoznosti in kot depresante točke tekočnosti. Povečane dispergirne lastnosti lahko uvedemo v polimerne sestavke s polarnimi, zlasti bazičnimi komonomeri, kot npr. vinilnimi heterocikli (npr. N-vinilpirolidon, N-vinilimidazol, vinilpiridin ipd.), dialkilaminoalkil metakrilati, N,N-dialkilaminoalkil metakrilamidi ipd. Vendar pogoji cepljenja, ki so potrebni za vgradjo bazičnih komonomerov, ki vsebujejo dušik, zelo pogosto uvedejo slabe lastnosti strižne stabilnosti. Dodatno sredstva za izboljšanje indeksa viskoznosti, ki vsebujejo bazične komonomere, kateri vsebujejo dušik, lahko povzročijo neprijeten vonj ali zmanjšajo učinkovitost tesnil, ki se nahajajo v avtomobilskih motorjih, ki so osnovani na fluoropolimerih, kot je npr. Viton fluoroelastomer.Polymer additives, according to various of these properties, are used to improve the effect of engine lubricating oils. Polymers of alkyl acrylates or alkyl methacrylates are successfully used to improve the viscosity index and as a depressant of the fluid point. Increased dispersion properties can be introduced into polymer compositions with polar, especially basic comonomers, such as e.g. vinyl heterocycles (e.g., N-vinylpyrrolidone, N-vinylimidazole, vinylpyridine, etc.), dialkylaminoalkyl methacrylates, N, N-dialkylaminoalkyl methacrylamides and the like. However, the grafting conditions required for the installation of basic comonomers containing nitrogen very often introduce poor shear properties. Additionally, viscosity indexing agents containing basic comonomers containing nitrogen may cause odor or reduce the performance of seals found in fluoropolymer-based automotive engines such as e.g. Viton fluoroelastomer.
US-A-3,311,597 prikazuje način za izboljšanje indeksa viskoznosti in dispergirnih lastnosti poli(metakrilatnih) polimerov, ki vključuje kopolimerizacijo alkil metakrilatov s tetrahidrofurfuril metakrilatom in fakultativno vgradnjo hidroksietil metakrilata, hidroksipropil metakrilata, N-vinil pirolidon ali t-butilaminoetil metakrilata. Poli(alkilmetakrilatni) polimeri z izboljšanimi lastnostmi točke tekočnosti bazirajo na kopolimerizaciji alkil metakrilatov z 9 do 23 mol.% metakrilne kisline, kateri sledi etoksilacija, pri čemer je povprečno število atomov ogljika v alkilni skupini 12,5 do 14,3, so prikazani v US-A-3,598,737. Lavril metakrilatni stearil metakrilatni kopolimer s 23 mol.% hidroksietil metakrilata je prikazan v US-A-3,249,545 za uporabo v oljnih formulacijah, ki vsebujejo bisfenolne antioksidante.US-A-3,311,597 illustrates a method for improving the viscosity index and dispersion properties of poly (methacrylate) polymers, including the copolymerization of alkyl methacrylates with tetrahydrofurfuryl methacrylate and the optional incorporation of hydroxyethyl methacrylate, hydroxypropyl methacrylate, N-vinyl pyrrolidone or N-vinyl pyrrolidone. Poly (alkyl methacrylate) polymers with improved liquid point properties are based on the copolymerization of alkyl methacrylates with 9 to 23 mol% methacrylic acid followed by ethoxylation, with an average number of carbon atoms in the alkyl group of 12.5 to 14.3 shown in US-A-3,598,737. A lauryl methacrylate stearyl methacrylate copolymer of 23 mol% hydroxyethyl methacrylate is shown in US-A-3,249,545 for use in oil formulations containing bisphenol antioxidants.
Pri drugem načinu zagotavljanja dispergirnih sredstev za izboljšanje indeksa viskoznosti EP-A-418610 prikazuje uporabo polialkil(met)akrilatov označenih s tem, da 80-95,5 mas.% kopolimera izvedemo iz (C^C^jalkil metakrilatov in 0,5-20% iz hidroksi(C2-C6)alkil(met)akrilata ali multialkoksiliziranega alkil-(met)akrilata, pri čemer fakultativno 0-17 mas.% izvedejo iz (C^Cgjalki^metjakrilatov.In another method of providing dispersing agents for improving the viscosity index, EP-A-418610 demonstrates the use of polyalkyl (meth) acrylates, characterized in that 80-95.5% by weight of the copolymer is derived from (C ^ C ^ alkyl methacrylates and 0.5- 20% from hydroxy (C 2 -C 6 ) alkyl (meth) acrylate or multialkoxylated alkyl- (meth) acrylate, wherein the optional 0-17 wt% is derived from (C 1-6 alkyl) methacrylates.
Poli(metakrilatni) polimeri kot aditivi za olja za obdelovalne stroje bazirajo na 9299% (Cj-C^jalkil metakrilatnih in 1-8% hidroksi(C2-C3)alkil metakrilatnih polimerih s številčno povprečno molekulsko maso (Mn) 20.000-60.000 so prikazani v japonskem patentu JP 52-018202B. Ti polimerni aditivi so prikazani kot neprimerni za uporabo kot aditivi dispergirnim sredstvom za izboljšanje indeksa viskoznosti za motorna olja.Poly (methacrylate) polymers as oil additives for machine tools are based on 9299% (C 1 -C 6 alkyl methacrylate and 1-8% hydroxy (C 2 -C 3 ) alkyl methacrylate polymers with a number average molecular weight (M n ) of 20,000- 60,000 are disclosed in Japanese Patent JP 52-018202B.These polymer additives are shown to be unfit for use as additives to dispersants for improving the viscosity index for engine oils.
Nobeden od teh zadnjih načinov ne združuje dispergirnosti, dobrega indeksa viskoznosti in kompatibilnosti s fluoropolimemimi tesnilnimi materiali z dobro tekočnostjo pri nizki temperaturi v posameznem polimeru. Predloženi izum omogoča, da zagotovimo to kombinacijo lastnosti v posameznem polimeru.None of these latter methods combine dispersibility, good viscosity index and compatibility with fluoropolymer sealants with good low temperature fluidity in each polymer. The present invention makes it possible to provide this combination of properties in a single polymer.
V smislu predloženega izuma je zagotovljen polimer, ki ga dobimo s polimerizacijo monomerov, ki obsegajo:According to the present invention, a polymer is obtained by polymerization of monomers comprising:
(a) od približno 90 do približno 98 mas.% enega ali več monomerov, izbranih izmed (Cj-C^jalkil metakrilatov in (C^C^jalkil akrilatov; in (b) od manj kot 10 do približno 2 mas.% enega ali več monomerov, izbranih izmed hidroksi(C2-C6)alkil metakrilatov in hidroksi-(C2-C6)alkil akrilatov; in pri čemer je število atomov ogljika v alkilnih skupinah povprečno od približno 7 do približno 12.(a) from about 90 to about 98% by weight of one or more monomers selected from (C 1 -C 6 alkyl methacrylates and (C 1 -C 6 alkyl alkyl acrylates; and (b) from less than 10 to about 2 wt% one or more monomers selected from hydroxy (C 2 -C 6 ) alkyl methacrylates and hydroxy- (C 2 -C 6 ) alkyl acrylates, and wherein the number of carbon atoms in the alkyl groups is on average from about 7 to about 12.
Ti polimeri so koristni kot aditivi mazalnim oljem za zagotavljanje izboljšanja indeksa viskoznosti, dispergirnosti in uporabnih lastnosti pri nizki temperaturi brez škodljivega vpliva na fluoropolimerna tesnila. Novi polimeri, če jih uporabimo v mazalnih oljih, so navadno raztopljeni ali dispergirani v očiščenem mineralnem mazalnem olju za eventualno vgradnjo v mineralno ali sintetično bazno olje. Primeri mazalnih olj vključujejo olja za v ohišje, tekočine za avtomatske prenose, hidravlične tekočine, olja za menjalnik in tekočine za blaženje udarcev.These polymers are useful as additives to lubricating oils to provide an improvement in the viscosity index, dispersibility and useful properties at low temperature without adversely affecting fluoropolymer seals. New polymers, when used in lubricating oils, are usually dissolved or dispersed in purified mineral lubricating oil for eventual incorporation into mineral or synthetic base oil. Examples of lubricating oils include casing oils, automatic transmission fluids, hydraulic fluids, gear oils and shock absorbing fluids.
Vsak od monomerov, uporabljen v smislu predloženega izuma je lahko posamezen monomer ali zmes z različnim številom atomov ogljika v alkilnem deležu. Alkilni delež obeh (a) metakrilatnega in akrilatnega monomera in (b) hidroksialkil metakrilatnega in akrilatnega monomera je pomemben faktor pri uporabnih lastnostih polimerov v smislu izuma. S tem je mišljeno, da povprečno število (n) atomov ogljika (Cn) v stranski verigi alkilnih in hidroksialkilnih skupin akrilatnega ali metakrilatnega ogrodnega polimera izberemo, da maksimiziramo lastnosti indeksa viskoznosti in da vzdržujemo topnost olja polimernega aditiva tako v novem olju kot tudi v uporabljenem olju, kjer je aditiv že deloval kot suspenzijsko sredstvo brozge. Na splošno, če je povprečno Cn manjši kot približno 7, imajo nastali polimeri lahko slabo topnost v baznih oljih in je možno, da aditivi ne delujejo popolnoma kot dispergirna sredstva za izboljšanje indeksa viskoznosti. Če je povprečen Cn znatno večji kot približno 12, lahko opazimo slabše lastnosti tekočnosti pri nizki temperaturi. Z nizko temperaturo je mišljena temperatura pod -5°C. Torej je povprečno število atomov ogljika v alkilni skupini akrilatnih ali metakrilatnih monomerov, uporabljenih za pripravo polimernih aditivov približno od 7 do približno 12, prednostno od približno do približno 10 in bolj prednostno od približno 8 do približno 10. V primeru, kjer so monomeri ali vsi akrilati ali v bistvu vsi akrilati, povprečno število ogljika stranske verige alkilnih skupin ogrodnega polimera nekoliko variira in je povprečno število atomov ogljika tisto, ki prilagodi topnostne parametre ustreznih akrilatnih ogrodnih polimerov. Taki parametri topnosti so strokovnjakom že znani in razumljivi.Each of the monomers used according to the present invention may be a single monomer or a mixture with different numbers of carbon atoms in the alkyl moiety. The alkyl fraction of both (a) methacrylate and acrylate monomer and (b) hydroxyalkyl methacrylate and acrylate monomer is an important factor in the useful properties of the polymers of the invention. This means that the average number (n) of carbon atoms (C n ) in the side chain of the alkyl and hydroxyalkyl groups of the acrylate or methacrylate backbone polymer is selected to maximize the viscosity index properties and to maintain the solubility of the polymer additive oil both in the new oil and in the used oil where the additive was already acting as a slurry agent. In general, if the average C n is less than about 7, the resulting polymers may have poor solubility in the base oils and it is possible that the additives may not fully function as dispersants for improving the viscosity index. If the average C n is significantly greater than about 12, worse low-temperature liquid properties can be observed. Low temperature means temperature below -5 ° C. Thus, the average number of carbon atoms in the alkyl group of acrylate or methacrylate monomers used to prepare the polymer additives is from about 7 to about 12, preferably from about to about 10, and more preferably from about 8 to about 10. In the case where the monomers or all acrylates or substantially all acrylates, the average carbon number of the side chain alkyl groups of the backbone polymer varies slightly and the average number of carbon atoms is the one that adjusts the solubility parameters of the corresponding acrylate backbone polymers. Such solubility parameters are already known and understood by those skilled in the art.
Prednostno monomer (a) izberemo izmed (C^C^jalkil metakrilatov in (C^C^jalkil akrilatov in monomer (b), izberemo izmed hidroksi(C2-C6)alkil metakrilatov in hidroksi(C2-C6)alkil akrilatov. Alkilni delež enega ali drugega monomera je lahko linearen ali razvejen. Alkil metakrilati in hidroksialkil metakrilati so prednostni.Preferably, monomer (a) is selected from (C 1 -C 6 alkyl methacrylates and (C 1 -C 6 alkyl alkyl acrylates and monomer (b), selected from hydroxy (C 2 -C 6 ) alkyl methacrylates and hydroxy (C 2 -C 6 ) alkyl The alkyl portion of one or the other monomer may be linear or branched Alkyl methacrylates and hydroxyalkyl methacrylates are preferred.
