SI26410A - New hydrogen peroxide purification procedure - Google Patents

New hydrogen peroxide purification procedure Download PDF

Info

Publication number
SI26410A
SI26410A SI202200213A SI202200213A SI26410A SI 26410 A SI26410 A SI 26410A SI 202200213 A SI202200213 A SI 202200213A SI 202200213 A SI202200213 A SI 202200213A SI 26410 A SI26410 A SI 26410A
Authority
SI
Slovenia
Prior art keywords
hydrogen peroxide
tbu
scco
peroxide
separator
Prior art date
Application number
SI202200213A
Other languages
Slovenian (sl)
Inventor
Željko Knez
Andrejč Darija Coer
Marevci Maša Knez
Ivan Grčar
Andrej Podkoritnik
Matej Virant
Gregor Šorn
Original Assignee
Univerza V Mariboru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univerza V Mariboru filed Critical Univerza V Mariboru
Priority to SI202200213A priority Critical patent/SI26410A/en
Priority to PCT/SI2023/050013 priority patent/WO2024072328A1/en
Publication of SI26410A publication Critical patent/SI26410A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/013Separation; Purification; Concentration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

V predloženem izumu je opisan nov postopek čiščenja vodikovega peroksida (H2O2) z reagentom, ki je kombinacija superkritičnega CO2 (scCO2) in tetrabutil uree (TBU). Gre za visokotlačni proces v reaktorju, ki je prednostno protitočna kolona, kjer se kot medij, to je reagent, uporablja scCO2 v kombinaciji s tetrabutil ureo (TBU). V sotoku skupaj s scCO2 se v ustreznem razmerju napram H2O2 dodaja TBU. Produkt, ki se dobi, je očiščen vodikov peroksid. Dobljenemu produktu se na iztoku spremlja vrednost totalnega organskega ogljika - TOC, ki se jo določi v ppm, in znaša pod 50 ppm.The present invention describes a new process for purifying hydrogen peroxide (H2O2) with a reagent that is a combination of supercritical CO2 (scCO2) and tetrabutyl urea (TBU). It is a high-pressure process in a reactor, which is preferably a countercurrent column, where scCO2 in combination with tetrabutyl urea (TBU) is used as a medium, i.e. a reagent. TBU is added in the co-flow with scCO2 in the appropriate ratio to H2O2. The product obtained is purified hydrogen peroxide. The total organic carbon (TOC) value of the obtained product is monitored at the outlet, which is determined in ppm and is below 50 ppm.

Description

NOV POSTOPEK ČIŠČENJA VODIKOVEGA PEROSKIDAA NEW PROCEDURE FOR CLEANING HYDROGEN PEROSKID

OPIS IZUMADESCRIPTION OF THE INVENTION

Bistvo izuma je nov postopek čiščenja vodikovega peroksida (H2O2), kjer se kot reagent za čiščenje uporabi superkritični fluid scCO2 v kombinaciji s tetrabutil ureo (TBU).The essence of the invention is a new hydrogen peroxide (H 2 O 2 ) purification process, where supercritical fluid scCO 2 is used as a purification reagent in combination with tetrabutyl urea (TBU).

Klasične tehnike čiščenja, ki se uporabljajo za čiščenje vodikovega peroksida, so destilacije, adsorpcija, ionska izmenjava, kristalizacija, membranska separacija. Ti postopki so energetsko potratni. Predlagani postopek čiščenja vodikovega peroksida zagotavlja pomembne tehnične prednosti, proces z manj operacijami, ki porabijo manj energije in manj surovin. Gre za visokotlačni postopek, ki poteka pri tlaku od 50 do 500 bar ter temperaturi v območju od 10 do 100 °C. Kot medij se uporablja scCO2 v kombinaciji s TBU. V kombinaciji obeh reagentov v sotoku skupaj s scCO2 v ustreznem razmerju napram H2O2 dodajamo TBU. Produkt ki ga dobimo je očiščen vodikov peroksid. Dobljenemu produktu na iztoku spremljamo vrednost totalnega organskega ogljika - TOC, ki jo določimo v ppm.The classic purification techniques used to purify hydrogen peroxide are distillations, adsorption, ion exchange, crystallization, membrane separation. These processes are energy consuming. The proposed hydrogen peroxide purification process provides significant technical advantages, a process with fewer operations that consume less energy and less raw materials. It is a high-pressure process that takes place at a pressure of 50 to 500 bar and a temperature in the range of 10 to 100 °C. scCO 2 in combination with TBU is used as a medium. TBU is added to the combination of both reagents in the co-flow together with scCO 2 in the appropriate ratio to H 2 O 2 . The product we get is purified hydrogen peroxide. The total organic carbon (TOC) value of the obtained product at the outlet is monitored, which is determined in ppm.

STANJE TEHNIKESTATE OF THE ART

Poznane so razhcne tehnike čiščenja vodikovega peroksida: destilacija [1], adsorpcija ionskih izmenjevalnih smol [2-4], prekristalizacija, membranska separacija [5], Kot alternativa se za čiščenje H2O2 lahko uporabi scCO2 [6],Various techniques for the purification of hydrogen peroxide are known: distillation [1], adsorption of ion exchange resins [2-4], recrystallization, membrane separation [5], scCO 2 [6] can be used as an alternative for H 2 O 2 purification,

Vodikov peroksid (H2O2) je rahlo kisla, bistra in brezbarvna tekočina, ki je popolnoma mešljiva z vodo v vseh razmerjih. Ima pomembno vlogo v pri zaščiti človeškega organizma pred mikrobi in virusi. V svetu je znan kot močan okolju prijazen oksidant, ki je v prečiščeni obliki ne toksičen in se zlahka razgradi v stranske produkte [7], Po vsem svetu se vodikov peroksid skoraj izključno proizvaja s postopkom antrakinona (AO), ki je energetsko zelo potraten proces [8], V tem postopku vodikov peroksid nastane s sekvenčnim hidrogeniranjem in oksidacijo alkilantrakinona, raztopljenega v mešanici organskih topil, čemur sledi predelava produkta v ekstrakciji tekoče-tekoče v protitoku z vodo [9], Neoptimalni koeficient porazdelitve in onesnaženje z organskim topilom med predelavo ekstrakcijo tekoče-tekoče zahteva nadaljnjo energetsko potratno uporabo metod čiščenja: destilacije, adsorpcije in ionskih izmenjevalnih smol, kristalizacije, ločevanja z membranami. Koncentrirani vodikov peroksid z visoko čistočo se nato stabilizira proti neželenemu in nekontroliranemu razpadu z dodajanjem zaščitenih stabilizatorjev.Hydrogen peroxide (H 2 O 2 ) is a slightly acidic, clear and colorless liquid that is completely miscible with water in all proportions. It plays an important role in protecting the human body against microbes and viruses. It is known worldwide as a strong environmentally friendly oxidant, which in its purified form is non-toxic and easily decomposes into by-products [7], Worldwide, hydrogen peroxide is almost exclusively produced by the anthraquinone (AO) process, which is a very energy-consuming process [8], In this process, hydrogen peroxide is produced by sequential hydrogenation and oxidation of alkylanthraquinone dissolved in a mixture of organic solvents, followed by processing of the product in countercurrent liquid-liquid extraction with water [9], Suboptimal partition coefficient and organic solvent contamination during processing liquid-liquid extraction requires the further energy-consuming use of purification methods: distillation, adsorption and ion exchange resins, crystallization, membrane separation. The concentrated, high-purity hydrogen peroxide is then stabilized against unwanted and uncontrolled decomposition by adding proprietary stabilizers.

V trajnostnem razvoju se kot procesno orodje vse pogosteje uporablja visoki tlak. Uporaba superknticmh fluidov lahko pripomore k rešitvi pomanjkljivosti številnih klasičnih postopkov za predelavo m proizvodnjo produktov [10], Superkritična ekstrakcija (SFE) je pomembna metoda za obsežno čiščenje kompleksnih tekočih ali trdnih snovi, kot so na primer odpadni procesni tokovi. Glavna prednost superkritične ekstrakcije tekoče-tekoče je ta, da lahko po ekstrakciji superkntičm fluid zlahka odstranimo z zniževanjem temperature in/ali tlaka. Superkritični fluid postane plin, ekstrahirana snov pa se kondenzira v tekočino ali trdno snov.High pressure is increasingly used as a process tool in sustainable development. The use of supercritical fluids can help solve the shortcomings of many classical processes for the processing and production of products [10], Supercritical extraction (SFE) is an important method for large-scale purification of complex liquid or solid substances, such as waste process streams. The main advantage of supercritical liquid-liquid extraction is that, after extraction, the supercritical fluid can be easily removed by lowering the temperature and/or pressure. The supercritical fluid becomes a gas and the extracted material condenses into a liquid or solid.

