SI25942A - Device for magnetic nerve muscle stimulation by measuring voltage variation on a capacitor - Google Patents

Device for magnetic nerve muscle stimulation by measuring voltage variation on a capacitor Download PDF

Info

Publication number
SI25942A
SI25942A SI201900250A SI201900250A SI25942A SI 25942 A SI25942 A SI 25942A SI 201900250 A SI201900250 A SI 201900250A SI 201900250 A SI201900250 A SI 201900250A SI 25942 A SI25942 A SI 25942A
Authority
SI
Slovenia
Prior art keywords
applicator
capacitor
coil
voltage
magnetic
Prior art date
Application number
SI201900250A
Other languages
Slovenian (sl)
Inventor
Jelenc JoĹľe
Jelenc Jože
Original Assignee
Iskra Medical D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iskra Medical D.O.O. filed Critical Iskra Medical D.O.O.
Priority to SI201900250A priority Critical patent/SI25942A/en
Publication of SI25942A publication Critical patent/SI25942A/en

Links

Landscapes

  • Magnetic Treatment Devices (AREA)

Abstract

Naprava (1) za magnetno živčno mišično stimulacijo, ki je značilna po tem, da zaznava material v prostoru v bližini aplikatorja (3). Naprava meri napetost na kondenzatorju (2) v napravi (1), ter na podlagi spremembe napetosti med delovanjem predpostavi lastnosti materialov v bližini aplikatorja(3) in spremembo materialov v bližini aplikatorja (3). Glede na izmerjene lastnosti materiala v bližini aplikatorja (3), spreminja parametre delovanja naprave (1).Device (1) for magnetic nerve muscle stimulation, characterized in that it detects material in the space near the applicator (3). The device measures the voltage on the capacitor (2) in the device (1), and based on the change in voltage during operation, assumes the properties of materials near the applicator (3) and the change of materials near the applicator (3). Depending on the measured properties of the material in the vicinity of the applicator (3), it changes the operating parameters of the device (1).

Description

Naprava za magnetno živčno mišično stimulacijo z merjenjem spreminjanja napetosti na kondenzatorjuDevice for magnetic nerve muscle stimulation by measuring voltage variation on a capacitor

Področje tehnikeField of technology

Magnetna živčno mišična stimulacija se uporablja v diagnostične in terapevtske namene ter za namene vračanja prvotne funkcije posameznim organom. Pri magnetni živčno mišični stimulaciji spreminjajoče se magnetno polje visokih gostot magnetnega polja povzroča aktiviranje živčnih celic in z njimi povezanih mišičnih celic.Magnetic neuromuscular stimulation is used for diagnostic and therapeutic purposes and for the purpose of restoring original function to individual organs. In magnetic neuromuscular stimulation, the changing magnetic field of high magnetic field densities causes the activation of nerve cells and related muscle cells.