Da dobimo ravnotežje želenih uporabnih lastnosti, ki se nanašajo na izboljšanje indeksa viskoznosti, dobro dispergirnost in uporabnost pri nizki temperaturi, prednostno uporabimo zmesi alkil metakrilatov in/ali alkil akrilatov. Torej v eni izvedbi v smislu izuma, monomer (a) na splošno obsega (i) 0 do približno 40% alkil metakrilata ali alkil akrilata, v katerem alkilna skupina vsebuje od 1 do 6 atomov ogljika ali njunih zmesi, (ii) od približno 30 do približno 90% alkil metakrilata ali alkil akrilata, v katerem alkilna skupina vsebuje od 7 do 15 atomov ogljika, ali njunih zmesi in (iii) 0 do približno 40% alkil metakrilata ali alkil akrilata, v katerem alkilna skupina vsebuje od 16 do 24 atomov ogljika ali njunih zmesi, in monomer (b) obsega od manj kot 10 do približno 2% hidroksialkil metakrilata ali hidroksialkil akrilata, v katerem alkilna skupina vsebuje 2 do 6 atomov ogljika in je substituirana z eno ali več hidroksilnih skupin ali njunih zmesi. Vsi odstotki so masni in bazirajo na celokupni masi polimera in je celokupno (i), (ii), (iii) in (b) enako 100 mas.% polimera. Količina (i) v polimeru je prednostno od 0 do približno 25% in bolj prednostno od 5 do približno 15%; količina (ii) je prednostno od približno 45 do približno 85% in bolj prednostno od približno 50 do približno 60%; količina (iii) je prednostno od približno 5 do približno 35% in bolj prednostno od približno 25 do približno 35%; in količina (b) je prednostno od približno 4 do približno 8% in bolj prednostno od približno 5 do približno 6%.Mixtures of alkyl methacrylates and / or alkyl acrylates are preferably used to obtain a balance of desired useful properties relating to the improvement of the viscosity index, good dispersibility and usability at low temperature. Thus, in one embodiment of the invention, monomer (a) generally comprises (i) 0 to about 40% alkyl methacrylate or alkyl acrylate in which the alkyl group contains from 1 to 6 carbon atoms or mixtures thereof, (ii) from about 30 to about 90% alkyl methacrylate or alkyl acrylate in which the alkyl group contains from 7 to 15 carbon atoms, or mixtures thereof; and (iii) 0 to about 40% alkyl methacrylate or alkyl acrylate, in which the alkyl group contains from 16 to 24 atoms carbon or mixtures thereof, and monomer (b) comprises from less than 10 to about 2% hydroxyalkyl methacrylate or hydroxyalkyl acrylate in which the alkyl group contains 2 to 6 carbon atoms and is substituted by one or more hydroxyl groups or mixtures thereof. All percentages are by weight and are based on the total weight of the polymer and the total (i), (ii), (iii) and (b) is equal to 100% by weight of the polymer. The amount (s) in the polymer is preferably from 0 to about 25% and more preferably from 5 to about 15%; the amount (ii) is preferably from about 45 to about 85% and more preferably from about 50 to about 60%; the amount (iii) is preferably from about 5 to about 35% and more preferably from about 25 to about 35%; and the amount (b) is preferably from about 4 to about 8% and more preferably from about 5 to about 6%.
Delež skupne mase monomerov (a) in (b) je lahko od približno 5 do približno 40 mas.% (C^-C^jalkil metakrilatov, (C^-C^Jalkil akrilatov, ali njihovih zmesi. Prednostno je delež skupne mase monomerov (a) in (b) od približno 5 do približno 35 mas.% (C16-C20) metakrilatov, (C^-C^jalkil akrilatov ali njihovih zmesi.The proportion of the total weight of the monomers (a) and (b) may be from about 5 to about 40% by weight of (C 1 -C 6 alkyl methacrylates, (C 1 -C 6 alkyl alkyl acrylates, or mixtures thereof). (a) and (b) from about 5 to about 35% by weight of (C 16 -C 20 ) methacrylates, (C 1 -C 6) alkyl acrylates or mixtures thereof.
Primeri monomera (a), alkil metakrilata in/ali alkil akrilata, kjer alkilna skupina vsebuje od 1 do 6 atomov ogljika, tudi imenovani kratki alkil metakrilat ali alkil akrilat, so metil metakrilat (MMA) metil in etil akrilat, propil metakrilat, butil metakrilat (BMA) in akrilat (BA), izobutil metakrilat (IBMA), heksil in cikloheksil metakrilat, cikloheksil akrilat in kombinacije le-teh. Prednostna kratka alkil metakrilata sta metil metilakrilat in butil metakrilat.Examples of monomer (a), alkyl methacrylate and / or alkyl acrylate, where the alkyl group contains from 1 to 6 carbon atoms, also called short alkyl methacrylate or alkyl acrylate, are methyl methacrylate (MMA) methyl and ethyl acrylate, propyl methacrylate, butyl methacrylate. (BMA) and acrylate (BA), isobutyl methacrylate (IBMA), hexyl and cyclohexyl methacrylate, cyclohexyl acrylate and combinations thereof. Preferred short alkyl methacrylates are methyl methyl acrylate and butyl methacrylate.
Primeri monomera (a), alkil metakrilata in/ali alkil akrilata, kjer alkilna skupina vsebuje od 7 do 15 atomov ogljika, tudi imenovani srednji alkil metakrilati ali alkil akrilati so 2-etilheksil akrilat (EHA), 2-etilheksil metakrilat, oktil metakrilat, decil metakrilat, izodecil metakrilat (IDMA, ki bazirajo na razvejeni (C10)alkil izomerni zmesi), undecil metakrilat, dodecil metakrilat, (tudi znan kot lavril metakrilat), tridecil metakrilat, tetradecil metakrilat, (tudi znan kot miristil metakrilat), pentadecil metakrilat, in njihove kombinacije. Uporabni so tudi: dodecil-pentadecil metakrilat (DPMA), zmes linearnih in razvejenih izomerov dodecil, tridecil, tetradecil in pentadecil metakrilatov; in lavril-miristil metakrilat (LMA), zmes dodecil in tetradecil metakrilatov. Prednostna srednja alkil metakrilata sta lavrilmiristil metakrilat in izodecil metakrilat.Examples of monomer (a), alkyl methacrylate and / or alkyl acrylate, where the alkyl group contains from 7 to 15 carbon atoms, also referred to as middle alkyl methacrylates or alkyl acrylates are 2-ethylhexyl acrylate (EHA), 2-ethylhexyl methacrylate, octyl methacrylate, decyl methacrylate, isodecyl methacrylate (IDMA based on a branched (C 10 ) alkyl isomer mixture), undecyl methacrylate, dodecyl methacrylate (also known as lauryl methacrylate), tridecyl methacrylate, tetradecyl methacrylate, (also known as myristyl methacrylate) methacrylate, and combinations thereof. Also useful are: dodecyl-pentadecyl methacrylate (DPMA), a mixture of linear and branched isomers of dodecyl, tridecyl, tetradecyl and pentadecyl methacrylates; and lauryl myristyl methacrylate (LMA), a mixture of dodecyl and tetradecyl methacrylates. Preferred middle alkyl methacrylates are lauryl myristyl methacrylate and isodecyl methacrylate.
Primeri monomera (a), alkil metakrilata in/ali alkil akrilata, kjer alkilna skupina vsebuje od 16 do 24 atomov ogljika, tudi imenovani dolgi alkil metakrilati ali alkil akrilati so heksadecil metakrilat, heptadecil metakrilat, oktadecil metakrilat, nonadecil metakrilat, kozil metakrilat, eikozil metakrilat in njihove kombinacije. Uporabni so tudi: cetil-eikozil metakrilat (CEMA), zmes heksadecil, oktadecil, kozil in eikozil metakrilata; in cetil-stearil metakrilat (SMA), zmes heksadecil in oktadecil metakrilata. Prednostna dolga alkil metakrilata sta cetil-eikozil metakrilat in cetil-stearil metakrilat.Examples of monomer (a), alkyl methacrylate and / or alkyl acrylate, where the alkyl group contains from 16 to 24 carbon atoms, also called long alkyl methacrylates or alkyl acrylates are hexadecyl methacrylate, heptadecyl methacrylate, octadecyl methacrylate, nonadecyl methacrylate, ezyl methacrylate, ether methacrylate and combinations thereof. Also useful are: cetyl eicosyl methacrylate (CEMA), a mixture of hexadecyl, octadecyl, goat and eicosyl methacrylate; and cetyl stearyl methacrylate (SMA), a mixture of hexadecyl and octadecyl methacrylate. Preferred long alkyl methacrylates are cetyl eicosyl methacrylate and cetyl stearyl methacrylate.
Srednje in dolge alkil metakrilate in alkil akrilatne monomere, opisane zgoraj, na splošno pripravimo s standardnimi esterifikacijskimi postopki, pri čemer uporabimo tehnične vrste dolgo verižnih alifatskih alkoholov in ti alkoholi, dosegljivi na tržišču, so zmesi alkoholov različnih dolžin verig, ki vsebujejo med 10 in 15 ali 16 in 20 atomov ogljika v alkilni skupini. Torej je za namene v smislu izuma mišljeno, da alkil metakrilat vključuje samo t.im. alkil metakrilatni produkt, toda vključuje tudi zmesi alkil metakrilatov s predominantno količino, zlasti t.im. alkil metakrilata. Z uporabo teh tržno dosegljivih alkoholov za pripravo akrilatnih in metakrilatnih estrov dobimo LMA, DPMA, SMA in CEMA monomerne zmesi, opisane zgoraj.The medium and long alkyl methacrylates and alkyl acrylate monomers described above are generally prepared by standard esterification procedures, using the technical types of long-chain aliphatic alcohols and these commercially available alcohols are mixtures of alcohols of different chain lengths containing between 10 and 15 or 16 and 20 carbon atoms in the alkyl group. Thus, for the purposes of the invention, it is intended that alkyl methacrylate includes only so-called. alkyl methacrylate product, but also includes mixtures of alkyl methacrylates with a predominant amount, in particular e.g. alkyl methacrylate. Using these commercially available alcohols for the preparation of acrylate and methacrylate esters, the LMA, DPMA, SMA and CEMA monomer mixtures described above are obtained.
Primeri monomera (b) so tisti alkil metakrilatni in akrilatni monomeri, z eno ali več hidroksilnih skupin v alkilnem radikalu, zlasti tisti, kjer se hidroksilna skupina nahaja v legi β (lega 2) v alkilnem radikalu. Hidroksialkil metakrilatni in akrilatni monomeri, v katerih je substituirana alkilna skupina (C2-C6)alkil, razvejen ali nerazvejen, so prednostni. Med hidroksialkil metakrilatnimi in akrilatnimi monomeri, primernimi za uporabo v smislu predloženega izuma, so 2-hidroksietil metakrilat (HEMA), 2-hidroksietil akrilat, 2-hidroksipropil metakrilat, l-metil-2-hidroksietil metakrilat, 2-hidroksipropil akrilat, l-metil-2-hidroksietil akrilat, 2-hidroksibutil metakrilat in 2-hidroksibutil akrilat. Prednostni hidroksialkil metakrilatni in akrilatni monomeri so HEMA, l-metil-2-hidroksietil metakrilat in 2-hidroksipropil metakrilat. Zmes zadnjih dveh monomerov je navadno navedena kot hidroksipropil metakrilat ali HPMA, ki je bolj prednosten hidroksialkil metakrilat kot je vsaka od komponent HPMA.Examples of monomer (b) are those alkyl methacrylate and acrylate monomers, with one or more hydroxyl groups in the alkyl radical, especially those where the hydroxyl group is in position β (position 2) in the alkyl radical. Hydroxyalkyl methacrylate and acrylate monomers in which the substituted (C 2 -C 6 ) alkyl group is branched or unbranched are preferred. Hydroxyalkyl methacrylate and acrylate monomers suitable for use according to the present invention include 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, l-methyl-2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, l-hydroxypropyl acrylate methyl-2-hydroxyethyl acrylate, 2-hydroxybutyl methacrylate and 2-hydroxybutyl acrylate. Preferred hydroxyalkyl methacrylate and acrylate monomers are HEMA, 1-methyl-2-hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate. The mixture of the last two monomers is usually referred to as hydroxypropyl methacrylate or HPMA, which is more preferred hydroxyalkyl methacrylate than each of the components of HPMA.
Med zanimivimi hidroksialkil metakrilatnimi in akrilatnimi monomeri so prednostni tisti monomeri, ki so v bistvu brez nečistoč odpremreževalnega sredstva ali prekurzorja premreževalnega sredstva, ki so lahko prisotni kot rezultat postopka priprave monomera. S premreževalnim sredstvom mislimo katerokoli polifunkcionalno snov, ki povzroči premreženje polimera, kot npr. etilen glikol dimetakrilat. Prisotnost teh premreževalnih snovi znižuje lastnosti aditivov v smislu izuma zaradi tvorbe gela in sorodnih problemov. Prednostni hidroksialkil metakrilati in akrilati so tisti, ki vsebujejo manj kot približno 0,5 mas.% in bolj prednostno manj kot približno 0,2 mas.% in najbolj prednostno približno 0,1 mas.% ali manj premreževalne snovi ali prekurzorja premreževalne snovi. V eni izvedbi v smislu izuma monomer (b) izberemo izmed hidroksi (C2-C6)alkil metakrilatov, ki vsebujejo manj kot približno 0,2 mas.% premreževalne snovi ali prekurzorja premreževalne snovi. V nadaljnji izvedbi v smislu izuma je monomer (b) zmes 2-hidroksipropil metakrilata in l-metil-2hidroksietil metakrilata, ki vsebuje manj kot približno 0,1 mas.% premreževalne snovi ali prekurzorja premreževalne snovi.Among the interesting hydroxyalkyl methacrylate and acrylate monomers are those monomers which are substantially free of the impurities of the descaling agent or precursor of the crosslinking agent, which may be present as a result of the monomer preparation process. By means of a crosslinker, we mean any polyfunctional substance that causes crosslinking of a polymer, such as e.g. ethylene glycol dimethacrylate. The presence of these cross-linking agents lowers the properties of the additives of the invention due to gel formation and related problems. Preferred hydroxyalkyl methacrylates and acrylates are those containing less than about 0.5% by weight and more preferably less than about 0.2% by weight and most preferably about 0.1% by weight or less of the crosslinker or the crosslinker precursor. In one embodiment of the invention, monomer (b) is selected from hydroxy (C 2 -C 6 ) alkyl methacrylates containing less than about 0.2% by weight of the crosslinker or the crosslinker precursor. In a further embodiment of the invention, monomer (b) is a mixture of 2-hydroxypropyl methacrylate and l-methyl-2hydroxyethyl methacrylate containing less than about 0.1% by weight of the crosslinker or the crosslinker precursor.