Ultra cista raztopina vodikovega peroksida se pripravi s prečiščevanjem industrijske raztopine vodikovega peroksida, ki se na splošno proizvaja z uporabo antrakinonske metode. Proces je sestavljen iz zaporednih hidrogenacijskih, filtracijskih in oksidacijskih in tekočih / tekočih ekstrakcijskih stopenj. Potrebni so tudi številni pomožni procesi. Industrijska raztopina vodikovega peroksida vsebuje določene količine organskih, anorganskih in kovinskih spojin. Organske nečistote, ki so prisotne v raztopinah vodikovega peroksida, se uvedejo z delovnimi topih in topnimi produkti razgradnje, vključno z aromati tributilfosfata (TOP), antrakinonom in njegovimi derivati [1],Ultra pure hydrogen peroxide solution is prepared by purifying industrial hydrogen peroxide solution, which is generally produced using the anthraquinone method. The process consists of successive hydrogenation, filtration and oxidation and liquid/liquid extraction stages. A number of ancillary processes are also required. Industrial hydrogen peroxide solution contains certain amounts of organic, inorganic and metallic compounds. Organic impurities present in hydrogen peroxide solutions are introduced by working solvents and soluble decomposition products, including tributyl phosphate aromatics (TOP), anthraquinone and its derivatives [1],

Da bi odpravili zgoraj omenjene nečistote v raztopini vodikovega peroksida in znižali vsebnost totalnega organskega ogljika - TOG je bilo razvitih veliko čistilnih tehnologij. Trenutno se v industrijski praksi pojavlja destilacija [1], adsorpcija in tehnologija ionske izmenjave [2-4], prekristalizacija [11], superkritična ekstrakcija [6], tehnologija flokulacije, tehnologija kombinacije reagentov in membranske separacije [5], kot so mikrofiltracija, ultrafiltracija in reverzna osmoza. Kristalizacija, flokulacija in dodajanje obarjalnih sredstev predstavljajo dodatne tehnologije.In order to eliminate the above-mentioned impurities in the hydrogen peroxide solution and reduce the content of total organic carbon - TOG, many cleaning technologies have been developed. At present, distillation [1], adsorption and ion exchange technology [2-4], recrystallization [11], supercritical extraction [6], flocculation technology, reagent combination technology and membrane separation [5] such as microfiltration, ultrafiltration and reverse osmosis. Crystallization, flocculation and the addition of precipitation agents represent additional technologies.

Trenutno se za pripravo ultra čistega vodikovega peroksida uporablja najprej destilacija, sledi kombinacija različnih tehnik membranskega ločevanja ali procesov ionske izmenjave ter adsorpcija [12],Currently, for the preparation of ultrapure hydrogen peroxide, distillation is used first, followed by a combination of different membrane separation techniques or ion exchange processes and adsorption [12],

Destilacija je zanesljiva in enostavna za metoda v industrijskem obsegu. Vendar pa vključuje uporabo inertne kolone, izdelane iz fluoropolimerov (slabi toplotni prevodniki), ki večajo porabo energije, hkrati pa čistost destiliranega vodikovega peroksida ni dovolj visoka [13].Distillation is a reliable and simple method for an industrial scale. However, it involves the use of an inert column made of fluoropolymers (poor thermal conductors), which increase energy consumption, and at the same time, the purity of the distilled hydrogen peroxide is not high enough [13].

Ionska izmenjava je najpomembnejši postopek ultra-učinkovitega čiščenja. Regeneracija ionskih izmenjevalnih smol pomeni dodatne odpadne tokove in uporabo nevarnih kemikalij (močnih kislin in baz) in toplotno razgradnjo raztopine vodikovega peroksida [3], V tehnologiji preknstalizacije se je temperatura raztopine vodikovega peroksida zmanjšala in nastanejo kristali. Kristale nato zberemo, speremo in stopimo, da dobimo visoko koncentracijo vodikovega peroksida.Ion exchange is the most important ultra-efficient cleaning process. The regeneration of ion exchange resins means additional waste streams and the use of dangerous chemicals (strong acids and bases) and the thermal decomposition of the hydrogen peroxide solution [3]. The crystals are then collected, washed and melted to obtain a high concentration of hydrogen peroxide.

Membranske tehnologije (reverzna osmoza) se pojavljajo kot najustreznejša možnost ultraučinkovitega čiščenja v skladu z okoljskimi merili. Sekundarne kemikalije niso potrebne in zato ni odpadnih tokov. Kljub temu lahko ultra učinkovito-čiščenje vodikovega peroksida štejemo za zelo zahteven postopek, saj lahko močan oksidacijski medij spodbuja razgradnjo polimernih membran [14]·Membrane technologies (reverse osmosis) are emerging as the most appropriate option for ultra-efficient cleaning in accordance with environmental criteria. No secondary chemicals are required and therefore no waste streams. Nevertheless, the ultra-efficient purification of hydrogen peroxide can be considered a very demanding process, since a strong oxidizing medium can promote the degradation of polymer membranes [14]·

Lin in sod. [15] so raziskovali primerno aktivno oglje (AC) za selektivno odstranitev organskih nečistoč iz industrijske vodne raztopine H2O2, za proizvodnjo ultra čistega H2O2. Rezultati so pokazali, da je zmogljivost aktivnega ogljika da odstrani organske nečistoče iz vodnih raztopin vodikovega peroksida vezana predvsem na mikrosporno strukturo.Lin et al. [15] investigated a suitable activated carbon (AC) for the selective removal of organic impurities from an industrial aqueous solution of H 2 O 2 , for the production of ultra-pure H 2 O 2 . The results showed that the capacity of activated carbon to remove organic impurities from aqueous solutions of hydrogen peroxide is mainly related to the microspore structure.

Rueda in sod. [16] so dosegli neposredno sintezo vodikovega peroksida iz H2 in 02 z vodo kot topilom v pol-prekinjenem mešalnem reaktorskem sistemu. Ta postopek predstavlja bolj zeleno alternativo tradicionalnemu postopku z uporabo antrakinona ali direktne sinteze z uporabo organskih topil.Rueda et al. [16] achieved the direct synthesis of hydrogen peroxide from H 2 and 0 2 with water as a solvent in a semi-discontinuous mixed reactor system. This process represents a greener alternative to the traditional process using anthraquinone or direct synthesis using organic solvents.

Kot alternativa za čiščenje vodikovega peroksida se lahko uporablja scCO2 vendar je na tem področju zelo malo raziskav. Blanco-Brieva in sod. [17] poročajo o opaznih rezultatih pri izvedbi sinteze pri visokem tlaku 9,5 MPa v metabolnem mediju. Hancu in sod. [18] uporabili spojine, ki funkcionalizirajo številne amino in hidroksil-AO, da spodbujajo mešanje s C02 pri nižjih tlakih in s tem povečajo topnost C02.As an alternative to hydrogen peroxide cleaning, scCO 2 can be used, but there is very little research in this area. Blanco-Brieva et al. [17] reported notable results when performing the synthesis at a high pressure of 9.5 MPa in a metabolic medium. Hancu et al. [18] used compounds that functionalize a number of amino and hydroxyl-AOs to promote mixing with C0 2 at lower pressures and thereby increase the solubility of C0 2 .

Ker je na področju čiščenja vodikovega peroksida s superkritičnimi fluidi ali s tetrabutil ureo zelo malo raziskanega, smo se zaradi podkrepitve našega izuma lotili preliminarnih raziskav čiščenja vodikovega peroksida samo s superkritičnim C02 ter samo s tetrabutil ureo - izvedbeni primeri od 1 do 7). V primeru čiščenja s scCO2 smo uspeli TOC znižati do 120 ppm medtem ko smo s TBU vrednost TOC znižali do 70 ppm. S tem smo dokazali, da je kombinacija obeh reagentov scCO2 in TBU pri čiščenju vodikovega peroksida najučinkovitejša.Since there is very little research in the field of hydrogen peroxide purification with supercritical fluids or with tetrabutyl urea, in order to support our invention, we undertook preliminary research on the purification of hydrogen peroxide with only supercritical C0 2 and only with tetrabutyl urea - implementation examples from 1 to 7). In the case of cleaning with scCO 2, we managed to reduce the TOC to 120 ppm, while with TBU we reduced the TOC value to 70 ppm. With this, we proved that the combination of both scCO 2 and TBU reagents is the most effective in cleaning hydrogen peroxide.

POMANJKLJIVOSTI OBSTOJEČIH REŠITEVDISADVANTAGES OF EXISTING SOLUTIONS

Konvencionalni postopki čiščenja kot so: destilacije, adsorpcije, ionska izmenjava, kristalizacija membranska separacija so energetsko potratni. Čiščenje vodikovega peroksida s predlaganim postopkom zagotavlja pomembne tehnične prednosti, proces z manj operacijami, ki porabijo manj energije m manj surovin. S postopkom po izumu se doseže tudi visoka kakovost (čistost) izdelka v primerjavi s sedanjim postopki.Conventional purification processes such as: distillation, adsorption, ion exchange, crystallization, membrane separation are energy-consuming. Purification of hydrogen peroxide by the proposed process provides significant technical advantages, a process with fewer operations that consume less energy and less raw materials. The process according to the invention also achieves a high quality (purity) of the product compared to current processes.

Čiščenje vodikovega peroksida, kjer je medij, to je reagent, scCO2, zagotavlja pomembne tehnične prednosti, proces z manj operacijami, ki porabijo manj energije in manj surovin. Vsi ti postopki, ki vključujejo scCO2, so bili opravljeni na laboratorijskem merilu. Ni podatkov o proizvodnji ali čiščenju vodikovega peroksida v velikem obsegu, ki bi bilo gospodarno in okolju prijazno.Purification of hydrogen peroxide, where the medium, i.e. the reagent, scCO 2 , provides significant technical advantages, a process with fewer operations that consume less energy and less raw materials. All these procedures involving scCO 2 were performed on a laboratory scale. There is no information on the production or purification of hydrogen peroxide on a large scale that is economical and environmentally friendly.

Raziskave so pokazale, da čiščenje vodikovega peroksida, kjer je medij, to je reagent, TBU (ekstrakcija s TBU), prav tako bistveno zniža vrednosti totalnega organskega ogljika - TOC glede na vhodno raztopino H2O2 (surovi H2O2). Zato se TBU pojavi kot alternativa za čiščenje H2O2.Research has shown that the purification of hydrogen peroxide, where the medium, i.e. the reagent, is TBU (extraction with TBU), also significantly lowers the values of total organic carbon - TOC compared to the input solution H 2 O 2 (raw H 2 O 2 ). Therefore, TBU appears as an alternative for the purification of H 2 O 2 .