Stanje tehnikeState of the art

Naprava za magnetno mišično stimulacijo je sestavljena iz kondenzatorja s shranjenim električnim nabojem, iz katerega v tuljavo, nameščeno v aplikatorju, teče električni tok. Glede na razmere na kondenzatorju in induktivnosti aplikatorskega sistema določamo lastnosti električnega toka, ki po žicah teče v tuljavo. Spreminjajoč električni tok v tuljavi in v njeni okolici povzroča magnetno polje. Tipične lastnosti običajno uporabljenega magnetnega polja so gostota magnetnega polja do 3.5 T, z dolžino monopolarnega ali bipolarnega pulza med 1 us in 10 ms, induktivnost tuljave med 1 nH do 100 mH, sprememba gostote magnetnega pretoka do 1 MT/s, pri čemer so pri delovanju uporabljene različne modulacije naprav, ter frekvenca pulzev do 900 Hz. Induktivnosti tuljave je med 1 nH do 100 mH, napetosti do 10 000V in tokovi do 10 000 A. Spreminjajoče se magnetno polje tuljave povzroča v človeškem telesu električni tok. Električni tok, ki nastane zaradi magnetnega polja, tako kot mnogo bolj znana električna stimulacija povzroča spremembo napetosti na membrani živčnih celic in posledično sproži akcijski potencial senzornih ali motoričnih živčnih celic. Proženje motoričnih živčnih celic povzroča aktivacijo mišic ter s tem odziv perifernega mišičnega sistema. Za dosego tega učinka je mnogo bolj poznana in pogosteje uporabljena električna stimulacija mišic, pri kateri električni tok povzroča aktivacijo živčnih celic. Pri električni stimulaciji električni tok v telo dovedemo prek električno prevodnih elektrod. Elektrode namestimo na kožo, v podkožje ali ob periferni živec, ki ga želimo stimulirati; pri čemer prevladuje namestitev elektrod na kožo. Elektrode so na kožo lahko pritrjene prek namestitve s pritrditvenimi trakovi ali s samolepilnimi elektrodami. Za delovanje električne stimulacije moramo na telo vedno pritrditi vsaj en par elektrod.The magnetic muscle stimulation device consists of a capacitor with stored electrical charge from which an electric current flows into a coil mounted in the applicator. Depending on the conditions on the capacitor and the inductance of the applicator system, we determine the properties of the electric current flowing through the wires into the coil. The changing electric current in and around the coil causes a magnetic field. Typical properties of a commonly used magnetic field are a magnetic field density of up to 3.5 T, with a monopolar or bipolar pulse length between 1 us and 10 ms, a coil inductance between 1 nH to 100 mH, a change in magnetic flux density of up to 1 MT / s. various modulations of the devices used in the operation, and a pulse frequency of up to 900 Hz. The inductance of the coil is between 1 nH to 100 mH, the voltage up to 10,000V and the currents up to 10,000 A. The changing magnetic field of the coil causes an electric current in the human body. The electric current generated by a magnetic field, like the much better known electrical stimulation, causes a change in the voltage across the membrane of nerve cells and consequently triggers the action potential of sensory or motor nerve cells. Triggering of motor nerve cells causes muscle activation and thus a response of the peripheral muscular system. To achieve this effect, electrical muscle stimulation is much better known and more commonly used, in which an electric current causes the activation of nerve cells. In electrical stimulation, an electric current is supplied to the body through electrically conductive electrodes. The electrodes are placed on the skin, subcutaneously, or along the peripheral nerve to be stimulated; with the placement of electrodes on the skin predominating. The electrodes can be attached to the skin through mounting with fixing tapes or self-adhesive electrodes. For electrical stimulation to work, we must always attach at least one pair of electrodes to the body.

Magnetno polje generira električni tok, ki teče po žici. Magnetno polje običajno generiramo s tuljavo. Tuljavo sestavlja žica, ki je v osrednjem delu enkrat ali večkrat zavita v zaključeno zanko, medtem ko sta oba preostala zaključka žice priklopljena na generator toka. Tako je tuljava z napravo povezana s parom žic. Magnetno polje, ki pri magnetni živčno mišični stimulaciji povzroča električno polje znotraj telesa, je odvisno od velikosti in oblike električnega toka ter oblike tuljave. Naprave za magnetno mišično stimulacijo so opisane v patentih kot so US6123658 in US 6123658, US9586057, US9974519, US9919161.The magnetic field generates an electric current flowing through the wire. The magnetic field is usually generated by a coil. The coil consists of a wire that is wound one or more times in the central part in a closed loop, while the two remaining ends of the wire are connected to a current generator. Thus, the coil is connected to the device by a pair of wires. The magnetic field that causes an electric field inside the body during magnetic neuromuscular stimulation depends on the size and shape of the electric current and the shape of the coil. Magnetic muscle stimulation devices are described in patents such as US6123658 and US 6123658, US9586057, US9974519, US9919161.