Prednostni polimeri so tisti, kjer monomer (a) obsega monomere, kjer je (i) izbran izmed enega ali več metil met-akrilata, butil met-akrilata in izobutil met-akrilata, (ii) izbran izmed enega ali več 2-etilheksil metakrilata, izodecil metakrilata, dodecilpentadecil metakrilata in lavril miristil metakrilata, (iii) je izbran izmed enega ali več cetil-stearil metakrilata in cetil-eikozil metakrilata in monomer (b), izbran izmed enega ali več 2-hidroksietil metakrilata, 2-hidroksietil akrilata, 2-hidroksipropil metakrilata, l-metil-2-hidroksietil metakrilata, 2-hidroksipropil akrilata, l-metil-27 hidroksietil akrilata, 2-hidroksibutil metakrilata in 2-hidroksibutil akrilata.Preferred polymers are those where the monomer (a) comprises monomers where (i) is selected from one or more methyl methacrylate, butyl methacrylate and isobutyl methacrylate, (ii) is selected from one or more 2-ethylhexyl methacrylate , isodecyl methacrylate, dodecylpentadecyl methacrylate and lauryl myristyl methacrylate, (iii) selected from one or more cetyl stearyl methacrylate and cetyl eicosyl methacrylate and monomer (b) selected from one or more 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 1-methyl-2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 1-methyl-27 hydroxyethyl acrylate, 2-hydroxybutyl methacrylate and 2-hydroxybutyl acrylate.
Prednostni polimer je tisti, kjer je monomer (a) približno 10% metil metakrilata, npr. 55% izodecil metakrilata in približno 30% cetil-stearil ali cetil-eikozil metakrilata in je monomer (b) približno 5% zmesi 2-hidroksipropil metakrilata in je količina l-metil-2-hidroksietil metakrilata približno 5%.A preferred polymer is one where the monomer (a) is about 10% methyl methacrylate, e.g. 55% isodecyl methacrylate and about 30% cetyl stearyl or cetyl eicosyl methacrylate and the monomer (b) is about 5% of a mixture of 2-hydroxypropyl methacrylate and the amount of l-methyl-2-hydroxyethyl methacrylate is about 5%.
Drugi prednostni polimer je tisti, v katerem je monomer (a) približno 20% butil ali izobutil metakrilata, približno 45% izodecil metakrilata in približno 30% monomera, izbranega izmed cetil-stearil in cetil-eikozil metakrilata in je monomer (b) približno 5% zmesi 2-hidroksipropil metakrilata in l-metil-2-hidroksietil metakrilata.Another preferred polymer is one in which the monomer (a) is about 20% butyl or isobutyl methacrylate, about 45% isodecyl methacrylate, and about 30% monomer selected from cetyl stearyl and cetyl eicosyl methacrylate and the monomer (b) is about 5 % of a mixture of 2-hydroxypropyl methacrylate and 1-methyl-2-hydroxyethyl methacrylate.
Drugi prednostni polimer je tisti, v katerem je monomer (a) približno 15% monomera, izbranega izmed butil in izobutil metakrilata in približno 80% monomera, izbranega izmed lavril-miristila in dodecil-pentadecil metakrilata in je monomer (b) približno 5% zmesi 2-hidroksipropil metakrilata in l-metil-2hidroksietil metakrilata.Another preferred polymer is one in which the monomer (a) is about 15% of the monomer selected from butyl and isobutyl methacrylate and about 80% of the monomer selected from lauryl myristyl and dodecyl-pentadecyl methacrylate and the monomer (b) is about 5% of the mixture 2-hydroxypropyl methacrylate and 1-methyl-2hydroxyethyl methacrylate.
Drugi prednostni polimer je tisti, v katerem je monomer (a) približno 5 do približno 10% metil metakrilata, približno 85 do približno 90% monomera, izbranega izmed lavril-miristila, izodecil- ali dodecil-pentadecil metakrilata in 0 do približno 5% cetil-eikozil metakrilata, in je (b) približno 5% zmesi 2-hidroksipropil metakrilata in l-metil-2-hidroksietil metakrilata.Another preferred polymer is one in which the monomer (a) is about 5 to about 10% methyl methacrylate, about 85 to about 90% of the monomer selected from lauryl myristyl, isodecyl- or dodecyl-pentadecyl methacrylate and 0 to about 5% cetyl -Eicosyl methacrylate, and (b) is about 5% of a mixture of 2-hydroxypropyl methacrylate and 1-methyl-2-hydroxyethyl methacrylate.
Polimerni sestavek, ki je zlasti prednosten za uporabo v tekočinah za avtomatske prenose, je tisti, v katerem je aditiv polimeriziran iz monomerov, v katerih je monomer (a) od 0 do približno 5% metil met-akrilata, približno 80 do približno 90% lavril-miristil metakrilata in 0 do približno 10% cetil-eikozil metakrilata in monomer (b) približno 5% zmesi 2-hidroksipropil metakrilata in l-metil-2-hidroksietil metakrilata.A polymeric composition particularly preferred for use in automatic transfer fluids is one in which the additive is polymerized from monomers in which the monomer (a) is from about 0 to about 5% methyl methacrylate, about 80 to about 90% lauryl myristyl methacrylate and 0 to about 10% cetyl eicosyl methacrylate and monomer (b) about 5% mixture of 2-hydroxypropyl methacrylate and l-methyl-2-hydroxyethyl methacrylate.
Drugi prednostni polimerni sestavek za uporabo v tekočinah za avtomatske prenose je tisti, v katerem je aditiv polimeriziran iz monomerov, v katerih je monomer (a) 0 do približno 20% butil metakrilata, približno 65 do približno 90% lavril-miristil metakrilata in 0 do približno 10% cetil-eikozil metakrilata in je monomer (b) približno 5% zmesi 2-hidroksipropil metakrilata in l-metil-2-hidroksietil metakrilata.Another preferred polymeric composition for use in automatic transmission fluids is one in which the additive is polymerized from monomers in which the monomer (a) is 0 to about 20% butyl methacrylate, about 65 to about 90% lauryl-myristyl methacrylate, and 0 to about 10% cetyl-eicosyl methacrylate and monomer (b) is about 5% of a mixture of 2-hydroxypropyl methacrylate and l-methyl-2-hydroxyethyl methacrylate.
Poleg povprečnega števila (n) atomov ogljika (Cn) v stranski verigi alkilnih in hidroksialkilnih skupin akrilatnega ali metakrilatnega ogrodnega polimera je narava alkilnega deleža metakrilatnih in akrilatnih monomerov pomemben faktor pri uporabnih lastnostih polimerov v smislu izuma. Npr. zmes (Cj-C^alkil metakrilatov in/ali akrilatov, (C7-C15)alkil metakrilatov in/ali akrilatov in (C^-C^jalkil metakrilatov in/ali akrilatov lahko kopolimeriziramo s hidroksialkil(met)akrilatom, tako da ima polimer povprečno število vsebnosti atomov ogljika v alkilnih stranskih verigah 9. V tem primeru je dobro ravnotežje lastnosti indeksa viskoznosti in topnosti v baznih oljih; dodatno je (C^-C^jalkil (met)akrilatni delež polimera podoben vosku in vzajemno deluje z voskastimi komponentami v baznem olju, pri čemer se izboljšajo lastnosti pri nizki temperaturi, npr. točka tekočnosti, sposobnost črpanja pri nizki temperaturi in zagon hladnega motorja. Če na drugi strani posamezen (C10) ali (C12)alkil (met)akrilatni monomer kopolimeriziramo s hidroksialkil metakrilatom, da zagotovimo povprečno število atomov ogljika v alkilnih stranskih verigah 9, ima nastali polimerni aditiv zadovoljivo topnost v olju, toda majhno sposobnost medsebojnega delovanja z voskom, kar da slabše lastnosti pri nizki temperaturi, kot npr. slabšo sposobnost črpanja zaradi ojačane viskoznosti, tudi če so Cn vrednosti podobne za oba tipa polimera.In addition to the average number (n) of carbon atoms (C n ) in the side chain alkyl and hydroxyalkyl groups of the acrylate or methacrylate backbone polymer, the nature of the alkyl fraction of methacrylate and acrylate monomers is an important factor in the useful properties of the polymers of the invention. E.g. a mixture of (C 1 -C 6 alkyl methacrylates and / or acrylates, (C 7 -C 15 ) alkyl methacrylates and / or acrylates and (C 1 -C 6 alkyl alkyl methacrylates and / or acrylates can be copolymerized with hydroxyalkyl (meth) acrylate such that the polymer has an average number of carbon atom contents in the alkyl side chains of 9. In this case, the viscosity and solubility index properties of the base oils are well balanced; additionally, the (C 1 -C 6 alkyl) meth acrylate portion of the polymer is wax-like and interacts with the wax components in the base oil, improving the low temperature properties, such as the fluid point, the low temperature pumping ability and starting the cold engine. If, on the other hand, an individual (C 10 ) or (C 12 ) alkyl (meth) acrylate monomer is copolymerized with hydroxyalkyl methacrylate to provide an average number of carbon atoms in the alkyl side chains 9, the resulting polymer additive has a satisfactory solubility in oil, but a low wax interaction which makes it worse e properties at low temperature, such as. poorer pumping ability due to enhanced viscosity, even if C n values are similar for both types of polymer.
Torej, da dobimo dobre uporabne lastnosti pri nizki temperaturi, medtem ko obdržimo dobro ravnotežje lastnosti indeksa viskoznosti in topnosti v baznih oljih, je prednostno, da delež monomera (a) obsega od približno 5 do približno 40, prednostno od približno 5 do približno 35 in bolj prednostno od približno 25 do približno 35 mas.% (C^-C^jalkil metakrilatov in/ali (C^-C^jalkil akrilatov, pri čemer je prednostno alkilni delež C16 do C^. Nizko temperaturna zmogljivost se nanaša na viskoznosti pri visokih strižnih in nizkih strižnih pogojih. Npr. zagon hladnega motorja, kot je izmerjeno s CCS (simulator hladnega vrtenja) viskoznostjo, se nanaša na viskoznost pri visokih strižnih pogojih. Na drugi strani se sposobnost črpanja olja pri nizkih temperaturah, kot izmerimo z mini rotacijskimi viskozimetrom (MRV), nanaša na viskoznost pri nizkih strižnih pogojih. Ker so dolgi alkil metakrilati in akrilati podobni vosku delujejo kot depresanti točke tekočnosti, pri čemer spremenijo strukturo ali morfologijo voska v baznem olju pri nizkih temperaturah. Količina uporabljenega dolgega alkil metakrilata ali akrilata je odvisna od posebno izbranega dolgega alkil metakrilata ali akrilata, lastnosti baznega olja in želenih nizko temperaturnim lastnosti. Na splošno večje, ko je število ogljikov v alkilnem deležu, več imajo monomeri lastnosti podobnih vosku in manj tega monomera se uporabi. Ker so ti dolgi alkil (met)akrilati podobni vosku, jih preveč lahko povzroči strjevanje v baz9 nem olju in izgubo nizko temperaturne tekočnosti.Thus, in order to obtain good usable properties at low temperature while maintaining a good balance of viscosity and solubility index properties in the base oils, it is preferable that the proportion of monomer (a) ranges from about 5 to about 40, preferably from about 5 to about 35, and more preferably from about 25 to about 35% by weight of (C 1 -C 6 -alkyl methacrylates and / or (C 1 -C 6 -alkyl acrylates, preferably an alkyl portion of C 16 to C 4. Low temperature capacity refers to viscosities eg high shear and low shear conditions, eg cold engine start-up as measured by CCS (cold rotation simulator) viscosity, refers to viscosity at high shear conditions, on the other hand, the ability to pump oil at low temperatures as measured by mini rotational viscometer (MRV) refers to viscosity at low shear conditions, since long alkyl methacrylates and acrylate-like waxes act as depressants of the fluid point, with sp Remains the structure or morphology of the wax in the base oil at low temperatures. The amount of long alkyl methacrylate or acrylate used depends on the particular long alkyl methacrylate or acrylate selected, the base oil properties and the desired low temperature properties. In general, the greater the carbon content of the alkyl fraction, the more the monomers have wax-like properties and the less of this monomer is used. Because these long alkyl (meth) acrylates are similar to wax, too much of them can be caused by solidification in the base oil and loss of low temperature fluid.
Optimizacija razmerja dolgih, srednjih in kratkih alkil (met)akrilatov je odvisna od baznih olj, uporabljenih v formulaciji in stopnji želene zmogljivosti. Ko dolgi monomer optimiziramo, potem razmerje srednjega in kratkega monomera uravnotežimo, da dobimo optimum indeksa viskoznosti in topnosti. Uravnotežena formulacija ima prednostno vsebnost ogljikov v alkilu (Cn) od približno 8 do približno 10.The optimization of the ratio of long, medium and short alkyl (meth) acrylates depends on the base oils used in the formulation and the degree of desired performance. When the long monomer is optimized, then the ratio of the medium and short monomer is balanced to obtain the optimum viscosity and solubility index. The balanced formulation preferably has a carbon content of alkyl (C n ) of from about 8 to about 10.