Čiščenje vodikovega peroksida, kjer je medij, to je reagent, kombinacija scCO2 in TBU, še dodatno zniža vrednost TOC v peroksidu.Purification of hydrogen peroxide where the medium, i.e. the reagent, is a combination of scCO 2 and TBU further lowers the TOC value in the peroxide.

PODROBEN OPISDETAILED DESCRIPTION

Delovna raztopina, ki se uporablja za pripravo vodikovega peroksida vsebuje antrakinone in njegove derivate. Ti stranski proizvodi vsebujejo zelo kompleksno mešanico produktov razgradnje, pri kateri ne morejo aktivno sodelovati v proizvodnji vodikovega peroksida saj povzročijo večjo viskoznost in gostoto delovne raztopine. Produkte razgradnje je potrebno odstraniti iz delovne raztopine in s tem preprečiti povečanje gostote in viskoznosti delovne raztopine [19], V neočiščenem vodikovem peroksidu je prisotnih veliko različnih organskih snovi kot so: organska topila, kinoni raztopljeni v organskih topilih, vodotopni degradacijski produkti topil zlasti sekstata, emulgirana topila. Zaradi tako različne sestave, samo z ekstrakcijo ne moremo odstraniti vseh organskih snovi, predvsem pa ne moremo odstraniti vodotopnih snovi. Na samo učinkovitost ekstrakcije oz. čiščenja vpliva porazdelitveni koeficient, ki je odvisen od narave topila, intenzivnost mešanja, topnost topila za ekstrakcijo v peroksidne faze ter temperatura.The working solution used for the preparation of hydrogen peroxide contains anthraquinones and their derivatives. These by-products contain a very complex mixture of decomposition products, in which they cannot actively participate in the production of hydrogen peroxide, as they cause a higher viscosity and density of the working solution. Decomposition products must be removed from the working solution and thereby prevent an increase in the density and viscosity of the working solution [19], There are many different organic substances present in unpurified hydrogen peroxide such as: organic solvents, quinones dissolved in organic solvents, water-soluble degradation products of solvents, especially sextate , emulsified solvents. Due to such a different composition, we cannot remove all organic substances by extraction alone, and above all we cannot remove water-soluble substances. On the extraction efficiency itself or purification is influenced by the distribution coefficient, which depends on the nature of the solvent, the intensity of mixing, the solubility of the extraction solvent in the peroxide phases, and the temperature.

Vodikov peroksid je zato potrebno ustrezno očistiti, to je odstraniti produkte razgradnje (predvsem organskih topil) in s tem znižati vsebnost totalnega organskega ogljika - TOC, kar se doseže s postopkom po izumu.It is therefore necessary to clean the hydrogen peroxide properly, i.e. remove the decomposition products (mainly organic solvents) and thereby reduce the content of total organic carbon - TOC, which is achieved by the process according to the invention.

Izum je opisan v nadaljevanju in predstavljen na sliki.The invention is described below and presented in the figure.

Slika 1 prikazuje shemo čiščenja vodikovega peroksida v protitočni koloni oz. v reaktorju.Figure 1 shows the scheme of purification of hydrogen peroxide in a countercurrent column or in the reactor.

Bistvo izuma je nov postopek čiščenja - ekstrakcije vodikovega peroksida (H2O2), pri čemer je postopek visokotlačni postopek in poteka v reaktorju R pri tlaku v območju med 50 in 500 bar ter temperaturi v območju med 10 -100 °C. Prednostno je tlak v območju med 100 in 500 bar in je temperatura v območju med 30 - 60 °C. Kot medij oz. kot reagent se v postopku uporabi superkritični fluid, ki je prednostno suprekritični CO2 (scCO2), v kombinaciji s tetrabutil ureo (TBU). V sotoku skupaj s scCO2 se dodaja TBU v ustreznem razmerju napram H2O2, pri čemer je vsebnost TBU v scCO2 med 0,1 mas. % do 80 mas. % in je razmerje TBU/ scCO2 proti H2O2 med 0,1 in 10. Razmerje vodikovega peroksida glede na scCO2,to je S/F, znaša od 5kg/kg do 30 kg/kg.The essence of the invention is a new purification process - extraction of hydrogen peroxide (H 2 O 2 ), whereby the process is a high-pressure process and takes place in the reactor R at a pressure in the range between 50 and 500 bar and a temperature in the range between 10-100 °C. Preferably, the pressure is in the range between 100 and 500 bar and the temperature is in the range between 30 - 60 °C. As a medium or as a reagent, the process uses a supercritical fluid, which is preferably supercritical CO 2 (scCO 2 ), in combination with tetrabutyl urea (TBU). TBU is added in the co-flow together with scCO 2 in the appropriate ratio to H 2 O 2 , whereby the TBU content in scCO 2 is between 0.1 wt. % to 80 wt. % and the ratio of TBU/ scCO 2 to H 2 O 2 is between 0.1 and 10. The ratio of hydrogen peroxide to scCO 2 , i.e. S/F, ranges from 5 kg/kg to 30 kg/kg.

CO2 se dovaja iz rezervoarja T2, tetrabutil urea pa iz rezervoarja T3. Oba reagenta se vodita preko visokotlačne črpalke - HP2 na predgretje - P. Neočiščen vodikov peroksid vstopa v reaktor R iz rezervoarja Tl. Nečistoče, ki so nastale pri čiščenju, se zbirajo v separatorju Sl. Očiščen vodikov peroksid se vodi na centrifugo v separatorju S2, kjer se TBU (supernantant) in H2O2 (spodnja faza očiščenega peroksida) medsebojno ločita, dobljen produkt je očiščen vodikov peroksid, ki se zbira v separatorju S3. Plinasti CO2, ki izstopa v Sl, po končanem procesu recikliramo. Najprej odstranimo nečistoče v separatorju S4 nato CO2 ohladimo s hladilnim sistemom - H in vodimo nazaj na visokotlačno črpalko HP2 ter nato ponovno v reaktor R.CO 2 is supplied from tank T2 and tetrabutyl urea from tank T3. Both reagents are led via the high-pressure pump - HP2 to the preheater - P. Unpurified hydrogen peroxide enters the reactor R from the tank Tl. The impurities created during cleaning are collected in the separator Fig. Purified hydrogen peroxide is sent to a centrifuge in separator S2, where TBU (supernantant) and H 2 O 2 (lower phase of purified peroxide) separate from each other, the resulting product is purified hydrogen peroxide, which is collected in separator S3. Gaseous CO 2 , which emerges in Sl, is recycled after the process is finished. First, we remove the impurities in the separator S4, then the CO 2 is cooled by the cooling system - H and led back to the high-pressure pump HP2 and then back to the reactor R.

Dobljenemu produktu se na iztoku spremlja vrednost totalnega organskega ogljika - TOC, ki se določi v ppm in predstavlja vrednost nečistoč. Produkt, ki se dobi, je očiščen vodikov peroksid z vsebnostjo nečistoč pod 50 ppm.The resulting product is monitored at the outlet for the value of total organic carbon - TOC, which is determined in ppm and represents the value of impurities. The resulting product is purified hydrogen peroxide with an impurity content below 50 ppm.

Prednost v uporabi kombinacije scCO2 in TBU je, da se TBU in H2O2 med samo ne mešata in se ju zlahka loči s centrifugiranjem. Uporabljeno TBU in scCO2 pa se recirkulira.The advantage of using a combination of scCO 2 and TBU is that TBU and H 2 O 2 do not mix with each other and are easily separated by centrifugation. The used TBU and scCO 2 are recirculated.

Postopek čiščenja vodikovega peroksida torej vključuje naslednje korake:The hydrogen peroxide purification process therefore includes the following steps:

- predgrevanje reaktorja R na T med 10 do 100 stopinj;- preheating of the reactor R to T between 10 and 100 degrees;

hkratno uvajanje CO2 iz rezervoarja T2 in tetrabutil uree iz rezervoarja T3 pri tlaku med 50 do 500 bar v reaktor R, pri čemer se oba reagenta vodita preko visokotlačne črpalke HP2 na predgretje P in nato v reaktor R,simultaneous introduction of CO 2 from tank T2 and tetrabutyl urea from tank T3 at a pressure between 50 and 500 bar into reactor R, whereby both reagents are led via high-pressure pump HP2 to preheater P and then into reactor R,

- uvajanje peroksida iz rezervoarja Tl preko HPLC črpalke HP1 v reaktor R, pri čemer poteče ekstrakcija peroksida s kombinacijo superkritičnega CO2 in tetrabutil uree;- introduction of peroxide from tank Tl via HPLC pump HP1 into reactor R, during which extraction of peroxide takes place with a combination of supercritical CO 2 and tetrabutyl urea;

- zbiranje in vodenje nečistoč, ki so nastale pri ekstrakciji, v separator Sl, in zbiranje in vodenje peroksida v separator S2;- collection and management of impurities, which occurred during the extraction, in separator Sl, and collection and management of peroxide in separator S2;

centrifugiranje TBU in peroksida na centrifugi v separatorju S2 ter vodenje očiščenega peroksida v separator S3;centrifugation of TBU and peroxide on the centrifuge in the separator S2 and leading the purified peroxide to the separator S3;

recikliranje C02 v separatorju Sl, pri čemer se odstrani nečistoče v separatorju S4 in se C02 ohladi s hladilnim sistemom H, ter se C02 vodi nazaj na visokotlačno črpalko HP2.recycling C0 2 in the separator S1, removing the impurities in the separator S4 and cooling the C0 2 with the cooling system H, and returning the C0 2 to the high-pressure pump HP2.

