SI24816A - Magnetic induction system, a sensor and a method for measuring air pressure in vacuum insulation panels - Google Patents

Magnetic induction system, a sensor and a method for measuring air pressure in vacuum insulation panels Download PDF

Info

Publication number
SI24816A
SI24816A SI201400314A SI201400314A SI24816A SI 24816 A SI24816 A SI 24816A SI 201400314 A SI201400314 A SI 201400314A SI 201400314 A SI201400314 A SI 201400314A SI 24816 A SI24816 A SI 24816A
Authority
SI
Slovenia
Prior art keywords
vacuum
induction body
air chamber
pressure
vacuum sensor
Prior art date
Application number
SI201400314A
Other languages
Slovenian (sl)
Inventor
Aleš Baggia
Original Assignee
Aleš Baggia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aleš Baggia filed Critical Aleš Baggia
Priority to SI201400314A priority Critical patent/SI24816A/en
Priority to PCT/SI2015/000027 priority patent/WO2016043670A1/en
Publication of SI24816A publication Critical patent/SI24816A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/10Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured
    • G01L21/12Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured measuring changes in electric resistance of measuring members, e.g. of filaments; Vacuum gauges of the Pirani type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Izum se nanaša na magnetno indukcijski sistem, senzor in metodo za merjenje zračnega tlaka v vakuumsko izolacijskih ploščah. Merjenje zračnega tlaka v vakuumsko izolacijskih ploščah je izvedeno na tak način, da se v vakuumsko izolacijsko ploščo že med izdelavo pod ovojnino vstavi vakuumski senzor, ki je sestavljen iz zračne komore in indukcijskega grelnega telesa in se zračna komora nahaja med indukcijskim telesom in ovojnino vakuumske plošče. Zračna komora ima eno ali več odprtin, da je tlačno povezana sprostorom izven vakuumskega senzorja. Ko je vakuumsko izolacijska plošča do konca izdelana in ovojnina neprodušno zaprta, se lahko začne izvajati merjenje tlaka. Z zunanje strani se približa vakuumsko izolacijski plošči merilno sondo na mestu, kjer se nahaja vakuumski senzor pod ovojnino. Merilna sonda vsebuje generator izmeničnega elektromagnetnega polja in merilnik temperature. Z generatorjem izmeničnega elektromagnetnega polja se indukcijsko telo v vakuumskem senzorju segreje, z merilnikom temperaturese meri temperaturo na površini vakuumske plošče, kjer se nahaja vakuumski senzor. Na ta način se meri toplotni tok skozi zračno komoro. Ker je toplotni tok skozi zračno komoro odvisen od tlaka, se lahko iz izmerjene temperature na mestu, kjer se zračna komora dotika ovojnine, sklepa na toplotno prevodnost in posledično na višino tlaka v vakuumsko izolacijski plošči.The invention relates to a magnetic induction system, a sensor and a method for measuring air pressure in vacuum insulating plates. The measurement of air pressure in vacuum insulation panels is performed in such a way that a vacuum sensor is inserted into the vacuum insulation board during the manufacture under the package, which consists of an air chamber and an induction heating body and the air chamber is located between the inductance body and the packaging of the vacuum plate . The air chamber has one or more openings to be pressure-tight outside the vacuum sensor. When the vacuum insulation board is fully manufactured and the packaging is sealed tightly, pressure measurement can be started. From the outside, the vacuum insulating plate approaches the measuring probe at the point where the vacuum sensor is placed under the package. The probe includes an alternating-field generator and a temperature gauge. With an alternating electromagnetic field generator, the induction body is heated in the vacuum sensor, the temperature gauge measures the temperature on the surface of the vacuum plate where the vacuum sensor is located. In this way, the heat flow is measured through the air chamber. Since the heat flow through the air chamber is dependent on the pressure, the temperature at the point where the air enclosure touches the packaging can be applied to the thermal conductivity and consequently to the pressure level in the vacuum insulating plate.

Description

Zadevni izum se nanaša na merjenje tlaka v vakuumsko izolacijskih ploščah.The present invention relates to the measurement of pressure in vacuum insulation panels.

TEHNIČNI PROBLEMTECHNICAL PROBLEM

Vakuumsko izolacijske plošče trenutno spadajo med najboljše termoizolacijske elemente, saj je vakuum odličen toplotni izolator. Uporabljajo se na primer v gradbeništvu, ladjedelništvu, hladilni tehniki, hladni verigi za uporabo npr. v farmaciji ali živilski industriji. V vakuumsko izolacijskih ploščah se v praksi seveda ne doseže popolnega vakuuma, temveč le znaten podtlak v primerjavi z atmosferskim tlakom; kljub temu se v stroki in na trgu za te primere uporablja beseda vakuum oziroma vakuumske plošče.Vacuum insulation panels are currently among the best thermal insulation elements, as vacuum is an excellent thermal insulator. They are used, for example, in construction, shipbuilding, refrigeration, cold chain for use e.g. in the pharmacy or food industry. In vacuum insulation panels, of course, a complete vacuum is not achieved in practice, but only a significant vacuum compared to atmospheric pressure; however, the word vacuum or vacuum plates is used in the profession and in the market for these cases.