Torej v prednostnih območjih za razne monomere, ki vključujejo hidroksialkil metakrilatne in akrilatne monomere in povprečno število atomov ogljika v stranski verigi alkilnih skupin ogradnega polimera, dodatek polimera v smislu predloženega izuma lahko da sestavek strojnega olja, ki ima viskoznost in lastnosti nizko temperaturne tekočnosti olja z nižjo stopnjo celotne viskoznosti. Npr. SAE 10W-30 olje se ujema z zahtevami in sposobnostmi črpanja SAE 5W-30 olja.Therefore, in the preferred ranges for various monomers including hydroxyalkyl methacrylate and acrylate monomers and the average number of carbon atoms in the alkyl chain group of the fence polymer, the addition of the polymer of the present invention can give a machine oil composition having a viscosity and low temperature liquid oil properties with a lower degree of overall viscosity. E.g. SAE 10W-30 Oil meets the requirements and pumping capabilities of SAE 5W-30 Oil.
V teh prednostnih območjih polimeri v smislu predloženega izuma tudi zagotavljajo nižjo CCS viskoznost, medtem ko vzdržujejo dobro sposobnost črpanja pri nizki temperaturi (izmerjeno z MR V) mazalnih olj in tako dopuščajo uporabo baznih olj z višjimi viskoznostmi. Torej polimeri v smislu izuma dopuščajo bolj široko uporabo teh težjih baznih olj v formuliranih oljih, kar da nižje stroške, zmanjšano porabo olja in tudi čistejše motorje, ker so ta težja bazna olja manj hlapna kot bazna olja z nizko viskoznostjo in znižujejo tvorbo nalaganja v batu pri visokih delovnih temperaturah, zlasti pri dieselskih motorjih.In these preferred areas, the polymers of the present invention also provide lower CCS viscosity while maintaining good pumping ability at low temperature (as measured by MR V) of lubricating oils, thus allowing the use of higher viscosity base oils. Therefore, the polymers of the invention allow for the more extensive use of these heavier base oils in formulated oils, resulting in lower costs, reduced oil consumption and also cleaner engines, since these heavier base oils are less volatile than low viscosity base oils and reduce the formation of piston loading. at high operating temperatures, especially for diesel engines.
Zato, da dosežemo kombinacijo topnosti polimera, indeksa viskoznosti, dispergirnosti in nizko temperaturnih lastnosti (kot npr. točko tekočnosti in zmogljivost pri zagonu hladnega motorja) polimerov v smislu predloženega izuma lahko uporabimo nivoje kratkih (C1-C3)alkil(met)akrilatov, kot npr. metil metakrilata od nič do približno 25%, značilno od približno 5 do približno 15% polimera. Topnost polimera se nanaša na lastnost, pri kateri bolj hidrofilni ali polarni monomeri, kot npr. tisti z nizko vsebnostjo ogljika (C1-C3) v alkilnem deležu zagotavljajo polimer, ki je manj topen v baznih oljih kot polimeri iz bolj hidrofobnih monomerov, kot npr. tisti z visoko vsebnostjo ogljika (C4 ali večji) v alkilni verigi. Zato, če vgradimo več kot približno 10% metil metakrilata v nekatere polimere, odvisno od nivoja drugih uporabljenih polarnih monomerov, npr. hidroksialkil metakrilata, topnost v nekaterih baznih oljih lahko ne zadostuje za aditiv, da bi popolnoma deloval kot dis10 pergirno sredstvo za izboljšanje indeksa viskoznosti. Po drugi strani, če uporabimo kratke (C4-C6)alkil(met)akrilate, kot npr. butil metakrilat ali izobutil metakrilat, potem lahko uporabimo od nič do približno 40 mas.%, prednostno 20 do 35 mas.% teh monomerov, da zagotovimo optimalno ravnotežje prej omenjenih lastnosti, vključno topnost v baznih oljih.Levels of short (C 1 -C 3 ) alkyl (meth) acrylates can be used to achieve a combination of polymer solubility, viscosity index, dispersion and low temperature properties (such as liquid point and cold start capability) of the polymers of the present invention. , such as methyl methacrylate from zero to about 25%, typically from about 5 to about 15% of the polymer. The solubility of a polymer refers to a property in which more hydrophilic or polar monomers, such as e.g. those with a low carbon (C 1 -C 3 ) content in the alkyl moiety provide a polymer that is less soluble in base oils than polymers from more hydrophobic monomers, such as e.g. those with a high carbon content (C 4 or greater) in the alkyl chain. Therefore, if more than about 10% of methyl methacrylate is incorporated into some polymers, depending on the level of other polar monomers used, e.g. hydroxyalkyl methacrylate, the solubility in some base oils may not be sufficient for an additive to fully function as a dis10 pergressant to improve the viscosity index. On the other hand, using short (C 4 -C 6 ) alkyl (meth) acrylates, such as e.g. butyl methacrylate or isobutyl methacrylate can then be used from zero to about 40 wt.%, preferably 20 to 35 wt.% of these monomers, to ensure the optimum balance of the aforementioned properties, including solubility in the base oils.
Masno povprečna molekulska masa (Mw) polimera v smislu predloženega izuma ni zelo kritična. Biti mora zadostna, da da želene lastnosti viskoznosti mazalnemu olju. Če masno povprečne molekulske mase polimerov naraščajo, postanejo bolj učinkoviti zgoščevalci; vendar so lahko izpostavljeni mehanskim degradacijam v posebnih aplikacijah. Končno je Mw povezan z učinkom zgoščevanja, stroški in vrsto aplikacije. Na splošno imajo polimerni aditivi mazalnih olj v smislu predloženega izuma Mw od približno 100.000 do približno 1.000.000 (kot je določeno z gelno permeacijsko kromatografijo (GPC), z uporabo poli(alkilmetakrilatnih) standardov); prednostno je Mw v območju približno 300.000 do približno 800.000, zato da zadosti posebnemu namenu uporabe olja, npr. strojno olje in tekočina za avtomatske prenose. Masne povprečne molekulske mase od približno 100.000 do približno 300.000 so prednostne za hidravlične tekočine, olja za menjalnike ipd.The mass average molecular weight (M w ) of the polymer of the present invention is not very critical. It must be sufficient to give the desired viscosity properties to the lubricating oil. As the mass-average molecular weights of polymers increase, they become more effective thickeners; however, they may be subject to mechanical degradation in specific applications. Finally, M w is related to the thickening effect, cost, and type of application. Generally, the lubricating oil polymer additives of the present invention have M w from about 100,000 to about 1,000,000 (as determined by gel permeation chromatography (GPC), using poly (alkylmethacrylate) standards); preferably, M w is in the range of about 300,000 to about 800,000 in order to satisfy the specific purpose of using the oil, e.g. machine oil and automatic transmission fluid. Mass average molecular weights of from about 100,000 to about 300,000 are preferred for hydraulic fluids, gear oils and the like.
Strokovnjakom je jasno, da so molekulske mase navedene vseskozi v tem opisu odvisne od postopkov, s katerimi so določene. Npr. molekulske mase, določene z gelno permeacijsko kromatografijo (GPC) in molekulske mase, izračunane z drugimi postopki, imajo lahko različne vrednosti. To ni molekulska masa per se, ampak so izvedene lastnosti in delovanje polimernega aditiva (strižna stabilnost in moč zgoščevanja pri uporabljenih pogojih) to je pomembno. Na splošno je strižna stabilnost obratno proporcionalna molekulski masi in uporaba zelo strižno stabilnega aditiva zahteva več polimera, da dobimo dobro zgoščevanje.It will be apparent to those skilled in the art that the molecular weights stated throughout this description depend on the procedures by which they are determined. E.g. the molecular weights determined by gel permeation chromatography (GPC) and the molecular weights calculated by other methods may have different values. This is not molecular weight per se, but the derived properties and performance of the polymer additive (shear stability and compaction strength under applied conditions) are important. In general, the shear stability is inversely proportional to the molecular weight, and the use of a very shear stable additive requires more polymer to obtain good thickening.
Indeks strižne stabilnosti (SSI) je lahko direktno povezan z molekulsko maso polimera in je merilo odstotne izgube viskoznosti, prispevane od polimernega aditiva zaradi striga in ga lahko določimo z merjenjem zvočne strižne stabilnosti po ASTM D-2603-91 (izdano od American Society for Testing and Materials). Na splošno so polimeri z višjo molekulsko maso izpostavljeni večjemu relativnemu zmanjšanju molekulske mase, če jih podvržemo večjim strižnim pogojem in zaradi tega imajo ti polimeri z višjo molekulsko maso večje SSI vrednosti. SSI območje polimerov v smislu izuma je od približno 10 do približno 75%, prednostno od približno 10 do približno 25% za polimere z nizko molekulsko maso in od približno 30 do približnoThe shear stability index (SSI) can be directly related to the molecular weight of the polymer and is a measure of the percentage viscosity contributed by the polymer additive due to shear and can be determined by measuring the sound shear stability according to ASTM D-2603-91 (issued by American Society for Testing and Materials). Generally, higher molecular weight polymers are exposed to a greater relative decrease in molecular weight when subjected to higher shear conditions, and as a result, these higher molecular weight polymers have higher SSI values. The SSI range of the polymers of the invention is from about 10 to about 75%, preferably from about 10 to about 25%, for low molecular weight polymers and from about 30 to about
50% za polimere z visoko molekulsko maso. Želeni SSI lahko dosežemo bodisi s spreminjanjem reakcijskih pogojev ali z mehanskim striženjem polimernega produkta z znano molekulsko maso.50% for high molecular weight polymers. The desired SSI can be achieved either by changing the reaction conditions or by mechanical shear of a polymeric product of known molecular weight.
Tipični predstavniki strižne stabilnosti, ki jih opazimo za aditive mazalnih olj, različnih masnih povprečnih molekulskih mas (Mw) so naslednji: običajni poli(metakrilatni) aditivi z Mw 130.000, 490.000 oz. 880.000, imajo SSI vrednosti (99°C) 0,5 in 20%, bazirane na strižnem testu na 3218 km cesti za formulacije strojnega olja; bazirane na testu na 32.180 km hitre ceste za formulacije za tekočine za avtomatske prenose (ATF) so SSI vrednosti (99°C) 0,35 oz. 50%; in bazirane na 100 urnem ASTM D-2882-90 črpalnem testu za hidravlične tekočine so SSI vrednosti (38°C) 18, 68 oz. 76% (Effect of Viscosity Index Improver on In-Service Viscosity of Hydraulic Fluids, R.J. Kopko in R.L. Stambaugh, Fuel and Lubricants Meeting, Houston, Texas, junij 3-5,1975, Society of Automotive Engineers).Typical representatives of the shear stability observed for lubricating oil additives of different mass average molecular weights (M w ) are as follows: conventional poly (methacrylate) additives with M w 130,000, 490,000 and. 880,000, have SSI values (99 ° C) of 0.5 and 20%, based on shear test on 3218 km of road for machine oil formulations; based on the 32.180 km test road for Automatic Transmission Fluid (ATF) formulations, SSI values (99 ° C) are 0.35 oz. 50%; and based on the 100-hour ASTM D-2882-90 pumping test for hydraulic fluids, SSI values (38 ° C) are 18, 68 oz. 76% (Effect of Viscosity Index Improver on In-Service Viscosity of Hydraulic Fluids, RJ Kopko and RL Stambaugh, Fuel and Lubricants Meeting, Houston, Texas, June 3-5,1975, Society of Automotive Engineers).
Polidispergirni indeks v olju topnih polimerov v smislu predloženega izuma je lahko od približno 1,5 do približno 15, prednostno od 2 do približno 4. Polidispergirni indeks je merilo ozkosti porazdelitve molekulske mase z minimalno vrednostjo 1,5 in 2,0 za polimere, ki vključujejo verižni zaključek s kombinacijo oz. disproporcionacijo, in višje vrednosti predstavljajo naraščajoče širše porazdelitve. Prednostno je, da je porazdelitev molekulske mase tako ozka kot je le mogoče, vendar je to na splošno omejeno s postopkom izdelave. Nekateri približki za zagotovitev ozke porazdelitve molekulske mase (nizek Mlahko vključujejo enega ali več od naslednjih postopkov. Anionsko polimerizacijo; tehnologijo kontinuirnega polnjenja in mešanja v reaktorskem tanku (CFSTR); polimerizacijo z nizko konverzijo; kontrolo temperature, itd. med polimerizacijo; mehansko striženje, t.j. homogenizacijo polimerov; ipd.The polydispersity index in the oil of soluble polymers of the present invention may be from about 1.5 to about 15, preferably from 2 to about 4. The polydispersity index is a measure of the narrowness of the molecular weight distribution with a minimum value of 1.5 and 2.0 for polymers which include a chain termination with a combination or. disproportionation, and higher values represent increasing broader distributions. Preferably, the molecular weight distribution is as narrow as possible, but this is generally limited by the manufacturing process. Some approximations to ensure a narrow molecular weight distribution (low Might include one or more of the following processes. Anionic polymerization; reactor tank continuous charge and mixing technology (CFSTR); low conversion polymerization; temperature control, etc. during polymerization; mechanical shear, i.e. homogenization of polymers;
Polimeri v smislu predloženega izuma, ki imajo polidispergirni indeks od 2 do približno 4 so prednostni, ker ti polimeri dopuščajo bolj učinkovito uporabo aditiva, da zadostijo posebno formulirani specifikaciji viskoznosti strojnega olja, npr. približno 5 do 10% manj aditiva lahko zadostuje, da dobimo viskoznost približno 9 x 10'3 do približno 2 χ 10'2 Pa.s (pri 100°C) v 100N baznem olju v primerjavi z aditivom, ki ima polidispergirni indeks približno 10.The polymers of the present invention having a polydispersive index of 2 to about 4 are preferred because these polymers allow the additive to be used more efficiently to meet the specially formulated viscosity specifications of machine oil, e.g. about 5 to 10% less additive may be sufficient to give a viscosity of about 9 x 10 ' 3 to about 2 χ 10' 2 Pa.s (at 100 ° C) in 100N base oil compared to an additive having a polydispersive index of about 10 .
