SI9011877A - Ceramic welding process and welding rod for use in such process - Google Patents

Ceramic welding process and welding rod for use in such process Download PDF

Info

Publication number
SI9011877A
SI9011877A SI9011877A SI9011877A SI9011877A SI 9011877 A SI9011877 A SI 9011877A SI 9011877 A SI9011877 A SI 9011877A SI 9011877 A SI9011877 A SI 9011877A SI 9011877 A SI9011877 A SI 9011877A
Authority
SI
Slovenia
Prior art keywords
gas
outlet
curtain
carrier gas
particles
Prior art date
Application number
SI9011877A
Other languages
Slovenian (sl)
Other versions
SI9011877B (en
Inventor
Pierre Robyn
Alexandre Zivkovic
Leon-Philippe Mottet
Original Assignee
Glaverbel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from LU87602A external-priority patent/LU87602A1/en
Application filed by Glaverbel filed Critical Glaverbel
Publication of SI9011877A publication Critical patent/SI9011877A/en
Publication of SI9011877B publication Critical patent/SI9011877B/en

Links

Abstract

Postopek za keramično varjenje, ki olajšuje tvorbo visokokvalitetnih, erozijsko in korozijsko odpornih žarovzdržnih zvarnih mas, obsega brizganje na površino (1) zmesi žarovzdržnih delcev in delcev goriva, ki se ga da oksidirati, v nosilnem plinu (7), ki vsebuje najmanj dovolj kisika za v bistvu popolno oksidacijo delcev goriva, pri čemer se sprosti dovolj toplote za vsaj površinsko taljenje žarovzdržnih delcev, ki jih brizgamo, in se na tej površini (1) tvori pod oksidacijsko toploto delcev goriva keramična zvarna masa, pri čemer brizgamo na to površino (1) najmanj en dodaten tok plina (9), da nastane v bistvu nepretrgana plinska zavesa, ki obdaja ta tok (te tokove) nosilnega plina. Izum zagotavlja tudi pripravo za izvajanje postopka za keramično varjenje, ki obsega kopje (5), ki ima prvo izstopno odprtino (6) za izpuščanje takega keramičnega varilnega praška v nosilnem plinu (7) vzdolž izstopne poti proti površini (1) in drugo izstopno odprtino (8) za izpuščanje plina, da nastane v bistvu nepretrgana plinska zavesa.A process for making ceramic welding easier formation of high quality, erosion and corrosion resistant heat resistant welding masses comprises injection molding at the surface (1) of a mixture of refractory particles and particles oxidizable fuels in the carrier gas (7) which contains at least enough oxygen to be substantially complete oxidation of the fuel particles while releasing enough heat for at least surface melting of refractory particles, which are sprayed and formed on this surface (1) oxidation heat of fuel particles ceramic welded mass, spraying on this surface (1) at least one additional gas stream (9) to produce substantially the continuous gas curtain surrounding this stream (te flows) of the carrier gas. The invention also provides preparation for performing a ceramic welding process which comprising a spear (5) having a first outlet opening (6) for the discharge of such ceramic welding powder into carrier gas (7) along the outlet path to the surface (1) and a second gas outlet opening (8), to create a substantially continuous gas curtain.

Description

GLAVERBELGLAVERBEL

Postopek za keramično varjenje in kopje za uporabo v takem postopkuA process for ceramic welding and lances for use in such a process

Ta izum se nanaša na postopek za keramično varjenje in na kopje, primerno za uporabo v takem postopku.The present invention relates to a ceramic welding process and to a lance suitable for use in such a process.

Predhodni postopki za keramično varjenje so bili opisani v Glaverbelovih britanskih patentih št. 1,330,894 in 2,170,191.Preliminary ceramic welding processes have been described in Glaverbel's British Patent Nos. 1,330,894 and 2,170,191.

Keramično varjenje je zlasti primemo za tvorbo žarovzdržne mase in situ na žarovzdržni steni peči in drugih žarovzdržnih naprav za vroče popravilo stene. Posebno uporabno je za popravilo ali ojačitev sten ali stenskih oblog steklarskih peči, koksamiških peči, peči za žganje cementa ali peči, ki se uporabljajo v petrokemijski industriji, ali žarovzdržnih naprav, ki se uporabljajo v železarstvu in neželezni metalurgiji. Poleg tega se da včasih opraviti popravilo med obratovanjem peči, npr. za popravilo zgornjega ustroja steklarske peči, ali med normalnim obratovalnim ciklusom žarovzdržne opreme; npr. livno ponev za jeklo se da včasih popraviti med normalnim intervalom med izlivanjem in ponovnim polnjenjem. Postopek je uporaben tudi za tvorbo žarovzdržnih komponent, npr. za prekrivanje drugih žarovzdržnih podlag.Ceramic welding is particularly suitable for the formation of in-situ refractory mass on the refractory wall of the furnace and other refractory devices for hot wall repair. It is especially useful for repairing or reinforcing walls or wall coverings of glass, coke oven, cement or kiln kilns used in the petrochemical industry, or refractory devices used in iron and non-ferrous metallurgy. In addition, repairs can sometimes be made during the operation of the stove, e.g. for repairing the upper structure of the glass furnace, or during the normal duty cycle of refractory equipment; e.g. The casting pan can sometimes be repaired during the normal interval between pouring and refilling. The process is also useful for forming refractory components, e.g. for covering other refractory substrates.

V postopku za keramično varjenje, kakršen je v uporabi, vodijo zmes žarovzdržnih delcev in delcev goriva (keramični varilni prašek) iz skladišča praška po napajalnem vodu v kopje, iz katerega jo brizgajo na tarčno površino. Nosilni plin, ki zapušča s keramičnim varilnim praškom izstopno odprtino kopja (nosilni plin), je lahko čisti kisik (tržne kvalitete) ali pa lahko obsega delež v bistvu inertnega plina, kot dušika, ali pa seveda kak drug plin. V vsakem primeru vsebuje nosilni plin, ki s keramičnim varilnim praškom zapušča izstopno odprtino kopja, najmanj dovolj kisika za v bistvu popolno zgorevanje delcev goriva. Nikakor ni bistveno, da bi moral imeti plinski tok, v katerega uvajajo varilni prašek iz napajalnega skladišča, enako sestavo kot nosilni plin, ki zapušča izstopno odprtino kopja. Nekaj potrebnega kisika v nosilnem plinu ali pa seveda vsega lahko uvajajo v napajalni vod na enem ali več mestih med mestom uvajanja praška in izstopno odprtino kopja. Uporabljeno gorivo sestoji v bistvu iz delcev materiala, ki se ga da eksotermično oksidirati ob tvorbi žarovzdržnega oksidnega produkta. Primeri primernih goriv so silicij, aluminij, magnezij, cirkonij in krom. Taka kovinska goriva lahko uporabljajo sama ali v kombinaciji. Gorivo gori in pri njegovem gorenju se sprošča toplota, ki stali vsaj površino žarovzdržnih delcev tako, da se tvori močno koherentna žarovzdržna zvarna masa, ki se trdno drži tarčne površine.In the ceramic welding process as it is in use, a mixture of refractory particles and fuel particles (ceramic welding powder) is led from the powder store through the feed line into a spear from which it is sprayed onto the target surface. The carrier gas leaving the spear outlet (carrier gas) with the ceramic welding powder may be pure oxygen (of marketable quality) or it may comprise a fraction of essentially inert gas, such as nitrogen, or of course some other gas. In any case, it contains a carrier gas which leaves a spear outlet with a ceramic welding powder, at least enough oxygen for essentially complete combustion of the fuel particles. It is by no means essential that the gas stream into which the welding powder from the feed store is introduced should have the same composition as the carrier gas leaving the spear outlet. Some of the oxygen needed in the carrier gas or, of course, everything can be introduced into the supply line at one or more locations between the powder injection site and the spear exit port. The fuel used consists essentially of particles of material that can be exothermically oxidized to form a refractory oxide product. Examples of suitable fuels are silicon, aluminum, magnesium, zirconium and chromium. Such metal fuels may be used alone or in combination. The fuel burns, and during its combustion, heat is released which melts at least the surface of the refractory particles so as to form a strongly coherent refractory weld mass which adheres firmly to the target surface.

Običajno je, da izberejo keramični varilni prašek tako, da ima nastali var kemijsko sestavo, ki je približno enaka kot sestava tarčne površine. To pomaga pri zmanjšanju termičnega šoka na stični ploskvi med popravilnim varom in popravljenim žarovzdržnim materialom zaradi temperaturnega ciklusa peči. Taka izbira varilnega praška pomaga tudi, da zagotove, da je žarovzdržna kakovost zvarne mase dovolj velika za mesto, na katerem se vrši popravilo. Seveda pa je znano tudi kako izbrati keramični varilni prašek, da dobe reparaturo ali oblogo, ki je bolj kvalitetna kot žarovzdržni material, na katerem zvar nastane.It is customary to choose a ceramic welding powder such that the resulting weld has a chemical composition that is approximately the same as that of the target surface. This helps to reduce the thermal shock on the joint between the repair weld and the refractory material due to the furnace cycle. Such a choice of welding powder also helps to ensure that the heat-resistant quality of the weld is large enough for the site to be repaired. Of course, it is also known how to choose a ceramic welding powder to obtain a repair or coating that is of better quality than the refractory material on which the weld is formed.

Pri tvorbi žarovzdržne mase s keramičnim varjenjem lahko vdelamo v zvamo maso določeno vrednost poroznosti. Stopnja take poroznosti je deloma odvisna od spretnosti varilca in od pogojev, pri katerih se vrši varjenje. Taka poroznost je lahko dopustna, v nekaterih okoliščinah je lahko celo ugodna, ker visoka stopnja poroznosti zvišuje toplotno izolacijo. Vendar pa je lahko prevelika stopnja poroznosti neprijetna na tistih mestih peči, kjer je žarovzdržni material izpostavljen posebno ostremu korozivnemu delovanju in zlasti korozivnemu ali erozivnemu delovanju staljenega materiala, ki se nahaja v peči. Stopnja poroznosti, ki je v določenem kosu žarovzdržnega materiala sprejemljiva, je odvisna od lastne žarovzdržnosti tega materiala in od pogojev, ki jim bo izpostavljen pri uporabi.When forming a heat-resistant mass by ceramic welding, a certain porosity value can be embedded in the so-called mass. The degree of such porosity depends in part on the skills of the welder and on the conditions under which welding is performed. Such porosity may be acceptable, in some circumstances it may even be advantageous because a high degree of porosity increases thermal insulation. However, excessive levels of porosity can be unpleasant in those areas of the furnace where the refractory material is exposed to particularly sharp corrosive action, and in particular to the corrosive or erosive action of the molten material present in the furnace. The degree of porosity that is acceptable in a particular piece of refractory material depends on the inherent refractory power of that material and the conditions to which it will be exposed during use.

JJ

Pričujoči izum je posledica raziskav tvorbe žarovzdržne obloge ali popravila na delih naprav, za katere je posebno verjetno, da bodo izpostavljeni močni eroziji. Ta erozija je lahko zlasti posledica mehanske ali termo-mehanske abrazije ali korozije materiala, ki tvori steno, s tekočo ali plinasto fazo, ali pa je lahko posledica kombinacije teh učinkov.The present invention is the result of research into the formation of heat-resistant lining or repair on parts of installations that are particularly likely to be exposed to severe erosion. This erosion may in particular be due to mechanical or thermo-mechanical abrasion or corrosion of the wall-forming material with the liquid or gaseous phase, or it may be due to a combination of these effects.

En primer take zahteve po dobri odpornosti proti nagnjenju k močni eroziji je na področju steklarskih peči. Notranja površina kadnih blokov steklarske peči na mestu površine kopeli staljenega stekla je poseben primer žarovzdržne površine, ki je izpostavljena zelo močnemu korozivnemu delovanju. Površina kadnih blokov zelo hitro erodira v taki meri, da pride do tega, da se na tem mestu debelina blokov zlahka in sorazmerno hitro zmanjša za polovico. Ta erozija je znana s tehničnim izrazom korozija na črti taline. Kadni bloki, kot so kadni bloki talilnih in rafinacijskih con peči, ki so izpostavljeni zelo visokim temperaturam, so običajno izdelani iz močno žarovzdržnih materialov, kot žarovzdržnih materialov, ki vsebujejo velik delež cirkonijevega oksida. Čeprav je tako, pa jih je treba nepretrgano in močno hladiti, da bi zmanjšali erozijo.One example of such a demand for good resistance to the tendency to severe erosion is in the area of glass furnaces. The interior surface of the glass block cavity blocks at the site of the molten glass bath surface is a special example of a refractory surface that is exposed to very strong corrosive action. The surface of the block blocks erodes very quickly to such an extent that the block thickness is easily and relatively quickly reduced by half. This erosion is known by the technical term corrosion on the melt line. Bathtubs, such as the smelting and refining zones of furnaces, which are exposed to very high temperatures, are usually made of highly refractory materials, such as refractory materials containing a high proportion of zirconium oxide. Although this is the case, they must be continuously and vigorously cooled to reduce erosion.