Električni naboj, ki steče skozi tuljavo je shranjen, med dvema ploščama kondenzatorja, nameščenima znotraj naprave. Električni naboj lahko merimo kot električno napetost med sponkama kondenzatorja. Glede na količino električnega toka, ki teče skozi kondenzator se manjša količina naboja shranjenega v kondenzatorju, ter s tem napetost na kondenzatorju. Količina električnega toka pri dani napetosti na kondenzatorju je odvisna od induktivnosti tuljave in razmer v okolici tuljave. Glede na električni tok, ki steče po žicah v tuljavi, se časovno spreminja napetost na kondezatorju. Električni tok je odvisen od razmer v aplikatorju in v bližini apliaktorja.The electric charge flowing through the coil is stored, between two capacitor plates mounted inside the device. The electric charge can be measured as the electrical voltage between the capacitor terminals. Depending on the amount of electric current flowing through the capacitor, the amount of charge stored in the capacitor decreases, and thus the voltage on the capacitor. The amount of electric current at a given voltage on the capacitor depends on the inductance of the coil and the conditions around the coil. Depending on the electric current flowing through the wires in the coil, the voltage across the capacitor changes over time. The electric current depends on the conditions in the applicator and in the vicinity of the applicator.

Tehnični problemTechnical problem

Tehnični problem predstavlja nepoznavanje materialov v bližini aplikatorja. Glede na lastnosti in oddaljenosti biološkega materiala ali materiala z različno prevodnostjo in induktivnostjo, bi lahko prilagajali parametre terapije, ali pa prekinili terapijo, ko pacienta ni v bližini, ali pa se pojavijo parametri za katere naprava ni dimenzionirana.The technical problem is the ignorance of the materials in the vicinity of the applicator. Depending on the properties and distances of biological material or material with different conductivity and inductance, therapy parameters could be adjusted, or therapy could be interrupted when the patient is not nearby, or parameters for which the device is not dimensioned occur.

Rešitev tehničnega problemaSolution to a technical problem

Rešitev tehničnega problema, lastnosti materiala v bližini aplikatorja, lahko razpoznamo iz karakteristik spreminjana napetosti kondenzatorja ob praznjenju električnega naboja iz kondenzatora v tuljavno nameščeno v aplikator.The solution to the technical problem, the properties of the material in the vicinity of the applicator, can be recognized from the characteristics of the changing voltage of the capacitor when discharging the electric charge from the capacitor to the coil mounted in the applicator.

Lastnosti aplikatorja, materiali v aplikatorju in materiali v bližini aplikatorja določajo induktivnost aplikatorskega sistema. Lastnosti aplikatorja in materiali v aplikatorju se tekom terapije ne spreminjajo. Vsako spremembo induktivnosti aplikatorskega sistema tako lahko nedvoumno povežemo s spremembo lastnosti materiala v bližini aplikatorja in postavitvijo materialov v neposredni bližini aplikatorja. Glavni lastnosti sta induktivnost materialov in električna prevodnost teh materialov. Induktivnost aplikatorskega sistema vpliva na količino toka, ki steče skozi tuljavo v aplikatorju. Večji tok hitreje prazni električni naboj shranjen v kondenzatorju in hitreje zmanjšuje napetost na kondenzatorju. Manjši tok počasneje prazni električni naboj shranjen v kondenzatorju in počasneje zmanjšuje napetost na kondenzatorju. S spremljanjem hitrosti in lastnosti spreminjanja napetosti na kondenzatorju, tako lahko sklepamo o materialih, ki se nahajo v bližini aplikatorja.The properties of the applicator, the materials in the applicator and the materials in the vicinity of the applicator determine the inductance of the applicator system. The properties of the applicator and the materials in the applicator do not change during therapy. Any change in the inductance of the applicator system can thus be unambiguously associated with a change in the properties of the material in the vicinity of the applicator and the placement of the materials in the immediate vicinity of the applicator. The main properties are the inductance of materials and the electrical conductivity of these materials. The inductance of the applicator system affects the amount of current flowing through the coil in the applicator. Higher current discharges the electrical charge stored in the capacitor faster and reduces the voltage on the capacitor faster. A smaller current slows down the discharged electrical charge stored in the capacitor and slows down the voltage across the capacitor. By monitoring the speed and properties of the voltage change on the capacitor, we can thus infer the materials located near the applicator.