Torej popolnoma učinkovit polimerni aditiv lahko zagotovi ravnotežje strižne stabilnosti in sposobnosti zgoščevanja pri nizkih uporabnih nivojih, da nizko temperaturno tekočnost brez prikrajšanja drugih lastnosti, kot npr. dispergimost in je kemijsko nevtralen za fluoropolimema tesnila. Značilno so te uporabne lastnosti v strojnih oljih, formulacijah tekočin za avtomatske prenose ipd., predhodno dosegli samo z mešanjem dveh, treh ali več različnih aditivov, t.j. z uporabo aditiva ločenega dispergirnega sredstva, aditiva za izboljšanje indeksa viskoznosti in aditiva depresanta točke tekočnosti. Aditivi v smislu predloženega izuma zagotavljajo to kombinacijo uporabnih lastnosti v posameznem polimeru.Thus, a fully effective polymer additive can provide a balance of shear stability and the ability to thicken at low usable levels to provide low temperature fluidity without compromising other properties, such as e.g. dispersion and is chemically neutral for fluoropolymer sealants. Typically, these useful properties in machine oils, automatic transmission fluid formulations, etc., have previously been achieved only by mixing two, three or more different additives, i.e. using a separate dispersing agent, a viscosity index additive, and a fluid point depressant additive. The additives of the present invention provide this combination of useful properties in a single polymer.
Polimere v smislu izuma lahko pripravimo z mešanjem monomerov (a) in (b) v prisotnosti iniciatoija polimerizacije, razredčila in v danem primeru sredstva za verižni transfer. Reakcija lahko poteka ob mešanju v inertni atmosferi pri temperaturi od približno 60 do 140°C in bolj prednostno od 115 do 125°C. Značilno reakcija poteka eksotermno do polimerizacijske temperature 115-120°C. Reakcija na splošno poteka približno 4 do 10 ur ali dokler ne dosežemo želene stopnje polimerizacije. Kot je strokovnjakom znano, sta čas in temperatura reakcije odvisna od izbire iniciatoija in ju lahko skladno variiramo.The polymers of the invention can be prepared by mixing monomers (a) and (b) in the presence of a polymerization initiator, a diluent, and optionally a chain transfer agent. The reaction may be carried out under stirring under an inert atmosphere at a temperature of from about 60 to 140 ° C and more preferably from 115 to 125 ° C. Typically, the reaction is exothermic to a polymerization temperature of 115-120 ° C. The reaction generally takes about 4 to 10 hours or until the desired degree of polymerization is achieved. As is known to those skilled in the art, the time and temperature of the reaction depend on the choice of initiator and can be varied accordingly.
Iniciatoiji, uporabni za to polimerizacijo, so katerekoli od dobro znanih spojin, ki proizvajajo prosti radikal, kot npr. peroksi, hidroperoksi in azo inicatorji, ki vključujejo acetil peroksid, benzoil peroksid, lavroil peroksid, t-butil peroksiizobutirat, kaproilperoksid, kumen hidroperoksid, l,l-di(t-butilperoksi)-3,3,5trimetilcikloheksan, azobisizobutironitril in t-butil peroktoat. Koncentracija iniciatorja je normalno med 0,025 in 1 mas.% bazirana na celokupni masi monomerov in bolj prednostno od 0,05 do 0,25%. Verižna transferna sredstva lahko dodamo reakciji polimerizacije, da kontroliramo molekulsko maso polimera. Prednostna sredstva za verižni prenos so alkil merkaptani, kot npr. lavril (dodecil) merkaptan in uporabljena koncentracija verižnega transfernega sredstva je od 0 do približno 0,5 mas.%.The initiators useful for this polymerization are any of the well-known free radical-producing compounds such as e.g. peroxy, hydroperoxy and azo initiators including acetyl peroxide, benzoyl peroxide, laroyl peroxide, t-butyl peroxyisobutyrate, caproyl peroxide, cumene hydroperoxide, l, l-di (t-butyl peroxy) -3,3,5trimethylcycloisobutyl, butyl butyl peroctoate. The initiator concentration is normally between 0.025 and 1 wt% based on the total weight of the monomers and more preferably from 0.05 to 0.25%. Chain transfer agents can be added to the polymerization reaction to control the molecular weight of the polymer. Preferred chain transfer agents are alkyl mercaptans such as e.g. lauryl (dodecyl) mercaptan and the chain transfer agent concentration used is from 0 to about 0.5% by weight.
Razredčila, primerna za polimerizacijo, so aromatski ogljikovidiki, kot npr. benzen, toluen, ksilen in aromatske nafte, klorirani ogljikovodiki, kot npr. etilen diklorid, estri kot npr. etil propionat ali butil acetat in tudi petrolejska olja ali sintetična maziva.Diluents suitable for polymerization are aromatic hydrocarbons such as e.g. benzene, toluene, xylene and aromatic naphtha, chlorinated hydrocarbons such as e.g. ethylene dichloride, esters such as e.g. ethyl propionate or butyl acetate and also petroleum oils or synthetic lubricants.
Po polimerizaciji ima nastala polimerna raztopina značilno vsebnost polimera med približno 50 do 95 mas.%. Polimer lahko izoliramo in uporabimo direktno v mineralnih ali sintetičnih baznih oljih ali lahko uporabimo polimer in raztopino razredčila v koncentrirani obliki. Če uporabimo koncentrirano obliko lahko koncentracijo polimera naravnamo na katerikoli želeni nivo z dodatnim razredčilom (npr. parafinsko bazno olje). Prednostna koncentracija polimera v koncentratu je od 30 do 70 mas.%. Če koncentrat direktno zmešamo v mazalno bazno olje je bolj prednostno razredčilo katerokoli mineralno olje kot npr. 100 do 150 nevtralno olje (100 N ali 150 N olje), kije kompatibilno s končnim mazalnim baznim oljem.After polymerization, the resulting polymer solution has a typical polymer content of between about 50 and 95% by weight. The polymer can be isolated and used directly in mineral or synthetic base oils, or the polymer and diluent solution may be used in concentrated form. If a concentrated form is used, the polymer concentration can be adjusted to any desired level with an additional diluent (eg paraffin base oil). The preferred concentration of polymer in the concentrate is from 30 to 70% by weight. If directly mixed into the lubricating base oil, it is more preferable to dilute any mineral oil such as e.g. 100 to 150 neutral oil (100 N or 150 N oil) compatible with the final lubricating base oil.
Če polimer v smislu predloženega izuma dodamo k mazalnim baznim oljem, kot npr. tekočinam za avtomatske prenose, hidravličnim tekočinam in motornim oljem, bodisi kot čisti polimer ali kot koncentrat je končna koncentracija polimera v mazalnem baznem olju prednostno od približno 0,5 do 15 mas.% in bolj prednostno od približno 1 do 8 % odvisno od zahtev specifične uporabe. Npr. približno 1,5 do približno 5 % v motornih oljih, tekočinah za avtomatske prenose in tekočinah za blaženje udarcev in nad 10 do 15 % v specialnih aplikacijah za olja za menjalnike in hidravlične tekočine. Mazalna bazna olja so lahko bodisi mineralna olja (parafinska ali naftenska) ali sintetični tipi (poliolifin). Koncentracija uporabljenega polimera je odvisna od želenih viskozimetričnih lastnosti mazalnega olja in natančnosti striga pri nameravani aplikaciji; na splošno če uporabimo polimer z nizko molekulsko maso je potrebna višja koncentracija, da dosežemo adekvatno zgoščevanje v zmesi in če uporabimo polimer z višjo molekulsko maso lahko uporabimo nižjo koncentracijo v olju.If the polymer of the present invention is added to lubricating base oils, such as e.g. automatic transmission fluids, hydraulic fluids and engine oils, either as pure polymer or as concentrate, the final polymer concentration in the lubricating base oil is preferably from about 0.5 to 15% by weight and more preferably from about 1 to 8% depending on the specific requirements of use. E.g. about 1.5 to about 5% in engine oils, automatic transmissions and shock absorbers, and above 10 to 15% in special gearbox and hydraulic fluid applications. Lubricating base oils can be either mineral oils (paraffinic or naphthenic) or synthetic types (polyolifine). The concentration of polymer used depends on the desired viscometric properties of the lubricating oil and the shear accuracy of the intended application; generally, if a low molecular weight polymer is used, a higher concentration is required to obtain adequate thickening in the mixture, and if a higher molecular weight polymer is used, a lower concentration in the oil may be used.
Polimeri v smislu predloženega izuma so ocenjeni s širokim izborom testov za delovanje, navadno uporabljenih za mazalna olja in so razloženi spodaj.The polymers of the present invention are evaluated by a wide variety of performance tests commonly used for lubricating oils and are explained below.
Strojna olja, ki vsebujejo sredstva za izboljševanje indeksa viskoznosti imajo na splošno vrednosti indeksa viskoznosti (VI) v območju od 120 do približno 230, pri čemer so vrednosti večje kot približno 140 prednostno odvisne od specifikacij mešanice. Višja ko je vrednost manjša je sprememba viskoznosti, ko temperatura naraste ali pade. Sestavki sredstev za izboljševanje indeksa viskoznosti v smislu predloženega izuma ponujajo visoke vrednosti indeksa viskoznosti (primer 4) medtem ko vzdržujejo dobro dispergirnost (primer 5), dober zagon hladnega motorja (primer 7) in dobro kemijsko nevtralnost proti fluoropolimernim tesnilnim materialom (primer 6).Machine oils containing viscosity index enhancers generally have viscosity index (VI) values in the range of 120 to about 230, with values greater than about 140 depending on the specifications of the mixture. The higher the lower the value, the change in viscosity as the temperature rises or falls. The viscosity index enhancer compositions of the present invention offer high viscosity index values (Example 4) while maintaining good dispersibility (Example 5), good cold engine starting (Example 7) and good chemical neutrality against fluoropolymer sealants (Example 6).
Uporabne lastnosti aditivov mazalnega olja v smislu predloženega izuma so ocenjene tudi za čistočo motorja v sekvenčnem VE testu, s katerim izmerimo dispergirne lastnosti aditivov brozge pri nizkih in srednjih temperaturnih pogojih delovanja v skladu s pogoji opisanimi v ASTM Research Report št. D-2:1002. Strojne dele ocenimo in preračunamo po 12 dneh in čistočo ovrednotimo po Coordinating Research Council (CRC) vrednostnem sistemu z vrednostjo 10, ki predstavlja najčistejši stroj; ciljne vrednosti za povprečno suspenzijo in za suspenzijo za v okrov ventilskega krmilja (RAC) so večje kot 9,00 oz. 7,00.The useful properties of the lubricating oil additives of the present invention have also been evaluated for the purity of the engine in a sequential VE test to measure the dispersion properties of slurry additives at low and medium temperature operating conditions under the conditions described in ASTM Research Report no. D-2: 1002. Machine parts are evaluated and recalculated after 12 days and cleanliness evaluated by the Coordinating Research Council (CRC) value system with a value of 10 representing the cleanest machine; the target values for the average suspension and for the suspension in the valve body (RAC) are greater than 9.00 or. 7,00.
Sestavke v smislu predloženega izuma podvržemo tudi testu kompatibilnosti za fluoro ogljikovodične polimere, zlasti vitonske fluoroelastomere. Ta test (test kompatibilnosti z motornimi tesnili, primer 6) uporabimo, da ocenimo stopnjo kompatibilnosti aditivov mazalnega olja v smislu predloženega izuma z materiali uporabljenimi v motornih tesnilih, itd. Test je osnovan na potopitvi tesnilnih materialov v tekočine, ki vsebujejo kandidate vzorcev aditivov za mazalno olje, za 7 dni, nakar določimo njihove razteznostne značilnosti (odstotni porušitveni raztezek) ali %ELB). Vrednosti relativne spremembe v %ELB od 0 do -5 % predstavljajo nevtralne pogoje t.j. kompatibilnost s strojnimi tesnili.The compositions of the present invention are also subjected to a compatibility test for fluorocarbon polymers, in particular viton fluoroelastomers. This test (engine seal compatibility test, Example 6) is used to evaluate the degree of compatibility of lubricating oil additives of the present invention with materials used in engine gaskets, etc. The test is based on the immersion of the sealing materials in liquids containing the candidates of the lubricating oil additive samples for 7 days, after which their elongation characteristics (percent burst elongation) or% ELB are determined. Relative change values in% ELB from 0 to -5% represent neutral conditions, i.e. compatibility with machine seals.
Sestavke v smislu predloženega izuma podvržemo testom namenjenim za merjenje karakteristik viskoznosti pri nizkih temperaturah pri nizkih in visokih strižnih vrednosti, t.j. v skladu z SAE J300 Engine Oil Viscosity Classification, januar, 1991. V teh okoliščinah naj bi bila viskoznost formuliranega olja dovolj nizka, da dopusti zadostno hitrost vrtenja za zagon motorja medtem ko zagotavlja adekvatno mazanje vseh motornih delov.The compositions of the present invention are subjected to tests designed to measure the viscosity characteristics at low temperatures at low and high shear values, i.e. in accordance with SAE J300 Engine Oil Viscosity Classification, January 1991. In these circumstances, the viscosity of the formulated oil should be low enough to allow sufficient rotation speed to start the engine while ensuring adequate lubrication of all engine parts.