Drugi primeri žarovzdržnih materialov, ki so izpostavljeni nevarnosti posebno hude erozije, so livna ustja ali ponve, ki se uporabljajo pri pridobivanju ali transportu staljenih kovin, npr. torpedne ponve, kot se uporabljajo npr. v železarstvu in jeklarstvu, talilniške in rafmacijske peči za baker, konvertorji, kot so tisti, ki se uporabljajo pri izdelavi jekla in industriji neželeznih kovin. Tu lahko omenimo tudi peči za žganje cementa.Other examples of refractory materials that are at risk of particularly severe erosion are foundry mouths or pans used in the extraction or transportation of molten metals, e.g. torpedo pans as used e.g. in iron and steel, smelting and refining furnaces for copper, converters such as those used in the steel making and non-ferrous metals industries. Cement kilns can also be mentioned here.

Glavni smoter tega izuma je zagotoviti nov postopek za keramično varjenje, ki olajšuje nastanek visokokvalitetnih žarovzdržnih zvarnih mas, ki kažejo dobro odpornosti proti eroziji in koroziji.The main purpose of the present invention is to provide a new process for ceramic welding that facilitates the formation of high quality heat-resistant welding masses showing good resistance to erosion and corrosion.

V skladu s tem izumom je zagotovljen postopek za keramično varjenje, v katerem brizgamo na površino keramični varilni prašek, ki obsega zmes žarovzdržnih delcev in delcev goriva, ki se da oksidirati ob tvorbi žarovzdržnega oksida, v enem ali več tokovih nosilnega plina, ki vsebuje najmanj dovolj kisika za v bistvu popolno oksidacijo delcev goriva, pri čemer se sprosti dovolj toplote za vsaj površinsko taljenje žarovzdržnih delcev, ki jih brizgamo, in se tvori na tej površini pod oksidacijsko toploto delcev goriva keramična zvarna masa, ki je označen s tem, da brizgamo na to površino najmanj en dodaten tok plina tako, da nastane v bistvu nepretrganana plinska zavesa, ki obdaja ta tok (te tokove) nosilnega plina.In accordance with the present invention, there is provided a method for ceramic welding in which a ceramic welding powder is sprayed onto the surface, comprising a mixture of refractory particles and fuel particles which can be oxidized to form refractory oxide in one or more carrier gas streams containing at least sufficient oxygen for substantially complete oxidation of the fuel particles, releasing sufficient heat for at least the surface melting of the refractory particles which are sprayed, and a ceramic weld mass, characterized in that the spray is formed on the surface below the oxidizing heat of the fuel particles. at least one additional gas stream to this surface to form a substantially continuous gas curtain surrounding that carrier gas stream (s).

Precej presenetljivo je, da naj bi imelo pihanje dodatnega plina na ta način koristen učinek - in tega ima - da omogoča lažje in bolj skladno kot prej tvorbo keramičnih zvarov visoke kakovosti z dobro odpornostjo proti eroziji in koroziji. Dosega visokokvalitetnega zvara po postopku v smislu izuma je manj odvisna od spretnosti posameznega varilca kot kadar tvorijo zvar po postopku, v katerem je plinska zavesa izpuščena, ki pa je sicer podoben. Ta rezultat pripisujemo dejstvu, da se nagibajo zvari, izdelani po postopku v skladu s tem izumom, k manjši poroznosti kot zvari, izdelani po postopku, v katerem je plinska zavesa izpuščena, ki pa je sicer podoben.It is quite surprising that blowing extra gas in this way would have the beneficial effect - and it has - of facilitating the formation of high quality ceramic welds with good resistance to erosion and corrosion than before. The achievement of a high-quality weld according to the process of the invention is less dependent on the skills of the individual welder than when they form a weld according to a process in which the gas curtain is omitted, but which is otherwise similar. We attribute this result to the fact that welds made according to the process of the present invention tend to have less porosity than welds produced by the process in which the gas curtain is omitted, but which is otherwise similar.

Razlogi, zakaj naj bi dosegli ta koristni učinek, niso jasni. Ena možnost je, da plinska zavesa izolira reakcijsko cono keramičnega varjenja od okolne atmosfere peči in tako prepreči, da bi imela ta atmosfera kakršenkoli neugoden učinek na te reakcije, in s tem ohrani v reakcijski coni enakomerne delovne pogoje. Druga možnost je, da ima plinska zavesa lahko hladilni učinek, ker zniža temperaturo pravkar nastalega, še mehkega žarovzdržnega vara, kar bi lahko podpiralo ugodno hlajenje in kristalizacijo zvarnega materiala. To pa lahko po svoji plati deluje tako, da zmanjša nagnjenje plina, da bi se raztopil v začetni keramični zvarni masi, dokler je še vsaj deloma staljena, ob tvorbi por tako, da so vse pore, ki se tvorijo v zvaru, manjših dimenzij in zato manj problematične. Vendar pa je ta teorija v nasprotju s sedanji spoznanji v stroki, po katerih ni zaželeno, da bi prišlo do hitrega ohlajanja, da bi se izognili problemom stratifikacije, ki je posledica nehomogenosti v mejnih slojih materiala, nanešenega z zaporednimi prehodi varilnega kopja preko tarčne površine.The reasons why this beneficial effect should be achieved are not clear. One possibility is that the gas curtain isolates the reaction zone of ceramic welding from the surrounding atmosphere of the furnace, thus preventing that atmosphere from having any adverse effect on these reactions, thereby maintaining a uniform working condition in the reaction zone. Alternatively, the gas curtain may have a cooling effect because it lowers the temperature of the newly formed, yet soft heat-resistant weld, which could support favorable cooling and crystallization of the welded material. This, in turn, can work by reducing the tendency of the gas to dissolve in the initial ceramic welding mass, while still at least partially molten, by the formation of pores such that all pores formed in the weld are of smaller dimensions and therefore less problematic. However, this theory is contrary to current knowledge in the art that it is not desirable to allow rapid cooling to avoid stratification problems due to the inhomogeneity of the boundary layers of the material applied by successive passage of the welding spear across the target surface. .

Postopek v smislu izuma je presenetljiv tudi zato, ker bi pričakovali - glede na težavnost kontroliranja obratovalnih pogojev - da bo brizganje plinske zavese okoli toka nosilnega plina in s tem okoli cone, kjer potekajo reakcije keramičnega varjenja in kjer se tvori keramični zvar, motilo eksotermično reakcijo, ki vodi do nastanka zvara.The process of the invention is also surprising because, given the difficulty of controlling operating conditions, it would be expected that spraying the gas curtain around the carrier gas stream and thus around the zone where the ceramic welding reactions take place and where the ceramic weld is formed will disrupt the exothermic reaction leading to the formation of a weld.

V nasprotju s tem pa smo v praksi opazili, da zagotavlja brizganje plinske zavese dodaten parameter za kontroliranje različnih elementov, ki so udeleženi pri dogajanju v reakcijski coni, da bi med izvajanjem postopka v smislu izuma nastala žarovzdržna masa. To torej zagotavlja dodaten kontrolni parameter, ki učinkuje na razvoj eksotermične reakcije in s tem omogoča izboljšano kontrolo tvorbe žarovzdržne zvarne mase.In contrast, in practice, it has been observed that the injection of a gas curtain provides an additional parameter to control the various elements involved in the reaction zone to produce a heat-resistant mass during the course of the process of the invention. This, therefore, provides an additional control parameter that has an effect on the development of the exothermic reaction and thus provides improved control of the formation of the refractory weld mass.

Opazili smo tudi, da omogoča plinska zavesa, da se vpliv okolja, ki obdaja reakcijsko cono, nanjo zmanjša. Reakcijska cona je zato bolje zaščitena pred kakršnokoli turbulenco, ki bi lahko obstajala v obdajajoči atmosferi. Tako postane npr. v običajnem primeru, ko uporabljamo postopek med obratovanjem peči, reakcijska cona bolj neodvisna od motenj, ki so npr. posledica vključitve ali izključitve gorilnika v bližini mesta, na katerem delamo.It has also been observed that the gas curtain allows the influence of the environment surrounding the reaction zone to be reduced. The reaction zone is therefore better protected from any turbulence that may exist in the surrounding atmosphere. Thus it becomes e.g. in the normal case when using the process during the operation of the furnace, the reaction zone is more independent of disturbances, e.g. as a result of turning the burner on or off near the place where we work.

Plinska zavesa tudi omogoča, da bolj zlahka omejimo zmes delcev v reakcijski coni tako, da osredotočimo in intenziviramo reakcijo keramičnega varjenja in tako privedemo do tvorbe visokokvalitetne žarovzdržne mase. Plinska zavesa pomaga, da omejimo brizgani žarovzdržni material in zgorevalne produkte goriva na reakcijsko cono tako, da se zlahka vključijo v nastalo zvarno maso. Vključitev takih zgorevalnih produktov v nastalo žarovzdržno maso ni v postopku za keramično varjenje nikakršna pomanjkljivost, saj so ti produkti tudi sami žarovzdržni oksidi.The gas curtain also allows us to more easily limit the mixture of particles in the reaction zone by focusing and intensifying the reaction of ceramic welding, thus producing a high-quality refractory. The gas curtain helps to limit the injection molded refractory material and combustion products of the fuel to the reaction zone so that they can easily be incorporated into the resulting weld mass. The incorporation of such combustion products into the resulting refractory mass is not a disadvantage in the ceramic welding process, since these products are themselves refractory oxides.

Plinsko zaveso lahko brizgamo iz mnogih odprtin, razporejenih v obroču okoli izstopne odprtine (izstopnih odprtin) za prašek. Seveda bodo morale biti take odprtine razporejene blizu skupaj, da bo nastala v bistvu nepretrgana zavesa. Prednostno pa brizgamo plinsko zaveso kot obročast tok. Uporaba nepretrgane obročaste izstopne odprtine za brizganje obročastega toka zavese pospešuje učinkovitost zavese in lahko omogoči tudi enostavno konstrukcijo priprave za izvedbo postopka v smislu izuma. Okoli toka zaščitnega plina se tako tvori zaščitni plašč, s čimer je omogočeno, da preprečimo, da bi material, zlasti pline, iz obdajajoče atmosfere potegnilo v nosilni tok, ki vsebuje oksidimi plin in zmes delcev. Celotno področje eksotermične reakcije in brizganje zmesi v njenem oksidimem nosilnem plinu lahko tako izoliramo od obdajajočega okolja tako, da preprečimo uvedbo kateregakoli tujega elementa, ki bi motil eksotermično reakcijo, in zato lahko le-to bolje kontroliramo.The gas curtain can be sprayed from many openings arranged in a ring around the powder outlet (s). Of course, such openings will need to be arranged close together to form a substantially continuous curtain. Preferably, however, we spray the gas curtain as a ring stream. The use of a continuous annular discharge outlet for injection molding the annular curtain stream enhances the curtain efficiency and may also allow simple construction of a device for carrying out the process of the invention. A protective jacket is thus formed around the flow of the shielding gas, thereby preventing the material, especially the gases, from being drawn from the ambient atmosphere into a carrier stream containing oxide gas and a mixture of particles. The entire area of the exothermic reaction and the injection of the mixture in its oxide carrier gas can thus be isolated from the surrounding environment by preventing the introduction of any foreign element that would interfere with the exothermic reaction and can therefore be better controlled.

Da bi okoli nosilnega plina in delcev, ki jih nosi s seboj, oblikovali najbolj učinkovito plinsko zaveso, je treba plin za zaveso ejektirati iz ene ali več izstopnih odprtin, ki je (so) oddaljena (oddaljene) od izstopne odprtine (izstopnih odprtin) za nosilni plin, vendar pa naj različne izstopne odprtine ne bodo med seboj preveč razmaknjene. Optimalni razmik je v veliki meri odvisen od velikosti izstopne odprtine (izstopnih odprtin) za nosilni plin.In order to form the most efficient gas curtain around the carrier gas and the particles it carries with it, the curtain gas must be injected from one or more outlet openings (s) away from the outlet port (s). carrier gas, but the different outlets should not be too far apart. The optimum spacing depends largely on the size of the outlet (s) for the carrier gas.

Nekatere prednostne izvedbe izuma so namenjene predvsem za popravila v majhnem ali srednjem merilu ali za okoliščine, kjer so potrebna večja popravila, pa čas, ki je na razpolago za popravilo, ni kritičen, in delce brizgamo iz kopja, ki ima eno samo izstopno odprtino za nosilni plin s premerom med 8 mm in 25 mm. Presečna površina takih izstopnih odprtin bo torej med 50 in 500 mm2. Taka kopja so primerna za brizganje keramičnega varilnega praška v množinah od 30 do 300 kg/h. V nekaterih takih prednostnih izvedbah, pri katerih brizgamo nosilni plin iz izstopne odprtine s površino med 50 in 500 mm2, brizgamo plinsko zaveso iz ene ali več izstopnih odprtin, ki so oddaljene od izstopne odprtine za nosilni plin v razdalji med 5 in 20 mm.Some of the preferred embodiments of the invention are intended primarily for small- to medium-scale repairs or for circumstances requiring major repairs, but the time available for repair is not critical, and particles are sprayed from a spear having a single outlet opening for carrier gas between 8 mm and 25 mm in diameter. The cross-sectional area of such outlets will therefore be between 50 and 500 mm 2 . Such spears are suitable for spraying ceramic welding powder in quantities of 30 to 300 kg / h. In some such preferred embodiments, in which the carrier gas is sprayed from the outlet with an area between 50 and 500 mm 2 , a gas curtain is sprayed from one or more outlets that are spaced from the outlet for the gas in the distance between 5 and 20 mm.