Količino električnega toka ki zmanjšuje električni naboj shranjen v kondenzatorju, in s tem zmanjševanje napetosti na kondenzatorju lahko ocenimo iz hitrosti spremembe napetosti na kondenzatorju.The amount of electric current that reduces the electric charge stored in the capacitor, and thus the reduction of the voltage across the capacitor can be estimated from the rate of change of the voltage across the capacitor.

Iz lastnosti materialov lahko razpoznamo ali aplikator deluje v prazen prostor, biološko tkivo, ali pa v bližini materiala ki močno poveča induktivnost aplikatorskega sistema. Poleg zapisanih skrajnih stanj, lahko razpoznamo tudi vmesna stanja (npr. da je del prostora v bližini aplikatorja zapolnjen z biološkim tkivom), ter da je prišlo do premika materiala v bližini aplikatorja.From the properties of the materials, we can recognize whether the applicator works in an empty space, biological tissue, or in the vicinity of a material that greatly increases the inductance of the applicator system. In addition to the recorded extreme states, we can also recognize intermediate states (e.g., that part of the space near the applicator is filled with biological tissue), and that there has been a movement of material near the applicator.

Opisano postavitev materialov potrebujemo ne glede na to, ali se aplikator nahaja samostojno ter se ga s stojalom postavi na telo, pritrdi na telo s trakovi, ali ga terapevt drži v roki, ali pa je pa je vgrajen tako, da se pacient lahko nanj usede, na primer v stol. V opisanem primeru je lahko aplikator vgrajen v sedišče stola, hrbtišče stola, kar omogoča ciljano tretiranje medeničnega dna, ali pa drugje v stolu.The described placement of materials is necessary regardless of whether the applicator is located independently and is placed on the body with a stand, attached to the body with straps, held by the therapist, or is installed so that the patient can sit on it. , for example in a chair. In the case described, the applicator can be installed in the seat of the chair, the back of the chair, which allows targeted treatment of the pelvic floor, or elsewhere in the chair.

Slika 1: Izvedba naprave za magnetno mišično stimulacijo z aplikatorjemFigure 1: Implementation of a device for magnetic muscle stimulation with an applicator

Slika 2a: Na sliki 2a je izvedba naprave za magnetno mišično stimulacijo z aplikatorjem, poleg katerega je prazen prostor, na Sliki 2b je izvedba naprave za magnetno mišično stimulacijo z aplikatorjem, poleg katerega je biološko tkivo, na Sliki 2c je izvedba naprave za magnetno mišično stimulacijo z aplikatorjem, ki močno spremeni induktivnost aplikatorskega sistema.Figure 2a: Figure 2a shows an embodiment of a magnetic muscle stimulation device with an applicator next to which there is an empty space, Figure 2b shows an embodiment of a magnetic muscle stimulation device with an applicator next to biological tissue, Figure 2c shows an embodiment of a magnetic muscle stimulation device stimulation with an applicator that greatly alters the inductance of the applicator system.

Slika 3: Na Sliki 3a je grafično prikazan časovni potek padca napetosti na kondenzatorju, če je v bližini aplikatorja prazen prostor, na Sliki 3b je grafično prikazan časovni potek padca napetosti na kondenzatorju, če je v bližini aplikatorja poleg katerega je biološko tkivo, na Sliki 3c je grafično prikazan časovni potek padca napetosti na kondenzatorju, pri čemer se v prostoru v bližini tuljave nahaja material, ki močno spremeni induktivnost aplikatorskega sistema.Figure 3: Figure 3a graphically shows the time course of voltage drop on the capacitor if there is empty space near the applicator, Figure 3b graphically shows the time course of voltage drop on the capacitor if near the applicator next to the biological tissue, Figure 3c is a graphical representation of the time course of the voltage drop across the capacitor, with a material located in the space near the coil that greatly alters the inductance of the applicator system.

