SI25887A - A method for producing polymeric surface modification layers - Google Patents

A method for producing polymeric surface modification layers Download PDF

Info

Publication number
SI25887A
SI25887A SI202000161A SI202000161A SI25887A SI 25887 A SI25887 A SI 25887A SI 202000161 A SI202000161 A SI 202000161A SI 202000161 A SI202000161 A SI 202000161A SI 25887 A SI25887 A SI 25887A
Authority
SI
Slovenia
Prior art keywords
substrate
contact angle
polymer layer
polymer
layer
Prior art date
Application number
SI202000161A
Other languages
Slovenian (sl)
Inventor
Vid Bobnar
Barbara MaliÄŤ
Aleksander MatavĹľ
Original Assignee
Institut "JoĹľef Stefan"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut "JoĹľef Stefan" filed Critical Institut "JoĹľef Stefan"
Publication of SI25887A publication Critical patent/SI25887A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/04Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a surface receptive to ink or other liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0433Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a reactive gas
    • B05D3/0453After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/145After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5254Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/20Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for coatings strippable as coherent films, e.g. temporary coatings strippable as coherent films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/10Organic solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2502/00Acrylic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2502/00Acrylic polymers
    • B05D2502/005Acrylic polymers modified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/542No clear coat specified the two layers being cured or baked together
    • B05D7/5423No clear coat specified the two layers being cured or baked together the two layers being applied simultaneously
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Pričujoči izum zagotavlja metode izboljšanja omočenja površin in še posebno zmanjšanja umikajočega kontaktnega kota in/ali povečevanje histereze kontaktnega kota. Predstavljene metode lahko vključujejo sledeče korake: a) mešanje poli(stirena), poli(metil metakrilata) in topila, da nastane polimerna raztopina; b) nanašanje polimerne raztopine na substrat, da nastane nanos polimerne raztopine; c) sušenje nanosa polimerne raztopine, da nastane polimerna plast na substratu; d) izpostavljanje polimerne plasti reaktivnim polarnim zvrstem, da nastane spremenjena polimerna plast na substratu.The present invention provides methods of improving surface wetting and in particular reducing the receding contact angle and / or increasing the contact angle hysteresis. The methods presented may include the following steps: a) mixing poly (styrene), poly (methyl methacrylate) and solvent to form a polymer solution; b) applying the polymer solution to the substrate to form a polymer solution; c) drying the coating of the polymer solution to form a polymer layer on the substrate; d) exposing the polymer layer to reactive polar species to form an altered polymer layer on the substrate.

Description

METODA PROIZVAJANJA POLIMERNIH PLASTI Z MODIFICIRANO POVRŠINOMETHOD OF PRODUCING POLYMER LAYERS WITH MODIFIED SURFACE

Področje izumaFIELD OF THE INVENTION

Pričujoči izum se nanaša na polimerne plasti in še posebno, čeprav ne izključno, na polimerne plasti za modifikacijo površine, ki so primerne za različne uporabe pri tiskanju.The present invention relates to polymer layers and in particular, although not exclusively, to surface modifying polymer layers suitable for various printing applications.

Ozadje izumaBackground of the invention

Regulacija omočenja ima pomembno tehnološko vlogo pri številnih uporabah, vključno s tiskanjem funkcionalnih črnil na trdnih, ne-permeabilnih substratih, ki so ključni del tiskane elektronike.Wetting regulation plays an important technological role in many applications, including the printing of functional inks on solid, non-permeable substrates, which are a key part of printed electronics.

Ta tehnologija omooča stroškovno učinkovito izdelovanje elektronskih komponent na različnih substratih (podlagah), kot so steklo, plastika, keramika in kovinske folije. V tiskani elektroniki je na primer tiskanje plast-na-plast pogosto, tako da se vsak nov vzorec natisne na nehomogeno površino (t.j. površina, ki že ima naneseno(e) plast(i)). To ima lahko za posledico kompleksno in nepredvidljivo omočenje, ki je značilno po različnih kontaktnih kotih na površinah, ki so že imele nanesene strukture, ter na površinah, ki so neprekrita površina substrata. Posledično se lahko ogrozi resolucija ali stabilnost natisnjenega vzorca. Obstaja tudi znatno tveganje za kratki stik, v kolikor se linije ali natisnjeni elementi povežejo, kjer se ne bi smeli.This technology enables cost-effective fabrication of electronic components on various substrates (substrates), such as glass, plastic, ceramics and metal foils. In printed electronics, for example, layer-to-layer printing is common, so that each new pattern is printed on an inhomogeneous surface (i.e., a surface that already has the layer (s) applied). This can result in complex and unpredictable wetting, which is characterized by different contact angles on surfaces that have already had structures applied and on surfaces that are the uncoated surface of the substrate. As a result, the resolution or stability of the printed sample may be compromised. There is also a significant risk of short circuit if lines or printed elements are connected where they should not be.

Omočenje določene površine s tekočino je opisano z napredujočim in umikajočim kontaktnim kotom tekočine. Napredujoči kontaktni kot je maksimalni možni kontaktni kot; kontaktna linija napreduje, ko trenutni kontaktni kot preseže napredujoči kontaktni kot. Umikajoči kontaktni kot je najmanjši možni kontaktni kot; kontaktna linija se umika, ko je hipni kontaktni kot manjši kot umikajoči kontaktni kot. Razlika med obema kotoma je histereza kontaktnega kota. Le-ta je vseprisotna. Preprečuje, da bi kapljica zdrsnila na poševnih površinah, kot so na primer dežne kaplje na oknih, in ima ključno vlogo pri stabilnosti natisnjenih vzorcev in sušenju.Wetting a specific surface with liquid is described by the advancing and retracting contact angle of the liquid. Progressive contact angle is the maximum possible contact angle; the contact line advances when the current contact angle exceeds the advancing contact angle. Retracting contact angle is the smallest possible contact angle; the contact line retracts when the instantaneous contact angle is less than the retracting contact angle. The difference between the two angles is the hysteresis of the contact angle. This one is ubiquitous. It prevents the droplet from slipping on sloping surfaces, such as raindrops on windows, and plays a key role in the stability of printed patterns and drying.

Pri brizgalnem tiskanju bi v idealnem razpletu interakcija med črnilom in substratom rezultirala v visokem napredujočem kontaktnem kotu in v ničnem umikajočem kontaktnem kotu. Visok napredujoči kontaktni kot je idealen za visoko ločljivost (resolucijo), medtem ko je umikajoči kontaktni kot enak nič idealen za stabilnost natisnjenega vzorca. Idealna površina (atomsko gladka in kemično homogena) v teoriji izkazuje histerezo kontaktnega kota enako nič, torej enake napredujoče in umikajoče kontaktne kote. Vendar pa je dobro poznano, da površinske nepravilnosti, kot so topografske ali kemijske variacije, povzročijo histerezo kontaktnega kota.In inkjet printing, ideally, the interaction between the ink and the substrate would result in a high advancing contact angle and a zero receding contact angle. A high advancing contact angle is ideal for high resolution (resolution), while a retracting contact angle equal to zero is ideal for the stability of the printed pattern. The ideal surface (atomically smooth and chemically homogeneous) in theory shows a hysteresis of the contact angle equal to zero, ie the same advancing and receding contact angles. However, it is well known that surface irregularities such as topographic or chemical variations cause contact angle hysteresis.

V splošnem, gladke in kemijsko homogene površine izkazujejo manjšo histerezo kontaktnega kota v primerjavi s hrapavimi, kemijsko nehomogenimi površinami.In general, smooth and chemically homogeneous surfaces show less contact angle hysteresis compared to rough, chemically inhomogeneous surfaces.

Omočenje in širjenje črnila na določenem substratu se lahko prilagaja bodisi s (i) spreminjanjem površinskih lastnosti substratov ali (ii) z lokalnim omejevanjem širjenja črnila.Wetting and spreading of the ink on a particular substrate can be adjusted either by (i) changing the surface properties of the substrates or (ii) by locally limiting the spread of the ink.

(11 Spreminjanje površinskih lastnosti substrata(11 Changing the surface properties of the substrate

Ta pristop temelji na proizvajanju delnega omočenja substrata. Pri tem mora biti interakcija med črnilom in substratom dobro uravnotežena, da se obdrži stabilnost in definicija natisnjenih struktur. Pogost pristop za prilagajanje omočenja substrata je obdelava površine, kot je mokro čiščenje, plazemska obdelava in obdelava z UV/ozonom. Te metode so običajno uporabljene za znižanje kontaktnega kota in pripravljanje površine za nadaljnjo uporabo pri nanosih sloja, kjer je dobro omočenje (zelo majhen kontaktni kot) zaželeno. Po drugi strani tiskanje zahteva natančno prilagoditev kontaktnega kota, da se zagotovi delno omočenje. To se lahko doseže z uporabo plasti za kontrolo omočenja pred korakom tiskanja.This approach is based on the production of partial substrate wetting. In doing so, the interaction between the ink and the substrate must be well balanced to maintain the stability and definition of the printed structures. A common approach for adjusting substrate wetting is surface treatment such as wet cleaning, plasma treatment, and UV / ozone treatment. These methods are commonly used to lower the contact angle and prepare the surface for further use in coatings where good wetting (very small contact angle) is desirable. On the other hand, printing requires precise adjustment of the contact angle to ensure partial wetting. This can be achieved by using a wetting control layer before the printing step.