Prednostno je reaktor R, kjer postopek čiščenja vodikovega peroksida (H2O2), protitočna kolona iz nerjavnega jekla dolžine 1 m -10 m, ki je napolnjena z inertnim polnilom iz steklenih kroglic premera 0,1 -1 cm. Dolžina nasutja polnila je 1 - 5 m. Reaktor R je obdan z električnim grelnim plaščem - GP. Na vrhu reaktorja R je izpustni ventil VI, na dnu reaktorja R je izpustni ventili V2. CO2 se dovaja iz rezervoarja T2, tetrabutil urea pa iz rezervoarja T3. Oba reagenta se vodita preko visokotlačne črpalke - HP2 na predgretje - P. Predgret scCO2 in TBU se uvajata v spodnji del reaktorja - R tako da je vsebnost TBU v scCO2 med 0,1 mas. % do 80 mas. %. Neočiščen vodikov peroksid vstopa v reaktor R iz rezervoarja Tl na vrhu reaktorja - R preko HPLC črpalke - HP1. Primerne pretoke vodikovega peroksida v sistemu se določi glede na razmerje scCO2, pri čemer je razmerje vodikovega peroksida glede na scCO2od 5kg/kg do 30 kg/kg. Nečistoče, ki so nastale pri čiščenju, se zbirajo na vrhu reaktorja R v separatorju Sl. Očiščen vodikov peroksid se iz spodnjega dela reaktorja R vodi na centrifugo v separatorju S2, kjer se TBU (supernantant) in H2O2 (spodnja - faza očiščenega peroksida) medsebojno ločita, dobljen produkt je očiščen vodikov peroksid, ki se zbira v separatorju S3. Plinasti CO2, ki izstopa v Sl, po končanem procesu recikliramo. Najprej odstranimo nečistoče v separatorju S4 nato CO2 ohladimo s hladilnim sistemom - H in vodimo nazaj na visokotlačno črpalko HP2 ter nato ponovno v reaktor R.Preferably, the reactor R, where the hydrogen peroxide (H 2 O 2 ) purification process is carried out, is a stainless steel countercurrent column 1 m -10 m long, which is filled with an inert filler made of glass beads with a diameter of 0.1 -1 cm. The length of filling is 1 - 5 m. Reactor R is surrounded by an electric heating jacket - GP. At the top of the reactor R there is a discharge valve VI, at the bottom of the reactor R there is a discharge valve V2. CO 2 is supplied from tank T2 and tetrabutyl urea from tank T3. Both reagents are led via a high-pressure pump - HP2 to preheating - P. Preheated scCO 2 and TBU are introduced into the lower part of the reactor - R so that the TBU content in scCO 2 is between 0.1 wt. % to 80 wt. %. Unpurified hydrogen peroxide enters the reactor R from the tank Tl at the top of the reactor - R via the HPLC pump - HP1. Suitable flows of hydrogen peroxide in the system are determined according to the scCO 2 ratio, where the hydrogen peroxide to scCO 2 ratio is from 5 kg/kg to 30 kg/kg. The impurities produced during the cleaning are collected on top of the reactor R in the separator Fig. The purified hydrogen peroxide is led from the lower part of the reactor R to the centrifuge in the separator S2, where TBU (supernatant) and H 2 O 2 (the lower phase of the purified peroxide) separate from each other, the resulting product is purified hydrogen peroxide, which is collected in the separator S3 . Gaseous CO 2 , which emerges in Sl, is recycled after the process is finished. First, we remove the impurities in the separator S4, then the CO 2 is cooled by the cooling system - H and led back to the high-pressure pump HP2 and then back to the reactor R.

Vzorec neočiščenega m očiščenega vodikovega peroksida se analizira z analizo totalnega organskega ogljika z aparaturo TOC Carbon Analyzer, Shimatzu. Rezultat je podan kot totalni organski ogljik - TOC v ppm.A sample of crude and purified hydrogen peroxide is analyzed for total organic carbon with a TOC Carbon Analyzer, Shimatzu. The result is given as total organic carbon - TOC in ppm.

Postopek po izumu se prednostno izvaja v protitočni koloni, lahko pa se postopek izvaja tudi v sotočni koloni ali v šaržnem reaktorju. V primeru sotočne kolone vstopajo vse komponente (vodikov peroksid, scCO2 ter TBU) hkrati spodaj v reaktor in izstopajo na vrhu, pri čemer se scCO2 recilkuhra, TBU in očiščen peroksid pa se ločita v separatorju. Razmerja in pretoki ostanejo enaki kot pri protitočnem sistemu. V primeru šaržnega reaktorja pa se TBU in H2O2 ter scCO2 pod obratovnim P in T uvedejo v šaržni reaktor (visokotlačni reaktor) pod enakimi razmerji in tlaki ter se po končanem procesu iz sistema sprosti tlak, fazi H2O2 ter TBU pa se ločita, spodnja faza je očiščena faza vodikovega peroksida.The process according to the invention is preferably carried out in a counter-current column, but the process can also be carried out in a co-current column or in a batch reactor. In the case of a co-flow column, all components (hydrogen peroxide, scCO 2 and TBU) enter the reactor at the same time at the bottom and exit at the top, whereby the scCO 2 is recycled, and the TBU and purified peroxide are separated in a separator. The ratios and flow rates remain the same as in the counter-current system. In the case of a batch reactor, TBU and H 2 O 2 and scCO 2 under operating P and T are introduced into the batch reactor (high-pressure reactor) under the same conditions and pressures, and after the process is finished, the pressure, H 2 O 2 and TBU phases are released from the system and they separate, the lower phase being the purified phase of hydrogen peroxide.

IZVEDBENI PRIMERIIMPLEMENTATION EXAMPLES

Izvedbeni primeri od 1-7 so preliminarni poskusi, ki potrjujejo, daje izum, ki pri čiščenju vključuje oba reagenta, to je TBU in scCO2, najprimernejši.Examples 1-7 are preliminary experiments that confirm that the invention, which includes both reagents in the purification, i.e. TBU and scCO 2 , is the most suitable.

1. Izvedbeni primer - čiščenje H2O2 s scCO2 1. Implementation example - purification of H 2 O 2 with scCO 2

Ekstrakcija H2O2 v protitočni koloni s topilom scCO2. Shema kolone je prikazana na sliki 1. Peroksidno fazo (TOC = 500 - 600 ppm) smo uvajali na vrhu v kolono, medtem ko je scCO2 vstopal na dnu. Kolono smo segreli na obratovno temperaturo in v sistem s pomočjo visokotlačne črpalke uvedh predgret scCO2. Nato smo začeli s črpanjem vodikovega peroksida v sistem na vrhu kolone. Ustrezno smo izbrali primeren pretok vodikovega peroksida v sistem. Superkritični CO2 smo kontinuirno uvajali v protitoku v spodnjem delu kolone. Razmerje peroksida napram scCO2 (S/F)je bilo 10 kg/kg. Ekstrakcija je potekala 150 min. Nečistoče, ki so nastale pri čiščenju smo zbirali na vrhu kolone v separatorju Sl, medtem ko očiščen vodikov peroksid zbiramo v separatorju na spodnjem delu kolone S2 in S3. Na koncu smo dobili očiščen vodikov peroksid, ki smo mu izmerili vsebnost totalnega ogljika TOC = 200 ppm.Extraction of H 2 O 2 in a countercurrent column with scCO 2 solvent. A schematic of the column is shown in Figure 1. The peroxide phase (TOC = 500 - 600 ppm) was introduced at the top of the column, while the scCO 2 entered at the bottom. The column was heated to operating temperature and preheated scCO 2 was introduced into the system with the help of a high-pressure pump. We then began pumping hydrogen peroxide into the system at the top of the column. Accordingly, we have chosen a suitable flow of hydrogen peroxide into the system. Supercritical CO 2 was continuously introduced in countercurrent in the lower part of the column. The ratio of peroxide to scCO 2 (S/F) was 10 kg/kg. The extraction took place for 150 min. The impurities produced during the cleaning were collected at the top of the column in the separator Sl, while the purified hydrogen peroxide was collected in the separator at the lower part of the column S2 and S3. In the end, we obtained purified hydrogen peroxide, which we measured for a total carbon content of TOC = 200 ppm.

2. Izvedbeni primer - čiščenje H2O2 s scCO2 2. Implementation example - purification of H 2 O 2 with scCO 2

Ekstrakcija H2O2 poteka v protitočni koloni s topilom scCO2. Shema kolone je prikazana na sliki 1. Peroksidno fazo (TOC = 600 ppm) smo uvajali na vrhu v kolono, medtem ko je scCO2 vstopal na dnu. Kolono smo segreli na obratovno temperaturo in v sistem s pomočjo visokotlačne črpalke uvedli predgret scCO2. Nato smo začeli s črpanjem vodikovega peroksida v sistem na vrhu kolone. Ustrezno smo izbrali primeren pretok vodikovega peroksida v sistem. Superkritični CO2 smo kontinuirno uvajali v protitoku v spodnjem delu kolone. Razmerje peroksida napram scCO2 (S/F)je bilo 6 kg/kg. Ekstrakcija je potekala 100 min. Nečistoče, ki so nastale pri ekstrakciji smo zbirali na vrhu kolone v separatorju Sl, medtem ko očiščen vodikov peroksid zbiramo v separatorju na spodnjem delu kolone S2 in S3. Na koncu smo dobili očiščen vodikov peroksid, ki smo mu izmerili vsebnost totalnega ogljika TOC = 160 ppm.H 2 O 2 extraction takes place in a countercurrent column with scCO 2 solvent. A schematic of the column is shown in Figure 1. The peroxide phase (TOC = 600 ppm) was introduced at the top of the column, while the scCO 2 entered at the bottom. The column was heated to operating temperature and preheated scCO 2 was introduced into the system with the help of a high-pressure pump. We then began pumping hydrogen peroxide into the system at the top of the column. Accordingly, we have chosen a suitable flow of hydrogen peroxide into the system. Supercritical CO 2 was continuously introduced in countercurrent in the lower part of the column. The ratio of peroxide to scCO 2 (S/F) was 6 kg/kg. The extraction took place for 100 min. Impurities formed during the extraction were collected at the top of the column in the separator Sl, while purified hydrogen peroxide was collected in the separator at the bottom of the column S2 and S3. In the end, we obtained purified hydrogen peroxide, which we measured for a total carbon content of TOC = 160 ppm.