Druge prednostne izvedbe izuma so namenjene predvsem za popravila v velikem merilu, ki jih je treba opraviti v kratkem času, in delce brizgamo iz kopja, ki ima izstopno odprtino za nosilni plin s presečno površino med 300 in 2300 mm2. Taka kopja so primerna za brizganje keramičnega varilnega praška v množinah do 1000 kg/h ali celo več. V nekaterih takih prednostnih izvedbah, kjer brizgamo nosilni plin iz izstopne odprtine s presečno površino med 300 in 2300 mm2, brizgamo plinsko zaveso iz ene ali več izstopnih odprtin, ki so oddaljene od izstopne odprtine za nosilni plin v razdalji med 10 in 30 mm.Other preferred embodiments of the invention are intended primarily for large-scale repairs to be performed in a short time, and the particles are injected from a spear having an outlet for a carrier gas with a cross-sectional area between 300 and 2300 mm 2 . Such spears are suitable for spraying ceramic welding powder in quantities up to 1000 kg / h or even more. In some such preferred embodiments, where the carrier gas is injected from the outlet with a cross-sectional area between 300 and 2300 mm 2 , a gas curtain is sprayed from one or more outlets that are spaced from the outlet for the carrier gas in a distance of 10 to 30 mm.

Uporaba enega ali drugega od teh območij oddaljenosti med izstopnimi odprtinami za nosilni plin in za plin za zaveso podpira nastanek jasne in določene pregrade med reakcijsko cono keramičnega varjenja in okolno atmosfero, pri čemer omogoča, da se v bistvu izognemo vsaki motnji med različnimi plinskimi tokovi tako, da zagotavlja, da ostajajo v bistvu ločeni, dokler se ne preusmerijo ob tarčni površini.The use of one or the other of these distances between the outlet openings for the carrier gas and for the gas behind the curtain supports the formation of a clear and definite barrier between the reaction zone of the ceramic welding and the surrounding atmosphere, thereby avoiding essentially any interference between different gas streams thus , to ensure that they remain essentially separate until they are diverted to the target surface.

S pridom znaša izstopna volumenska množina plina za zaveso najmanj polovico izstopne volumenske množine nosilnega plina. Uporaba te značilnosti olajša nastanek debele in učinkovite zavese. Izstopna množina plina za zaveso je lahko npr. najmanj dve tretjini izstopne množine nosilnega plina ali pa je celo večja od izstopne množine nosilnega plina.Preferably, the outlet volume of the curtain gas is at least half the outlet volume of the carrier gas. Using this feature facilitates the formation of a thick and efficient curtain. The output quantity of curtain gas may be e.g. at least two thirds of the carrier gas output or even greater than the carrier gas output.

Prednostno je izstopna hitrost (izračunana pri normalnem tlaku) plina za zaveso večja kot ena petina izstopne hitrosti nosilnega plina. Izstopne volumenske množine plina merimo v normalnim kubičnih metrih na uro in izstopne hitrosti plina izračunamo iz te izstopne volumenske množine in površine izstopne odprtine (izstopnih odprtin), iz katere (katerih) izpuščamo plin, pri čemer postavimo, da je v trenutku, ko plin zapušča svojo odprtino, njegov tlak normalen. Uporaba te značilnosti omogoča tvorbo učinkovine plinske zavese. Ugotovili smo, da jeza najboljše rezultate prednostno, daje izstopna hitrost (izračunana pri normalnem tlaku) plina za zaveso med eno petino in tremi petinami izstopne hitrosti nosilnega plina. Uporaba te značilnosti omogoča, da je motnja pretočnega diagrama toka nosilnega plina in materiala v reakcijski coni keramičnega valjenja majhna. Uporaba te značilnosti ima nadalje za posledico, da je gradient plinske hitrosti od toka (tokov) nosilnega plina proti okolni atmosferi manj strm, kot bi bil sicer, in ugotovili smo,da to pomaga pri kvaliteti zvara, morda zato, ker je tok nosilnega plina in delcev, kijih nosi s seboj, manj razredčen.Preferably, the exit velocity (calculated at normal pressure) of the curtain gas is greater than one fifth of the exit velocity of the carrier gas. The gas outflow volumes are measured in normal cubic meters per hour and the gas outflow velocities are calculated from that outlet volume and the outlet area (s) from which the gas (s) is discharged, setting it to be at the moment when the gas is leaving. its opening, its pressure normal. The use of this feature allows the formation of an active gas curtain. It has been found that, for the best results, the dam is preferred that the exit velocity (calculated at normal pressure) of the curtain gas is between one-fifth and three-fifths of the exit velocity of the carrier gas. The use of this feature allows the disturbance of the flow diagram of the carrier gas and material flow in the ceramic hatching reaction zone to be small. The use of this feature further results in a gas velocity gradient from the carrier gas stream (s) to the surrounding atmosphere less steep than it would otherwise be, and we have found that this helps with weld quality, perhaps because the carrier gas flow and the particles it carries with it, less dilute.

V nekaterih prednostnih izvedbah izuma izstopajo plinski tokovi iz kopja, ki ga hladi fluid, ki kroži skozenj. Tako hlajenje lahko zlahka dosežemo s tem, da opremimo kopje z vodnim plaščem. Tak vodni plašč je lahko nameščen tako, da obdaja osrednjo cev ali cevi za dovajanje nosilnega plina in keramičnega varilnega praška, pri čemer je sam obdan z obročastim prehodom za prevajanje plina za zaveso. Vodni plašč lahko zlahka konstruiramo do debeline, ki je tolikšna, da zagotavlja katerikoli zaželeni razmik med izstopno odprtino (izstopnimi odprtinami) za nosilni plin in izstopnimi odprtinami za plin za zaveso. Alternativno ali dodatno je lahko prisoten vodni plašč, ki obdaja vse izstopne cevi za pline na kopju. V obeh primerih bo temperatura izstopajočega plina za zaveso na splošno - če upoštevamo, da popravljamo peči pri v bistvu njihovi obratovalni temperaturi - znatno nižja kot okolna temperatura v peči, in njegova temperatura je lahko na splošno podobna temperaturi nosilnega plina.In some preferred embodiments of the invention, gas flows from the spear cooled by the fluid circulating through it stand out. Such cooling can be easily achieved by equipping the spear with a water jacket. Such a water jacket may be positioned to surround a central tube or pipes for supplying carrier gas and a ceramic welding powder, and is itself surrounded by a circular passage for conveying the gas behind the curtain. The water jacket can be easily constructed to a thickness sufficient to provide any desired clearance between the outlet port (s) for the carrier gas and the outlet port for the curtain gas. Alternatively or additionally, a water jacket may be present that surrounds all gas outlet pipes on land. In both cases, the temperature of the outlet gas behind the curtain will generally be - significantly lower than the ambient temperature in the furnace - given that we repair the furnace at essentially its operating temperature, and its temperature may generally be similar to that of the carrier gas.

Tako ravnanje je povsem v nasprotju z običajno prakso v keramičnem varilstvu. Ena stalnih skrbi pri izvajanju keramičnega varjenja je preprečiti, da bi bila temperatura udarne cone na tarčni površini med tvorbo žarovzdržne mase prenizka, npr. kot posledica neustrezne kontrolne različnih parametrov eksotermične reakcije. Udarna cona, ki je prehladna, lahko npr. pripelje do trenutnih prekinitev eksotermične reakcije. Še zlasti je znano, da pripelje ta temperatura, če je prenizka, do nastanka nepravilne in nekontrolirane poroznosti v nastali žarovzdržni zvarni masi tako, da je precej porozna in da ima majhno odpornost proti abraziji ali koroziji. Ta poroznost je zlasti očitna, če žarovzdržno maso tvorimo z več prehodi brizgalnega kopja.Such behavior is completely contrary to the usual practice in ceramic welding. One of the constant concerns when performing ceramic welding is to prevent the impact zone temperature on the target surface from being too low during the formation of the refractory mass, e.g. as a result of inadequate control of various parameters of the exothermic reaction. An impact zone that is too cold may e.g. leads to instantaneous terminations of the exothermic reaction. In particular, this temperature, if too low, is known to lead to the formation of irregular and uncontrolled porosity in the resulting heat-resistant weld mass in such a way that it is rather porous and has little resistance to abrasion or corrosion. This porosity is particularly apparent when the heat-resistant mass is formed by multiple spear crossings.

Če se udarna cona premika po površini, ki jo je treba obdelati, ima vsaj del tega sorazmerno hladnega plina v množini, kije zadostna, da nastane učinkovit ščit okoli udarne cone, nagnjenje, da tik pred udarcem varilnega materiala ohladi površino, ki jo obdelujemo. V večini varilskih tehnik to sploh ni priporočljivo, če hočejo doseči sprejemljiv rezultat. Da je v skladu s to prednostno značilnostjo izuma ugodno, da pihamo na površino podlage okoli udarne cone ohlajeno plinsko zaveso, je popolnoma presenetljivo. Tako pihanje plina bo nagibalo k temu, da bo imelo na udarno cono močan hladilni učinek in bi zato pričakovali, da bo to hlajenje privedlo do porozne mase z majhno odpornostjo proti eroziji.If the impact zone moves over the surface to be treated, at least part of it has relatively cold gas in an amount sufficient to form an effective shield around the impact zone, the tendency to cool the surface being treated just prior to impact of the welding material. In most welding techniques, this is not recommended at all if they are to achieve an acceptable result. According to this advantageous feature of the invention, it is advantageous to blow a cooled gas curtain on the surface of the substrate around the impact zone. Thus blowing gas will tend to have a strong cooling effect on the impact zone and would therefore be expected to lead to a porous mass with low erosion resistance.

Ne glede na to pa smo eksperimentalno opazili, da omogoča dodatni kontrolni parameter za eksotermično reakcijo, ki ga zagotavlja uporaba tega izuma, popolnoma nepričakovano nastanek gostih žarovzdržnih mas, ki so proti eroziji bolj odporne kot mase, ki se tvorijo pri prejšnjih postopkih za keramično varjenje, še zlasti, če uporabljamo hlajeno kopje. Ta rezultat je zelo presenetljiv, ker je v nasprotju z mnenjem, kije mnogo let veljalo med strokovnjaki s tega področja.Nevertheless, it has been experimentally observed that the additional control parameter for the exothermic reaction provided by the use of the present invention provides the completely unexpected formation of dense refractory masses which are more resistant to erosion than the masses formed in the previous ceramic welding processes , especially when using a chilled spear. This result is very surprising because it is contrary to the opinion of many experts in the field for many years.

Poroznost nastale žarovzdržne mase je eden od bistvenih faktorjev pri določanju njene stopnje odpornosti proti eroziji. Poroznost po naravi oslabi strukturo žarovzdržne mase. Razen tega nudijo pore pot za dostop erozivnega medija in s tem napravijo žarovzdržni material bolj občutljiv za erozijo, ker lahko erozivni medij deluje v notranjosti mase.The porosity of the resulting heat-resisting mass is one of the essential factors in determining its level of erosion resistance. Porosity by nature weakens the structure of the refractory mass. In addition, pores provide a pathway for erosive medium to access, thus making the heat-resistant material more susceptible to erosion, since the erosive medium can operate inside the mass.

Treba pa je upoštevati še en premislek. Jasno je, da je treba žarovzdržne delce, ki jih brizgamo, segreti, da stalimo vsaj njihovo površino, da nastane homogena zvarna masa, in tudi tarčno površino je treba močno segreti, da omogočimo najboljši spoj med nanosom in to površino. Vendar pa obstaja nevarnost, da bo, če je temperatura tarčnega področja previsoka, nanos preveč tekoč, da bi ostal v pravem položaju. Ta nevarnost je seveda večja na vertikalnih ali previsnih tarčnih površinah. Nevarnost je tudi tem večja, čim silovitejša je reakcija keramičnega valjenja, ki se vrši na delovnem mestu. Taka silovita reakcija pa je lahko bistvena za vzdrževanje reakcije keramičnega varjenja ali za zadostno segretje tarčne površine, da nastane dober spoj med keramičnim zvarom in to površino, zlasti če temperatura tarčne površine ni zelo visoka. Tu mislimo na temperature pod npr. okoli 700°C. Take temperature srečujemo v talilnih pečeh ali žgalnih pečeh za postopke, ki jih izvajajo pri le zmerno visokih temperaturah, kot so žgalne peči za cement ali posode za kemijske reakcije. V praksi smo opazili, da zagotavlja brizganje sorazmerno hladne plinske zavese sredstvo zakontroliranje temperature udarne cone. Tako laže preprečimo, da bi kot posledica visoke temperature v udarni coni žarovzdržna masa, ki se tvori, tekla. Tako je možno uravnati različne parametre, da ustvarimo zelo silovito eksotermično reakcijo, ki zagotovi zanesljivo vodenje postopka in nastanek dobrega spoja med nanosom in tarčno površino, celo če le-ta nima zelo visoke temperature, medtem ko udarno cono hladimo, da preprečimo tečenje mase, ki se tvori. To olajšuje nastanek homogenega zvara.However, another consideration must be considered. It is clear that the refractory particles that are sprayed must be heated to melt at least their surface to produce a homogeneous weld, and the target surface must also be strongly heated to allow the best joint between the application and this surface. However, there is a danger that, if the temperature of the target area is too high, the application will be too fluid to remain in the correct position. This danger is, of course, greater on vertical or overhanging target surfaces. The danger is also greater, the more intense the reaction of the ceramic hatching carried out in the workplace. Such a violent reaction may, however, be essential for maintaining the ceramic welding reaction or for sufficiently heating the target surface to form a good joint between the ceramic weld and this surface, especially if the temperature of the target surface is not very high. Here we mean temperatures under e.g. about 700 ° C. Such temperatures are encountered in melting furnaces or kilns for processes performed at only moderately high temperatures, such as cement kilns or chemical reaction vessels. In practice, it has been observed that the injection of relatively cold gas curtains provides a means of controlling the temperature of the impact zone. This makes it easier to prevent, as a result of the high temperature in the impact zone, the refractory mass that is being formed from flowing. It is thus possible to adjust different parameters to create a very violent exothermic reaction that ensures reliable process control and the formation of a good joint between the application and the target surface, even if it does not have a very high temperature, while the impact zone is cooled to prevent mass flow, which is formed. This facilitates the formation of a homogeneous weld.