Jang in sod. (Adv. Electron. Mater., 2015, 1500086) so uporabili plast poli(metil metakrilata (PMMA) kot plast za kontrolo omočenja. Tanka plast je bila nanesena na stekleni susbstrat s pomočjo nanašanja z metodo vrtenja (angl, spin-coating). Temu postopku je sledilo sušenje pri 200 °C za 10 min. Obdelava z UV/ozonom je povečala površinsko energijo PMMA plasti in zmanjšala kontaktni kot funkcionalnega črnila. Plast PMMA je bila gladka, histereza kontaktnega kota črnila pa je bila majhna, kot nakazuje odpenjanje (angl, de-pinning) kontaktne linije pri nizkih temperaturah substrata med tiskanjem.Young et al. (Adv. Electron. Mater., 2015, 1500086) a layer of poly (methyl methacrylate) (PMMA) was used as a wetting control layer.A thin layer was applied to the glass substrate by spin-coating. This process was followed by drying at 200 ° C for 10 minutes, UV / ozone treatment increased the surface energy of the PMMA layer and reduced the contact angle of the functional ink, the PMMA layer was smooth and the ink contact angle hysteresis was small, as indicated by detachment ( angl, de-pinning) contact lines at low substrate temperatures during printing.

Matavž in sod. (Langmuir, 2017, 33 (43), 11893-11900) so uporabili plasti poli(stirena), poli(metil metakrilata), poli(vinil alkohola), ali poli(vinil pirolidona) za prilagajanje značilnosti površine steklenih substratov. Omočenje proučevanih črnil je bilo odvisno od kemijske narave polimerne plasti. Za natančnejše prilagajanje omočenja je bila predlagana metoda, ki vključuje toplotno razgradnjo plasti poli(metil metakrilata) na steklenem substratu pri 350 °C. Podobno kot pri pristopu uporabljenem s strani Jang in sod. so bile polimerne plasti gladke in so izkazovale relativno majhno histerezo kontaktnega kota.Matavž et al. (Langmuir, 2017, 33 (43), 11893-11900) used layers of poly (styrene), poly (methyl methacrylate), poly (vinyl alcohol), or poly (vinyl pyrrolidone) to adjust the surface characteristics of glass substrates. The wetting of the studied inks depended on the chemical nature of the polymer layer. For a more precise wetting adjustment, a method has been proposed that involves the thermal decomposition of a layer of poly (methyl methacrylate) on a glass substrate at 350 ° C. Similar to the approach used by Yang et al. the polymer layers were smooth and exhibited relatively little contact angle hysteresis.

(ii) Lokalno omejevanje širjenja črnila(ii) Local ink spread limitation

Alternativni pristop k regulaciji omočenja je omejevanje širjenja funkcionalnega črnila z ustvarjanjem vzorcev z nizko površinsko energijo na dobro omočenih površinah.An alternative approach to wetting control is to limit the spread of functional ink by creating low surface energy patterns on well-wetted surfaces.

Nguyen in sod. (Appl. Mater. Interfaces, 2014, 6, 4011-4016) so uporabili površine v kombinaciji s hidrofilnimi in hidrofobnimi vzorci, ki omejujejo razširjanje tekočine. Selektivno omočenje je bilo doseženo z dvo-stopenjskim hidrofilnim-hidrofobnim nanašanjem 3-aminopropil trimetoksisilana (APTMS) in 3M Novec 1700 in Novec 7100DL Engineered Fluid na PET površinah; temu je sledila selektivna hidrofilna obdelava (bodisi atmosferska 02/Ar plazma ali obdelava površine z UV/ozonom) s pomočjo kovinskih šablon. Območja z visokim kontaktnim kotom vode 105° in območja z nizkim kontaktnim kotom vode <5° so bila dobljena na eni podlagi. Ta postopek uporablja mehansko šablono in s tem omejuje enostavne spremembe vzorcev značilno za metodo tiskanja.Nguyen et al. (Appl. Mater. Interfaces, 2014, 6, 4011-4016) used surfaces in combination with hydrophilic and hydrophobic patterns that limit fluid propagation. Selective wetting was achieved by two-step hydrophilic-hydrophobic deposition of 3-aminopropyl trimethoxysilane (APTMS) and 3M Novec 1700 and Novec 7100DL Engineered Fluid on PET surfaces; this was followed by selective hydrophilic treatment (either atmospheric 02 / Ar plasma or UV / ozone surface treatment) using metal stencils. Areas with a high water contact angle of 105 ° and areas with a low water contact angle <5 ° were obtained on one basis. This process uses a mechanical template and thus limits the simple pattern changes characteristic of the printing method.

Li in sod. (Appl. Mater. Interfaces, 2017, 9, 8194-8200) so uporabili območja z različnimi površinskimi energijami za omejevanje širjenja funkcionalnega črnila na steklenih substratih. Vzorce površinske energije so pripravili s kapljičnim nanašanjem tanke plasti polimera CYTOP® in naknadnega tiskanja čistega topila za odstranitev hidrofobne CYTOP® plasti preko učinka »kavnega obroča«. Ta postopek ohranja digitalno definicijo tiskanega vzorca, vendar pa je resolucija predloge odvisna od značilnosti tiskalnika in kontaktnega kota topila za odstranitev hidrofobne površine.Li et al. (Appl. Mater. Interfaces, 2017, 9, 8194-8200) used areas with different surface energies to limit the spread of functional ink on glass substrates. Surface energy samples were prepared by dropwise application of a thin layer of CYTOP® polymer and subsequent printing of a pure solvent to remove the hydrophobic CYTOP® layer via the “coffee ring” effect. This process retains the digital definition of the printed sample, but the resolution of the template depends on the characteristics of the printer and the contact angle of the solvent to remove the hydrophobic surface.

Godard in sod. (Adv. Mater. TechnoL, 2018, 1800168) so uporabili alkantiolate z nizko površinsko energijo, ki se vežejo na kovinske površine s kemisorpcijo in tvorijo samoorganizirane monoplasti. Vzorci so bili natisnjeni na silicijeve rezine prekrite s platino z brizgalnim tiskanje, da so nastale območja z nizko površinsko energijo, katera so omejevale razširjanje funkcionalnega črnila. Postopek ohranja digitalno definicijo tiskanega vzorca, vendar pa je resolucija predloge odvisna od značilnosti tiskalnika in omočenja alkantiolatnega črnila.Godard et al. (Adv. Mater. TechnoL, 2018, 1800168) used low surface energy alcanthiolates that bind to metal surfaces by chemisorption and form self-organized monoplasts. The samples were printed on platinum-coated silicon wafers by inkjet printing to create areas of low surface energy that limited the spread of functional ink. The process retains the digital definition of the printed sample, but the resolution of the template depends on the characteristics of the printer and the wetting of the alkantiolate ink.

US9248686B2 se nanaša na tiskalni element, ki ima vsaj eno polimerno plast, ki ima komponente, ki se lahko fotografijo, in kemijsko funkcionaliziran polimer, ki naredi polimerno plast bodisi bolj hidrofobno ali hidrofilno, kar zagotavlja različno omočenje s hidrofilnimi črnili. Fluorinirana polimerna plast je selektivno spremenjena pod svetlobo s pomočjo fotomaske. Neizpostavljeni polimer se lahko raztopi, da pusti površino z vzorcem.US9248686B2 relates to a printing element having at least one polymer layer having photographable components and a chemically functionalized polymer that makes the polymer layer either more hydrophobic or hydrophilic, providing different wetting with hydrophilic inks. The fluorinated polymer layer is selectively altered under light using a photomask. The unexposed polymer can dissolve to leave a patterned surface.

Ostaja potreba po razvoju hitre, zanesljive in stroškovno učinkovite tehnike, ki lahko prilagodi omočenje poljubnega trdnega substrata optične kvalitete, ki bi vodilo k visoki histerezi kontaktnega kota.There remains a need to develop a fast, reliable and cost-effective technique that can adjust the wetting of any solid substrate of optical quality, leading to high contact angle hysteresis.

Pričujoči izum je bil razvit na podlagi zgornjih razmislekov.The present invention has been developed based on the above considerations.

Opis rešitve tehničnega problemaDescription of the solution to the technical problem

Izum se nanaša na metodo za izboljšanje sposobnosti omočenja površine.The invention relates to a method for improving the wettability of a surface.

V splošnem pričujoče plasti za površinsko modifikacijo zagotavljajo univerzalnejšo in učinkovitejšo regulacijo omočenja med nanašanjem večih medsebojno prekrivajočih plasti, ki je zahtevano pri tiskani elektroniki. Regulacija omočenja tipično sledi dvostopenjskem postopku: (i) prekrivanje celotne površine s tanko polimerno plastjo in (ii) obdelovanje polimerne plasti z metodo modifikacije površine (obdelava z UV/O3 ali plazma) za prilagoditev omočenja. Problem se pojavi, saj so znane polimerne plasti intrinzično gladke (Ra<1 nm) in kemijsko homogene in posledično izražajo relativno nizko histerezo kontaktnega kota.In general, the present surface modification layers provide a more universal and efficient wetting regulation during the application of the multiple overlapping layers required in printed electronics. The wetting control typically follows a two-step process: (i) covering the entire surface with a thin polymer layer and (ii) treating the polymer layer with a surface modification method (UV / O3 or plasma treatment) to adjust the wetting. The problem arises because the known polymer layers are intrinsically smooth (Ra <1 nm) and chemically homogeneous and consequently express a relatively low contact angle hysteresis.