Na sliki 1 je prikazana naprava (1) s kondenzatorjem (2) ki je povezan z aplikatorjem (3), v notranjosti katerega je tuljava (4), ki generira magnetno polje v prostoru v bližini tuljave (5).Figure 1 shows a device (1) with a capacitor (2) connected to the applicator (3), inside which is a coil (4) that generates a magnetic field in the space near the coil (5).

Na sliki 2a je prikazana naprava (1) s kondenzatorjem (2) ki je povezan z aplikatorjem (3), v notranjosti katerega je tuljava (4), ki generira magnetno polje, pri čemer je v prostor bližini tuljave prazen (6).Figure 2a shows a device (1) with a capacitor (2) connected to an applicator (3), inside which is a coil (4) that generates a magnetic field, the space near the coil being empty (6).

Na sliki 2b je prikazana naprava (1) s kondenzatorjem (2) ki je povezan z aplikatorjem (3), v notranjosti katerega je tuljava (4), ki generira magnetno polje, pri čemer se v prostoru v bližini tuljave nahaja biološko tkivo (7).Figure 2b shows a device (1) with a capacitor (2) connected to an applicator (3), inside which is a coil (4) that generates a magnetic field, with biological tissue in the space near the coil (7). ).

Na sliki 2c je prikazana naprava (1) s kondenzatorjem (2) ki je povezan z aplikatorjem (3), v notranjosti katerega je tuljava (4), ki generira magnetno polje, pri čemer se v prostoru v bližini tuljave nahaja material, ki močno spremeni induktivnost aplikatorskega sistema (8).Figure 2c shows a device (1) with a capacitor (2) connected to an applicator (3), inside which is a coil (4) that generates a magnetic field, with a material in the space near the coil that strongly changes the inductance of the applicator system (8).

Na sliki 3a je grafično prikazan časovni potek padca napetosti na kondenzatorju (U) v odvisnosti od časa (t), če je v bližini aplikatorja prazen prostor (6).Figure 3a graphically shows the time course of the voltage drop across the capacitor (U) as a function of time (t) if there is an empty space (6) near the applicator.

Na sliki 3b je grafično prikazan časovni potek padca napetosti na kondenzatorju (U) v odvisnosti od časa (t), če se v bližini aplikatorja nahaja biološko tkivo (7).Figure 3b graphically shows the time course of the voltage drop across the capacitor (U) as a function of time (t) if biological tissue is located near the applicator (7).

Na sliki 3c je grafično prikazan časovni potek padca napetosti na kondenzatorju (U) v odvisnosti od časa (t), če je v bližini aplikatorja nahaja material, ki močno spremeni induktivnost aplikatorskega sistema (8).Figure 3c graphically shows the time course of the voltage drop across the capacitor (U) as a function of time (t) if there is a material near the applicator that greatly alters the inductance of the applicator system (8).

Claims (9)