Hladilni učinek toka zavese ima lahko tudi še nadaljnji važen učinek vplivanja na kristalno obliko, ki jo zavzame zvarna masa, ko se strdi, in to lahko nudi znatne ugodnosti. Za primer, staljena zmes kremenice in glinice kaže nagnjenje k tvorbi mulita, če jo pustimo, da se ohlaja počasi; če pa je po drugi plati ohlajanje hitro, izkristalizira glinica kot korund, ki lahko ostane v kremenični fazi brez nastanka mulita. Tudi to lahko poveča odpornost nastale zvame mase proti eroziji.The cooling effect of the curtain flow can also have the further important effect of affecting the crystalline form taken up by the weld mass when it hardens, and this can offer considerable benefits. For example, a molten mixture of silica and alumina shows a tendency to form mullite if allowed to cool slowly; if, on the other hand, cooling is rapid, alumina crystallizes as corundum, which can remain in the silica phase without mullite formation. This can also increase the resistance of the resulting mass of erosion to the mass.

Obstajajo različni plini, ki jih lahko brizgamo zato, da nastane potrebna plinska zavesa, in optimalna izbira plina bo odvisna od okoliščin. Medtem ko lahko dosežemo zelo dobre rezultate ob uporabi ogljikovega dioksida ali dušika za tvorbo plinske zavese, predvidevajo nekatere prednostne izvedbene oblike izuma, da obsega plinska zavesa kisik. Uporabimo lahko npr. zrak, ker je poceni in splošno razpoložljiv. Vendar pa je lahko uporaba kisika tržne kvalitete prednostna; tak kisik bo tako ali tako običajno prisoten za izvajanje operacije keramičnega varjenja, in za smoter, ki ga imamo pred očmi, je bolj učinkovit. Če obsega plinska zavesa kisik, lahko zagotavlja nadaljnji rezervoar kisika v neposredni bližini reakcijske cone keramičnega varjenja in to olajšuje popolno zgorevanje uporabljenih delcev goriva. To povečuje homogenost v keramični zvami masi in priložnostno dopušča, da nekoliko zmanjšamo delež goriva v zmesi keramičnega varilnega praška. Vendar pa moramo upoštevati, da vsebuje nosilni plin sam najmanj zadosti kisika za v bistvu popolen sežig goriva, in v skladu s tem daje, kot smo že omenili, uporaba plina, kot ogljikovega dioksida ali dušika, ki v bistvu ne vsebuje razpoložljivega kisika, ugodne rezultate.There are various gases that can be sprayed to produce the required gas curtain, and the optimal choice of gas will depend on the circumstances. While very good results can be achieved using carbon dioxide or nitrogen to form a gas curtain, some preferred embodiments of the invention envisage that the gas curtain comprises oxygen. We can use e.g. air because it is cheap and generally available. However, the use of commercial grade oxygen may be preferred; such oxygen will, in one way or another, usually be present for performing a ceramic welding operation, and is more efficient for the sight we have before our eyes. If the gas curtain comprises oxygen, it can provide a further oxygen tank in the immediate vicinity of the ceramic welding reaction zone and this will facilitate the complete combustion of the fuel particles used. This increases the homogeneity in the ceramic mass and occasionally allows the fuel content of the ceramic welding powder mixture to be reduced slightly. However, it should be borne in mind that the carrier gas itself contains at least sufficient oxygen for essentially complete combustion, and accordingly, as mentioned above, the use of gas such as carbon dioxide or nitrogen, which does not substantially contain available oxygen, is favorable results.

Vsekakor je lahko v določenih, posebnih okoliščinah uporaba takega plina optimalna. Nekateri razredi žarovzdržnih materialov vsebujejo delce materiala, ki se ga da oksidirati, kot ogljika ali silicija, z namenom boja proti difuziji kisika skozi žarovzdržni material, ali pa uporabljajo za druge namene v jeklarski industriji za določene konvertorje npr. bazične magnezijeve žarovzdržne materiale, ki vsebujejo do 10 mas.% delcev ogljika. Če postane potrebno popraviti tak žarovzdržni material, je zaželeno zagotoviti, da vsebuje tudi reparatura določen delež materiala, ki se ga da oksidirati. Tako popravilo lahko izvedemo s tehniko keramičnega valjenja. Taka tehnika je predmet opisa Glaverbelovega britanskega patenta št. 2,190,671.In certain circumstances, the use of such gas may certainly be optimal. Some classes of refractory materials contain particles of oxidizable material, such as carbon or silicon, to combat the diffusion of oxygen through refractory material, or used for other purposes in the steel industry for certain converters, e.g. basic magnesium refractories containing up to 10% by weight of carbon particles. If it becomes necessary to repair such refractory material, it is desirable to ensure that the repair also contains a certain proportion of oxidizable material. Such repair can be carried out using the ceramic rolling technique. Such a technique is the subject of a description of Glaverbel's British patent no. 2,190,671.

Tako obsegajo v nekaterih prednostnih izvedbah izuma delci, ki jih izpuščamo v tok nosilnega plina, delce materiala, ki se ga da oksidirati in ki ga je treba vdelati v zvamo maso kot takega in tok zavese je v bistvu brez razpoložljivega kisika. Uporaba te značilnosti ima učinek, da v bistvu prepreči, da bi v začetno zvamo maso v reakcijski coni potegnilo dodaten kisik, bodisi iz plinske zavese bodisi iz okolne atmosfere, in to lahko prepreči zgorevanje takega materiala, ki se da oksidirati tako, da se poveča dobitek materiala, ki se da oksidirati in ki ostane v nanešeni zvami masi kot tak.Thus, in some preferred embodiments of the invention, the particles discharged into the carrier gas stream are the particles of the oxidizable material to be incorporated into said mass as such, and the curtain stream is substantially free of oxygen. The use of this feature has the effect of essentially preventing the initial mass in the reaction zone from drawing in extra oxygen, either from the gas curtain or from the surrounding atmosphere, and this can prevent the combustion of such material that can be oxidized by increasing yield of oxidizable material remaining in the applied gypsum mass per se.

S pridom obsega material goriva en ali več materialov iz skupine, ki sestoji iz aluminija, silicija, magnezija, cirkonija in kroma. Taki materiali so vsi sposobni,da gorijo in dajejo intenzivno vročino in tvorijo žarovzdržen oksid. Take elemente lahko uporabimo po potrebi same ah v zmesi. Nadalje lahko uporabimo zlitine takih materialov. Legiranje elementa, ki zelo zlahka in hitro zgori, z elementom, ki se gorenju bolj upira, zagotavlja intimno zmes teh elementov, in s primerno izbiro sestavin zlitine lahko dosežemo bolj stalno reakcijo, ki poteka z ustreznejšo hitrostjo.Preferably, the fuel material comprises one or more materials in the group consisting of aluminum, silicon, magnesium, zirconium and chromium. Such materials are all capable of burning and producing intense heat and forming a refractory oxide. Such elements can be used as needed ah alone in the mixture. Furthermore, alloys of such materials can be used. Alloying an element that burns very easily and quickly, with an element that is more resistant to burning, provides an intimate mixture of these elements, and with a proper selection of alloy components, a more continuous reaction can be achieved, proceeding at a more appropriate speed.

S pridom ima najmanj 50 mas.% goriva velikost delcev manj kot 50 μιη in prednostno ima najmanj 90 mas.% delcev goriva velikost delcev manj kot 50 /im. Povprečna velikost delcev je lahko npr. manj kot 15 μπι in njihova maksimalna velikost delcev manj kot 100 μτη in prednostno manj kot 50 μτη. Tako se delci goriva zlahka oksidirajo in s tem olajšajo razvijanje intenzivne toplotne energije na majhnem prostoru in dosego dobrega zvara med delci žarovzdržnega materiala. Majhna velikost teh delcev goriva tudi pospešuje njihovo popolno zgorevanje in s tem homogenost nastale mase.Preferably, at least 50% by weight of the fuel has a particle size of less than 50 µιη and preferably at least 90% by weight of the fuel particles has a particle size of less than 50 µm. The average particle size may be e.g. less than 15 μπι and a maximum particle size of less than 100 μτη and preferably less than 50 μτη. Thus, the fuel particles are easily oxidized, thereby facilitating the development of intense thermal energy in a small space and achieving a good weld between the refractory material particles. The small size of these fuel particles also accelerates their complete combustion and thus the homogeneity of the resulting mass.

Prednost dajemo tvorbi keramičnih zvarnih mas s posebno visoko žarovzdržnostjo in v ta namen je prednostno, da sestoji najmanj večji masni del žarovzdržnih delcev, ki jih brizgamo, iz glinice in/ali cirkonijevega oksida ali iz magnezije in/ali glinice.Preference is given to the formation of ceramic welding masses with a particularly high heat resistance and for this purpose it is preferable that the at least the major mass fraction of the heat-resistant particles being sprayed consists of alumina and / or zirconium oxide or magnesium and / or alumina.

Izum zajema tudi keramično zvarno maso, če je nastala s postopkom v skladu z izumom, in vključuje tudi pripravo, kije posebej prilagojena za izvedbo postopka.The invention also encompasses a ceramic weld mass, if produced by the process according to the invention, and includes a device specially adapted for carrying out the process.

V skladu s tem vključuje pričujoči izum kopje, ki obsega izstopno odprtino za izpuščanje keramičnega varilnega praška v nosilnem plinu vzdolž izpustne poti proti površini za izvajanje postopka keramičnega varjenja, ki je označeno s tem, da obsega tako kopje drugo izstopno odprtino ali skupino drugih izstopnih odprtin za izpuščanje plina, pri čemer je ta druga izstopna odprtina ali skupina izstopnih odprtin oblikovana in razporejena in razmaknjena aksialno in radialno glede na izstopno odprtino za prah tako, da lahko izpuščamo iz te druge izstopne odprtine ali skupine izstopnih odprtin plin tako, da nastane v bistvu nepretrgana zavesa, ki obdaja izpustno pot praška in ki je na splošno z njo vzporedna.Accordingly, the present invention includes a spear comprising an outlet for releasing a ceramic welding powder in a carrier gas along the discharge path to the surface for carrying out a ceramic welding process, characterized in that such spear comprises a second outlet or a group of other outlet openings gas outlet, wherein said second outlet or outlet group is formed and arranged and spaced axially and radially with respect to the outlet port for dust so that it is possible to discharge gas from that second outlet or outlet group so that it is substantially formed a continuous curtain surrounding the powder discharge path and generally parallel to it.

Kopje v smislu izuma je preprosto in zlahka omogoča, da nastane okoli udarne cone toka nosilnega plina in praška, ki ga nosi s seboj in ki izstopa iz izstopne odprtine za prašek, plinska zavesa. To kopje v smislu izuma zagotavlja varilcu dodaten kontrolni parameter, kar mu omogoča, da doseže visoko kvaliteten keramični var.The spear of the invention is simple and easily allows it to form around the impact zone of the carrier gas stream and the powder that it carries with it and which exits the powder outlet, the gas curtain. This spear according to the invention provides the welder with an additional control parameter, enabling him to achieve high quality ceramic var.

Plinsko zaveso lahko spuščamo iz skupine brizgalnih odprtin, razporejenih okoli izstopne odprtine za prašek, prednostno pa je taka druga izstopna odprtina za izpuščanje plina za zaveso nepretrgana obročasta izstopna odprtina. To je preprost, lahek in učinkovit način za vzdrževanje plinske zavese okoli nosilnega toka, ki obsega oksidimi plin in zmes delcev. Ni treba, da bi bila taka obročastna izstopna odprtina nujno okrogla. V resnici ima lahko pravokotno obliko, če želimo.The gas curtain can be lowered from the group of spray openings arranged around the powder outlet port, preferably such a second gas outlet opening for the curtain gas is a continuous annular outlet port. It is a simple, easy and effective way to maintain a gas curtain around a load stream that contains oxides of gas and a mixture of particles. Such an annular outlet need not necessarily be circular. It can, in fact, have a rectangular shape if desired.

Da bi okoli nosilnega plina in delcev, ki jih nosi s seboj, ustvarili najbolj učinkovito plinsko zaveso, je treba plin za zaveso brizgati iz ene ali več izstopnih odprtin, ki je ali so razporejene razmaknjeno od izstopne odprtine (izstopnih odprtin) za nosilni plin; vendar pa različne izstopne odprtine ne smejo biti razporejene preveč razmaknjeno. Optimali medsebojni razmik je v veliki meri odvisen od merila operacij, pri katerih nameravamo uporabiti kopje.In order to create the most efficient gas curtain around the carrier gas and the particles it carries, the curtain gas must be injected from one or more outlets that are or are spaced from the outlet port (s) for the carrier gas; however, the different outlets must not be spaced too far apart. Optimal spacing depends to a large extent on the scale of operations in which the spear is intended to be used.