3. Izvedbeni primer - čiščenje H2O2 s scCO2 3. Implementation example - purification of H 2 O 2 with scCO 2

Ekstrakcija H2O2 smo izvedli v protitočni koloni topilom s scCO2. Shema kolone je prikazana na sliki 1. Peroksidno fazo (TOC = 550 ppm) smo uvajali na vrhu v kolono, medtem ko je scCO2 vstopal na dnu. Kolono smo segreli na obratovno temperaturo in v sistem s pomočjo visokotlačne črpalke uvedli predgret scCO2. Nato smo začeli s črpanjem vodikovega peroksida v sistem na vrhu kolone. Ustrezno smo izbrali primeren pretok vodikovega peroksida v sistem. Superkritični CO2 smo kontinuirno uvajali v protitoku v spodnjem delu kolone. Razmerje peroksida napram scCO2 (S/F) je bilo 20 kg/kg. Čiščenje je potekalo 120 min. Nečistoče, ki so nastale pri ekstrakciji smo zbirah na vrhu kolone v separatorju Sl, medtem ko očiščen vodikov peroksid zbiramo v separatorju na spodnjem delu kolone S2 in S3. Na koncu smo dobili očiščen vodikov peroksid, ki smo mu izmerili vsebnost totalnega ogljika TOC = 130 ppm.The extraction of H 2 O 2 was carried out in a countercurrent column with scCO 2 solvent. A schematic of the column is shown in Figure 1. The peroxide phase (TOC = 550 ppm) was introduced at the top of the column, while scCO 2 entered at the bottom. The column was heated to operating temperature and preheated scCO 2 was introduced into the system with the help of a high-pressure pump. We then began pumping hydrogen peroxide into the system at the top of the column. Accordingly, we have chosen a suitable flow of hydrogen peroxide into the system. Supercritical CO 2 was continuously introduced in countercurrent in the lower part of the column. The ratio of peroxide to scCO 2 (S/F) was 20 kg/kg. The cleaning took 120 min. Impurities produced during the extraction are collected at the top of the column in the separator Sl, while purified hydrogen peroxide is collected in the separator at the bottom of the column S2 and S3. In the end, we obtained purified hydrogen peroxide, which we measured for a total carbon content of TOC = 130 ppm.

4. Izvedbeni primer - čiščenje H2O2 s scCO2 4. Implementation example - purification of H 2 O 2 with scCO 2

Izvedli smo ekstrakcijo osmozno prečiščenega H2O2 s topilom scCO2. Peroksidno fazo (TOC = 51 ppm) smo uvajali na vrhu v kolono medtem ko je scCO2 vstopal na dnu. Kolono smo segreli na obratovno temperaturo in v sistem s pomočjo visokotlačne črpalke uvedli predgret scCO2. Nato smo začeli s črpanjem vodikovega peroksida v sistem na vrhu kolone. Ustrezno smo izbrali primeren pretok vodikovega peroksida v sistem. Superkritični CO2 smo kontinuirno uvajali v protitoku v spodnjem delu kolone. Razmerje peroksida napram scCO2 (S/F)je bilo 20 kg/kg. Čiščenje je potekalo 120 min.We performed the extraction of osmosis-purified H 2 O 2 with scCO 2 solvent. The peroxide phase (TOC = 51 ppm) was introduced at the top of the column while scCO 2 entered at the bottom. The column was heated to operating temperature and preheated scCO 2 was introduced into the system with the help of a high-pressure pump. We then began pumping hydrogen peroxide into the system at the top of the column. Accordingly, we have chosen a suitable flow rate of hydrogen peroxide into the system. Supercritical CO 2 was continuously introduced in countercurrent in the lower part of the column. The ratio of peroxide to scCO 2 (S/F) was 20 kg/kg. The cleaning took 120 min.

Nečistoče, ki so nastale pri ekstrakciji smo zbirali na vrhu kolone v separatorju Sl HPS, medtem ko ociscen vodikov peroksid zbiramo v separatorju na spodnjem delu kolone S2 in S3. Na koncu smo dobili očiščen vodikov peroksid, ki smo mu izmerili vsebnost totalnega ogljika TOC = 100 ppm.Impurities produced during the extraction were collected at the top of the column in the Sl HPS separator, while the purified hydrogen peroxide was collected in the separator at the bottom of the S2 and S3 columns. In the end, we obtained purified hydrogen peroxide, which we measured for a total carbon content of TOC = 100 ppm.

5. Izvedbeni primer - čiščenje H2O2 s TBU5. Implementation example - purification of H 2 O 2 with TBU

Ekstrakcija H2O2 (TOC= 500 ppm) s TBU. Najprej smo izvedli preliminarne študije ekstrakcije H2O2 s TBU v koloni v razmerju TBU:H2O2 = 1:1. Shema kolone je prikazana na sliki 1. S pomočjo visokotlačne črpalke na vrhu kolone v sistem vstopa H2O2ν= 3 g/min) medtem ko TBU (^ = 3 g/min) uvajamo v kolono na dnu. Peroksidno fazo vodimo na separator S2 na dnu kolone, kjer se s centrifugiranjem ločita H2O2 in TBU peroksid zbiramo v separatorju S3. Peroksidni fazi izmerimo totalni organski ogljik - TOC v ppm. Eksperimenti so potekali 180 min. Ugoden učinek ekstrakcije H2O2 dosežemo ze po 60 min. S podaljševanjem časa čiščenja ne dosežemo nižjih vrednosti TOC na iztoku. Izkazalo se je, da čisti TBU očisti vodikov peroksid iz TOC cca. 600 ppm na cca. 120 ppm.Extraction of H 2 O 2 (TOC= 500 ppm) with TBU. First, we performed preliminary studies of H 2 O 2 extraction with TBU in a column in the ratio TBU:H 2 O 2 = 1:1. The scheme of the column is shown in Figure 1. H 2 O 2ν = 3 g/min) enters the system with the help of a high-pressure pump at the top of the column, while TBU (^ = 3 g/min) is introduced into the column at the bottom. The peroxide phase is led to separator S2 at the bottom of the column, where H 2 O 2 and TBU peroxide are separated by centrifugation and collected in separator S3. Total organic carbon - TOC in ppm is measured in the peroxide phase. The experiments lasted 180 min. The beneficial effect of H 2 O 2 extraction is achieved already after 60 min. By extending the cleaning time, we do not achieve lower TOC values at the outlet. Pure TBU was shown to scavenge hydrogen peroxide from TOC approx. 600 ppm at approx. 120 ppm.

6. Izvedbeni primer - čiščenje H2O2 s TBU6. Implementation example - purification of H 2 O 2 with TBU

Ekstrakcija H2O2 (TOC= 550 ppm) s TBU v koloni v razmerju TBU:H2O2 = 1:10. Shema kolone je prikazana na sliki 1. S pomočjo visokotlačne črpalke na vrhu kolone v sistem vstopa H2O2ν= 3 g/min) medtem ko TBU (^ = 0,3 g/min) uvajamo v kolono na dnu. Peroksidno fazo vodimo na separator S2 na dnu kolone, kjer se s centrifugiranjem ločita H2O2 in TBU, peroksid zbiramo v separatorju S3. Peroksidni fazi izmerimo totalni organski ogljik - TOC v ppm. Eksperimenti so potekali 180 min. Ugoden učinek ekstrakcije H2O2 dosežemo že po 60 min. S podaljševanjem časa čiščenja ne dosežemo nižjih vrednosti TOC na iztoku. Izkazalo se je, da čisti TBU deloma očisti vodikov peroksid na TOC cca. 100 ppm.Extraction of H 2 O 2 (TOC= 550 ppm) with TBU in a column in the ratio TBU:H 2 O 2 = 1:10. The scheme of the column is shown in Figure 1. H 2 O 2ν = 3 g/min) enters the system with the help of a high-pressure pump at the top of the column, while TBU (^ = 0.3 g/min) is introduced into the column at the bottom. The peroxide phase is fed to separator S2 at the bottom of the column, where H 2 O 2 and TBU are separated by centrifugation, and the peroxide is collected in separator S3. Total organic carbon - TOC in ppm is measured in the peroxide phase. The experiments lasted 180 min. The beneficial effect of H 2 O 2 extraction is achieved after only 60 minutes. By extending the cleaning time, we do not achieve lower TOC values at the outlet. Pure TBU was shown to partially purify hydrogen peroxide to a TOC of approx. 100 ppm.