Histereza je običajno zadostna za tiskanje stabilnih vzorcev in zagotavlja srednjo resolucijo, vendar pa se natisnjeni vzorcu lahko med sušenjem skrčijo. Nižji umikajoči kontaktni kot in večja histereza kontaktnega kota omogoča višjo resolucijo tiskanja kot tudi izboljšano stabilnost po sušenju z omejevanjem odpetja kontaktne linije. Metode po pričujočem izumu lahko vodijo do zmanjšanja umikajočega kontaktnega kota in/ali povišane histereze kontaktnega kota. Tudi v primeru, ko histereza kontaktnega kota ni povišana, metode po izumu dovoljujejo znatno vrednost histereze, medtem ko se umikajoči kontaktni kot zniža, s čemer se izboljša omakalne lastnosti površine.Hysteresis is usually sufficient to print stable samples and provides medium resolution, but printed samples may shrink during drying. Lower contact angle retraction and greater contact angle hysteresis allow for higher print resolution as well as improved stability after drying by limiting contact line detachment. The methods of the present invention may lead to a decrease in the receding contact angle and / or increased contact angle hysteresis. Even in the case where the contact angle hysteresis is not increased, the methods according to the invention allow a significant value of the hysteresis, while the retracting contact angle is reduced, thus improving the wetting properties of the surface.

Tvorjenje nano-teksturiranih polimernih plasti je diskutirano tukaj. Spontana fazna separacija med poli(metil metakrilatom) (PMMA) in poli(stirenom) (PS) vodi do tanke plasti z visoko topografsko in kemijsko nehomogeno površino (slika 1 in slika 2).The formation of nano-textured polymer layers is discussed here. Spontaneous phase separation between poly (methyl methacrylate) (PMMA) and poly (styrene) (PS) leads to a thin layer with a high topographical and chemically inhomogeneous surface (Figure 1 and Figure 2).

Opcijske nadaljnje obdelave površine z UV/ozonom in/ali naknadno toplotno obdelavo, kot je opisano tukaj, lahko nadalje zmanjša upadajoči kontaktni kot in/ali poviša histerezo kontaktnega kota plasti.Optional further surface treatments with UV / ozone and / or post-heat treatment, as described herein, may further reduce the declining contact angle and / or increase the hysteresis of the contact angle of the layer.

V prvem aspektu se izum nanaša na metodo nanosa na substrat, kjer metoda vključuje sledeče korake: a) mešanje poli(stirena), poli(metil metakrilata) in topila, da nastane polimerna raztopina; b) nanašanje polimerne raztopine na substrat, da nastane nanos polimerne raztopine; c) sušenje nanosa polimerne raztopine, da nastane polimerna plast na substratu; d) izpostavljanje polimerne plasti reaktivnim polarnim molekulam, da nastane spremenjena polimerna plast na substratu.In a first aspect, the invention relates to a method of application to a substrate, wherein the method comprises the following steps: a) mixing poly (styrene), poly (methyl methacrylate) and solvent to form a polymer solution; b) applying the polymer solution to the substrate to form a polymer solution; c) drying the coating of the polymer solution to form a polymer layer on the substrate; d) exposing the polymer layer to reactive polar molecules to form an altered polymer layer on the substrate.

V nekaterih izvedbenih primerih se v koraku d) polimerna plast izpostavi UV/ozonu. To zmanjša umikajoč kontaktni kot in poviša histerezo kontaktnega kota polarnih topil.In some embodiments, in step d), the polymer layer is exposed to UV / ozone. This reduces the receding contact angle and increases the hysteresis of the polar solvent contact angle.

V nekaterih izvedbenih primerih se v koraku d) polimerna plast izpostavi kisikovi plazmi. To zmanjša umikajoč kontaktni kot in poviša histerezo kontaktnega kota polarnih topil.In some embodiments, in step d), the polymer layer is exposed to oxygen plasma. This reduces the receding contact angle and increases the hysteresis of the polar solvent contact angle.

V nekaterih izvedbenih primerih se površina nadalje spremeni s toplotno obdelavo modificirane polimerne plasti na 100 do 200 °C za 5 do 30 sekund. To lahko nadalje poviša napredujoči kontaktni kot in histerezo kontaktnega kota.In some embodiments, the surface is further altered by heat treatment of the modified polymer layer at 100 to 200 ° C for 5 to 30 seconds. This can further increase the advancing contact angle and the contact angle hysteresis.

V drugem aspektu se izum nanaša na metodo za izdelavo natisnjenega substrata, ki vključuje sledeče korake: i) pripravljanje premazanega substrata z metodo po prvem aspektu, in ii) tiskanje na premazani substrat.In another aspect, the invention relates to a method for making a printed substrate, comprising the steps of: i) preparing a coated substrate by a method according to the first aspect, and ii) printing on a coated substrate.

V nekaterih izvedbenih primerih se korak ii) izvede s črnilom, ki vsebuje polarno topilo. Polarna topila imajo nizek umikajoč kontaktni kot in visoko histerezo kontaktnega kota na substratih pripravljenih kot opisano in so še posebno uporabni pri tiskanju funkcionalnih plasti.In some embodiments, step ii) is performed with an ink containing a polar solvent. Polar solvents have a low withdrawal contact angle and high contact angle hysteresis on substrates prepared as described and are particularly useful in printing functional layers.

V nekaterih izvedbenih primerih je polarno topilo mešanica 2-etoksietanol (2EE), etilen glikol (EG) and etanolamin (EA). Ta sistem topil za tiskanje funkcionalnih črnil omogoča nastanek homogenih, ravnih plasti.In some embodiments, the polar solvent is a mixture of 2-ethoxyethanol (2EE), ethylene glycol (EG) and ethanolamine (EA). This solvent system for printing functional inks allows the formation of homogeneous, flat layers.

V nekaterih izvedbenih primerih črnilo vsebuje prekurzorje kovinskih oksidov. Črnila s prekurzorji kovinskih oksidov razpadejo pri visokih temperaturah, da nastane funkcionalno plast.In some embodiments, the ink contains metal oxide precursors. Inks with metal oxide precursors decompose at high temperatures to form a functional layer.

V nekaterih izvedbenih primerih se natisnjeni substrat segreje na temperaturo 350°C ali višjo, da se odstrani polimerna plast. To omogoča, da polimerna plast deluje kot začasna modifikacija površine, ki ne bo vpletena v funkcijo natisnjene plasti.In some embodiments, the printed substrate is heated to a temperature of 350 ° C or higher to remove the polymer layer. This allows the polymer layer to act as a temporary surface modification that will not be involved in the function of the printed layer.

V nekaterih izvedbenih primerih je substrat silicijeva rezina.In some embodiments, the substrate is a silicon wafer.

V nekaterih izvedbenih primeri ima substrat uporabljen v koraku b) metode po prvem ali drugem aspektu pred-natisnjeno plast na površini, na katero se nanese polimerno raztopino v koraku b). Na ta način so številne funkcionalne plasti natančno natisnjene ena na drugo s ponavljanjem zgornje metode.In some embodiments, the substrate used in step b) of the method according to the first or second aspect has a pre-printed layer on the surface to which the polymer solution is applied in step b). In this way, many functional layers are accurately printed on top of each other by repeating the above method.

V tretjem aspektu se izum nanaša na susbtrat, ki se pridobi z metodo po prvem ali drugem aspektu.In a third aspect, the invention relates to a substrate obtained by a method according to the first or second aspect.

V nekaterih izvedbenih primerih ima polimerna plast na substratu debelino 10 nm ali manj. Ta debelina preprečuje pokanje natisnjene funkcionalne plasti med razgradnjo in zmanjša količino ogljika na vmesni plasti.In some embodiments, the polymer layer on the substrate has a thickness of 10 nm or less. This thickness prevents the printed functional layer from cracking during degradation and reduces the amount of carbon in the intermediate layer.

V nekaterih izvedbenih primerih je razdalja med fazno ločenimi otoki manj kot 1 pm. To zagotavlja, da so fazno ločeni otoki relativno majhni glede na strukturo ali strukture, ki se tiskajo.In some embodiments, the distance between the phase-separated islands is less than 1 pm. This ensures that the phase-separated islands are relatively small in terms of the structure or structures to be printed.

Pričujoči izum se tudi nanaša na premazane materiale (t.j. substrat s polimernim nanosom ali plastjo), ki se pridobi z opisanimi metodami. Tukaj so opisani substrati, ki imajo naneseno polimerno plast; natisnjeni substrati, ki imajo polimerno plast in natisnjen vzorec na omenjeni plasti; in natisnjene substrate, ki imajo natisnjen vzorec in substrat, iz katerega je bila polimerna plast odstranjena.The present invention also relates to coated materials (i.e. a substrate with a polymer coating or layer) obtained by the described methods. Substrates having a polymer layer applied are described herein; printed substrates having a polymer layer and a printed pattern on said layer; and printed substrates having a printed pattern and a substrate from which the polymer layer has been removed.

Izum vključuje kombinacije aspektov in prednostnih značilnosti opisanih, razen v primeru, kjer so takšne kombinacije očitno nedovoljene ali eksplicitno izključene.The invention includes combinations of the aspects and preferred features described, except where such combinations are manifestly impermissible or explicitly excluded.

Izvedbeni primeri in eksperimenti, ki prikazujejo principe izuma, bodo v nadaljevanju opisani s pomočjo sledečih slik:Embodiments and experiments illustrating the principles of the invention will be described below with the aid of the following figures:

Slika 1 prikazuje shematski prikaz topografije teksturirane PMMA/PS polimerne plasti, ki ilustrira heterogenost površine z ločenimi fazami PMMA in PSFigure 1 shows a schematic representation of the topography of a textured PMMA / PS polymer layer illustrating surface heterogeneity with separate PMMA and PS phases

Slika 2 prikazuje shematski prikaz prereza teksturirane PMMA/PS polimerne plasti, ki ilustrira ločene faze PMMA in PSFigure 2 shows a schematic cross-sectional view of a textured PMMA / PS polymer layer illustrating the separate phases of PMMA and PS

Slika 3 prikazuje AFM topografijo površine 8 nm debele PMMA/PS polimerne plasti Slika 4 prikazuje kontaktne kote etilen glikola na steklu z nanosom PMMA in steklu z nanosom PMMA/PS pri povečevanju prostornine kapljice (ki ustreza napredujočemu kontaktnemu kotu) in poznejšemu zniževanju prostornine kapljice (ki ustreza umikajočemu kontaktnemu kotu). Oba polimerna filma sta bila obdelana z UV/ozonom za 120 sekund in naknadno termično obdelana pri 150 °C za 15 sekund. je hipni premer kapljice na površini normaliziran na maksimalni premer, ki je bil dosežen pri meritvi.Figure 3 shows the AFM topography of the surface of the 8 nm thick PMMA / PS polymer layer Figure 4 shows the contact angles of ethylene glycol on PMMA and PMMA / PS coated glass as the droplet volume increases (corresponding to the advancing contact angle) and the droplet volume subsequently decreases corresponding to the retracting contact angle). Both polymer films were treated with UV / ozone for 120 seconds and subsequently heat treated at 150 ° C for 15 seconds. the instantaneous diameter of the droplet on the surface is normalized to the maximum diameter reached at the measurement.