Nekatera kopja v skladu z izumom so prvenstveno namenjena za popravila v malem do srednjem merilu ali tam, kjer čas ni kritični faktor, in kopje ima izstopno odprtino za nosilni plin s premerom med 8 mm in 25 mm ali skupino izstopnih odprtin s primerljivo celotno površino izstopnih odprtin. (Celotna) presečna površina takih izstopnih odprtin bo torej med 50 in 500 mm2. Taka kopja so primerna za brizganje keramičnega varilnega praška v množinah od 30 do 300 kg/h. V nekaterih takih prednostnih izvedbah, kjer ima taka izstopna odprtina za prašek celotno presečno površino med 50 in 500 mm2, je taka druga ali vsaka taka druga izstopna odprtina razporejena od izstopne odprtine za prašek v razmiku med 5 in 20 mm.Some of the spears according to the invention are primarily intended for small to medium scale repairs or where time is not a critical factor, and the spear has an outlet for a carrier gas between 8 mm and 25 mm in diameter or a group of outlets with a comparable total exit surface of openings. The (total) cross-sectional area of such outlets will therefore be between 50 and 500 mm 2 . Such spears are suitable for spraying ceramic welding powder in quantities of 30 to 300 kg / h. In some such preferred embodiments, where such a powder outlet has a total cross-sectional area between 50 and 500 mm 2 , such a second or any such other outlet is disposed from the outlet for the powder at a distance of 5 to 20 mm.

Druga kopja v skladu z izumom so prvenstveno namenjena za popravila v velikem merilu ali za hitra popravila in kopje ima eno samo izstopno odprtino za nosilni plin ali skupino izstopnih odprtin za nosilni plin s presečno površino med 300 in 2300 mm2. Taka kopja so primerna za brizganje keramičnega varilnega praška v množinah do 1000 kg/h ali celo več. V nekaterih takih prednostnih izvedbah, kjer ima taka izstopna odprtina za prašek celotno površino med 300 in 2300 mm2, je druga ali vsaka taka druga izstopna odprtina razporejena v razmiku med 10 in 30 mm od izstopne odprtine za prašek.The other spears according to the invention are primarily intended for large-scale repairs or for quick repairs, and the spear has a single outlet opening for a carrier gas or a group of outlet openings for carrier gas with a cross-sectional area between 300 and 2300 mm 2 . Such spears are suitable for spraying ceramic welding powder in quantities up to 1000 kg / h or even more. In some such preferred embodiments, where such a powder outlet has a total surface area of between 300 and 2300 mm 2 , the second or every such other outlet is spaced 10 to 30 mm apart from the powder outlet.

Uporaba enega ali drugega območja razmika med izstopnimi odprtinami za nosilni plin in za plin za zaveso pospešuje nastanek jasne in definirane pregrade med reakcijsko cono keramičnega varjenja in okolno atmosfero, pri čemer omogoča, da se v bistvu izognemo vsaki motnji med različnimi plinskimi tokovi.The use of one or the other spacing between the outlet openings for the carrier gas and for the curtain gas facilitates the formation of a clear and defined barrier between the reaction zone of the ceramic welding and the surrounding atmosphere, while avoiding essentially any interference between different gas flows.

V nekaterih prednostnih izvedbah izuma vključuje tako kopje plašč, prilagojen za kroženje hladilnega sredstva. Prednostno hladilno sredstvo je glede na njeno toplotno kapaciteto in lahko dosegljivost voda. Tak vodni plašč je lahko nameščen tako, da obdaja osrednjo cev ali cevi za dovajanje nosilnega plina in keramičnega varilnega praška, pri čemer je sam obdan z obročastim prehodom za prevajanje plina za zaveso. Vodni plašč je zlahka zasnovan do take debeline, da zagotavlja katerikoli zaželeni razmik med izstopno odprtino (izstopnimi odprtinami) za nosilni plin in izstopno odprtino za plin za zaveso. Alternativno ali dodatno je lahko prisoten vodni plašč, ki obdaja vse cevi za izpuščanje plina v kopju. V obeh primerih bo temperatura izstopajočega plina za zaveso na splošno τ in če upoštevamo popravilo peči pri v bistvu njihovi obratovalni temperaturi - znatno nižja kot okolna temperatura v peči in njegova temperatura je lahko na splošno podobna temperaturi nosilnega plina.In some preferred embodiments, the invention includes such a spear jacket adapted to circulate refrigerant. Preferred refrigerant is given its heat capacity and easy water availability. Such a water jacket may be positioned to surround a central tube or pipes for supplying carrier gas and a ceramic welding powder, and is itself surrounded by a circular passage for conveying the gas behind the curtain. The water jacket is easily designed to a thickness that provides any desired clearance between the outlet port (s) for the carrier gas and the outlet port for the curtain gas. Alternatively or additionally, a water jacket may be present enclosing all the gas outlet pipes in the spear. In either case, the temperature of the outlet gas behind the curtain will generally be τ and, given the repair of the furnace at essentially their operating temperature, will be significantly lower than the ambient temperature in the furnace and its temperature may be generally similar to that of the carrier gas.

Ugodni učinek, ki ga ima to na nastanek keramične zvarne mase, smo že pojasnili. Poleg tega pomeni opremljenost s hladilnim plaščem, da lahko ostane kopje v okolju visoke temperature, kakršno je v peči ali v drugi žarovzdržni konstrukciji pri njeni obratovalni temperaturi, precej dolgo, ne da bi se pregrelo. To je ugodno iz obratovalnih razlogov, pomaga pa tudi pri podaljšanju uporabne življenjske dobe kopja.We have already explained the beneficial effect this has on the formation of ceramic welded mass. In addition, being equipped with a cooling jacket means that a spear can remain in a high-temperature environment such as in a furnace or other heat-resistant structure at its operating temperature for a long time without overheating. This is favorable for operational reasons and also helps to extend the useful life of the spear.

Prednostno je površina druge izstopne odprtine ali skupine izstopnih odprtin med dvema tretjina in trikratnikom površine izstopne odprtine za prašek. Taka površina druge izstopne odprtine (skupine drugih izstopnih odprtin) je ugodna za izpuščanje toka plina za zaveso z optimalno hitrostjo toka plina za zaveso v zadostnem volumnu, da zagotovimo učinkovito plinsko zaveso.Preferably, the surface of the second outlet or group of outlets is between two thirds and three times the area of the outlet opening for the powder. Such a surface of the second outlet (group of other outlets) is advantageous for the discharge of the curtain gas flow with the optimum velocity of the curtain gas flow in sufficient volume to provide an effective gas curtain.

Prednostne izvedbe izuma bomo sedaj opisali za primer ob sklicevanju na priložene risbe, v katerih je:Preferred embodiments of the invention will now be described by way of example with reference to the accompanying drawings, in which:

sl. 1 shema cone brizganja na površini podlage med izvajanjem postopka v smislu izuma;FIG. 1 is a schematic diagram of an injection zone on a surface of a substrate during the process of the invention;

sl. 2 shematski in delni prerez skozi brizgalno kopje v smislu izuma;FIG. 2 is a schematic and partial cross-sectional view through an injection molding spear of the invention;

sl. 3 shema erozijskega testa, izvedenega na žarovzdržnih masah.FIG. 3 scheme of erosion test carried out on heat resisting masses.

Na sl. 1 pomeni oznaka 1 tarčni del površine podlage, na kateri želimo tvoriti žarovzdržno keramično zvarno maso z obrizgavanjem te površine s tokom nosilnega plina, ki obsega oksidimi plin in zmes žarovzdržnih delcev in goriva. Ta tok nosilnega plina udarja ob površino 1 na shemi v udarni coni 2. V skladu z izumom obrizgavamo površino 1 istočasno z enim ali več perifernimi plinskimi curki, ki obdajajo udarno cono 2 tako, da se tvori okoli udarne cone 2 plinska zavesa. Slika 1 kaže v shematični obliki presek te plinske zavese s površino 1 v obročasti coni 3, ki tesno obdaja udarno cono 2. Razvidno je, da je obročasta cona 2 v praksi lahko rahlo razmaknjena od udarne cone 2 ali pa lahko nasprotno obročasta cona 3 in udarna cona 2 delno prodirata druga v drugo.In FIG. 1 means the marking 1 of the target part of the surface of the substrate on which we want to form a refractory ceramic weld mass by spraying this surface with a carrier gas stream comprising oxide gas and a mixture of refractory particles and fuel. This flow of carrier gas strikes surface 1 in the scheme in impact zone 2. According to the invention, the surface 1 is sprayed at the same time as one or more peripheral gas jets surrounding the impact zone 2 so that a gas curtain is formed around impact zone 2. Figure 1 shows, in schematic form, a cross-section of this gas curtain with surface 1 in annular zone 3, which closely encloses impact zone 2. It is apparent that, in practice, annular zone 2 may be slightly spaced from impact zone 2 or may be opposite annular zone 3 and impact zone 2 partially penetrate each other.

Na sl. 2 obsega brizgalna glava 4 kopja 5 osrednjo izstopno odprtino 6 za brizganje toka 7 nosilnega plina, ki obsega zmes delcev, dispergiranih v oksidirnem plinu. Namesto ene same osrednje izstopne odprtine 6 lahko obsega kopje skupino več izstopnih odprtin za brizganje toka 7 nosilnega plina. Brizgalno kopje, ki obsega skupino izstopnih odprtin take vrste, je opisano in je zanj zahtevana zaščita npr. v opisu Glaverbelovega britanskega patenta 2,170,122. Glava 4 kopja obsega v skladu z izumom tudi sredstva za brizganje plina za zaveso. V izvedbi, prikazani na sl. 2, obsegajo sredstva za brizganje plina za zaveso obročasto izstopno odprtino 8, ki obdaja osrednjo izstopno odprtino 6 in je od nje razporejena razmaknjeno tako, da brizga v bistvu nepretrgan obročast plinski tok 9. Plinski tok 9 tvori plinsko zaveso 3’, ki udarja ob površino 1 v obročasti coni 3. V specifičnem primeru je površina obročaste izstopne odprtine 8 malo več kot dvakratnik površine osrednje izstopne odprtine 6. Zmes delcev, dispergiranih v oksidirnem plinu, uvajamo po dovodni cevi 10 in plin curka plina za zaveso po vodu 11. Kopje 5 obsega tudi zunanji hladilni obroč 12 z vstopom in izstopom za hladilno vodo. Sl. 2 kaže tudi hladilni obroč 13 z vstopom in izstopom za hladilno vodo, ki drži obročasto izstopno odprtino 8 v razmiku od osrednje izstopne odprtine 6. Ta hladilni obroč pa lahko po želji opustimo in nadomestimo z enim samim majhnim vstavkom, ki omogoča, da držimo obročasto izstopno odprtino 8 v razmiku od osrednje izstopne odprtine 6, npr. za 7 mm.In FIG. 2 comprises a spear head 4 spear 5 a central outlet 6 for injection of a carrier gas stream 7 comprising a mixture of particles dispersed in oxidizing gas. Instead of a single central outlet opening 6, the spear may comprise a group of several outlet openings for injection of stream 7 of the carrier gas. A spray spout comprising a group of exit openings of this type is described and is required for protection e.g. in the description of Glaverbel's British patent 2,170,122. The spear head 4 according to the invention also comprises means for spraying gas behind the curtain. In the embodiment shown in FIG. 2, comprise means for spraying gas for the curtain annular outlet 8, which surrounds the central outlet 6 and is spaced therefrom such that the syringe is essentially a continuous annular gas stream 9. The gas stream 9 forms a gas curtain 3 'which strikes surface 1 in the annular zone 3. In the specific case, the surface of the annular outlet 8 is slightly more than twice the area of the central outlet 6. The mixture of particles dispersed in the oxidizing gas is introduced through the inlet pipe 10 and the gas curtain gas by the curtain 11. The spear 5 also includes an external cooling ring 12 with cooling water inlet and outlet. FIG. 2 also shows a cooling ring 13 having an inlet and outlet for cooling water holding the annular outlet 8 at a distance from the central outlet 6. This cooling ring can, if desired, be omitted and replaced with a single small insert allowing it to be held in the annular outlet. the outlet opening 8 at a distance from the central outlet opening 6, e.g. by 7 mm.

Sl. 3 je shema erozijskega testa na žarovzdržni keramični zvarni masi. Prizmatično palico 14, izrezano iz žarovzdržne testne mase, deloma potopimo v kopel iz staljenega stekla 15 s 1550°C, ki se nahaja v loncu (ni prikazan). Ta temperatura je višja kot najvišja temperatura, ki jo običajno uporabljajo za staljeno natrij-kalcijevo steklo (običajno okensko steklo) v steklarski peči. Palico pustimo potopljeno in po 16 urah preiščemo stopnjo njene obrabe.FIG. 3 is a scheme of erosion test on refractory ceramic welded mass. The prismatic rod 14, cut from the refractory test mass, is partially immersed in a molten glass bath 15 of 1550 ° C in a pot (not shown). This temperature is higher than the maximum temperature normally used for molten sodium-calcium glass (usually window glass) in a glass furnace. Leave the rod submerged and look for wear after 16 hours.