7. Izvedbeni primer - čiščenje H2O2 s TBU7. Implementation example - purification of H 2 O 2 with TBU

Ekstrakcija H2O2 (TOC= 550 ppm) s TBU. Najprej smo izvedli preliminarne študije ekstrakcije H2O2 s TBU v koloni v razmerju TBU:H2O2 = 1:100 Shema kolone je prikazana na sliki 1. S pomočjo visokotlačne črpalke na vrhu kolone v sistem vstopa H2O2ν= 3 g/min) medtem ko TBU = 0,03 g/min) uvajamo v kolono na dnu. Peroksidno fazo vodimo na separator S2 na dnu kolone, kjer se s centrifugiranjem ločita H2O2 in TBU, peroksid zbiramo v separatorju S3. Peroksidni fazi izmerimo totalni organski ogljik - TOC v ppm. Eksperimenti so potekali 180 min. Ugoden učinek ekstrakcije H2O2 dosežemo že po 60 min. S podaljševanjem časa čiščenja ne dosežemo nižjih vrednosti TOC na iztoku. Izkazalo se je, da čisti TBU deloma očisti vodikov peroksid na TOC cca. 70 ppm.Extraction of H 2 O 2 (TOC= 550 ppm) with TBU. First, we carried out preliminary studies of H 2 O 2 extraction with TBU in a column in the ratio TBU:H 2 O 2 = 1: 100 . ν = 3 g/min) while TBU = 0.03 g/min) is introduced into the column at the bottom. The peroxide phase is led to the separator S2 at the bottom of the column, where H 2 O 2 and TBU are separated by centrifugation, the peroxide is collected in the separator S3. Total organic carbon - TOC in ppm is measured in the peroxide phase. The experiments lasted 180 min. The beneficial effect of H 2 O 2 extraction is achieved after only 60 minutes. By extending the cleaning time, we do not achieve lower TOC values at the outlet. Pure TBU was shown to partially purify hydrogen peroxide to a TOC of approx. 70 ppm.

8. Izvedbeni primer - čiščenje H2O2 s kombinacijo scCO2 in TBU8. Implementation example - purification of H 2 O 2 with a combination of scCO 2 and TBU

Predmet izuma je ekstrakcija H2O2 v kombinaciji topil scCO2 in TBU. Eksperiment smo izvedli v koloni (slika 1) pri obratovni temperaturi (30 °C - 60 °C) ter tlaku (100 bar -150 bar) . Najprej smo sistem ogreli na obratovno temperaturo. Nato smo vzpostavili tlak v sistemu tako, da smo v sistem uvajali pregreti scCO2. Ko smo dosegli konstantne obratovne pogoje smo začeli s črpanjem TBU ter H2O2.The subject of the invention is the extraction of H 2 O 2 in a combination of scCO 2 and TBU solvents. The experiment was carried out in a column (Figure 1) at operating temperature (30 °C - 60 °C) and pressure (100 bar -150 bar). First, we warmed the system up to operating temperature. Then we established the pressure in the system by introducing superheated scCO 2 into the system. When we reached constant operating conditions, we started pumping TBU and H 2 O 2 .

Na vrhu smo s pomočjo visokotlačne črpalke v kolono uvajali H2O2 pretok peroksida φν = 3 g/min medtem ko sta na dnu kolone vstopala pregreti scCO2 in TBU (φν1 = 3 g/min). Razmerje TBU:H2O2 je bilo 1:1. Eksperimentalni pogoji so bili ves čas konstantni. S/F je znašal 20 kg/kg. Eksperiment smo izvajali 180 min. Nečistoče smo vodili na separator Sl na vrhu kolone. Medtem, ko smo H2O2 zbirali v separatorju S2 ga vodili na centrifugo, kjer se TBU (supernantant) in H2O2 (spodnja vodna faza) medsebojno ločita, peroksid zbiramo v separatorju S3. Produkt je očiščen vodikov peroksid. Očiščen H2O2 smo analizirali na aparaturi TOC Carbon Analyzer, Shimatzu. Določali smo totalni organski ogljik rezultate pa podali kot TOC v ppm. Pri danih pogojih s TBU v kombinaciji s scCO2 očistimo vodikov peroksid na TOC cca. 30 ppm.At the top, with the help of a high-pressure pump, H 2 O 2 peroxide flow φ ν = 3 g/min was introduced into the column, while at the bottom of the column superheated scCO 2 and TBU entered (φ ν1 = 3 g/min). The TBU:H 2 O 2 ratio was 1:1. Experimental conditions were kept constant throughout. S/F was 20 kg/kg. The experiment was carried out for 180 min. The impurities were fed to the separator Sl at the top of the column. While H 2 O 2 was collected in separator S2, it was sent to a centrifuge, where TBU (supernatant) and H 2 O 2 (lower aqueous phase) separate from each other, peroxide is collected in separator S3. The product is purified hydrogen peroxide. Purified H 2 O 2 was analyzed on a TOC Carbon Analyzer, Shimatsu. Total organic carbon was determined and the results were given as TOC in ppm. Under the given conditions, hydrogen peroxide is purified with TBU in combination with scCO 2 to a TOC of approx. 30 ppm.

9. Izvedbeni primer - čiščenje H2O2 s kombinacijo scCO2 in TBU9. Implementation example - purification of H 2 O 2 with a combination of scCO 2 and TBU

Predmet izuma je ekstrakcija H2O2 v kombinaciji scCO2 in TBU. Eksperiment smo izvedli v koloni (slika 1) pri obratovni temperaturi (60 °C - 100 °C) ter tlaku (100 bar - 150 bar). Najprej smo sistem ogreli na obratovno temperaturo. Nato smo vzpostavili tlak v sistemu tako, da smo v sistem uvajali pregreti scCO2. Ko smo dosegli konstantne obratovne pogoje smo začeli s črpanjem TBU ter H2O2.The subject of the invention is the extraction of H 2 O 2 in a combination of scCO 2 and TBU. The experiment was carried out in a column (Figure 1) at operating temperature (60 °C - 100 °C) and pressure (100 bar - 150 bar). First, we warmed the system up to operating temperature. Then we established the pressure in the system by introducing superheated scCO 2 into the system. When we reached constant operating conditions, we started pumping TBU and H 2 O 2 .

Na vrhu smo s pomočjo visokotlačne črpalke v kolono uvajali H2O2 pretok peroksida φν = 3 g/min medtem ko sta na dnu kolone vstopala pregreti scCO2 in TBU (φνί = 0,3 g/min). Razmerje TBU:H2O2 je bilo 1.10. Eksperimentalni pogoji so bili ves čas konstantni. S/F je znašal 20 kg/kg. Eksperiment smo izvajali 180 min. Nečistoče smo vodili na separator Sl na vrhu kolone. Medtem, ko smo H2O2 zbirali v separatorju S2 ga vodili na centrifugo, kjer se TBU (supernantant) in H2O2 (spodnja - vodna faza) medsebojno ločita, očiščen peroksid zbiramo v separatorju S3. Produkt je ociscen vodikov peroksid. Očiščen H2O2 smo analizirali na aparaturi TOC Carbon Analyzer, Shimatzu. Določali smo totalni organski ogljik rezultate pa podali kot TOC v ppm. Pri danih pogojih s TBU v kombinaciji s scCO2 očistimo vodikov peroksid na TOC cca. 25 ppm.At the top, with the help of a high-pressure pump, H 2 O 2 flow of peroxide φ ν = 3 g/min was introduced into the column, while at the bottom of the column superheated scCO 2 and TBU entered (φ νί = 0.3 g/min). The TBU:H 2 O 2 ratio was 1:10. Experimental conditions were kept constant throughout. S/F was 20 kg/kg. The experiment was carried out for 180 min. The impurities were fed to the separator Sl at the top of the column. While H2O2 was collected in separator S2, it was sent to a centrifuge, where TBU (supernatant) and H 2 O 2 (lower - aqueous phase) separate from each other, purified peroxide is collected in separator S3. The product is purified hydrogen peroxide. Purified H 2 O 2 was analyzed on a TOC Carbon Analyzer, Shimatsu. Total organic carbon was determined and the results were given as TOC in ppm. Under the given conditions, hydrogen peroxide is purified with TBU in combination with scCO 2 to a TOC of approx. 25 ppm.

10. Izvedbeni primer - čiščenje H2O2 s kombinacijo scCO2in TBU10. Implementation example - purification of H 2 O 2 with a combination of scCO 2 and TBU

Predmet izuma je ekstrakcija H2O2 v kombinaciji scCO2 in TBU. Eksperiment smo izvedli v koloni (slika 1) pri obratovni temperaturi (30 °C - 100 °C) ter tlaku (100 bar - 150 bar). Najprej smo sistem ogreh na obratovno temperaturo. Nato smo vzpostavili tlak v sistemu tako, da smo v sistem uvajali pregreti scCO2. Ko smo dosegli konstantne obratovne pogoje smo začeli s črpanjem TBU ter H2O2.The subject of the invention is the extraction of H 2 O 2 in a combination of scCO 2 and TBU. The experiment was carried out in a column (Figure 1) at operating temperature (30 °C - 100 °C) and pressure (100 bar - 150 bar). First of all, we heat the system to operating temperature. Then we established the pressure in the system by introducing superheated scCO 2 into the system. When we reached constant operating conditions, we started pumping TBU and H 2 O 2 .

Na vrhu smo s pomočjo visokotlačne črpalke v kolono uvajali H2O2 pretok peroksida φν=3 g/min medtem ko sta na dnu kolone vstopala pregreti scCO2 in TBU (φν1 = 0,03 g/min). Razmerje TBU:H2O2 je bilo 1:100. Eksperimentalni pogoji so bili ves čas konstantni. S/F je znašal 20 kg/kg. Eksperiment smo izvajali 180 min. Nečistoče smo vodili na separator Sl na vrhu kolone. Medtem, ko smo H2O2 zbirali v separatorju S2 ga vodili na centrifugo, kjer se TBU (supernantant) in H2O2 (spodnja - vodna faza) medsebojno ločita, očiščen peroksid zbiramo v separatorju S3. Produkt je ociscen vodikov peroksid. Očiščen H2O2 smo analizirali na aparaturi TOC Carbon Analyzer, Shimatzu. Določali smo totalni organski ogljik rezultate pa podali kot TOC v ppm. Pri danih pogojih s TBU v kombinaciji s scCO2 očistimo vodikov peroksid na TOC cca. 20 ppm.At the top, with the help of a high-pressure pump, H 2 O 2 peroxide flow φ ν =3 g/min was introduced into the column, while at the bottom of the column superheated scCO 2 and TBU entered (φ ν1 = 0.03 g/min). The TBU:H 2 O 2 ratio was 1:100. Experimental conditions were kept constant throughout. S/F was 20 kg/kg. The experiment was carried out for 180 min. The impurities were fed to the separator Sl at the top of the column. While H2O2 was collected in separator S2, it was sent to a centrifuge, where TBU (supernatant) and H 2 O 2 (lower - aqueous phase) separate from each other, purified peroxide is collected in separator S3. The product is purified hydrogen peroxide. Purified H 2 O 2 was analyzed on a TOC Carbon Analyzer, Shimatsu. Total organic carbon was determined and the results were given as TOC in ppm. Under the given conditions, hydrogen peroxide is purified with TBU in combination with scCO 2 to a TOC of approx. 20 ppm.