Slika 5 prikazuje kvadraten vzorec z dimenzijami 500x500 pm2 natisnjen na steklo z nanosom PMMA in steklo z nanosom PMMA/PS po sušenju. Bela črtkana črta orisuje začetno obliko natisnjenega kvadrata, (a) in (c) prikazujeta natisnjen vzorec takoj po tiskanju, medtem ko (b) in (d) prikazujeta isti vzorec po 30 sekundah sušenja.Figure 5 shows a square pattern measuring 500x500 pm 2 printed on PMMA coated glass and PMMA / PS coated glass after drying. The white dashed line outlines the initial shape of the printed square, (a) and (c) show the printed pattern immediately after printing, while (b) and (d) show the same pattern after 30 seconds of drying.

Aspekti in izvedbeni primeri pričujočega izuma bodo opisani glede na zgoraj omenjene slike. Nadaljnji aspekti in izvedbeni primeri bodo očitni strokovnjaku na področju. Vsi dokumenti omenjeni v tem besedilu so vključeni vanj s sklicevanjem nanje.Aspects and embodiments of the present invention will be described with reference to the above-mentioned figures. Further aspects and implementation examples will be apparent to one skilled in the art. All documents mentioned in this text are incorporated herein by reference.

V pričujočem izumu se na površino nanese mešanica PMMA in PS. Plast se fazno loči, da nastanejo enakomernetopografske značilnosti, ko se plast posuši. Nastala plast ima znižan umikajoči kontaktni kot in/ali povišano histerezo kontaktnega kota.In the present invention, a mixture of PMMA and PS is applied to the surface. The layer is phase separated to form uniform topographic characteristics when the layer dries. The resulting layer has a reduced contact angle and / or increased hysteresis of the contact angle.

Pričujoči izum tudi opisuje tehnike za nadaljnje prilagajanje površineske energije plasti, da se dodatno zniža umikajoči kontaktni kot in/ali poviša histereza kontaktnega kota z reakcijo s polarnimi zvrstmi.The present invention also describes techniques for further adjusting the surface energy of the layer to further reduce the withdrawal contact angle and / or increase the contact angle hysteresis by reacting with polar species.

Nadalje, pričujoči izum opisuje tehnike, ki povišajo napredujoči kontaktni kot in histerezo kontaktnega kota s termično obdelavo.Furthermore, the present invention describes techniques that increase the advancing contact angle and the contact angle hysteresis by heat treatment.

Nadalje opisuje izum tudi razgradnjo polimerne plasti po tiskanju.The invention further describes the decomposition of the polymer layer after printing.

Izbira substrataSubstrate selection

PMMA/PS plasti po izumu se lahko uspešno uporabijo kot plasti za površinsko modifikacijo na različnih tipih površin. Za brizgalno tiskanje se lahko izberejo številni substrati optične kvalitete, ki se uporabljajo v elektroniki. Primerni substrati vključujejo silicijeve rezine, različne vrsta stekla, polirani keramični substrati in kovinske folije in polimeri kot je poliimid. Še posebno uporaben substrat je silicijeva rezina. V primerih, kjer se uporabi silicijeva rezine, se lahko substrat primerno pasivizira z nanosom inertne plasti, kot je na primer plast AI2O3. Substrat je lahko tudi zgoraj omenjeni material s pred-natisnjeno funkcionalno plastjo na površini.The PMMA / PS layers according to the invention can be successfully used as layers for surface modification on various types of surfaces. A number of optical quality substrates used in electronics can be selected for inkjet printing. Suitable substrates include silicon wafers, various types of glass, polished ceramic substrates, and metal foils and polymers such as polyimide. A particularly useful substrate is a silicon wafer. In cases where silicon wafers are used, the substrate can be suitably passivated by applying an inert layer, such as an AI2O3 layer. The substrate may also be the above-mentioned material with a pre-printed functional layer on the surface.

Substrati primerni za spreminjanje omočenja niso omejeni z velikostjo, sestavo ali geometrijo. Pričujoči izum je primeren za modifikacijo omočenja ravnih, neravnih in ukrivljenih substratov, saj se PMMA/PS plast po izumu lahko enakomerno nanese na takšne substrate.Substrates suitable for changing wetting are not limited by size, composition or geometry. The present invention is suitable for modifying the wetting of flat, uneven and curved substrates, since the PMMA / PS layer according to the invention can be applied evenly to such substrates.

Nanašanje polimerovApplication of polymers

V prvem koraku se surovi materiali PMMA in PS raztopijo v topilu. Primerna topila vključujejo, na primer anisol. Primerne molekulske teže PMMA in PS so lahko neodvisno od približno 1 kDa do 1500 kDa, na primer 100 do 1000 kDa, na primer 400 do 600 kDa, na primer 500 kDa.In the first step, the raw materials PMMA and PS are dissolved in the solvent. Suitable solvents include, for example, anisole. Suitable molecular weights of PMMA and PS may be independently from about 1 kDa to 1500 kDa, for example 100 to 1000 kDa, for example 400 to 600 kDa, for example 500 kDa.

Primerno masno razmerje med PMMA in PS (PMMA:PS) je približno 0,5:1 to 1:0,5. Primerno masno razmerje je približno 1:1. Topografske značilnosti plasti se lahko prilagodijo z masnim razmerjem obeh polimerov, kot je poznano na področju tehnike.A suitable PMMA to PS weight ratio (PMMA: PS) is approximately 0.5: 1 to 1: 0.5. A suitable weight ratio is about 1: 1. The topographic characteristics of the layers can be adjusted by the mass ratio of the two polymers, as is known in the art.

V drugem koraku se površina substrata prekrije z nanosom raztopine polimera na substrat s katerokoli primerno tehniko, na primer znanašanjem z metodo vrtenja, pršenjem ali katerokoli drugo tehniko nanašanja.In the second step, the surface of the substrate is coated by applying the polymer solution to the substrate by any suitable technique, for example, knowledge of the method of rotation, spraying or any other application technique.

V tretjem koraku se polimerna raztopina posuši. To se lahko izvede s katerokoli primerno metodo. Na primer, lahko se izvede s sušenjem substrata z nanosom pri standardnih pogojih ali opcijsko z gretjem. Primerna temperatura gretja je 100 do 200°C. Primeren čas gretja je 0,5 do 10 minut, še posebno 1 do 5 minut. Pogoji sušenja lahko vplivajo na morfologijo polimerne plasti, kot je to poznano na področju tehnike. Primeren režim sušenja se lahko izbere na podlagi topila polimerne raztopine. To tvori polimerno plast na substratu.In the third step, the polymer solution is dried. This can be done by any suitable method. For example, it can be carried out by drying the substrate by application under standard conditions or optionally by heating. A suitable heating temperature is 100 to 200 ° C. A suitable heating time is 0.5 to 10 minutes, especially 1 to 5 minutes. Drying conditions can affect the morphology of the polymer layer, as is known in the art. A suitable drying mode can be selected based on the solvent of the polymer solution. This forms a polymer layer on the substrate.

V tem času sta PMMA in PS, ki sta prisotna v polimerni raztopini v nanosu, podvržena fazni ločitvi. Verjame se, da nastala polimerna plast vsebuje otoke PMMA in PS faz (slika 1 in 2), kar jo naredi kemijsko heterogeno. To ustvari površino s povišano histerezo kontaktnega kota v primerjavi s kemijsko homogeno površino s podobno hrapavostjo površine. Izumitelji so ugotovili, da imajo tako pripravljeni polimerni filmi nizko površinsko energijo in nizko polarnost površine, kar ima za posledico višji kontaktni kot številnih polarnih topil, na primer diolov (kot je etilen glikol), poliolov (kot je glicerol), vode, formamida, dimetil sulfoksida in etanolamina. Nepolarna topila, kot so toluen, benzen, oktan, imajo znižan kontaktni kot na opisanih polimernih filmih z nizko površinsko energijo, če se primerjajo s polarnimi substrati kot so steklo in keramika brez nanosov.During this time, PMMA and PS present in the polymer solution in the coating are subjected to phase separation. The resulting polymer layer is believed to contain PMMA and PS phase islands (Figures 1 and 2), making it chemically heterogeneous. This creates a surface with increased contact angle hysteresis compared to a chemically homogeneous surface with similar surface roughness. The inventors have found that the polymer films thus prepared have low surface energy and low surface polarity, resulting in a higher contact angle than many polar solvents, for example diols (such as ethylene glycol), polyols (such as glycerol), water, formamide, dimethyl sulfoxide and ethanolamine. Non-polar solvents such as toluene, benzene, octane have a reduced contact angle on the described low-energy polymer films when compared to polar substrates such as glass and non-coated ceramics.