PRIMER 1EXAMPLE 1

Brez ohladitve peči je treba popraviti kadne bloke talilnega konca steklarske talilne peči. Ti bloki so močno erodirani, v glavnem na mestu površine kopeli staljenega stekla, kjer je prišlo do korozije na črti taline. Ti kadni bloki so visoko žarovzdržne, v električni peči taljene opeke na osnovi glinice in cirkona, in njihova sestava obsega 50 51 mas.% glinice, 32 - 33 mas.% cirkona, 15 - 16 mas.% kremenice in približno 1 mas.% natrijevega oksida in ki imajo pravo gostoto 3,84. Da bi za njeno popravilo omogočili dostop do te površine, smo gladino staljenega stekla znižali za okoli 20 cm. Da bi izvedli popravilo, smo na vroči kadni blok brizgali tok nosilnega plina, ki je obsegal oksidimi plin in zmes žarovzdržnih delcev in goriva. Zmes delcev je obsegala 4050% ZrO2, 38-44% Al^ skupaj z 12% goriva, sestavljenega iz 8-4% Al in 4-8% Si, vse v mas.% celotne zmesi. Silicijevi delci so bila zrna s povprečno velikostjo 6 μτη in specifično površino 5000 cm2/g. Aluminijevi delci so bila zrna s povprečno velikostjo 5 μπι in specifično površino 4700 cm2/g. Maksimalna velikost aluminijevih in silicijevih delcev ni presegala 50 μπι. Silicijevi in aluminijevi delci so zgoreli, pri čemer so oddali dovolj toplote, da so se žarovzdržni delci vsaj deloma stalili tako, da so se med seboj sprijeli. Žarovzdržni delci cirkona so imeli povprečno velikost delcev 150 μτη in žarovzdržni delci glinice so imeli povprečno velikost delcev 100 μτη.Without cooling the furnace, the tub blocks of the melting end of the glass melting furnace must be repaired. These blocks are heavily eroded, mainly at the site of the molten glass bath surface where corrosion has occurred on the melt line. These tub blocks are highly refractory, alumina and zirconium based brick melt-in-furnace electric furnaces, and their composition comprises 50 51% by weight alumina, 32 - 33% by weight zircon, 15 - 16% by weight quartz and about 1% by weight of sodium oxide and having a true density of 3.84. To allow this surface to be accessed, the surface of the molten glass was reduced by about 20 cm. In order to carry out the repair, a carrier gas stream comprising oxides gas and a mixture of refractory particles and fuel was sprayed onto the hot tub block. The particulate mixture consisted of 4050% ZrO 2 , 38-44% Al ^ together with 12% fuel consisting of 8-4% Al and 4-8% Si, all by weight of the total mixture. The silica particles were grains with an average size of 6 μτη and a specific surface area of 5000 cm 2 / g. The aluminum particles were grains with an average size of 5 μπι and a specific surface area of 4700 cm 2 / g. The maximum size of aluminum and silicon particles did not exceed 50 μπι. The silicon and aluminum particles were burnt, giving off enough heat to allow the refractory particles to melt at least partially by adhering to one another. Refractory zircon particles had an average particle size of 150 μτη and refractory alumina particles had an average particle size of 100 μτη.

Da bi preskusili odpornost žarovzdržne mase, ki je nastala na površini kadnih blokov peči, proti koroziji, ki jo povzroči steklo, smo na površini nadomestnega bloka, ki smo ga v testni peči segrevali na 1500°C, ob uporabi postopka v smislu izuma najprej oblikovali žarovzdržno maso. Za ta test smo uporabili v zmesi 8 mas.% Si in 4 mas.% Al.In order to test the resistance of the refractory formed on the surface of the oven block to the glass-induced corrosion, the surface of the replacement block heated to 1500 ° C in the test furnace was first formed using the process of the invention refractory mass. For this test, a mixture of 8 wt% Si and 4 wt% Al was used in the mixture.

Zmes delcev, dispergiranih v oksidimem plinu, smo brizgali s kopjem 5, prikazanim na sl. 2. Uvajali smo jo po dovodni cevi 10. Osrednja izstopna odprtina 6 za prašek je bila okrogla in je imela površino 113 mm2. Zmes smo brizgali s pretočno množino 30 kg/h s kisikom kot oksidirnim plinom v množini 25 Nm3/h. Tok 7 nosilnega plina, ki je obsegal zmes delcev in oksidirni plin, je udarjal na površino 1, ki jo je bilo treba obdelati, v udarni coni 2. V skladu z izumom smo na to površino 1 brizgali tudi curek plina za zaveso, ki je tvoril okoli udarne cone 2 plinsko zaveso 3’. V tem primeru je tvoril curek plina za zaveso čisti kisik, ki smo ga brizgali skozi obročasto izstopno odprtino 8 s pretočno hitrostjo 40 Nm3/h v obliki obročastega plinskega toka 9, ki je obdajal tok 7 nosilnega plina vzdolž njegove poti od glave 4 kopja do udarne cone 2. Obročasta izstopna odprtina 8 je imela krožen presek in površino 310 mm2. Obročasta izstopna odprtina 8 je bila razporejena v razmiku 13 mm od izstopne odprtine 6 za prašek.The mixture of particles dispersed in the oxide gas was sprayed with the spear 5 shown in FIG. 2. It was introduced through the inlet pipe 10. The central outlet 6 for the powder was round and had an area of 113 mm 2 . The mixture was sprayed at a flow rate of 30 kg / h with oxygen as the oxidizing gas at 25 Nm 3 / h. A carrier gas stream 7 comprising a particle mixture and an oxidizing gas struck a surface 1 to be treated in impact zone 2. According to the invention, a curtain gas jet was injected onto this surface 1 as well. formed around the impact zone 2 a gas curtain 3 '. In this case it formed a jet of pure oxygen curtain gas, which was injected through the annular outlet 8 at a flow rate of 40 Nm 3 / h in the form of an annular gas stream 9, which surrounded the flow of carrier gas 7 along its path from the head 4 of the spear to impact zones 2. The annular outlet opening 8 had a circular cross-section and a surface of 310 mm 2 . The annular outlet opening 8 was spaced 13 mm from the outlet opening 6 for the powder.

Med izvajanjem postopka je plinska zavesa 3’ zagotavljala dodatno sredstvo za vplivanje na potek reakcije keramičnega varjenja in nastanek žarovzdržne mase. Reakcije keramičnega valjenja je bila stabilna in sorazmerno dobro definirana. Prava poroznost nastale mase je bila 9% in njena navidezna poroznost 1,5%. Kot uporabljamo izraze v tem opisu, merimo navidezno poroznost z metodo, ki je analogna imerzijski in upošteva zato samo odprte pore v žarovzdržnem materialu; prava poroznost upošteva tudi vse zaprte pore v žarovzdržnem materialu. Navidezna gostota nastale žarovzdržne mase, t.j. gostota mase z njenimi porami, je bila 3,5. Prava ali absolutna gostota te mase, t.j. gostota materiala žarovzdržne matrice same, merjena na fino zmletem vzorcu, da bi eliminirali vpliv por, je bila 3,85.During the process, the gas curtain 3 'provided an additional means of influencing the course of the ceramic welding reaction and the formation of a refractory. Ceramic hatching reactions were stable and relatively well defined. The true porosity of the resulting mass was 9% and its apparent porosity was 1.5%. As we use the terms in this description, we measure apparent porosity by a method analogous to immersion, which therefore considers only open pores in the refractory material; true porosity also takes into account all closed pores in refractory material. The apparent density of the resulting refractory mass, i.e. the density of the mass with its pores was 3.5. The true or absolute density of this mass, i.e. the density of the refractory matrix material itself, measured on a finely ground sample to eliminate the effect of the pores, was 3.85.

Iz te mase žarovzdržnega keramičnega zvara smo izrezali prizmatično palico 14 (sl. 3) z 20 x 20 x 120 mm. To testno palico smo držali delno potopljeno v kopeli 15 iz staljenega stekla s 1550°C, ki se je nahajala v loncu (ni prikazan). Zabeležili smo stopnjo obrabe palice po 16 urah.From this mass of refractory ceramic weld we cut a prismatic rod 14 (Fig. 3) with 20 x 20 x 120 mm. This test rod was kept partially immersed in a 1550 ° C molten glass bath contained in a pot (not shown). We recorded the wear rate of the stick after 16 hours.

Za primerjavo smo pripravili kontrolni vzorec popolnoma enake velikosti in ga imeli delno potopljenega v isti kopeli iz staljenega stekla z isto temperaturo. Da bi olajšali primerjavo, sta prikazani risbi kontrolnega vzorca in testne palice na sl. 3 položeni druga na vrh druge. Kontrolni vzorec je bila prizmatična palica, ki smo jo izrezali iz žarovzdržne mase, nastale na enak način kot žarovzdržna masa iz primera 1, le da smo opustili curek plina za zaveso, t.j. iz mase žarovzdržnega keramičnega zvara, nastale po postopku, ki je zunaj obsega pričujočega izuma. Na ta način nastala žarovzdržna masa je imela pravo poroznost 19,7% in navidezno poroznost 3,5%. Imela je navidezno gostoto 3,03 in absolutno gostoto 3,77.For comparison, a control sample of exactly the same size was prepared and partially submerged in the same molten glass bath at the same temperature. In order to facilitate comparison, the drawings of the control sample and the test bars in Figs. 3 laid on top of each other. The control sample was a prismatic rod cut from the refractory mass, formed in the same manner as the refractory mass from Example 1, except that the curtain gas jet was omitted, i.e. from the mass of a refractory ceramic weld produced by a process outside the scope of the present invention. The resulting heat-resistant mass had a true porosity of 19.7% and an apparent porosity of 3.5%. It had a apparent density of 3.03 and an absolute density of 3.77.

Po 16 urah je palica 14 kontrolnega vzorca zavzela obliko, ki jo shematično prikazuje črtkasta črta 16. Kot je vidno, je potopljeni del 17 palice 14 utrpel precejšnjo korozijo kot posledico njegove potopitve v stekleno kopel. Robovi prizme so bili zaobljeni. Kot je vidno, je površina 18 kopeli 15 staljenega stekla precej erodirala vzorec in mu dala zlasti v coni, prikazani z označitveno številko 19, posebno obliko korozije na črti taline. Premer palice v centru korozije na črti taline se je zmanjšal na približno eno tretjino njegove nominalne vrednosti.After 16 hours, the rod 14 of the control sample assumed the shape shown schematically by the dashed line 16. As can be seen, the submerged portion 17 of the rod 14 suffered considerable corrosion as a result of its immersion in the glass bath. The edges of the prism were rounded. As can be seen, the surface 18 of the molten glass bath 15 significantly eroded the sample and gave it, in particular in the zone shown by mark 19, the particular form of corrosion on the melt line. The diameter of the rod in the center of corrosion on the melt line has decreased to about one-third of its nominal value.

Palica 14, izrezana iz žarovzdržne mase, nastale z uporabo postopka v smislu izuma, je po 16 urah zavzela obliko, ki jo prikazuje črtkasta črta 20. Erozija potopljenega dela je bila očitno manjša. Robovi prizme niso bili zaobljeni v večji meri. Korozija na črti taline 19 je bila mnogo manj izrazita kot pri kontrolnem vzorcu. Premer palice v centru korozije na črti taline se je zmanjšal na samo približno dve tretjini njegove nominalne vrednosti. Uporaba postopka v smislu izuma je torej omogočila izdelavo žarovzdržne mase, ki je bila mnogo bolj odporna proti eroziji kot masa, nastala po prejšnjem postopku. Mikroskopska preiskava prereza palica je tudi pokazala, da ni bilo praktično nobenih rezidualnih kovinskih faz, kar kaže, da je bila oksidacija kovinskih delcev praktično popolna. Ta faktor je zelo ugoden za žarovzdržno maso, naj bi prišla v stik s staljenim steklom, saj je znano, da lahko stik kovinskih faz s staljenim steklom povzroči, da se v steklu razvijejo mehurčki.The rod 14, cut from the heat-resistant mass produced by the process of the invention, after 16 hours assumed the shape shown by the dashed line 20. The erosion of the submerged part was clearly less. The edges of the prism were not rounded to a greater extent. Corrosion at the melt line 19 was much less pronounced than in the control sample. The diameter of the rod in the center of corrosion on the melt line has been reduced to only about two thirds of its nominal value. The use of the process of the invention thus allowed the manufacture of a heat-resistant mass that was much more resistant to erosion than the mass produced by the previous process. Microscopic examination of the rod cross section also revealed that there were practically no residual metal phases, indicating that the oxidation of the metal particles was practically complete. This factor is very favorable for the refractory mass, it is said to come into contact with molten glass, as it is known that contact of metallic phases with molten glass can cause bubbles to develop in the glass.

PRIMER 2EXAMPLE 2

Kot varianto sl. 1 smo izdelali na enak način, kot v primeru 1, maso žarovzdržnega keramičnega zvara, le da je znašala pretočna množina kisika v toku 7 nosilnega plina 30 Nm3/h in pretočna množina kisika v curku 9 plina za zaveso 20 Nm3/h. Nastala masa žarovzdržnega keramičnega zvara je imela navidezno poroznost 2%, pravo poroznost 8,3%, navidezno gostoto 3,56% in pravo gostoto 3,88.As a variant of FIG. 1 was made in the same way as in Example 1, the mass of the refractory ceramic weld, except that the oxygen flow rate in the carrier gas stream 7 was 30 Nm3 / h and the oxygen flow rate in the gas curtain 9 behind the curtain 20 Nm3 / h. The resulting mass of refractory ceramic weld had a apparent porosity of 2%, a true porosity of 8.3%, a apparent density of 3.56% and a true density of 3.88.