Dokazali smo, da se vrednosti TOC v očiščenem H2O2 še dodatno znižajo, če za čiščenje uporabimo kombinacijo obeh topil scCO2 ter TBU.We proved that TOC values in purified H 2 O 2 are further reduced if a combination of both scCO 2 and TBU solvents is used for purification.

Visokotlačni kontinuirni postopek čiščenja H2O2 s scCO2 v kombinaciji s TBU je učinkovitejši, kot če za čiščenje uporabimo zgolj TBU.The high-pressure continuous cleaning process of H 2 O 2 with scCO 2 in combination with TBU is more efficient than using only TBU for cleaning.

Prednosti izuma so:The advantages of the invention are:

proces z manj operacijami, ki porabijo manj energije in manj surovin,a process with fewer operations that consume less energy and less raw materials,

- produkt je bistveno čistejši od vhodnega peroksida,- the product is significantly cleaner than the incoming peroxide,

- v relativno nizkem času dosežemo znižanje TOC več kot za polovico, nizka temperatura čiščenja,- in a relatively short time we achieve a reduction of TOC by more than half, low cleaning temperature,

- zaradi popolne separacije, CO2 ter TBU, ki se uporabi za čiščenje, lahko ponovno uporabimo.- due to complete separation, CO 2 and TBU used for cleaning can be reused.

Postopek v smislu izuma predstavlja alternativo vsem konvencionalnim postopkom čiščenja H2O2.The process according to the invention represents an alternative to all conventional H 2 O 2 purification processes.

REFERENCEREFERENCES

[1] S. Watanabe, O. Ohura, Process for preparing high purity hydrogen peroxide, US5055286A, 1991.[1] S. Watanabe, O. Ohura, Process for preparing high purity hydrogen peroxide, US5055286A, 1991.

https://patents.google.com/patent/US5055286/en?oq=watanabe+ohura+(google+paten ts%2c+1991) (accessed August 17, 2021).https://patents.google.com/patent/US5055286/en?oq=watanabe+ohura+(google+paten ts%2c+1991) (accessed August 17, 2021).

[2] C. Devos, H. Ledon, Procede de preparation d’une solution ultra-pure de peroxyde par echange ionique dans des lits a rapports h/d definis, W01998054086A1,1998. https://patents.google.com/patent/W01998054086Al/fr?oq=W09854086Al (accessed November 24, 2021).[2] C. Devos, H. Ledon, Procede de preparation d’une solution ultra-pure de peroxyde par echange ionique dans des lits a rapports h/d definis, W01998054086A1, 1998. https://patents.google.com/patent/W01998054086Al/fr?oq=W09854086Al (accessed November 24, 2021).

[3] Y. Sugihara, K. Tanaka, H. Sakaitani, Process for purification of hydrogen peroxide, US5614165A, 1997.[3] Y. Sugihara, K. Tanaka, H. Sakaitani, Process for purification of hydrogen peroxide, US5614165A, 1997.

https://patents.google.com/patent/US5614165A/en?q=hydrogen+peroxide&inventor=s ugihara,tanaka,sakaitani (accessed November 24, 2021).https://patents.google.com/patent/US5614165A/en?q=hydrogen+peroxide&inventor=s ugihara,tanaka,sakaitani (accessed November 24, 2021).

[4] A. Licio, N. Renzo, Process for the purification of aqueous Solutions of hydrogen peeroxide, US3399968A, 1968.[4] A. Licio, N. Renzo, Process for the purification of aqueous solutions of hydrogen peroxide, US3399968A, 1968.

https://patents.google.com/patent/US3399968/en?oq=Licio+Renzo+(Google+Patents% 2c+1968) (accessed August 17, 2021).https://patents.google.com/patent/US3399968/en?oq=Licio+Renzo+(Google+Patents% 2c+1968) (accessed August 17, 2021).

[5] J.-M. Dhalluin, J.-J. Wawrzyniak, H. Ledon, Process for the purification of hydrogen peroxide, US5851402A, 1998.[5] J.-M. Dhalluin, J.-J. Wawrzyniak, H. Ledon, Process for the purification of hydrogen peroxide, US5851402A, 1998.

https://patents.google.com/patent/US5851402/en?oq=Dhalluin+Wawrzyniak+Ledon+( Google+Patents%2c+1998) (accessed August 17, 2021).https://patents.google.com/patent/US5851402/en?oq=Dhalluin+Wawrzyniak+Ledon+( Google+Patents%2c+1998) (accessed August 17, 2021).

[6] I. Turunen, Process for producing hydrogen peroxide, US5637286A, 1997.[6] I. Turunen, Process for producing hydrogen peroxide, US5637286A, 1997.

https://patents.google.com/patent/US5637286/en?oq=Turunen+hydrogen+(Google+Pa tents%2c+1997) (accessed August 17, 2021).https://patents.google.com/patent/US5637286/en?oq=Turunen+hydrogen+(Google+Patents%2c+1997) (accessed August 17, 2021).

[7] C.W. Jones, Applications of hydrogen peroxide and derivatives, Royal Society of Chemistry 1999.[7] C.W. Jones, Applications of hydrogen peroxide and derivatives, Royal Society of Chemistry 1999.

[8] J.M. Carnpos-Martin, G. Blanco-Brleva, J.L. Fierro, Hydrogen peroxide synthesis: an Outlook beyond the anthraquinone process, Angew. Chem. Int. Ed. 45 (2006) 6962-6984.[8] J.M. Carnpos-Martin, G. Blanco-Brleva, J.L. Fierro, Hydrogen peroxide synthesis: an Outlook beyond the anthraquinone process, Angew. Chem. Int. Ed. 45 (2006) 6962-6984.

[9] D. Hancu, E.J. Beckman, Production of hydrogen peroxide in liquid CO2. 3. Oxidation of CO2-philic anthrahydroquinones, Ind. Eng. Chem. Res. 39 (2000) 2843-2848.[9] D. Hancu, E.J. Beckman, Production of hydrogen peroxide in liquid CO2. 3. Oxidation of CO2-philic anthrahydroquinones, Ind. Eng. Chem. Really. 39 (2000) 2843-2848.

[10] Ž. Knez, E. Markočič, M. Leitgeb, M. Primožič, M. Knez Hrnčič, M. Škerget, Industrial applications of supercritical fluids: A review, Energy. 77 (2014) 235-243 https://doi.Org/10.1016/j.energy.2014.07.044.[10] Ž. Knez, E. Markočič, M. Leitgeb, M. Primožič, M. Knez Hrnčič, M. Škerget, Industrial applications of supercritical fluids: A review, Energy. 77 (2014) 235-243 https://doi.Org/10.1016/j.energy.2014.07.044.

[11] H. Ledon, M. Carre, D. Demay, C. Devos, S. [eanin, Process for the preparation of an ultra pure hydrogen peroxide solution by the Ion exchange by sequence: anionic-cationicanionic-cationic, Google Patents, 1999.[11] H. Ledon, M. Carre, D. Demay, C. Devos, S. [eanin, Process for the preparation of an ultra pure hydrogen peroxide solution by the Ion exchange by sequence: anionic-cationicanionic-cationic, Google Patents , 1999.

[12] R. Abejon, A. Garea, A. Irabien, Integrated countercurrent reverse osmosis cascades for hydrogen peroxide ultrapurification, Comput. Chem. Eng. 41 (2012) 67-76.[12] R. Abejon, A. Garea, A. Irabien, Integrated countercurrent reverse osmosis cascades for hydrogen peroxide ultrapurification, Comput. Chem. Eng. 41 (2012) 67-76.

[13] S. Bloomfield, G.E. Williams, Process for the manufacture of concentrated Solutions, US6780288B1, 2004.[13] S. Bloomfield, G.E. Williams, Process for the manufacture of concentrated solutions, US6780288B1, 2004.

https://patents.google.com/patent/US6780288Bl/en?oq=(JS6780288Bl (accessed November 24, 2021).https://patents.google.com/patent/US6780288Bl/en?oq=(JS6780288Bl (accessed November 24, 2021).

[14] R. Abejon, A. Garea, A. Irabien. Effective lifetime study of commercial reverse osmosis membranes for optimal hydrogen peroxide ultrapurification processes, Ind. Eng. Chem. Res. 52 (2013) 17270-17284.[14] R. Abejon, A. Garea, A. Irabien. Effective lifetime study of commercial reverse osmosis membranes for optimal hydrogen peroxide ultrapurification processes, Ind. Eng. Chem. Really. 52 (2013) 17270-17284.

[15] Q. Lin, Y. Jiang, J. Geng, Y. Qian, Removal of organic impurities with activated carbons for ultra-pure hydrogen peroxide preparation, Chem. Eng. J. 139 (2008) 264-271.[15] Q. Lin, Y. Jiang, J. Geng, Y. Qian, Removal of organic impurities with activated carbons for ultra-pure hydrogen peroxide preparation, Chem. Eng. J. 139 (2008) 264-271.