Test simuliranega hladnega vrtenja (CCS) določa navidezno viskoznost strojnih olj pri pogojih, kjer je vrtenje in zagon motorja najtežje in bazira na postopku definiranem v ASTM D-5293-92. Npr. CCS specifikacija viskoznosti olja vrste SAE 5W-30 je manj kot 3,5 Pa.s pri -25 °C in z mnogimi tržno dosegljivimi sredstvi za izboljšanje indeksa viskoznosti je težko zadostiti tej zahtevi.The simulated cold rotation test (CCS) determines the apparent viscosity of machine oils under the conditions where engine rotation and start-up are most difficult and based on the procedure defined in ASTM D-5293-92. E.g. The CCS oil viscosity specification of SAE 5W-30 type is less than 3.5 Pa.s at -25 ° C and with many commercially available viscosity index enhancers it is difficult to meet this requirement.
S testnim postopkom minirotacijskega viskozimetra (MRV) izmerimo nizko temperaturne nizkostrižne karakteristike pri zagonu motorju. MRV test (primer 8) je merilo sposobnosti črpanja strojnega olja, t.j. strojno olje mora biti dovolj tekoče, tako da ga lahko črpamo v vse strojne dele po zagonu motorja, da zagotovimo ustrezno mazanje. Dispergirna sredstva za izboljšanje indeksa viskoznosti v smislu predloženega izuma nudijo dobro karakteristiko pri nizki temperaturi, če jih formuliramo v širokem območju različnih baznih olj.The low-temperature low-shear characteristics at engine start-up are measured using the MRV test procedure. The MRV test (Example 8) is a measure of the ability to pump machine oil, i.e. the engine oil must be sufficiently liquid so that it can be pumped into all machine parts after starting the engine to ensure proper lubrication. The viscosity index dispersing agents of the present invention provide a good low temperature characteristic when formulated over a wide range of different base oils.
Naslednji primeri so predstavljeni za ponazoritev prednostnih izvedb v smislu predloženega izuma. Vsa razmerja in odstotki so masni in vsi reagenti so dobre tržne kakovosti, če ni drugače navedeno. Primeri 1 do 3 dajejo informacije sinteze za pripravo polimerov v smislu predloženega izuma in primeri 4 do 7 dajejo podatke za karakteristike oljnih formulacij, ki vsebujejo polimere v smislu izuma.The following examples are presented to illustrate preferred embodiments of the present invention. All ratios and percentages are by weight and all reagents are of good marketable quality unless otherwise stated. Examples 1 to 3 provide synthesis information for the preparation of polymers of the present invention and Examples 4 to 7 provide information for the characteristics of the oil formulations containing the polymers of the invention.
PRIMER 1EXAMPLE 1
Monomemo zmes pripravimo iz 30,0 delov cetil-eikozil metakrilata (100 % osnova, 95 % čistota), 55,0 delov izodecil metakrilata (100 % osnova, 98 % čistota), 10,0 delov metil metakrilata, 5,0 delov hidroksipropil metakrilata, 0,06 delov dodecil merkaptana in 0,10 delov l,l-di(t-butilperoksi)-3,3,5-trimetilcikloheksana. Preostalo šaržo pripravimo iz 20,0 delov zaloge parafinskega baznega olja (100 N olje) in 0,028 delov l,l-di(t-butilperoksi)-3,3,5-trimetilcikloheksana. Preostalo šaržo nato šaržiramo v kotel, ki ga oplakujemo z dušikom in je opremljen s termometrom in termouro za kontrolo temperature, vodno hlajenim refluksnim kondenzeijem z izpustom za dušik, mešalom, vpustom za dušik in dodatnim lijakom za kontrolo dodatka monomerne zmesi. Vsebino kotla segrejemo na 120 °C in vzdržujemo pri tej temperaturi. Monomerno zmes (100 delov) nato enakomerno dodamo v 90 minutni periodi in segrevamo ali ohlajamo kot je potrebno za vzdrževanje polimerizacijske temperature na 115-120 °C.The monomer mixture was prepared from 30.0 parts of cetyl eicosyl methacrylate (100% base, 95% purity), 55.0 parts isodecyl methacrylate (100% base, 98% purity), 10.0 parts methyl methacrylate, 5.0 parts hydroxypropyl methacrylate, 0.06 parts of dodecyl mercaptan and 0.10 parts of 1,11-di (t-butyl peroxy) -3,3,5-trimethylcyclohexane. The remaining batch was prepared from 20.0 parts of a stock of paraffinic base oil (100 N oil) and 0.028 parts of 1,11-di (t-butyl peroxy) -3,3,5-trimethylcyclohexane. The remaining batch is then batched to a nitrogen-coated boiler equipped with a thermometer and temperature control thermocouple, water-cooled reflux condenser with nitrogen outlet, mixer, nitrogen inlet and an additional funnel to control the addition of the monomer mixture. The contents of the boiler are heated to 120 ° C and maintained at this temperature. The monomer mixture (100 parts) was then added uniformly over a 90 minute period and heated or cooled as needed to maintain the polymerization temperature at 115-120 ° C.
minut po končanem polnjenju monomera dodamo prvo od treh zadržanih doz iniciatorja, pri čemer vsaka vsebuje 0,10 delov l,l-di(t-butil-peroksi)-3,3,5trimetilcikloheksana v 10,0 delih parafinskega baznega olja. Drugi dve dozi iniciatorja dodamo v 20 minutnih intervalih. 20 minut po zadnjem dodatku iniciatorja dodamo 62 delov parafinskega baznega olja, da privedemo šaržo do teoretičnih trdnih snovi 50 % polimera v olju. Vseskozi med polimerizacijo vzdržujemo temperaturo na 115-120 °C. 30 minut po dodatku parafinskega baznega olja je šarža homogena in smatramo, da je polimerizacija popolna. Konverzija monomerov v polimer je 95 % in polimer ima indeks strižne stabilnosti (SSI) 45 (po ASTM D-2603-91).minutes after the monomer filling is completed, the first of the three retained doses of initiator is added, each containing 0.10 parts of 1, 1-di (t-butyl-peroxy) -3,3,5 trimethylcyclohexane in 10.0 parts of paraffinic base oil. The other two doses of initiator are added at 20 minute intervals. 20 minutes after the last addition of the initiator, 62 parts of paraffin base oil were added to bring the batch to theoretical solids of 50% polymer in the oil. Throughout the polymerization, the temperature is maintained at 115-120 ° C. 30 minutes after the addition of paraffin base oil, the batch is homogeneous and the polymerization is considered complete. The conversion of monomers to polymer is 95% and the polymer has a shear stability index (SSI) of 45 (according to ASTM D-2603-91).
PRIMER 2EXAMPLE 2
Delamo po enakem postopku kot v primeru 1 razen, da je monomerna zmes 145 delov cetil-eikozil metakrilata, 225 delov izodecil metakrilata, 99 delov butil metakrilata, 24 delov hidroksipropil metakrilata in 0,19 delov kumen hidroperoksida. Preostala šarža je 106 delov parafinskega baznega olja, ki vsebuje 0,1 g kumen hidroperoksida in 0,83 delov 95 % talov-t-oktilfenildimetilamonijevega klorida v mešanih butanolih. Tudi tri zadržane doze iniciatoija dodamo v 30 minutnih intervalih in vsaka sestoji iz 0,13 delov kumen hidroperoksida in 0,83 delov 25 % talov-toktilfenildimetil amonijevega klorida v mešanih butanolih v 3,6 delih parafinskega baznega olja. Šarža ima teoretičnih trdnih snovi 52 % polimera. Pretvorba monomera v polimer je 93 % in polimer ima SSI 73,3.The procedure is the same as in Example 1 except that the monomer mixture is 145 parts cetyl-eicosyl methacrylate, 225 parts isodecyl methacrylate, 99 parts butyl methacrylate, 24 parts hydroxypropyl methacrylate and 0.19 parts cumene hydroperoxide. The remaining batch is 106 parts of paraffinic base oil containing 0.1 g of cumene hydroperoxide and 0.83 parts of 95% tal-t-octylphenyldimethylammonium chloride in mixed butanols. Also, three retained initiation doses are added at 30 minute intervals, each consisting of 0.13 parts of cumene hydroperoxide and 0.83 parts of 25% melt-toctylphenyldimethyl ammonium chloride in mixed butanols in 3.6 parts of paraffinic base oil. The batch has theoretical solids of 52% polymer. The conversion of the monomer to the polymer is 93% and the polymer has an SSI of 73.3.
PRIMER 3EXAMPLE 3
Monomemo zmes pripravimo iz 5,0 delov cetil-eikozil metakrilata (100 % osnova, 95 % čistota), 85 delov izodecil metakrilata (100 % osnova, 95 % čistota), 5,0 delov metil metakrilata, 5,0 delov hidroksipropil metakrilata, 0,29 delov dodecil merkaptana, 0,13 delov t-butil peroktoata (t-butil peroksi-2-etilheksanoat) in 4,9 delov parafinskega baznega olja (100 N olje). Del zgornje monomeme zmesi (40 %) žaržiramo v kotel, ki ga splakujemo z dušikom in je opremljen s termometrom in termouro za kontrolo temperature, vodno hlajenim refluksnim kondenzerjem z izpustom za dušik, mešalom, vpustom za dušik in dodatnim lijakom za kontrolo dodajanja monomeme zmesi. Vsebino kotla segrejemo na 105 °C in pustimo, da se eksotermno segreje na 130 °C pred nadzorovanjem za ohlajevanjem, da vzdržujemo temperaturo pod 130 °C; če se eksotermno segrevanje ne začne po približno 5 minutah pri 105 °C, šaržo segrejemo počasi na 115 do 120 °C, dokler ne začne eksotermno segrevanje. Ko temperatura doseže 115 °C med eksotermnim segrevanjem dodamo ostanek monomeme zmesi enakomerno v obdobju 45 minut z ohlajevanjem, da vzdržujemo eksotermno segrevanje pod 125 °C. Temperaturo nato vzdržujemo pri 115 do 120 °C dodatnih 30 minut. Po tem času dodamo v kotel prvo od treh zadržanih doz iniciatorja, pri čemer vsaka sestoji iz 0,10 delov t-butil-peroktoata in 9,8 delov 100 N olja, nakar vzdržujemo šaržo pri enaki temperaturi 30 minut. Dve dodatni dozi iniciatorja damo v 30 minutnih intervalih. 30 minut po zadnjem dodatku iniciatorja dodamo približno 65 delov 100 N baznega olja, da razredčimo šaržo na približno 50 % polimera. Temperaturo šarže nato dvignemo do 130 °C in vzdržujemo pri tem 30 minut. Končna razredčena raztopina polimera ima SSI 13,2.The monomer mixture was prepared from 5.0 parts of cetyl eicosyl methacrylate (100% base, 95% purity), 85 parts isodecyl methacrylate (100% base, 95% purity), 5.0 parts methyl methacrylate, 5.0 parts hydroxypropyl methacrylate, 0.29 parts of dodecyl mercaptan, 0.13 parts of t-butyl peroctoate (t-butyl peroxy-2-ethylhexanoate) and 4.9 parts of paraffinic base oil (100 N oil). A portion of the above monomeme mixture (40%) is flushed into a nitrogen-flushed boiler equipped with a thermometer and temperature control thermostat, a water-cooled reflux condenser with a nitrogen outlet, a mixer, a nitrogen inlet and an additional funnel to control the addition of the monomial mixture. . The contents of the boiler are heated to 105 ° C and allowed to heat exothermally to 130 ° C before being controlled for cooling to maintain the temperature below 130 ° C; if exothermic heating does not start after about 5 minutes at 105 ° C, the batch is slowly heated to 115 to 120 ° C until exothermic heating begins. When the temperature reaches 115 ° C during exothermic heating, the residue of the monomer mixture is added uniformly over a period of 45 minutes with cooling to maintain the exothermic heating below 125 ° C. The temperature was then maintained at 115-120 ° C for an additional 30 minutes. After this time, the first of the three retained doses of the initiator is added to the boiler, each consisting of 0.10 parts of t-butyl peroctoate and 9.8 parts of 100 N oil, and then maintaining the batch at the same temperature for 30 minutes. Two additional doses of initiator are given at 30 minute intervals. 30 minutes after the last addition of the initiator, about 65 parts of 100 N of base oil are added to dilute the batch to about 50% of the polymer. The batch temperature was then raised to 130 ° C and maintained for 30 minutes. The final diluted polymer solution has an SSI of 13.2.