Tako pripravljeni polimerni filmi, kot so opisani tukaj, imajo višjo histerezo kontaktnega kota številnih polarnih in nepolarnih topil na primer etilen glikola, etanolamina, glicerola, toluena, benzena in oktana, zaradi nepravilnosti na površini filmov.Thus prepared polymer films, as described herein, have a higher contact angle hysteresis of many polar and nonpolar solvents, for example ethylene glycol, ethanolamine, glycerol, toluene, benzene and octane, due to irregularities on the surface of the films.

Plasti PMMA/PS pripravljene z opisano metodo izkazujejo periodične topografske značilnosti manj kot 1 pm široke, na primer približno 400 nm široke z višino vrha-dodoline <10 nm, na primer približno 4 nm (slika 3). Vsaka značilnosti deluje kot topografska nepravilnost in učinkovito zviša energijo zapetja kontaktne linije tekočine in posledično njeno histerezo kontaktnega kota. Koren povprečnega kvadrata hrapavosti pričujoče PMMA/PS plasti na steklenem substratu izmerjen z mikroskopijo na atomsko silo je približno 1,5 nm, kar je dovolj nizko, da prepreči negativne učinke na natisnjene funkcionalnie plasti.PMMA / PS layers prepared by the described method exhibit periodic topographic characteristics less than 1 pm wide, for example about 400 nm wide with a peak-valley height <10 nm, for example about 4 nm (Figure 3). Each feature acts as a topographic irregularity and effectively increases the binding energy of the contact line of the fluid and consequently its hysteresis of the contact angle. The root mean square roughness of the present PMMA / PS layer on the glass substrate measured by atomic force microscopy is about 1.5 nm, which is low enough to avoid negative effects on the printed functional layers.

Polimerne plasti narejene s tukaj opisanimi metodami imajo debelino, kije primerno 10 nm ali manj, na primer 8 nm ali manj, da se prepreči pokanje in zmanjša učinke na adhezijo funkcionalne oksidne plasti in da se zniža količina preostalega ogljika na vmesni plasti po razgradnji (dekompoziciji).Polymer layers made by the methods described herein have a thickness that is suitably 10 nm or less, for example 8 nm or less, to prevent cracking and reduce the effects on the adhesion of the functional oxide layer and to reduce the amount of residual carbon on the intermediate layer after decomposition (decomposition). ).

Površinsko morfologijo PMMA/PS polimerne plasti po izumu se lahko nadzoruje z razmerjem med PMMA in PS, molekulsko težo vsakega polimera, koncentracijo polimera v raztopini za nanos, parametrov nanašanja in toplotne obdelave plasti, kot je jasno strokovnjaku na področju.The surface morphology of the PMMA / PS polymer layer according to the invention can be controlled by the ratio of PMMA to PS, the molecular weight of each polymer, the concentration of the polymer in the coating solution, the application parameters and the heat treatment of the layer.

Spreminjanje površineChanging the surface

Površinska energija polimerne plasti se lahko dodatno poviša z izpostavitvijo reaktivnim polarnim zvrstem (na primer kisiku ali dušiku). Primerne obdelave vključujejo izpostavitev UV/ozonu (O3), 02-plazmi, dušikovi plazmi ali drugim tehnikam za spreminjanje površine polimerov, ki so poznane na področju tehnike. Ta dodatna obdelava lahko dodatno zniža kontaktne kote polarnih topil, še posebno umikajočega kontaktnega kota, in tako lahko nadalje poviša histerezo kontaktnega kota. Take površinske modifikacije povišajo kontaktni kot nepolarnih topil.The surface energy of the polymer layer can be further increased by exposure to reactive polar species (e.g., oxygen or nitrogen). Suitable treatments include exposure to UV / ozone (O3), O2-plasma, nitrogen plasma or other surface modification techniques known in the art. This additional treatment can further reduce the contact angles of the polar solvents, in particular the receding contact angle, and thus can further increase the contact angle hysteresis. Such surface modifications increase the contact angle of non-polar solvents.

Kontaktni kot in histereza kontaktnega kota površine se lahko prilagodi z različnimi časi izpostavitve polarnim zvrstem. Izpostavitev polarnim zvrstem zniža kontaktne kote polarnih topil. S to metodo se lahko izbere primerne čase izpostavitve, da se doseže želene značilnosti na podlagi polimernih filmov in uporabljenih topil, in se lahko zniža tudi umikajoči kontaktni kot do nič ali blizu nič.The contact angle and hysteresis of the contact angle of the surface can be adjusted with different exposure times to the polar species. Exposure to polar species lowers the contact angles of polar solvents. With this method, suitable exposure times can be selected to achieve the desired characteristics based on the polymer films and solvents used, and the withdrawal contact angle can also be reduced to zero or close to zero.

Primerni časi izpostavitve UV/O3 modifikacije z uporabo komercialnega UV/O3 čistilnega aparata so odvisni od polimernega filma in kontaktnega kota, ki se želi doseči. Na primer primerni časi izpostavitve so lahko približno 5 do 50 sekund ali približno 15 do 300 sekund. Časi izpostavitve so lahko približno 30 do 300 sekund, na primer približno 30 do 120 sekund, na primer približno 30, približno 60, približno 90 ali približno 120 sekund. Primerni časi izpostavitve 02-plazmi z uporabo RF kisikove plazme delujoče pri 50 Pa delovnem tlaku in moči 50 W so, na primer, 0,1 do 60 sekund.Suitable exposure times of UV / O3 modification using a commercial UV / O3 cleaning apparatus depend on the polymer film and the contact angle to be achieved. For example, suitable exposure times may be about 5 to 50 seconds or about 15 to 300 seconds. Exposure times may be about 30 to 300 seconds, for example about 30 to 120 seconds, for example about 30, about 60, about 90 or about 120 seconds. Suitable exposure times to 02-plasma using RF oxygen plasma operating at 50 Pa operating pressure and 50 W are, for example, 0.1 to 60 seconds.

Primerne valovne dolžine za UV sevanje so na primer od približno 100 do 350 nm, na primer približno 150 do 300 nm, primerno od približno 175 do 275 nm. Specifični primeri vključujejo 185 nm in 254 nm. Pod temi UV pogoji molekularni O2 disociira in tvori kisikove radikale z molekulskim O2 da nastane ozon.Suitable wavelengths for UV radiation are, for example, from about 100 to 350 nm, for example about 150 to 300 nm, suitably from about 175 to 275 nm. Specific examples include 185 nm and 254 nm. Under these UV conditions, molecular O2 dissociates and forms oxygen radicals with molecular O2 to form ozone.

Primerne razdalje izpostavitve so približno 10 do 50 mm, kot je določeno v specifikacijah ozonskega čistilnega aparata.Suitable exposure distances are approximately 10 to 50 mm as specified in the ozone treatment plant specifications.

Primerna moč izpostavitve je približno 5 do 50 pW/cm2, na primer približno 10 do 30 pW/cm2, na primer približno 20 pW/cm2.A suitable exposure power is about 5 to 50 pW / cm 2 , for example about 10 to 30 pW / cm 2 , for example about 20 pW / cm 2 .

Kontaktni koti polimerne plasti se lahko opcijsko povišajo s staranjem pri sobni temperaturi v običajnem okolju. Vendar pa je to počasen postopek in učinek je minimalen. Zato je zaželeno, da se tiskanje nadaljuje čim prej po izpostavitvi polarnim zvrstem.The contact angles of the polymer layer can optionally increase with aging at room temperature in a normal environment. However, this is a slow process and the effect is minimal. It is therefore desirable that printing be resumed as soon as possible after exposure to polar species.

Posledično se v nekaterih izvedbenih primerih lahko kontaktni kot nadalje zviša po izpostavitvi polarnim zvrstem s termično obdelavo pri približno 100 do 200 °C, prednostno približno 150 °C. Primeren čas termične obdelave je približno 5 do 30 sekund, primerno približno 10 do 20 sekund, na primer 15 sekund. Omenjena termična obdelavanaj bi nadalje povišala napredujoči kontaktni kot in histerezo kontaktnega kota.Consequently, in some embodiments, the contact angle may be further increased after exposure to polar species by heat treatment at about 100 to 200 ° C, preferably about 150 ° C. A suitable heat treatment time is about 5 to 30 seconds, suitably about 10 to 20 seconds, for example 15 seconds. Said heat treatment would further increase the advancing contact angle and the contact angle hysteresis.

S tukaj opisanimi tehnikami se na primer lahko doseže histereza kontaktnega kota za etilen glikol višja od 43° za PMMA/PS plasti, kot so bile opisane tukaj po izpostavitvi UV/ozonu za 120 sekund in po termični obdelavi pri 150 °C za 15 sekund. To je približno 200% višja histereza kontaktnega kota kot pri običajnih PMMA plasteh (slika 4).For example, the techniques described herein can achieve a contact angle hysteresis for ethylene glycol higher than 43 ° for PMMA / PS layers as described herein after exposure to UV / ozone for 120 seconds and after heat treatment at 150 ° C for 15 seconds. This is about 200% higher contact angle hysteresis than with conventional PMMA layers (Figure 4).

TiskanjePrinting

Pričujoči izum zagotavlja površino z visoko histerezo kontaktnega kota, ki ima velik vpliv na sušenje natisnjenih struktur. Površine z nanosom po izumu se lahko uporabijo za printanje elektronskih komponent. PMMA/PS plast se lahko uporabi za prilagajanje omočenja številnih črnil, na primer za komercialna srebrna črnila, črnila, ki vsebujejo 40 vol% ali več enega izmed etilen glikol, etanolamin, 1,3-propandiol, dietilen glikol ali kateregakoli drugega topila s podobno površinsko napetostjo, ali črnil, ki vsebujejo 10 vol% ali več glicerola.The present invention provides a surface with high hysteresis of the contact angle, which has a great influence on the drying of the printed structures. The coating surfaces according to the invention can be used for printing electronic components. The PMMA / PS layer can be used to adjust the wetting of many inks, for example for commercial silver inks, inks containing 40% or more by volume of one of ethylene glycol, ethanolamine, 1,3-propanediol, diethylene glycol or any other solvent with a similar surface tension, or inks containing 10% or more by weight of glycerol.