Iz te mase keramičnega zvara smo izrezali prizmatično palico 14 in jo deloma potopili v kopel 15 staljenega stekla, ki se je nahajala v loncu. Po 16 urah je pokazal erozijski test erozijo, podobno masi keramičnega zvara iz primera 1. Palica je zavzela obliko, ki jo prikazuje črtkasta črta 20. Mikroskopska preiskava prereza te palice je tudi pokazala, da ni bilo praktično nobenih rezidualnih kovinskih faz.From this mass of ceramic weld, a prismatic rod 14 was cut out and partially submerged in a molten glass bath 15 located in a pot. After 16 hours, it showed an erosion test erosion similar to the mass of the ceramic weld from Example 1. The rod assumed the shape shown by the dashed line 20. Microscopic examination of the cross section of this rod also revealed that there were practically no residual metal phases.

PRIMER 3EXAMPLE 3

Maso žarovzdržnega keramičnega zvara smo izdelali na enak način kot v primeru 1, le da je tvoril curek 9 plina za zaveso ogljikov dioksid, ki smo ga brizgali v pretočni množini 20 Nm3/h, in kisik v toku 7 nosilnega plina smo brizgali v pretočni množini 30 Nm3/h. Opazili smo tudi, da je bila reakcija keramičnega varjenja stabilna in sorazmerno dobro definirana. Nastala masa žarovzdržnega keramičnega zvara je imela navidezno poroznost 1,5%, pravo poroznost 4,6%, navidezno gostoto 3,5 in absolutno gostoto 3,67.The mass of the refractory ceramic weld was made in the same manner as in Example 1 except that it formed a jet 9 of carbon dioxide curtain gas injected in a flow rate of 20 Nm 3 / h and oxygen in a stream of carrier gas 7 was injected in a flow 30 Nm 3 / h. We also observed that the ceramic welding reaction was stable and relatively well defined. The resulting mass of refractory ceramic weld had a apparent porosity of 1.5%, true porosity of 4.6%, a apparent density of 3.5 and an absolute density of 3.67.

Iz te mase keramičnega zvara smo izrezali prizmatično palico 14 in jo deloma potopili v kopel 15 staljenega stekla, ki se nahajala v loncu. Po 16 urah je pokazal erozijski test erozijo, podobno masi keramičnega zvara iz primera 1. Palica je zavzela v bistvu obliko, ki jo prikazuje črtkasta črta 20.From this mass of ceramic weld, a prismatic rod 14 was cut and partly immersed in a molten glass bath 15 contained in a pot. After 16 hours, it showed an erosion test erosion similar to the mass of the ceramic weld from Example 1. The rod took essentially the shape shown by the dashed line 20.

PRIMER 4EXAMPLE 4

Maso žarovzdržnega keramičnega zvara smo izdelali na enak način kot v primeru 1, le da smo plinsko zaveso 9 oblikovali z dušikom, ki smo ga brizgali v pretočni množini 18 Nm3/h, in kisik v toku 7 nosilnega plina smo brizgali v pretočni množini 30 Nm3/h. Opazili smo tudi, da je bila reakcija keramičnega valjenja stabilna in sorazmerno dobro definirana. Nastala masa žarovzdržnega keramičnega zvara je imela navidezno poroznost 2,5%, navidezno gostoto 3,5 in pravo gostoto 3,69.The mass of the refractory ceramic weld was made in the same manner as in Example 1, except that the gas curtain 9 was formed with nitrogen, which was injected at a flow rate of 18 Nm 3 / h, and the oxygen was flowed at a flow rate of 30 in the carrier gas 7. Nm 3 / h. We also observed that the ceramic hatching reaction was stable and relatively well defined. The resulting mass of refractory ceramic weld had an apparent porosity of 2.5%, an apparent density of 3.5 and a true density of 3.69.

Iz te mase keramičnega zvara smo izrezali prizmatično palico 14 in jo deloma potopili v kopel 15 staljenega stekla, ki se je nahajala v loncu. Po 16 urah je pokazal erozijski test erozijo, podobno masi keramičnega zvara iz primera 1. Palica je zavzela v bistvu obliko, ki jo prikazuje črtkana črta 20.From this mass of ceramic weld, a prismatic rod 14 was cut out and partially submerged in a molten glass bath 15 located in a pot. After 16 hours, it showed an erosion test erosion similar to the mass of the ceramic weld from Example 1. The rod took essentially the shape shown by the dashed line 20.

PRIMER 5EXAMPLE 5

Za izvedbo ojačitvenega popravila oboka peči iz silika opeke pri temperaturi približno 1500°C smo uporabili tole masno zmes: 87% delcev žarovzdržne kremenice, 12% gorljivih silicijevih delcev in 1% gorljivih aluminijevih delcev. Silicijevi in aluminijeviThe following mass mixture was used to perform the reinforcement repair of the silica brick kiln vault at a temperature of approximately 1500 ° C: 87% of refractory silica particles, 12% of combustible silica particles and 1% of combustible aluminum particles. Silicon and aluminum

2JJ delci so imeli vsak povprečno velikost delcev manj kot 10 μία, pri čemer je znašala specifična površina silicija 4000 cm2/g, aluminija pa 6000 cm2/g. Maksimalna velikost aluminijevih in silicijevih delcev ni presegala 50 μτη.The 2JJ particles each had an average particle size of less than 10 μία, with a specific surface area of silicon of 4000 cm 2 / g and aluminum of 6000 cm 2 / g. The maximum size of the aluminum and silicon particles did not exceed 50 μτη.

To zmes smo brizgali ob uporabi postopka v smislu izuma. Zmes delcev smo uvajali s čistim kisikom po dovodni cevi 10 v množini 35 kg/h materiala in 25 Nm3/h kisika za brizganje v obliki toka 7 nosilnega plina. V skladu z izumom smo na tarčno površino 1, ki jo je bilo treba obdelati, brizgali tudi curek plina za zaveso, ki je tvoril okoli udarne cone 2 plinsko zaveso 3’. V tem primeru je tvoril curek plina za zaveso čisti kisik, ki smo ga brizgali v pretočni množini 30 Nm3/h v obliki curka 9 plina za zaveso, ki je obdajal tok 7 nosilnega plina vzdolž njegove poti od glave 4 kopja 5 do udarne cone 2. V nastali masi keramičnega zvara nismo našli praktično nobene nezgorele kovine.This mixture was sprayed using the process of the invention. The particulate mixture was introduced with pure oxygen through the feed pipe 10 in the amount of 35 kg / h material and 25 Nm 3 / h injection molded stream 7 carrier gas. According to the invention, a curtain gas jet was also sprayed onto the target surface 1 to be treated, forming a gas curtain 3 'around impact zone 2. In this case, the curtain gas stream was pure oxygen, which was injected at a flow rate of 30 Nm 3 / h in the form of a curtain gas jet 9 that surrounded the flow of carrier gas 7 along its path from the head 4 of the spear 5 to impact zone 2. We found practically no unburned metal in the resulting mass of the ceramic weld.

Za primerjavo smo izdelali maso žarovzdržnega keramičnega zvara tako, da smo brizgali isto zmes kot zgoraj v množini 30 kg/h z isto pretočno množino kisika 25 Nm3/h. Vendar smo za to primerjavo opustili curek kisika za zaveso.For comparison, we produced a mass of refractory ceramic weld by spraying the same mixture as above in the amount of 30 kg / h with the same oxygen flow rate of 25 Nm 3 / h. However, we dropped the curtain oxygen jet for this comparison.

Med izvajanjem postopka v smislu izuma smo opazili, da je plinska zavesa 3’ zagotavljala dodatno sredstvo za kontroliranje tvorbe mase žarovzdržnega keramičnega zvara, ki v primeru primerjalnega testa ni obstojalo. Razen tega je plinska zavesa 3’ izolirala udarno cono 2 tako, da atmosferska turbulenca, ki je bila posledica obratovanja peči med popravilom, praktično ni imela nobenega učinka na tvorbo mase žarovzdržnega keramičnega zvara. Reakcija keramičnega varjenja je bila bolj stabilna in bolje omejena in se ni vršila pretrgano.During the process of the invention, it was observed that the gas curtain 3 'provided an additional means of controlling the mass formation of the refractory ceramic weld, which did not exist in the comparative test. In addition, the gas curtain 3 'insulated the impact zone 2 in such a way that the atmospheric turbulence resulting from the operation of the furnace during repair had virtually no effect on the mass formation of the refractory ceramic weld. The ceramic welding reaction was more stable and better constrained and did not break.

PRIMER 6EXAMPLE 6

Popraviti je bilo treba konvertor za baker, ki se uporablja v industriji neželeznih kovin. Uporabili smo isti postopek kot v primeru 5, le da je imela zmes tole masno sestavo: 40% delcev kromovega oksida, 48% magnezijevih delcev in 12% aluminijevih delcev. Aluminijevi delci so imeli nominalno maksimalno velikost 45 μαί, in specifično površino več kot 3000 cm2/g. Vsi žarovzdržni delci so imeli maksimalno velikost manj kot 2 mm. Ta primer je pokazal tudi, daje kot posledica uporabe izuma plinska zavesaThe copper converter used in the non-ferrous metal industry had to be repaired. The same procedure as in Example 5 was used except that the mixture had the following composition by weight: 40% of chromium oxide particles, 48% of magnesium particles and 12% of aluminum particles. The aluminum particles had a nominal maximum size of 45 μαί, and a specific surface area of more than 3000 cm 2 / g. All refractory particles had a maximum size of less than 2 mm. This example also showed that, as a result of the use of the invention, a gas curtain

ΖΊ zagotavljala dodatno sredstvo za kontroliranje poteka reakcije keramičnega varjenja in tvorbe mase žarovzdržnega keramičnega zvara. Reakcija keramičnega varjenja je bila stalna in dobro omejena.ΖΊ provided an additional means of controlling the course of the ceramic welding reaction and the formation of the mass of the refractory ceramic weld. The reaction of ceramic welding was constant and well limited.

Kot varianto smo obročasto izstopno odprtino 8 brizgalne glave 4 nadomestili z nizom injektoijev, ki so brizgali konvergentne curke plina, da je nastala plinska zavesa 3’. Zelo dobre rezultate smo dobili tudi s tem brizgalnim kopjem.Alternatively, the annular outlet port 8 of the injection head 4 was replaced by a series of injectors that injected convergent gas jets to form a gas curtain 3 '. Very good results were also obtained with this spray spear.

PRIMER 7EXAMPLE 7

Želeli smo oblikovati maso žarovzdržnega keramičnega zvara s sestavo, ki bi se kar najbolj približala bazičnemu žarovzdržnemu materialu na steni jeklarskega konvertoija, ki jo tvorijo magnezitne-ogljikove opeke, ki vsebujejo 90 mas.% magnezije in 10 mas.% ogljika. Stena je imela temperaturo 900°C. Te opeke smo obrizgali z zmesjo delcev, ki je obsegala delce, ki so vsebovali ogljik. Zmes smo brizgali v množini 500 kg/h v toku nosilnega plina z oksidirnim plinom, ki je vseboval 70 vol.% kisika. Zmes je imela tole masno sestavo:We wanted to design a mass of refractory ceramic weld with a composition that would be as close as possible to the basic refractory material on the wall of a steel conversion formed by magnesite-carbon bricks containing 90% by weight of magnesium and 10% by weight of carbon. The wall had a temperature of 900 ° C. These bricks were sprayed with a particle mixture comprising carbon-containing particles. The mixture was sprayed at 500 kg / h in a stream of carrier gas containing an oxidizing gas containing 70% by volume of oxygen. The mixture had the following composition by weight:

MgO MgO 82% 82% Si Si 4% 4% Al Al 4% 4% C C 10%. 10%.

Silicijevi delci so imeli povprečni premer 10 gm in specifično površino 5000 cm2/g. Aluminijevi delci so imeli povprečni premer 10 μΐη in specifično površino 8000 cm2/g. Ogljikovi delci so bili delci, dobljeni z drobljenjem koksa, in njihov povprečni premer je bil 1,25 mm. Delci magnezije so imeli povprečni premer 1 mm. V skladu z izumom smo okoli udarne cone toka nosilnega plina, ki je obsegal delce, dispergirane v oksidirnem plinu, na steni konvertorja oblikovali plinsko zaveso tako, da smo brizgali ogljikov dioksid s pretočno hitrostjo, ki je bila za 50% večja kot pretočna hitrost oksidimega plina, da je nastala okoli tega toka nosilnega plina plinska zavesa. Opazili smo, da je bila med uporabo postopka reakcija keramičnega varjenja stalna in dobro omejena. Ogljikovi delci, ki smo jih brizgali, se niso popolnoma oksidirali tako, da je vsebovalaThe silica particles had an average diameter of 10 gm and a specific surface area of 5000 cm 2 / g. The aluminum particles had an average diameter of 10 μΐη and a specific surface area of 8000 cm 2 / g. Carbon particles were particles obtained by crushing coke, and their average diameter was 1.25 mm. The magnesium particles had an average diameter of 1 mm. According to the invention, a gas curtain was formed around the impact zone of a carrier gas stream comprising particles dispersed in the oxidizing gas by injecting carbon dioxide at a flow rate that was 50% greater than the oxidizable flow rate. gas that a gas curtain has formed around this carrier gas stream. It was observed that the reaction of the ceramic welding was constant and well limited during the application of the process. The carbon particles we sprayed did not completely oxidize to contain

2Ζ nastala masa keramičnega zvara kakih 5% ogljika. Brez plinske zavese, ki jo je tvoril curek ogljikovega dioksida, je vsebovala nastala masa keramičnega zvara samo kake 3% ogljika.2Ζ the resulting mass of the ceramic weld of about 5% carbon. Without the gas curtain formed by the carbon dioxide jet, the resulting mass of ceramic weld contained only about 3% of carbon.