PRIMER 4EXAMPLE 4
Indeks viskoznosti (VI) je merilo učinka spremembe temperature na kinematično viskoznost olja. Indeks viskoznosti izrazimo kot arbitražno vrednost, ki bazira na izračunu po ASTM postopku D-2270-74 za kinematično viskoznost izmerjeno pri 40 °C in 100 °C. Tabela 2 vsebuje podatke sredstev za izboljševanje indeksa viskoznosti formuliranih v dveh različnih baznih oljih. Sestavke sredstva za izboljševanje indeksa viskoznosti (VII) 1-2 predstavljajo poli(alkilmetakrilatni) aditivi znani v stanju tehnike, ki ne vsebujejo hidroksialkil metakrilatnega monomera; sestavki VII od 3 do 7 so predstavniki v smislu predloženega izuma bazirani na poli(MMA/IDMA/CEMA/HPMA) z relativnimi vsebnosti monomera 9-10/5356/28-30/4-6 mas. delovThe viscosity index (VI) is a measure of the effect of a change in temperature on the kinematic viscosity of an oil. The viscosity index is expressed as an arbitrage value based on ASTM calculation D-2270-74 for kinematic viscosity measured at 40 ° C and 100 ° C. Table 2 contains data on the viscosity index enhancers formulated in two different base oils. The viscosity index (VII) 1-2 composition constituents are poly (alkylmethacrylate) additives known in the art which do not contain hydroxyalkyl methacrylate monomer; compositions VII from 3 to 7 are representative of the present invention based on poly (MMA / IDMA / CEMA / HPMA) with relative monomer contents of 9-10 / 5356 / 28-30 / 4-6 wt. parts
TABELA 1TABLE 1
Vrednosti indeksa viskoznostiViscosity index values
PRIMER 5EXAMPLE 5
Uporabne lastnosti v sekvenČnem VE testu (čistoča motorja) aditivov mazalnega olja v smislu predloženega izuma so predstavljene v tabeli 3. Vrednosti brozge, navedene v tabeli 3 so za brozgo za v okrov ventilskega krmilja in za povprečno brozgo (ciljne vrednosti so večje kot 7,0 oz. 9,0, pri čemer 10,0 predstavlja najčistejši motor). Vsaka od formulacij M do S vsebuje 4-8 % oljnega aditiva, ki je testiran, 8 do 10 % tržnega DI sestavka in 82-87 % parafinskega baznega olja. Tržni DI sestavki značilno sestojijo iz komponente, ki je proti obrabno sredstvo ali antioksidant, kot npr. cinkovega dialkilditiofosfata; disperzijskega sredstva brez pepela, kot npr. sukcinimida na bazi poliizobutena; detergenta, kot npr. kovinskega fenata ali sulfonata; modifikatorja trenja, kot npr. organske spojine, ki vsebujejo žveplo; in sredstva proti penjenju, kot npr. silikonsko tekočino: Hiteč 993 dosegljiv od Ethyl Corporation in Amoco A-8004 dosegljiv od Amoco Chemicals. Testirani oljni aditivi bazirajo na poli(MMA/IDMA/CEMA/HPMA) z relativnim vsebnostim monomera 9-10/5356/28-30/4-8 mas.delov. Uporabljena parafinska olja so Εχχοη 100 N ali 150 N olja. Sestavki raznih testiranih formulacij so:Useful properties in the sequential VE test (engine cleanliness) of the lubricating oil additives of the present invention are presented in Table 3. The values of the slurry listed in Table 3 are for the slurry for the valve body and the average slurry (target values are greater than 7, 0 and 9.0 respectively, with 10.0 being the purest engine). Each of the M to S formulations contains 4-8% of the tested oil additive, 8 to 10% of the marketable DI composition and 82-87% of the paraffinic base oil. Marketable DI compositions typically consist of an anti-wear or antioxidant component, such as e.g. zinc dialkildithiophosphate; ash-free dispersing agent such as e.g. polyisobutene-based succinimide; detergent, such as metal fenate or sulfonate; friction modifier, such as organic compounds containing sulfur; and foaming agents, such as e.g. silicone fluid: Hit 993 available from Ethyl Corporation and Amoco A-8004 available from Amoco Chemicals. The tested oil additives are based on poly (MMA / IDMA / CEMA / HPMA) with a relative content of monomer 9-10 / 5356 / 28-30 / 4-8 parts by weight. The paraffin oils used are Εχχοη 100 N or 150 N oils. The ingredients of the various formulations tested are:
Μ 4,7 % aditiva/8 % Hiteč 993 DI sestavka/87 % 150 N olja,7 4.7% additive / 8% Hitchy 993 DI composition / 87% 150 N oil
N 4,5 % aditiva/8 % Hiteč 993 DI sestavka/87 % 150 N oljaN 4,5% additive / 8% Hitting 993 DI composition / 87% 150 N oil
O 6,9 % aditiva/10 % Amoco A-8004 DI sestavka/83 % 100 N oljaAbout 6.9% additive / 10% Amoco A-8004 DI composition / 83% 100 N oil
P 6,7 % aditiva/10 % Amoco A-8004 DI sestavka/83 % 100 N oljaP 6.7% additive / 10% Amoco A-8004 DI composition / 83% 100 N oil
Q 7,7 % aditiva/10 % Amoco A-8004 DI sestavka/82 % 100 N oljaQ 7.7% additive / 10% Amoco A-8004 DI composition / 82% 100 N oil
R 6,5 % aditiva/10 % Amoco A-8004 DI sestavka/83 % 100 N oljaR 6.5% additive / 10% Amoco A-8004 DI composition / 83% 100 N oil
S 4,4 % aditiva/10 % Amoco A-8004 DI sestavka/78 % 100 N olja/ % 150 N oljaWith 4.4% additive / 10% Amoco A-8004 DI composition / 78% 100 N oil /% 150 N oil
TABELA 2TABLE 2
Sekvenčni VE test (čistoča motorja) %HPMAvSequential VE test (engine cleanliness)% HPMAv
Formulacija aditivuFormulation additive
Brozga (za v okrov ventil.krmilja/ povpr.)Spray (for inlet valve control / avg)
PRIMER 6EXAMPLE 6
Sestavke v smislu predloženega izuma podvržemo testu kompatibilnosti (test kompatibilnosti z motornimi tesnili) za fluoroogljikovodične polimere, zlasti vitonske fluoroelastomere uporabljene v motornih tesnilih, itd. Ta test vodimo pri pogojih podobnih tistim definiranih v ISO-37-1977(E) postopku (razvil tehnični komite International Organization for Standardization (ISO/TC45)) ob uporabi S3A testnega vzorca v obliki ročke.The compositions of the present invention are subjected to a compatibility test (compatibility test with motor seals) for hydrocarbon polymers, in particular viton fluoroelastomers used in motor seals, etc. This test is run under conditions similar to those defined in the ISO-37-1977 (E) procedure (developed by the International Organization for Standardization (ISO / TC45) Technical Committee) using a S3A test sample in the form of a handle.
Ovrednotenje poteka naslednje: v čašo potopimo tri S3A vzorce v obliki ročke, narejene iz vitonskega fluoroelastomera (AK6), v testno tekočino tako, da je 80 delov testne tekočine prisotne na en del testnega vzorca (volumen/volumen). Testna tekočina vsebuje 5 % (mas.) sestavka dispergirnega sredstva za izboljšanje indeksa viskoznosti, ki ga testiramo, skupaj z ustreznim detergentnim inhibitorskim sestavkom (Dl) pri priporočljivem uporabnem nivoju v Εχχοη 150 N olju. Čašo nato pokrijemo z urnim steklom in postavimo v peč s prisilno cirkulacijo zraka, ki jo vzdržujemo pri 149-151 °C. Testne vzorce podvržemo zgornjim pogojem za 7 dni, nakar jih odstranimo, pustimo da se ohladijo in nato rahlo speremo s heksanom, da odstranimo ostalo testno tekočino. Testne vzorce nato posušimo na zraku in nato določimo natezno trdnost in razteznostne lastnosti (odstotni porušitveni razretezek ali %ELB) pri čemer uporabimo standardni merilni postopek za napetost-raztezek pri 14,61 cm raztezku na minuto. Spremembo raztezanja vitonskih elastomernih testnih vzorcev nato primerjamo s podatki raztezanja neobdelanih vitonskih elastomernih vzorcev in rezultat izrazimo kot %:The evaluation is as follows: Immerse three S3A samples in the beaker in the form of a handle made of viton fluoroelastomer (AK6) into the test fluid so that 80 parts of the test fluid are present on one part of the test sample (volume / volume). The test fluid contains 5% (w / w) of the composition of the dispersant to improve the viscosity index being tested, together with the appropriate detergent inhibitor composition (Dl) at the recommended usable level in Εχχοη 150 N oil. The beaker is then covered with an hour glass and placed in an oven with forced air circulation maintained at 149-151 ° C. The test samples were subjected to the above conditions for 7 days, then removed, allowed to cool, and then gently washed with hexane to remove the remaining test liquid. The test specimens are then air-dried and then tensile strength and tensile properties (percent fracture elongation or% ELB) determined using a standard tensile-elongation measurement procedure at 14.61 cm elongation per minute. The change in elongation of viton elastomer test specimens is then compared with the elongation data of untreated viton elastomer specimens and the result is expressed as%:
[%ELB obdelano - %ELB neobdelano] X100 = %ELB sprememba [%ELB neobdelano][% ELB Processed -% ELB Raw] X100 =% ELB Change [% ELB Raw]
Bolj ko je negativna vrednost za %ELB spremembo večja je agresivnost testne tekočine proti vzorcu vitonskega fluoroelastomera. Pri opisanih testnih pogojih smatramo, da so tekočine, ki dajo znižanje originalne (neobdelano) %ELB vrednosti za več kot 45 % (izraženo kot %ELB spremembe = -45 %) za zelo agresivne napram testiranem vzorcu in zato nekompatibilne z vitonskim fluoroelastomernim motornim testnilom. Vrednosti %ELB spremembe od 0 do -5 % predstavljajo nevtralne pogoje in zato kompatibilnost z motornimi tesnili. Vrednosti %ELB spremembe približno -20 % ali manj t.j. bolj negativne prikazujejo slabo kompatibilnost tesnila. Rezultati %ELB so zelo odvisni od načina uporabe naprave in pomembno je, da vključujejo primerjavo rezultatov neobdelanega vzorca z vsako novo serijo potopljenih testnih vzorcev.The greater the negative value for the% ELB change, the greater the aggressiveness of the test fluid against the viton fluoroelastomer sample. For the test conditions described, liquids giving a decrease in the original (untreated)% ELB value by more than 45% (expressed as% ELB change = -45%) are considered to be highly aggressive to the test sample and therefore incompatible with the viton fluoroelastomer motor test . % ELB values of change from 0 to -5% represent neutral conditions and therefore compatibility with engine seals. % ELB values of change about -20% or less i.e. the more negative ones show poor seal compatibility. The% ELB results are highly dependent on how the device is used and it is important that they include a comparison of the raw sample results with each new series of immersed test samples.
Uporabne lastnosti v testu kompatibilnosti z motornimi tesnili aditivov mazalnih olj v smislu predloženega izuma in tiste, ki predstavljajo tržne oljne aditive, ki vsebujejo dušik so predstavljene v tabeli 4. Vzorce vitonskega fluoroelastomera potopimo v testne tekočine, ki vsebujejo navedene aditive. Vrednosti %ELB spremembe so izražene kot povprečje za tri vzorce testirane v vsaki tekočini. V vseh primerih testne tekočine vsebujejo 1,5 % OLOA 267 (komponenta tržnega sestavka detergentnega inhibitorja (Dl) dosegljiva od Chevron Chemicals).Useful properties in the lubricating oil additives compatibility test of the lubricating oil additives of the present invention and those representing marketable nitrogen-containing oil additives are presented in Table 4. Immerse viton fluoroelastomer samples in test liquids containing said additives. The% ELB change values are expressed as the average for the three samples tested in each fluid. In all cases, the test liquids contain 1.5% OLOA 267 (detergent inhibitor (D1) component composition available from Chevron Chemicals).
A-primerjalni: tržno poli(alkil metakrilatno) sredstvo za izboljševanje indeksa viskoznosti, ki vsebuje dušikA-comparative: commercial poly (alkyl methacrylate) nitrogen-containing viscosity index enhancer
B-primerjalni:B-Comparative:
tržno poliolefmsko sredstvo za izboljševanje indeksa viskoznosti, ki vsebuje dušika marketable polyolephic agent for improving the nitrogen-containing viscosity index
Sestavki C do H predstavljajo polimerne aditive (prikazan je tip in relativni masni del) v smislu predloženega izuma (MMA je metil metakrilat, IDMA je izodecil metakrilat, CEMA je cetil-eikozil metakrilat, LMA je lavril-miristil metakrilat, HPMA je hidroksipropil metakrilat):Ingredients C to H represent polymer additives (type and relative weight shown) of the present invention (MMA is methyl methacrylate, IDMA is isodecyl methacrylate, CEMA is cetyl-eicosyl methacrylate, LMA is lauryl-myristyl methacrylate, HPMA is hydroxypropyl methacrylate) :
C MMA/LMA/HEMA (8/88/4)C MMA / LMA / HEMA (8/88/4)
D MMA/IDMA/CEMA/HPMA (10/56/30/4)D MMA / IDMA / CEMA / HPMA (10/56/30/4)
E MMA/IDMA/CEMA/HPMA (10/56/30/4)E MMA / IDMA / CEMA / HPMA (10/56/30/4)
F MMA/IDMA/CEMA/HPMA (10/56/29/5)F MMA / IDMA / CEMA / HPMA (10/56/29/5)
G MMA/IDMA/CEMA/HPMA (10/56/29/5)G MMA / IDMA / CEMA / HPMA (10/56/29/5)
H MMA/IDMA/CEMA/HPMA (9/53/29/9)H MMA / IDMA / CEMA / HPMA (9/53/29/9)
TABELA 3TABLE 3
Test kompatibilnosti z motornimi tesniliEngine Seal Compatibility Test
PRIMER 7EXAMPLE 7
Uporabne lastnosti v testu simuliranega hladnega vrtenja (CCA) za aditive mazal22 nega olja v smislu predloženega izuma so predstavljene v tabeli 5. Mešanice aditivov, ki jih testiramo v baznem olju pripravimo z mešanjem 2,24 % (aktiven) polimernega aditiva in 11,4 % Dl sestavka, dosegljiv od Lubrizol Company kot LZ-7838G) z izračunano količino 100 N olja. Npr., če je polimerni aditiv dosegljiv kot 50 % trdnih snovi v 100 N olju, potem 4,48 delov oljne raztopine polimernega aditiva zmešamo z 11,4 deli LZ-7838G in 84,12 deli 100 N olja, da izdelamo kočni oljni sestavek, ki ga testiramo. CCS specifikacija viskoznosti za olje vrste SAE 5W-30 je manj kot 3,5 Pa.s pri -25 °C.The useful properties of the simulated cold rotation (CCA) test for the lubricating oil additives of the present invention are presented in Table 5. The mixtures of the additives tested in the base oil are prepared by mixing 2.24% (active) polymer additive and 11.4 % Dl of the composition available from Lubrizol Company as LZ-7838G) with a calculated amount of 100 N oil. For example, if the polymer additive is available as 50% solids in 100 N oil, then 4.48 parts of the polymer additive oil solution are mixed with 11.4 parts LZ-7838G and 84.12 parts 100 N oil to produce a brake oil composition which we are testing. The CCS viscosity specification for SAE 5W-30 oil is less than 3.5 Pa.s at -25 ° C.