Tiskanje prekurzorskega črnila lantanijevega nikelata s ternarnim topilom s sestavo 2etoksietanol (2EE), etilen glikol (EG) in etanolamin (EA) na PMMA plasteh obdelanih z UV/ozonom za 150 sekund (Matavž et al., Appl. Phys. Lett., 2018, 113, 012904) rezultira v 10° napredujočem kontaktnem kotu črnila na takšni plasti. Navkljub nizkemu napredujočemu kontaktnemu kotu obdelane PMMA plasti, sušenje povzroči premik kontaktne linije (slika 5, PMMA), kar poslabša definicijo vzorca.Printing precursor ink of lanthanum nickel with a ternary solvent with the composition 2ethoxyethanol (2EE), ethylene glycol (EG) and ethanolamine (EA) on PMMA layers treated with UV / ozone for 150 seconds (Matavž et al., Appl. Phys. Lett., 2018 , 113, 012904) results in a 10 ° advancing ink contact angle on such a layer. Despite the low advancing contact angle of the treated PMMA layer, drying causes the contact line to shift (Fig. 5, PMMA), which degrades the pattern definition.

V nasprotju s temi poznanimi, gladkimi PMMA plastmi obdelanimi z UV/ozonom, ki so značilne po dinamičnem obnašanju kontaktne linije sušeče kapljice, nano-teksturirane PMMA/PS plasti, kot so opisane tukaj, ne izkazujejo nestabilnosti omočenja (slika 5, PMMA/PS) in se lahko uporabijo za nanašanje dobro definiranih struktur. Višja histereza kontaktnega kota PMMA/PS polimerne plasti po izumu omogoča višjo resolucijo tiskanja, boljšo kvaliteto definicije vzorca in boljšo morfologijo posušenih nanosov.In contrast to these known, smooth UV / ozone-treated PMMA layers, which are characterized by the dynamic behavior of the drying droplet contact line, nano-textured PMMA / PS layers as described here do not show wetting instability (Figure 5, PMMA / PS ) and can be used to apply well-defined structures. The higher hysteresis of the contact angle of the PMMA / PS polymer layer according to the invention enables a higher printing resolution, a better quality of the sample definition and a better morphology of the dried coatings.

RazgradnjaDecomposition

Ko se črnilo ali druga funkcionalna plast natisne na polimerno plast, kot je opisana tukaj, se lahko omenjena polimerna plast odstrani s toplotno razgradnjo. Polimerna plast se takoj razgradi pri temperaturah, ki so nižje od temperatur, pri katerih se razgradi natisnjena funkcionalna plast. Primerne temperature so višje od 350 °C.When the ink or other functional layer is printed on the polymer layer as described herein, said polymer layer can be removed by thermal decomposition. The polymer layer decomposes immediately at temperatures below the temperatures at which the printed functional layer decomposes. Suitable temperatures are higher than 350 ° C.

Prednostna debelina polimerne plasti (primerno 10 nm ali manj, na primer 8 nm ali manj) preprečuje pokanje ali delaminačijo natisnjene funkcionalne plasti med tem postopkom in zmanjšuje količino ogljika na vmesni plasti.The preferred thickness of the polymer layer (suitably 10 nm or less, for example 8 nm or less) prevents cracking or delamination of the printed functional layer during this process and reduces the amount of carbon in the intermediate layer.

Potrebno je omeniti, da se tiskanje in opcijsko odstranjevanje polimerne plasti z razgradnjo lahko izvede po sušenju nanosa polimerne raztopine; ali, če je prisotna, po površinski modifikaciji z izpostavitvijo reaktivnim polarnim zvrstem; ali, če je prisotna, po površinski modifikaciji s segrevanjem.It should be noted that the printing and optional removal of the polymer layer by degradation can be performed after drying of the polymer solution coating; or, if present, after surface modification by exposure to reactive polar species; or, if present, after surface modification by heating.

Prav tako je potrebno omeniti, da se postopki, kot so opisani tukaj, lahko ponavljajo, da se natisnje večje število vzorcev na substrat. Na primer, substrat, na katerega je vzorec že bil natisnjen z uporabo tukaj opisanih metod (opcijsko s površinsko modifikacijo in/ali razgradnjo, kot je bilo tukaj opisano), se lahko uporabi kot začetni substrat za nadaljnje nanose polimerne plasti in tiskanje (opcijsko s površinsko modifikacijo in/ali razgradnjo, kot je bilo tukaj opisano).It should also be noted that the procedures as described herein can be repeated to print a larger number of samples on the substrate. For example, a substrate on which a sample has already been printed using the methods described herein (optionally by surface modification and / or degradation as described herein) may be used as an initial substrate for further polymer coatings and printing (optionally by surface modification and / or degradation as described herein).

******

Značilnosti razkrite v opisu ali patentnih zahtevkih ali slikah, izražene v specifičnih oblikah ali pogojih za izvajanje opisane funkcije ali metoda ali postopek za zagotavljanje opisanih rezultatov se, v kolikor je to primerno, lahko posamezno ali v katerikoli kombinaciji omenjenih značilnosti uporabijo za realizacijo izuma v različnih oblikah le-tega.The features disclosed in the description or claims or figures, expressed in specific forms or conditions to perform the described function or method or method to provide the described results, may, if appropriate, individually or in any combination of said features be used to realize the invention in various forms of it.

Izum je bil opisan v povezavi z zgoraj opisanimi možnimi izvedbenimi primeri, vendar pa so možne številne spremembe in variacije, ki so očitne strokovnjaku na področju na podlagi razkritega besedila. V skladu s tem, so predstavljeni primeri izuma le ilustrativni in ne omejujejo izuma. Različne spremembe opisanih izvedbenih primerov se lahko storijo brez oddaljevanja od bistva izuma in širine le-tega.The invention has been described in connection with the possible embodiments described above, but a number of changes and variations are possible which are obvious to a person skilled in the art on the basis of the disclosed text. Accordingly, the presented examples of the invention are illustrative only and do not limit the invention. Various variations of the described embodiments can be made without departing from the spirit of the invention and its scope.

V izogib kakršnemukoli dvomu, so vsakršne teoretične razlage v besedilu namenjene razumevanju besedila. Izumitelji ne želijo kakršnekoli omejitve s katerokoli izmed uporabljenih teoretičnih razlag.For the avoidance of any doubt, any theoretical explanations in the text are intended to understand the text. The inventors do not want any limitation with any of the theoretical explanations used.

Katerikoli podnaslov znotraj besedila je le za organizacijo besedila in ne sme biti razumljen kot omejitev opisanega izuma.Any subheading within the text is for text organization only and should not be construed as limiting the invention described.

Skozi celotno besedilo, vključno s patentnimi zahtevki, razen če kontekst zahteva drugače, beseda vsebovati in vključevati kot tudi variacije vključujoč, vsebujoč, pomenijo vključitev števila ali koraka ali skupine števil ali korakov, ne pa izključitve kateregakoli drugega števila, koraka ali skupine števil ali korakov.Throughout the text, including claims, unless the context requires otherwise, the word contain and include as well as variations including, including, include the inclusion of a number or step or group of numbers or steps, and not the exclusion of any other number, step or group of numbers or steps .

Edninske oblike uporabljene v opisu izuma in v zahtevkih vključujejo tudi dvojino in množino, razen, če je iz konteksta očitno drugače razvidno. Rangi so lahko izraženi od približno ene vrednosti in/ali do približno druge vrednosti. Ko je uporabljen takšen rang, drugi izvedbeni primer vključuje rang od ene določene vrednosti in/ali do druge določene vrednosti. Podobno, ko so vrednosti izražene kot približki z besedo približno, se smatra, daje točna vrednost predstavljena v drugem izvedbenem primeru. Beseda približno v zvezi s številčno vrednostjo je opcijska in predstavlja na primer +/-10%.The singular forms used in the description of the invention and in the claims also include duality and plural, unless the context clearly indicates otherwise. Ranks can be expressed from about one value and / or to about another value. When such a range is used, the second embodiment includes a range from one specified value and / or to another specified value. Similarly, when values are expressed as approximations with the word approximately, the exact value is considered to be represented in the second embodiment. The word approximately in relation to a numerical value is optional and represents, for example, +/- 10%.

PRIMERIEXAMPLES

PRIMER 1EXAMPLE 1

PMMA (polimetilmetakrilat) in PS (polistiren) z molekulsko težo 500 kDa sta bila uporabljena kot začetna materiala. 0,1 g PMMA in 0,1 g PS sta bila zmešana z 40 mL anisola in mešana pri sobni temperaturi do popolne raztopitve polimerov. Polimerna plast je bila pripravljena s popolnim prekritjem steklenega substrata s polimerno raztopino in kapljičnim nanosom pri 3000 rpm za 30 sekund. Polimerna plast na substratu je bila sušena na vroči plošči pri 150°C za 2 min, kar je dalo 8 nm debelo polimerno plast.PMMA (polymethylmethacrylate) and PS (polystyrene) with a molecular weight of 500 kDa were used as starting materials. 0.1 g of PMMA and 0.1 g of PS were mixed with 40 mL of anisole and stirred at room temperature until complete dissolution of the polymers. The polymer layer was prepared by completely covering the glass substrate with the polymer solution and dropping at 3000 rpm for 30 seconds. The polymer layer on the substrate was dried on a hot plate at 150 ° C for 2 min to give an 8 nm thick polymer layer.