Patentni zahtevkiPatent claims 1. Naprava za magnetno živčno-mišično stimulacijo, s tuljavo vgrajeno v aplikator in kondenzatorjem v napravi, kije značilna po tem, da na kondenzatorju spremljamo časovni potek spreminjanja napetosti.1. A device for magnetic neuromuscular stimulation, with a coil built into the applicator and a capacitor in the device, characterized in that the time course of the voltage change is monitored on the capacitor. 2. Naprava po zahtevku 1, ki je značilna po tem, da spremljamo lastnosti spreminjanja napetosti tuljave.Device according to Claim 1, characterized in that the changing properties of the coil voltage are monitored. 3. Naprava po zahtevku 1 in 2, ki je značilna po tem, da na podlagi spreminjanja napetosti sklepamo o lastnostih materiala v bližini tuljave vgrajene v aplikator.Device according to Claims 1 and 2, characterized in that the properties of the material in the vicinity of the coil mounted in the applicator are inferred from the variation of the voltage. 4. Naprava po zahtevku 3, ki je značilna po tem, da na podlagi spreminjanja napetosti spreminjamo parametre delovanja naprave.Device according to Claim 3, characterized in that the operating parameters of the device are changed on the basis of voltage changes. 5. Naprava po zahtevku 4, ki je značilna po tem, da napravo izključimo, če se tok prehitro spreminja.Device according to Claim 4, characterized in that the device is switched off if the current changes too rapidly. 6. Naprava po zahtevkih 1-5, kjer je tuljava vgrajena v stol.The device of claims 1-5, wherein the coil is mounted in a chair. 7. Naprava po zahtevkih 1-6, kjer je tuljava vgrajena v sedišče stola.The device of claims 1-6, wherein the coil is mounted in the seat of the chair. 8. Naprava po zahtevkih 1-5, kjer se aplikator s tuljavo pričvrščti na pacienta.The device of claims 1-5, wherein the coil applicator is attached to the patient. 9. Naprava po zahtevkih 1-5, kjer je aplikator narejen tako, da omogoča držanje v roki.The device of claims 1-5, wherein the applicator is designed to be held in the hand.
SI201900250A 2019-12-18 2019-12-18 Device for magnetic nerve muscle stimulation by measuring voltage variation on a capacitor SI25942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201900250A SI25942A (en) 2019-12-18 2019-12-18 Device for magnetic nerve muscle stimulation by measuring voltage variation on a capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201900250A SI25942A (en) 2019-12-18 2019-12-18 Device for magnetic nerve muscle stimulation by measuring voltage variation on a capacitor

Publications (1)

Publication Number Publication Date
SI25942A true SI25942A (en) 2021-06-30

Family

ID=76527993

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201900250A SI25942A (en) 2019-12-18 2019-12-18 Device for magnetic nerve muscle stimulation by measuring voltage variation on a capacitor

Country Status (1)

Country Link
SI (1) SI25942A (en)

Similar Documents

Publication Publication Date Title
US3543761A (en) Bladder stimulating method
SI24921A (en) A device for magnetic nerve muscle stimulation with a large number of independent coils installed in the applicator
US5116304A (en) Magnetic stimulator with skullcap-shaped coil
EP1919555B1 (en) Safe-mode implantable medical devices and methods
EP3958959B1 (en) Devices for administering electrical stimulation to treat cancer
US4781685A (en) Implantable drug-dispensing capsule and system facilitating its use
US6760626B1 (en) Apparatus and method for treatment of neurological and neuropsychiatric disorders using programmerless implantable pulse generator system
US5433732A (en) Defibrillator with current limiter
US11666774B2 (en) Pulse source and method for magnetically inductive nerve stimulation
US5609615A (en) Implantable cardiac stimulation device with warning system and conductive suture point
FI59203C (en) ELECTROMEDICAL APPARATUS FOR THERAPEUTIC BEHANDLING AV CELLER OCH / ELLER LEVANDE
US3405715A (en) Implantable electrode
KR860001942B1 (en) Electromagnetotherapeutic apparatus
US3345989A (en) Implantable power source employing a body fluid as an electrolyte
US4770167A (en) Electrical, generally rounded resilient, canopy-like contraceptive devices
RU156348U1 (en) DEVICE FOR STIMULATING REFLECTOR ZONES
SI25942A (en) Device for magnetic nerve muscle stimulation by measuring voltage variation on a capacitor
US4155363A (en) Electronically controlled apparatus for electrolytic depilation
EP3685879A1 (en) Electrical stimulation therapy instrument
US9119963B1 (en) Electric device for producing successive positive and negative electric charges
CA2995944A1 (en) Electrode system for facilitating macromolecule introduction
RU120878U1 (en) MAGNETIC PULSE LOW FREQUENCY THERAPEUTIC DEVICE
JP3568531B2 (en) Method and apparatus for pulsed magnetic induction
CN106604759B (en) The face electrode of sectional
CN107095738A (en) Electronics bandage

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20210707