TABELA 4TABLE 4
Test simuliranega hladnega vrtenja (CCS)Simulated Cold Rotation Test (CCS)
Sestavek polimernega aditiva CCS viskoznostComposition of CCS polymer additive viscosity
PRIMER 8EXAMPLE 8
Navidezno viskoznost z mini rotacijskim viskozimetrom (MRV) določimo z dvema različnima testnima postopkoma in je merilo sposobnosti črpanja motornega olja po zagonu hladnega motorja. ASTMD-3829-87 obravnava meritev viskoznosti v temperaturnem območju od 0 do -40 °C in opisuje standardni MRV test. ASTMD-468489 obravnava meritve viskoznosti v temperaturnem območju od -15 ° do -30 °C in opisuje TP-1 MRV test. Tabela 6 vsebuje podatke za 2 seriji 5 različnih sestavkovThe apparent viscosity of a mini-rotary viscometer (MRV) is determined by two different test procedures and is a measure of the ability to pump engine oil after starting a cold engine. ASTMD-3829-87 discusses the measurement of viscosity in the temperature range from 0 to -40 ° C and describes a standard MRV test. ASTMD-468489 addresses viscosity measurements in the temperature range from -15 ° to -30 ° C and describes the TP-1 MRV test. Table 6 contains data for 2 batches of 5 different compositions
SAE 5W-30 olja ob uporabi 5 različnih tržnih baznih olj. V eni seriji uporabimo tržni poli(alkilmetakrilatni) tip sredstva za izboljševanje indeksa viskoznosti, ki vsebuje dušik in v drugi seriji uporabimo poli(10 MMA/55 IDMA/ 30 CEMA/5 HPMA) aditivni sestavek v smislu predloženega izuma. SAE J300 Engine Oil Viscosity Classification (januar 1991) dopušča maksimum 30 Pa.s pri -30 °C za SAE 5W-30 olje ob uporabi ASTM D-4684-89 testnega postopka.SAE 5W-30 oils using 5 different commercial base oils. In one batch, a commercial poly (alkylmethacrylate) type of nitrogen-containing viscosity index agent is used, and in another batch a poly (10 MMA / 55 IDMA / 30 CEMA / 5 HPMA) additive composition of the present invention is used. The SAE J300 Engine Oil Viscosity Classification (January 1991) allows a maximum of 30 Pa.s at -30 ° C for SAE 5W-30 oil using the ASTM D-4684-89 test procedure.
TABELA 5TABLE 5
MRV test sposobnosti črpanjaMRV pumping test
Izvor sredstva Izvor baznega olja za izboljšanje indeksa viskoznosti tržni A tržni B tržni C tržni D tržni E v smislu izuma A v smislu izuma B v smislu izuma C v smislu izuma D v smislu izuma ESource of the source Source of the oil for improving the viscosity index market A market B market C market D market E of the invention A of the invention B of the invention C of the invention D of the invention E
Viskoznost pri -30°C, [Pa.s]Viscosity at -30 ° C, [Pa.s]
A - v topilu ekstrahirano 100N bazno oljeA - 100N base oil extracted in the solvent
B - v topilu ekstrahirano, v topilu odvoskano 100N bazno olje C - hidrokrekirano, katalitično odvoskano 100N bazno olje D - v topilu ekstrahirano, v topilu odvoskano 100N bazno olje E - v topilu ekstrahirano, hidrodovršeno, v topilu odvoskano 100N baznoB - 100N base oil extracted in the solvent C - hydrocracked, 100N base oil catalytically extracted D - 100N base oil extracted in the solvent E - 100N base extracted, hydrated, solvent extracted
ZaFor
ROHM AND HAAS ΟΟΜΡΑΝΥ:ROHM AND HAAS ΟΟΜΡΑΝΥ:
Claims (33)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85492492A | 1992-03-20 | 1992-03-20 | |
US90993192A | 1992-07-07 | 1992-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
SI9200219A true SI9200219A (en) | 1994-03-31 |
Family
ID=27127266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI9200219A SI9200219A (en) | 1992-03-20 | 1992-09-17 | Dispersant poly(meth)acrylate viscosity index improvers |
Country Status (15)
Country | Link |
---|---|
EP (1) | EP0569639A1 (en) |
JP (1) | JPH05287028A (en) |
AU (1) | AU662159B2 (en) |
BR (1) | BR9203648A (en) |
CA (1) | CA2077835A1 (en) |
CZ (1) | CZ284692A3 (en) |
FI (1) | FI923809A (en) |
HU (1) | HUT72025A (en) |
LV (1) | LV10295A (en) |
MA (1) | MA22828A1 (en) |
NO (1) | NO923342L (en) |
NZ (1) | NZ244082A (en) |
PL (1) | PL295889A1 (en) |
SI (1) | SI9200219A (en) |
TN (1) | TNSN93031A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2726828A1 (en) * | 1994-11-10 | 1996-05-15 | Rohm & Haas France | DISPERSING ADDITIVES IMPROVING THE VISCOSITY INDEX FOR LUBRICATING OILS |
US5807409A (en) * | 1996-10-30 | 1998-09-15 | Rohm And Haas Company | Method of improving pull-up characteristic of leather substrate and modified finishing oil used therein |
US7101928B1 (en) * | 1999-09-17 | 2006-09-05 | Landec Corporation | Polymeric thickeners for oil-containing compositions |
JP5565999B2 (en) * | 2007-01-31 | 2014-08-06 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
EP2712911A3 (en) * | 2009-06-04 | 2014-08-06 | JX Nippon Oil & Energy Corporation | Lubricant oil composition |
JP5606011B2 (en) * | 2009-06-09 | 2014-10-15 | 昭和シェル石油株式会社 | Lubricant |
JP5584049B2 (en) * | 2010-08-17 | 2014-09-03 | 株式会社Adeka | Extreme pressure agent for lubricating oil and lubricating oil composition containing the same |
CN104395444B (en) * | 2012-07-24 | 2018-10-16 | 吉坤日矿日石能源株式会社 | Poly- (methyl) acrylic ester viscosity index improver and the lube oil additive containing the viscosity index improver and lubricant oil composite |
ES2930218T3 (en) * | 2015-07-10 | 2022-12-09 | Lubrizol Corp | Viscosity Modifiers to Improve Fluoroelastomer Seal Performance |
JP7050754B6 (en) | 2016-08-15 | 2023-12-20 | エボニック オペレーションズ ゲーエムベーハー | Functionalized polyalkyl (meth)acrylates with enhanced demulsification performance |
US11091575B2 (en) * | 2016-11-30 | 2021-08-17 | Kuraray Co., Ltd. | Method for producing methacrylate copolymer solution |
JP7068010B2 (en) * | 2017-04-07 | 2022-05-16 | 三洋化成工業株式会社 | Viscosity index improver and lubricating oil composition |
US10351792B2 (en) * | 2017-05-09 | 2019-07-16 | Afton Chemical Corporation | Poly (meth)acrylate with improved viscosity index for lubricant additive application |
US9988590B1 (en) | 2017-11-10 | 2018-06-05 | Afton Chemical Corporation | Polydialkylsiloxane poly (meth)acrylate brush polymers for lubricant additive application |
ES2907937T3 (en) | 2017-11-15 | 2022-04-27 | Evonik Operations Gmbh | Functionalized polymers |
EP3722395A4 (en) * | 2017-12-05 | 2021-08-04 | Adeka Corporation | Friction-controlling compound, and friction-controlling composition containing said friction-controlling compound |
US10144900B1 (en) | 2018-02-02 | 2018-12-04 | Afton Chemical Corporation | Poly (meth)acrylate star polymers for lubricant additive applications |
CN112876625B (en) * | 2020-11-30 | 2022-09-06 | 大连同康新材料科技有限公司 | Poly (methyl) acrylate viscosity index improver and preparation method and application thereof |
CN116333789A (en) * | 2023-03-06 | 2023-06-27 | 上海应用技术大学 | Binary polymer biodiesel pour point depressant and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3198739A (en) * | 1960-11-25 | 1965-08-03 | Shell Oil Co | Lubricants and polymeric additives therefor |
BE629904A (en) * | 1962-03-23 | |||
US3311597A (en) * | 1962-08-31 | 1967-03-28 | Monsanto Co | Oil additives comprising interpolymers of tetrahydrofurfuryl esters |
NL300481A (en) * | 1962-11-13 | |||
GB1132604A (en) * | 1965-05-07 | 1968-11-06 | Shell Int Research | Improvements in or relating to polymer concentrates |
NL134235C (en) * | 1968-04-26 | |||
GB1189281A (en) * | 1969-01-01 | 1970-04-22 | Shell Int Research | Copolymers containing Free Hydroxyl Groups |
NL6917635A (en) * | 1969-11-21 | 1971-05-25 | ||
DE3930142A1 (en) * | 1989-09-09 | 1991-03-21 | Roehm Gmbh | DISPERGING VISCOSITY INDEX IMPROVERS |
DE4000753A1 (en) * | 1990-01-12 | 1991-07-18 | Roehm Gmbh | POWER TRANSFER FLUID BASED ON MINERAL OIL |
-
1992
- 1992-08-21 EP EP92307666A patent/EP0569639A1/en not_active Withdrawn
- 1992-08-25 HU HU9202731A patent/HUT72025A/en unknown
- 1992-08-25 NZ NZ244082A patent/NZ244082A/en unknown
- 1992-08-25 FI FI923809A patent/FI923809A/en not_active Application Discontinuation
- 1992-08-25 AU AU21273/92A patent/AU662159B2/en not_active Ceased
- 1992-08-27 NO NO92923342A patent/NO923342L/en unknown
- 1992-09-09 CA CA002077835A patent/CA2077835A1/en not_active Abandoned
- 1992-09-10 PL PL29588992A patent/PL295889A1/en unknown
- 1992-09-16 CZ CS922846A patent/CZ284692A3/en unknown
- 1992-09-17 BR BR929203648A patent/BR9203648A/en not_active Application Discontinuation
- 1992-09-17 SI SI9200219A patent/SI9200219A/en unknown
- 1992-09-18 LV LV920122A patent/LV10295A/en unknown
- 1992-09-18 JP JP4249408A patent/JPH05287028A/en active Pending
-
1993
- 1993-03-16 MA MA23122A patent/MA22828A1/en unknown
- 1993-03-19 TN TNTNSN93031A patent/TNSN93031A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
BR9203648A (en) | 1993-09-28 |
HUT72025A (en) | 1996-03-28 |
TNSN93031A1 (en) | 1994-03-17 |
AU662159B2 (en) | 1995-08-24 |
NZ244082A (en) | 1995-01-27 |
FI923809A (en) | 1993-09-21 |
CZ284692A3 (en) | 1994-02-16 |
CA2077835A1 (en) | 1993-09-21 |
JPH05287028A (en) | 1993-11-02 |
FI923809A0 (en) | 1992-08-25 |
MA22828A1 (en) | 1993-10-01 |
NO923342D0 (en) | 1992-08-27 |
LV10295A (en) | 1994-10-20 |
AU2127392A (en) | 1993-09-23 |
PL295889A1 (en) | 1993-10-04 |
EP0569639A1 (en) | 1993-11-18 |
NO923342L (en) | 1993-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU663360B2 (en) | Ashless dispersant poly(meth)acrylate polymers | |
SI9200219A (en) | Dispersant poly(meth)acrylate viscosity index improvers | |
JP3836007B2 (en) | (Meth) acrylate copolymer, a dispersant that exhibits excellent low-temperature properties | |
US4877557A (en) | Lubricating oil composition | |
EP1777285B1 (en) | Additive composition | |
CN110290848B (en) | Defoaming agent and lubricating oil composition | |
EP0436872B1 (en) | Mineral oil based transmission fluid | |
US5726136A (en) | Multifunctional additive for lubricating oils compatible with fluoroelastomers | |
RU2749905C2 (en) | Functional groups containing polyalkyl (meth) acrylates with improved demulsifying ability | |
CN113543866B (en) | Lubricating oil composition, defoaming method for lubricating oil, and defoaming agent composition | |
DE69919611T2 (en) | Viscosity index improvers for lubricating oil compositions | |
US5851967A (en) | Dispersant viscosity index improving additive for lubricating oils | |
JPH11279233A (en) | Viscosity modifier for lubricant composition | |
JP2754340B2 (en) | Viscosity index improver | |
MXPA00001789A (en) | Method for improving low-temperaturefluidity of lubricating oils using high- and low-molecular weight polymer additive mixtures | |
MXPA97002834A (en) | Polared polyolephines polarized, methods for its manufacture and compositions of lubricant oil containing the mis |