[16] T.M. Rueda, J.G. Serna, M.J.C. Alonso, Direct production of H2O2 from H2 and 02 in a biphasic H2O/scCO2 system over a Pd/C catalyst: Optimization of reaction conditions, J. Supercrit. Fluids. 61 (2012) 119-125.[16] T.M. Rueda, J.G. Serna, M.J.C. Alonso, Direct production of H2O2 from H2 and O2 in a biphasic H2O/scCO2 system over a Pd/C catalyst: Optimization of reaction conditions, J. Supercrit. Fluids. 61 (2012) 119-125.

[17] G. Blanco-Brleva. E. Cano-Serrano, J.M. Campos-Martin. J.L. Fierro, Direct synthesis of hydrogen peroxide solution with palladium.loaded sulfonic acld polystyrene resins, Chem. Commun. (2004) 1184-1185.[17] Mr. Blanco-Brleva. E. Cano-Serrano, J.M. Campos-Martin. J. L. Fierro, Direct synthesis of hydrogen peroxide solution with palladium.loaded sulfonic acld polystyrene resins, Chem. Commun. (2004) 1184-1185.

[18] D. Hancu, E.J. Beckman. Generation of hydrogen peroxide dlrectly from H2 and 02 using CO2 as the solvent, Green Chem. 3 (2001) 80-86.[18] D. Hancu, E.J. Beckmann. Generation of hydrogen peroxide directly from H2 and 02 using CO2 as the solvent, Green Chem. 3 (2001) 80-86.

[19] M.A. Majeed, S. Sardar, S.R. Malik, Extraction of Byproducts of Hydrogen Peroxide Working Solution Using Solvent, J. Math. 8 (2021).[19] M.A. Majeed, S. Sardar, S.R. Malik, Extraction of Byproducts of Hydrogen Peroxide Working Solution Using Solvent, J. Math. 8 (2021).

Claims (6)

PATENTNI ZAHTEVKIPATENT CLAIMS 1. Postopek čiščenja vodikovega peroksida, označen s tem, da postopek poteka pri temperaturi v območju med 10 °C in 100 °C in pri tlaku v območju med 50 bar do 500 bar, pri čemer je reagent kombinacija superkritičnega CO2 - scCO2 in tetrabutil uree - TBU, pri čemer se pridobi vodikov peroksid z vsebnostjo nečistoč pod 50 ppm.1. Hydrogen peroxide purification process, characterized in that the process takes place at a temperature in the range between 10 °C and 100 °C and at a pressure in the range between 50 bar and 500 bar, wherein the reagent is a combination of supercritical CO 2 - scCO 2 and tetrabutyl urea - TBU, whereby hydrogen peroxide with an impurity content below 50 ppm is obtained. 2. Postopek po zahtevku 1, označen s tem, da postopek poteka pri temperaturi v območju med 30 °C in 60 °C in pri tlaku v območju med 100 bar do 500 bar.2. The process according to claim 1, characterized in that the process takes place at a temperature in the range between 30 °C and 60 °C and at a pressure in the range between 100 bar and 500 bar. 3. Postopek po zahtevku 1 in 2, označen s tem, da je je vsebnost TBU v scCO2 med 0,lmas. % do 80 mas. %, in je razmerje TBU/scCO2 proti H2O2 med 0,1 do 10.3. The method according to claim 1 and 2, characterized in that the TBU content in scCO 2 is between 0.lmas. % to 80 wt. %, and the ratio of TBU/scCO 2 to H 2 O 2 is between 0.1 to 10. 4. Postopek po zahtevkih od 1 do 3, označen s tem, da razmerje vodikovega peroksida glede na scCO2,to je S/F, znaša od 5kg/kg do 30 kg/kg.4. The process according to claims 1 to 3, characterized by the fact that the ratio of hydrogen peroxide to scCO 2 , i.e. S/F, is from 5 kg/kg to 30 kg/kg. 5. Postopek po zahtevkih od 1 do 3, označen s tem, da vključuje naslednje korake:5. The method according to claims 1 to 3, characterized in that it includes the following steps: - predgrevanje reaktorja (R) na T med 10 do 100 stopinj;- preheating of the reactor (R) to T between 10 and 100 degrees; hkratno uvajanje CO2 iz rezervoarja (T2) in tetrabutil uree iz rezervoarja (T3) pri tlaku med 50 do 500 bar v reaktor (R), pri čemer se oba reagenta vodita preko visokotlačne črpalke (HP2) na predgretje (P) in nato v reaktor (R), uvajanje peroksida iz rezervoarja (Tl) preko HPLC črpalke (HP1) v reaktor (R), pri čemer poteče ekstrakcija peroksida s kombinacijo superkritičnega CO2 in tetrabutil uree;simultaneous introduction of CO 2 from the tank (T2) and tetrabutyl urea from the tank (T3) at a pressure between 50 and 500 bar into the reactor (R), whereby both reagents are led via a high-pressure pump (HP2) to the preheater (P) and then to reactor (R), introduction of peroxide from the tank (Tl) via the HPLC pump (HP1) into the reactor (R), during which the extraction of the peroxide takes place with a combination of supercritical CO 2 and tetrabutyl urea; - zbiranje in vodenje nečistoč, ki so nastale pri ekstrakciji, v separator (Sl), in zbiranje in vodenje peroksida v separator (S2);- collection and management of impurities, which occurred during the extraction, in the separator (S1), and collection and management of peroxide in the separator (S2); centrifugiranje TBU in peroksida na centrifugi v separatorju (S2) ter vodenje očiščenega peroksida v separator (S3);centrifuging TBU and peroxide on a centrifuge in the separator (S2) and leading the purified peroxide to the separator (S3); recikliranje CO2 v separatorju (Sl), pri čemer se odstrani nečistoče v separatorju (S4) in se CO2 ohladi s hladilnim sistemom (H), ter se CO2 vodi nazaj na visokotlačno črpalko (HP2).recycling the CO 2 in the separator (S1), where the impurities in the separator (S4) are removed and the CO 2 is cooled by the cooling system (H), and the CO 2 is fed back to the high pressure pump (HP2). 6. Postopek po zahtevku 5, označen s tem, da je reaktor (R) protitočna kolona, sotočna kolona ali šaržni reaktor.6. The method according to claim 5, characterized in that the reactor (R) is a counter-flow column, a co-flow column or a batch reactor.
SI202200213A 2022-09-26 2022-09-26 New hydrogen peroxide purification procedure SI26410A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI202200213A SI26410A (en) 2022-09-26 2022-09-26 New hydrogen peroxide purification procedure
PCT/SI2023/050013 WO2024072328A1 (en) 2022-09-26 2023-09-22 A new hydrogen peroxide purification process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI202200213A SI26410A (en) 2022-09-26 2022-09-26 New hydrogen peroxide purification procedure

Publications (1)

Publication Number Publication Date
SI26410A true SI26410A (en) 2024-03-29

Family

ID=88965271

Family Applications (1)

Application Number Title Priority Date Filing Date
SI202200213A SI26410A (en) 2022-09-26 2022-09-26 New hydrogen peroxide purification procedure

Country Status (2)

Country Link
SI (1) SI26410A (en)
WO (1) WO2024072328A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI96678C (en) * 1994-09-21 1996-08-12 Kemira Chemicals Oy Method for purification of hydrogen peroxide
JP5305165B2 (en) * 2009-09-28 2013-10-02 三徳化学工業株式会社 Method for producing purified hydrogen peroxide water
KR102605699B1 (en) * 2016-09-09 2023-11-27 오씨아이 주식회사 Purification of hydrogen peroxide

Also Published As

Publication number Publication date
WO2024072328A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
US20040262238A1 (en) Process for working up the waste water obtained in the preparation of dinitrotoluene
KR101283843B1 (en) Purification method of lithium carbonate
KR20000006244A (en) Process and plant for manufacturing an aqueous hydrogen peroxide solution, and aqueous hydrogen peroxide solution
JP5305165B2 (en) Method for producing purified hydrogen peroxide water
KR102605699B1 (en) Purification of hydrogen peroxide
US5269933A (en) Method for separating a fluid mixture
JP4901883B2 (en) Method of distillatively removing dinitrotoluene in process wastewater from the process of producing dinitrotoluene by nitrating toluene with nitration acid
SI26410A (en) New hydrogen peroxide purification procedure
CN103864689B (en) A kind of method of the condensate liquid obtained in the evaporative crystallization steps of purification of aqueous ammonium sulfate phase
CN109467057B (en) Process for producing working solution for use in producing hydrogen peroxide
CN103145102A (en) Method of removing organic impurities in hydrogen peroxide
JP4206556B2 (en) Method for producing purified aqueous hydrogen peroxide solution
US2215856A (en) Production of peroxides and valuable metal compounds
CN101492369B (en) Separation purification method for benzoic anhydride sour water and production process for allomaleic acid
EP1206411B1 (en) Process for treating a mixture comprising an ammonium sulfate solution phase and an aqueous lactam phase
US7988831B2 (en) Method for purifying an aqueous patassium hydroxide solution having rich silicon impurities
JP2003001070A (en) Method of refining hydrogen peroxide water
TW201422576A (en) Pure plant mother liquor solvent extraction system and method
WO2014189786A1 (en) Pure plant waste water purification and recycle
CN219043164U (en) Purification and recycling system
EP0703189B1 (en) Method for purifying hydrogen peroxide
US11254592B2 (en) Processes and systems for treating sour water to remove sulfide compounds
CN219272164U (en) System for recycling and purifying dibasic acid in adipic acid production waste liquid
JP2000254644A (en) Treatment of waste water
KR20050026885A (en) Purification of ammonium metallate solutions