V variantni izvedbi kopja za brizganje keramičnega varilnega praška v množini med 900 kg/h in 1,000 kg/h je prisotna osrednja izstopna odprtina za prašek, ki ima premer 53 mm in torej površino 2206 mm2. Kopje je obsegalo tudi nepretrgano obročasto izstopno odprtino za plin za zaveso, ki je imela površino 1979 mm2 in ki je bila razporejena v z razmikom 13 mm od izstopne odprtine za prašek, npr. s pomočjo obojke, prirejene na koncu osrednje cevi ali s pomočjo hladilnega obroča 13. Kopje je obsegalo tudi zunanji hladilni obroč 12.In a variant embodiment of the spear for spraying ceramic welding powder in an amount between 900 kg / h and 1,000 kg / h, a central outlet opening for the powder having a diameter of 53 mm and a surface of 2206 mm 2 is present . The spear also included a continuous annular gas outlet opening for the curtain gas, having a surface of 1979 mm 2 and spaced at a distance of 13 mm from the outlet opening for the powder, e.g. by means of a sleeve adapted at the end of the central tube or by means of a cooling ring 13. The spear also included an external cooling ring 12.

Claims (20)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Postopek za keramično varjenje, v katerem brizgamo na površino keramični varilni prašek, ki obsega zmes žarovzdržnih delcev in delcev goriva, ki se da oksidirati ob tvorbi žarovzdržnega oksida, v enem ali več tokovih nosilnega plina, ki vsebuje najmanj dovolj kisika za v bistvu popolno oksidacijo delcev goriva, pri čemer se sprosti dovolj toplote za vsaj površinsko taljenje žarovzdržnih delcev, ki jih brizgamo, in se tvori na tej površini pod oksidacijsko toploto delcev goriva keramična zvarna masa, označen s tem, da brizgamo na to površino najmanj en dodaten tok plina tako, da nastane v bistvu nepretrgana plinska zavesa, ki obdaja ta tok (te tokove) nosilnega plina.A process for ceramic welding in which a ceramic welding powder is sprayed onto the surface, comprising a mixture of refractory particles and fuel particles which can be oxidized to form refractory oxide in one or more carrier gas streams containing at least sufficient oxygen to substantially complete oxidation of the fuel particles, releasing sufficient heat for at least the surface melting of the refractory injection molded particles and forming a ceramic weld mass on this surface, characterized in that at least one additional stream is sprayed onto the surface of gas so that a substantially continuous gas curtain is formed that surrounds this stream (s) of the carrier gas. 2. Postopek po zahtevku 1, označen s tem, da brizgamo plinsko zaveso kot obročast tok.Method according to claim 1, characterized in that the gas curtain is injected as a ring current. 3. Postopek po zahtevku 1 ali 2, označen s tem, da brizgamo nosilni plin iz izstopne odprtine s površino med 50 in 500 mm2 in da brizgamo plinsko zaveso iz ene ali več izstopnih odprtin, ki so oddaljene od izstopne odprtine za nosilni plin v razdalji med 5 in 20 mm.Method according to claim 1 or 2, characterized in that the carrier gas is injected from the outlet opening having a surface area between 50 and 500 mm 2 and that the gas curtain is sprayed from one or more outlet openings which are away from the outlet opening for the carrier gas in distances between 5 and 20 mm. 4. Postopek po zahtevku 1 ali 2, označen s tem, da brizgamo nosilni plin iz izstopne odprtine s površino med 300 in 2300 mm2 in da brizgamo plinsko zaveso iz ene ali več izstopnih odprtin, ki so oddaljene od izstopne odprtine za nosilni plin v razdalji med 10 in 30 mm.Method according to claim 1 or 2, characterized in that the carrier gas is injected from the outlet with a surface between 300 and 2300 mm 2 and that the gas curtain is sprayed from one or more outlet openings which are away from the outlet for the carrier gas in distances between 10 and 30 mm. 5. Postopek po kateremkoli od prejšnjih zahtevkov, označen s tem, daje izstopna volumenska množina plina za zaveso najmanj polovico izstopne volumenske množine nosilnega plina.Method according to any one of the preceding claims, characterized in that the curtain gas exit volume is at least half of the carrier gas exit volume. 6. Postopek po kateremkoli od prejšnjih zahtevkov, označen s tem, da je izstopna hitrost (izračunana pri normalnem tlaku) plina za zaveso večja kot ena petina izstopne hitrosti nosilnega plina.Method according to any one of the preceding claims, characterized in that the exit velocity (calculated at normal pressure) of the curtain gas is greater than one fifth of the exit velocity of the carrier gas. 7. Postopek po zahtevku 6, označen s tem, da je izstopna hitrost (izračunana pri normalnem tlaku) plina za zaveso med eno petino in tremi petinami izstopne hitrosti nosilnega plina.Method according to claim 6, characterized in that the exit velocity (calculated at normal pressure) of the curtain gas is between one-fifth and three-fifths of the exit velocity of the carrier gas. 2h2h 8. Postopek po kateremkoli od prejšnjih zahtevkov, označen s tem, da izstopajo plinski tokovi iz kopja, ki ga hladi fluid, ki kroži skozenj.Method according to any one of the preceding claims, characterized in that the gas flows from the spear cooled by the fluid circulating through it. 9. Postopek po kateremkoli od prejšnjih zahtevkov, označen s tem, da obsega plin za zaveso kisik.Method according to any one of the preceding claims, characterized in that it comprises an oxygen curtain gas. 10. Postopek po kateremkoli od zahtevkov 1 do 8, označen s tem, da obsegajo delci, ki jih izpuščamo v tok nosilnega plina, delce materiala, ki se ga da oksidirati, ki ga je treba vdelati v zvamo maso kot takega, in je tok za zaveso v bistvu brez razpoložljivega kisika.A method according to any one of claims 1 to 8, characterized in that the particles discharged into the carrier gas stream are particles of the oxidizable material to be incorporated into the said mass as such, and behind the curtain with essentially no oxygen available. 11. Postopek po kateremkoli od prejšnjih zahtevkov, označen s tem, da obsega material goriva enega ali več materialov iz skupine, ki obsega aluminij, silicij, magnezij, cirkonij in krom.Process according to any one of the preceding claims, characterized in that it comprises a fuel material of one or more materials in the group comprising aluminum, silicon, magnesium, zirconium and chromium. 12. Postopek po kateremkoli od prejšnjih zahtevkov, označen s tem, da ima najmanj 50 mas.% delcev goriva velikost manj kot 50 μία.Method according to any one of the preceding claims, characterized in that at least 50% by weight of the fuel particles have a size of less than 50 µία. 13. Postopek po kateremkoli od prejšnjih zahtevkov, označen s tem, da sestoji najmanj večji masni del žarovzdržnih delcev, ki jih brizgamo, iz glinice in/ali cirkona ali iz magnezije in/ali glinice.Method according to any one of the preceding claims, characterized in that it comprises at least a large part by mass of refractory injection molded particles of alumina and / or zircon or magnesium and / or alumina. 14. Keramična zvama masa, nastala po postopku po kateremkoli zahtevku od 1 do14. Ceramic gypsum mass produced by the process according to any one of claims 1 to 13.13. 15. Kopje, ki obsega izstopno odprtino za izpuščanje keramičnega varilnega praška v nosilnem plinu vzdolž izstopne poti proti površini za izvedbo postopka za keramično valjenje, označeno s tem, da obsega tako kopje drugo izstopno odprtino ali skupino drugih izstopnih odprtin za izpuščanje plina, pri čemer je ta druga izstopna odprtina ali skupina drugih izstopnih odprtin oblikovana in razporejena in razmaknjena aksialno in radialno glede na izstopno odprtino za prašek tako, da lahko izpuščamo iz te druge izstopne odprtine ali skupine izstopnih odprtin plin tako, da nastane v bistvu nepretrgana zavesa, ki obdaja izstopno pot praška in ki je na splošno z njo vzporedna.15. A spear comprising an outlet for releasing a ceramic welding powder in a carrier gas along the outlet path to the surface for carrying out a ceramic rolling process, characterized in that such spear comprises a second outlet or a group of other gas outlet openings, wherein this second outlet or group of other outlets is formed and arranged and spaced axially and radially relative to the outlet for the powder so that gas can be discharged from this second outlet or group of outlets to form a substantially continuous curtain surrounding the exit route of the powder and which is generally parallel to it. 16. Kopje po zahtevku 15, označeno s tem, da je taka druga izstopna odprtina nepretrgana obročasta izstopna odprtina.A spear according to claim 15, characterized in that such second outlet is a continuous annular outlet. 17. Kopje po zahtevku 15 ali 16, označeno s tem, da ima taka izstopna odprtina za prašek površino med 50 in 500 mm2 in da je taka druga ali vsaka taka druga izstopna odprtina razporejena od izstopne odprtine za prašek v razmiku med 5 in 20 mm.A spear according to claim 15 or 16, characterized in that such a powder outlet opening has a surface area of between 50 and 500 mm 2 and that such a second or any such other outlet opening is spaced from the powder outlet opening at a distance of from 5 to 20 mm. 18. Kopje po zahtevku 15 ali 16, označeno s tem, da ima taka izstopna odprtina za prašek površino med 300 in 2,300 mm2 in da je taka druga ali vsaka taka druga izstopna odprtina razporejena od izstopne odprtine za prašek v razmiku med 10 in 30 mm.A spear according to claim 15 or 16, characterized in that such a powder outlet opening has a surface area of between 300 and 2,300 mm 2 and that such other or any such other outlet opening is spaced from the powder outlet opening at a distance of 10 to 30 mm. 19. Kopje po kateremkoli od zahtevkov 15 do 18, označeno s tem, da vključuje tako kopje plašč, prilagojen za kroženje hladilnega sredstva.A spear according to any one of claims 15 to 18, characterized in that it includes such a spear jacket adapted to circulate refrigerant. 20. Kopje po kateremkoli od zahtevkov 15 do 19, označeno s tem, da je površina druge izstopne odprtine med dvema tretjinama in trikratnikom površine izstopne odprtine za prašek.A spear according to any one of claims 15 to 19, characterized in that the surface of the second outlet is between two thirds and three times the surface of the outlet opening for the powder.
SI9011877A 1989-10-05 1990-10-04 Ceramic welding process and welding rod for use in such process SI9011877B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU87602A LU87602A1 (en) 1989-10-05 1989-10-05 PROCESS FOR FORMING A REFRACTORY MASS AND SPRAY LANCE OF A MIXTURE OF PARTICLES
YU187790A YU47376B (en) 1989-10-05 1990-10-04 PROCEDURE FOR CERAMIC WELDING AND SPLITS FOR USE IN THIS PROCEDURE

Publications (2)

Publication Number Publication Date
SI9011877A true SI9011877A (en) 1997-12-31
SI9011877B SI9011877B (en) 1998-12-31

Family

ID=26640335

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9011877A SI9011877B (en) 1989-10-05 1990-10-04 Ceramic welding process and welding rod for use in such process

Country Status (2)

Country Link
HR (1) HRP921355A2 (en)
SI (1) SI9011877B (en)

Also Published As

Publication number Publication date
SI9011877B (en) 1998-12-31
HRP921355A2 (en) 1995-10-31

Similar Documents

Publication Publication Date Title
RU2087453C1 (en) Method of fettling refractory ceramic mass and lance for pulverizing powder in this procedure
RU2203961C2 (en) Tuyere for feeding raw material and method for introducing solid raw materials into metallurgical vessel
JPH05500555A (en) Tip submerged injection with shrouded lance
KR20210010363A (en) Tuyere for a basic oxygen furnace
PL99228B1 (en) METHOD OF BRINGING OXYGEN TO MOLTEN METAL AND SUBMISSION LANCE ADDING OXYGEN TO MOLTEN METAL
EP0838292B1 (en) Tapping method for electric arc furnaces, ladle furnaces or tundishes and relative tapping device
JPH0813111A (en) Hot dip galvanizing equipment
US4657226A (en) Apparatus for introducing gas to molten metal within a vessel
TWI469950B (en) Refractory slag band
SI9011877A (en) Ceramic welding process and welding rod for use in such process
US4462824A (en) Annular tuyere
US6645270B2 (en) Method of heating a crucible for molten aluminum
US4477279A (en) Annular tuyere and method
JPS63206420A (en) Blowing lance for converter or the like
JP2607659B2 (en) Quantitative tapping device for rock wool melt
JP7234768B2 (en) Preheating method of immersion nozzle
JPH032934B2 (en)
JP7342436B2 (en) Continuous casting method and sliding nozzle used for this method
JPS60103108A (en) Gas blowing tuyere for melting and refining furnace or reaction vessel
JPS6333077B2 (en)
JPH0924446A (en) Dipping nozzle for continuous casting
JPH0598334A (en) Structure of furnace wall in molten metal reaction furnace
JPH0542997U (en) Refractory support structure
CS259527B2 (en) Tuyere for molten metal treatment in metallurgical vessels
JPH05264175A (en) Repairing method of groove type induction furnace