Kontaktni koti so bili izmerjeni z uporabo Kruss DSA 20E tenziometra z opazovanjem sesilnih kapljic v stranskem pogledu pri 22 °C +/- 2°C in relativni vlažnosti 30% +/10%. Napredujoči kontaktni koti so bili izmerjeni s poviševanjem prostornine kapljice s hitrostjo 5 pL/min z uporabo tanke brizge, medtem ko so bili umikajoči kontaktni koti izmerjeni z nižanjem prostornine kapljice z uporabo tanke brizge pri hitrosti -5 pL/min. Napredujoči in umikajoči kontaktni koti za različna topila so predstavljeni v Tabeli 1.Contact angles were measured using a Kruss DSA 20E tensiometer by observing suction droplets in a side view at 22 ° C +/- 2 ° C and a relative humidity of 30% + / 10%. Progressive contact angles were measured by increasing the droplet volume at a rate of 5 pL / min using a thin syringe, while receding contact angles were measured by decreasing the droplet volume using a thin syringe at a rate of -5 pL / min. The advancing and retracting contact angles for different solvents are presented in Table 1.

Tabela 1Table 1

Topilo/črnilo Solvent / ink Napredujoči kontaktni kot n Progressive contact angle n Umikajoči kontaktni kot (°) Retracting contact angle (°) Histereza kontaktnega kota (°) Contact angle hysteresis (°) Etilen glikol Ethylene glycol 64 64 45 45 19 19 voda water 90 90 72 72 18 18 etanolamin ethanolamine 62 62 41 41 21 21 glicerol glycerol 80 80 65 65 15 15 1,2-propandiol 1,2-propanediol 58 58 15 15 43 43 Črnilo s prekurzorji lantanovega nikelata v etilen glikolu (0,1 M) Ink with lanthanum nickel precursors in ethylene glycol (0.1 M) 66 66 48 48 18 18 Črnilo s prekurzorji lantanovega nikelata v 2-etoksi etanolu, etilen glikolu, etanolaminu pri razmeru 20:16:64 ratio (0,1 M) Ink with precursors of lanthanum nickel in 2-ethoxy ethanol, ethylene glycol, ethanolamine at a ratio of 20:16:64 ratio (0.1 M) 47 47 23 23 24 24

PRIMERJALNI PRIMER 1COMPARATIVE EXAMPLE 1

Kontaktni koti različnih topil so bili izmerjeni za gladke PMMA polimerne površine pripravljene na enak način kot v primeru 1 z uporabo 0,2 g PMMA samega namesto 0,1 g PMMA in 0,1 g PS. Rezultati so prikazani v tabeli 2.The contact angles of the different solvents were measured for smooth PMMA polymer surfaces prepared in the same manner as in Example 1 using 0.2 g of PMMA alone instead of 0.1 g of PMMA and 0.1 g of PS. The results are shown in Table 2.

Tabela 2Table 2

Topilo/črnilo Solvent / ink Napredujoči kontaktni kot (°) Advancing contact angle (°) Umikajoči kontaktni kot n Retracting contact angle n Histereza kontaktnega kota (°) Contact angle hysteresis (°) Etilen glikol Ethylene glycol 55 55 43 43 12 12 voda water 76 76 64 64 12 12 etanolamin ethanolamine 56 56 37 37 19 19 glicerol glycerol 68 68 60 60 8 8 1,2-propandiol 1,2-propanediol 46 46 22 22 24 24 Črnilo s prekurzorji lantanovega nikelata v 2-etoksi etanolu, etilen glikolu, etanolaminu pri razmeru 20:16:64 ratio (0,1 M) Ink with precursors of lanthanum nickel in 2-ethoxy ethanol, ethylene glycol, ethanolamine at a ratio of 20:16:64 ratio (0.1 M) 42 42 25 25 17 17

PRIMER 2EXAMPLE 2

PMMA/PS polimerna plast je bila nanesena na stekleni substrat, kot je bilo opisano v primeru 1. Polimerna plast je bila nato obdelana, kot je opisano v primeru 1. Polimerna plast je bila nato obdelana z UV/ozonom (hkratna osvetlitev 185 nm in 254 nm, dominantna valovna dolžina ozonskega čistila, 20 pW/cm2 za valovno dolžino 254 nm na razdalji 10 do 50 mm, kot je bilo določeno v navodilih ozonskega čistila) pri sobni temperaturi za različne čase. Ozon nastane preko UV posredovane disociacije molekularnega kisika. Napredujoči in umikajoči kontaktni koti različnih topil so prikazani v tabeli 3. Izpostavljenost PMMA/PS plasti UV/ozonu ni povzročila znatne spremembe v hrapavosti in morfologiji površine.The PMMA / PS polymer layer was applied to the glass substrate as described in Example 1. The polymer layer was then treated as described in Example 1. The polymer layer was then treated with UV / ozone (simultaneous illumination of 185 nm and 254 nm, dominant wavelength of the ozone cleaner, 20 pW / cm 2 for a wavelength of 254 nm at a distance of 10 to 50 mm as specified in the ozone cleaner instructions) at room temperature for different times. Ozone is formed through UV-mediated dissociation of molecular oxygen. The advancing and retracting contact angles of the different solvents are shown in Table 3. Exposure to the PMMA / PS layer of UV / ozone did not cause a significant change in surface roughness and morphology.

Tabela 3Table 3

Topilo/črnilo Solvent / ink Čas izpostavitve UV/ozonu (s) UV / ozone exposure time (s) Napredujoči kontaktni kot (°) Advancing contact angle (°) Umikajoči kontaktni kot (°) Retracting contact angle (°) Histereza kontaktnega kota (°) Contact angle hysteresis (°) Etilen glikol Ethylene glycol 30 30 54 54 31 31 23 23 Etilen glikol Ethylene glycol 60 60 45 45 19 19 26 26 Etilen glikol Ethylene glycol 120 120 27 27 0 0 27 27 voda water 30 30 62 62 12 12 40 40 voda water 60 60 47 47 0 0 ^47 ^ 47 voda water 120 120 44 44 0 0 44 44 Črnilo s prekurzorji lantanovega nikelata v 2-etoksi etanolu, etilen glikolu, etanolaminu pri razmeru 20:16:64 ratio (0,1 M) Ink with precursors of lanthanum nickel in 2-ethoxy ethanol, ethylene glycol, ethanolamine at a ratio of 20:16:64 ratio (0.1 M) 30 30 14 14 0 0 14 14

PRIMERJALNI PRIMER 2COMPARATIVE EXAMPLE 2

Kontaktni koti različnih topil so bili izmerjeni za gladke PMMA polimerne površine pripravljene in spremenjene z UV/ozonom na enak način kot v primeru 2. Rezultati so prikazani v tabeli 4.The contact angles of the different solvents were measured for smooth PMMA polymer surfaces prepared and modified with UV / ozone in the same manner as in Example 2. The results are shown in Table 4.

Tabela 4Table 4

Topilo/črnilo Solvent / ink Čas izpostavitve UV/Ozonu (s) UV / Ozone exposure time (s) Napredujoči kontaktni kot (°) Advancing contact angle (°) Umikajoči kontaktni kot (°) Retracting contact angle (°) Histereza kontaktnega kota (°) Contact angle hysteresis (°) Etilen glikol Ethylene glycol 30 30 45 45 25 25 20 20 Etilen glikol Ethylene glycol 60 60 42 42 17 17 25 25 Etilen glikol Ethylene glycol 120 120 0 0 0 0 0 0

voda water 30 30 62 62 36 36 26 26 voda water 60 60 61 61 31 31 30 30 voda water 120 120 47 47 23 23 24 24 črnilo s prekurzorji lantanovega nikelata v 2-etoksi etanolu, etilen glikolu, etanolaminu pri razmeru 20:16:64 ratio (0,1 M) ink with precursors of lanthanum nickel in 2-ethoxy ethanol, ethylene glycol, ethanolamine at a ratio of 20:16:64 ratio (0.1 M) 30 30 0 0 0 0 0 0

PRIMER 3EXAMPLE 3

PMMA/PS polimerna plast je bila nanesena na stekleni substrat kot je bilo opisanov primeru 1. Polimerna plast je bila nato obdelana z UV/ozonom za 120 sekund pod pogoji opisanimi v primeru 2. Po obdelavi z UV/ozonom je bila polimerna plast segreta na 150 °C za 15 s. Napredujoči in umikajoči kontaktni koti različnih topil so prikazani v Tabeli 5. Izpostavljenost PMMA/PS plasti UV/ozonu in sledeče segrevanje na 150 °C ni povzročila znatne spremembe v hrapavosti in morfologiji površine.The PMMA / PS polymer layer was applied to the glass substrate as described in Example 1. The polymer layer was then treated with UV / ozone for 120 seconds under the conditions described in Example 2. After UV / ozone treatment, the polymer layer was heated to 150 ° C for 15 s. The advancing and retreating contact angles of the different solvents are shown in Table 5. Exposure to the PMMA / PS layer of UV / ozone and subsequent heating to 150 ° C did not result in a significant change in surface roughness and morphology.

Tabela 5Table 5

Topilo/črnilo Solvent / ink Čas izpostavitve UV/ozonu (s) UV / ozone exposure time (s) Napredujoči kontaktni kot (°) Advancing contact angle (°) Umikajoči kontaktni kot (°) Retracting contact angle (°) Histereza kontaktnega kota (°) Contact angle hysteresis (°) Etilen glikol Ethylene glycol 120 120 53 53 <10 <10 >43 > 43 voda water 120 120 73 73 10 10 63 63 Črnilo s prekurzorji lantanovega nikelata v 2-etoksi etanolu, etilen glikolu, etanolaminu pri razmeru 20:16:64 ratio (0,1 M) Ink with precursors of lanthanum nickel in 2-ethoxy ethanol, ethylene glycol, ethanolamine at a ratio of 20:16:64 ratio (0.1 M) 120 120 20 20 0 0 20 20

PRIMERJALNI PRIMER 3COMPARATIVE EXAMPLE 3

Kontaktni koti različnih topil so bili izmerjeni za gladke PMMA polimerne površine pripravljene in spremenjene z UV/ozonom in segrete na 150 °C za 15 s na enak način kot v primeru 3. Rezultati so prikazani v tabeli 6.The contact angles of the different solvents were measured for smooth PMMA polymer surfaces prepared and modified with UV / ozone and heated at 150 ° C for 15 s in the same manner as in Example 3. The results are shown in Table 6.

Tabela 6Table 6

Topilo/črnilo Solvent / ink Čas izpostavitve UV/ozonu (s) UV / ozone exposure time (s) Napredujoči kontaktni kot Progressive contact angle Umikajoči kontaktni kot (”) Retracting contact angle (”) Histereza kontaktnega kota (°) Contact angle hysteresis (°) Etilen glikol Ethylene glycol 120 120 51 51 36 36 15 15 voda water 120 120 72 72 54 54 18 18 Črnilo s prekurzorji lantanovega nikelata v 2-etoksi etanolu, etilen glikolu, etanolaminu pri razmeru 20:16:64 ratio (0,1 M) Ink with precursors of lanthanum nickel in 2-ethoxy ethanol, ethylene glycol, ethanolamine at a ratio of 20:16:64 ratio (0.1 M) 120 120 26 26 10 10 16 16

Slika 4 prikazuje rezultate za etilen glikol v primerjavi s tistimi pridobljenimi z uporabo podobne metode, kjer se PMMA sam uporabi kot polimerna plast namesto PMMA/PS kot je opisano tukaj.Figure 4 shows the results for ethylene glycol compared to those obtained using a similar method, where PMMA itself is used as a polymer layer instead of PMMA / PS as described herein.

SKLICEVANJAREFERENCES

Številne zgoraj omenjene objave so citirane za boljši opis izuma in stanja tehnike, na katerega se izum nanaša. Te objave so v celoti vključene v ta opis.Many of the above-mentioned publications are cited for a better description of the invention and the prior art to which the invention relates. These publications are fully included in this description.

Claims (14)

Patentni zahtevkiPatent claims 1. Metoda nanosa polimerne plasti na substrate, ki vključuje sledeče korake;A method of applying a polymer layer to substrates, comprising the following steps; a) mešanje poli(stirena), poli(metil metakrilata) in topila, da nastane polimerna raztopina;a) mixing poly (styrene), poly (methyl methacrylate) and solvent to form a polymer solution; b) nanašanje polimerne raztopine na substrat, da nastane nanos polimerne raztopine;b) applying the polymer solution to the substrate to form a polymer solution; c) sušenje nanosa polimerne raztopine, da nastane polimerna plast na substratu;c) drying the coating of the polymer solution to form a polymer layer on the substrate; d) izpostavljanje polimerne plasti reaktivnim polarnim zvrstem, da nastane spremenjena polimerna plast na substratu.d) exposing the polymer layer to reactive polar species to form an altered polymer layer on the substrate. 2. Metoda po zahtevku 1, kjer je v koraku d) polimerna plast izpostavljena UV/ozonu.The method of claim 1, wherein in step d) the polymer layer is exposed to UV / ozone. 3. Metoda po zahtevku 1, kjer je v koraku d) polimerna plast izpostavljena O2 plazmi.The method of claim 1, wherein in step d) the polymer layer is exposed to O2 plasma. 4. Metoda po kateremkoli zahtevku od 1 do 3, ki vključuje nadaljnji korak:A method according to any one of claims 1 to 3, comprising the further step: (e) segrevanje modificirane polimerne plasti na 100 do 200°C za 5 do 30 sekund.(e) heating the modified polymer layer to 100 to 200 ° C for 5 to 30 seconds. 5. Metoda tvorjenja natisnjenega substrata, ki vključuje korake:5. A method of forming a printed substrate, comprising the steps of: (i) oblikovanje premazanega substrata z metodo po kateremkoli izmed zahtevkov od 1 do 4; in (ii) tiskanje na premazani substrat.forming an coated substrate by a method according to any one of claims 1 to 4; and (ii) printing on the coated substrate. 6. Metoda po zahtevku 5, kjer se korak ii) izvede s črnilom, ki vsebuje polarno topilo.The method of claim 5, wherein step ii) is performed with an ink containing a polar solvent. 7. Metoda po zahtevku 6, kjer je polarno topilo mešanica 2-etoksietanola (2EE), etilen glikola (EG) in etanolamina (EA).The method of claim 6, wherein the polar solvent is a mixture of 2-ethoxyethanol (2EE), ethylene glycol (EG) and ethanolamine (EA). 8. Metoda po kateremkoli zahtevku od 5 do 7, kjer črnilo vsebuje kovinski oksid.The method of any one of claims 5 to 7, wherein the ink contains a metal oxide. 9. Metoda po kateremkoli zahtevku od 5 do 8, ki vključuje nadaljnji korak:A method according to any one of claims 5 to 8, comprising the further step: (iii) segrevanje tiskanega substrata na temperaturo 350°C ali več, da se odstrani polimerna plast.(iii) heating the printed substrate to a temperature of 350 ° C or higher to remove the polymer layer. 10. Metoda po kateremkoli izmed zahtevkov od 1 do 9, kjer je substrat silicijeva rezina.The method of any one of claims 1 to 9, wherein the substrate is a silicon wafer. 11. Metoda po kateremkoli izmed zahtevkov od 1 do 10, kjer ima substrat uporabljen v koraku b) pred-natisnjeno plast na površini, na katero se v koraku b) nanese polimerna raztopina.The method of any one of claims 1 to 10, wherein the substrate used in step b) has a pre-printed layer on the surface to which the polymer solution is applied in step b). 12. Substrat, ki se pridobi z metodo po kateremkoli izmed zahtevkov od 1 do 11.A substrate obtained by a method according to any one of claims 1 to 11. 13. Substrat po zahtevku 12, kjer ima polimerna plast debelino 10 nm ali manj.The substrate of claim 12, wherein the polymer layer has a thickness of 10 nm or less. 14. Substrat po kateremkoli izmed zahtevkov od 12 do 13, kjer je razdalja med fazno ločenimi otoki manjša od 1 pm.A substrate according to any one of claims 12 to 13, wherein the distance between the phase-separated islands is less than 1 pm.
SI202000161A 2019-09-24 2020-09-21 A method for producing polymeric surface modification layers SI25887A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1913749.6A GB2587611A (en) 2019-09-24 2019-09-24 A method for producing polymeric surface modification layers

Publications (1)

Publication Number Publication Date
SI25887A true SI25887A (en) 2021-03-31

Family

ID=68425591

Family Applications (1)

Application Number Title Priority Date Filing Date
SI202000161A SI25887A (en) 2019-09-24 2020-09-21 A method for producing polymeric surface modification layers

Country Status (2)

Country Link
GB (1) GB2587611A (en)
SI (1) SI25887A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2840731B2 (en) * 1996-05-01 1998-12-24 工業技術院長 Method for forming uneven surface of polymer molded article
US7906031B2 (en) * 2008-02-22 2011-03-15 International Business Machines Corporation Aligning polymer films
US8628673B2 (en) * 2009-05-13 2014-01-14 Kabushiki Kaisha Toshiba Resin composition for pattern formation, pattern formation method and process for producing light-emitting element

Also Published As

Publication number Publication date
GB201913749D0 (en) 2019-11-06
GB2587611A (en) 2021-04-07

Similar Documents

Publication Publication Date Title
EP2948816B1 (en) Surface nanoreplication using polymer nanomasks
US20190243237A1 (en) Patterning of nanostructures using imprint lithography
EP3791231A1 (en) Methods for making euv patternable hard masks
JP4838190B2 (en) Materials and methods for forming controlled pores
WO2019067912A1 (en) Patterning of complex metal oxide structures
US20040142578A1 (en) Thin film nanostructures
US20040096586A1 (en) System for deposition of mesoporous materials
KR20100049005A (en) Solvent-assisted layer formation for imprint lithography
KR20000076183A (en) Methods for chemical mechanical polish of organic polymer dielectric films
JP2009267424A (en) Mesoporous material and method
US20060040053A1 (en) Preparation of asymmetric membranes using hot-filament chemical vapor deposition
JP2002516590A (en) Adjusting the coating pattern of the fluid carrier coating process
KR20070069194A (en) Coating liquid for forming low dielectric constant amorphous silica coating film, method for preparing same, and low dielectric constant amorphous silica coating film obtained from same
JP2000044719A (en) Porous polyimide, its precusor and manufacture of porous polyimide
KR100815372B1 (en) Mold-release treating method of imprint mold for printed circuit board
CN111615665A (en) Method for producing a planar polymer stack
KR20050003363A (en) Polymeric antireflective coatings deposited plasma enhanced chemical vapor deposition
US20070117892A1 (en) Coating composition, porous silica-based film, method for producing porous silica-based film and semiconductor device
KR20030076562A (en) Polymeric antireflective coatings deposited by plasma enhanced chemical vapor deposition
SI25887A (en) A method for producing polymeric surface modification layers
CN116741896A (en) Submicron-order patterned sapphire substrate and preparation method thereof
KR101656480B1 (en) Method of transferring graphene
JP6674480B2 (en) Laminate
CN100356511C (en) Film forming method and substrate board treatment method
Lee et al. Siliconized silsesquioxane-based nonstick molds for ultrahigh-resolution lithography

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20210331