Vakuumsko izolacijske plošče so najpogosteje sestavljene iz sredice ter ovojnine. Sredico tvori lahek in izredno zračno porozen material, na primer fiberglas ali silica. Funkcija sredice je, da daje plošči želeno obliko in da vzdržuje konstrukcijo plošče in podtlak v plošči, ko nanjo pritiska zunanji višji zračni tlak. Sredica je ovita z ovojnino, ki je najpogosteje metalna ali metalizirana folija, ki je neprodušno zvarjena in preprečuje vdor zunanjega zraka v vakuumsko izolacijsko ploščo. Ovojnina je lahko sestavljena iz več plasti, na primer aluminijaste folije in enega ali več plastičnih nanosov.Vacuum insulation boards usually consist of a core and a package. The core is formed by a light and extremely air-porous material, such as fiberglass or silica. The function of the core is to give the panel the desired shape and to maintain the construction of the panel and the vacuum in the panel when it is pressed by external higher air pressure. The core is wrapped with a wrapper, which is most often a metal or metallized foil that is airtightly welded and prevents the ingress of outside air into the vacuum insulation board. The package may consist of several layers, for example aluminum foil and one or more plastic coatings.

Tipični postopek izdelave vakuumsko izolacijske plošče je sledeč. Sredico se vstavi v ovojnino, ki je že neprodušno zavarjena na treh straneh, torej tvori neke vrste vrečo. Tako pripravljen polizdelek se vstavi v stroj, ki iz vreče izčrpa zrak na ustrezno nizek tlak, nato stroj zavari še četrto stranico kovinske vreče. Zaželeno je, da je tlak čim nižji, vendar se v industrijski uporabi dosega začetno vrednost tlaka tipično do 7 mbar, če je material sredice silica, ali do 1 mbar, če je material sredice fiberglas.A typical process for making a vacuum insulation board is as follows. The core is inserted into the packaging, which is already airtightly welded on three sides, thus forming a kind of bag. The semi-finished product prepared in this way is inserted into the machine, which pumps air from the bag to a correspondingly low pressure, then the machine welds the fourth side of the metal bag. It is desirable to keep the pressure as low as possible, but in industrial use the initial pressure value is typically up to 7 mbar if the core material is silica, or up to 1 mbar if the core material is fiberglass.

Stopnja izolativnosti vakuumsko izolacijske plošče je odvisna od kvalitete vakuuma v njej. Z drugimi besedami, da ima plošča dobre izolativne lastnosti, mora biti v njej ustrezno nizek tlak. Zato je merjenje in nadzor zračnega tlaka v vakuumsko izolacijskih ploščah bistvenega pomena, tako že pri sami proizvodnji kot tudi pri kasnejši uporabi.The degree of insulation of a vacuum insulation board depends on the quality of the vacuum in it. In other words, for a board to have good insulating properties, it must have a correspondingly low pressure. Therefore, the measurement and control of air pressure in vacuum insulation panels is essential, both in the production itself and in subsequent use.

STANJE TEHNIKEBACKGROUND OF THE INVENTION

Za merjenje zračnega tlaka obstaja že nekaj znanih načinov:There are already some known ways to measure air pressure:

»Lift foil off« metoda"Lift foil off" method

Pri tej metodi se izdelano vakuumsko izolacijsko ploščo vstavi v vakuumsko komoro. Z laserskim merilnikom se meri debelino plošče. V vakuumski komori se postopoma nadzorovano znižuje zračni tlak. Ko se tlak v komori, ki je znana količina, izenači s tlakom v plošči, se začne debelina plošče povečevati. Torej, ko laserski merilnik zazna povečevanje debeline plošče, se iz tlaka v komori sklepa na tlak v plošči. Slabost takega načina merjenja je v tem, da je merjenje počasno. Če se za merjenje uporablja isti stroj kot za izdelavo plošče, stroj ni na voljo za proizvodnjo v času meritev. Zaradi tega metoda ni primerna za serijsko kontrolo plošč, temveč se pri tej metodi izvaja le vzorčno merjenje. Seveda taka metoda tudi ni mobilna.In this method, the fabricated vacuum insulation board is inserted into a vacuum chamber. The thickness of the plate is measured with a laser meter. The air pressure in the vacuum chamber gradually decreases in a controlled manner. When the pressure in the chamber, which is a known quantity, equals the pressure in the plate, the thickness of the plate begins to increase. So when the laser meter detects an increase in the thickness of the plate, it is inferred from the pressure in the chamber to the pressure in the plate. The disadvantage of this method of measurement is that the measurement is slow. If the same machine is used for measurement as for the production of the plate, the machine is not available for production at the time of measurement. As a result, the method is not suitable for serial control of plates, but only sample measurement is performed with this method. Of course, such a method is also not mobile.

Posredno merjenjeIndirect measurement

Pri tej metodi se meri toplotno prevodnost vakuumsko izolacijske plošče in preko tega se posredno meri tudi zračni tlak v njej. Postopek merjenja je sledeč: eno stran plošče se ogreva z grelcem posebne merilne naprave. Po določenem času se meri porast temperature na drugi strani plošče. Večji je porast temperature, slabše toplotno izolacijske lastnosti ima plošča, torej je v njej višji zračni tlak. Slabost takega načina merjenja so dolgi časi postopka meritve, običajno vsaj eno uro, zato metoda nikakor ni primerna za kontrolo v serijski proizvodnji. Prav tako seveda tudi ta metoda ni mobilna.In this method, the thermal conductivity of the vacuum insulation board is measured and through this the air pressure in it is also indirectly measured. The measurement procedure is as follows: one side of the plate is heated by a heater of a special measuring device. After a certain time, the temperature rise on the other side of the plate is measured. The higher the temperature rise, the poorer the thermal insulation properties of the panel, so the higher the air pressure. The disadvantage of such a method of measurement is the long time of the measurement process, usually at least one hour, so the method is by no means suitable for control in series production. Also, of course, this method is not mobile.

Brezžični radiofrekvenčni identifikacijski (RFID) merilnik tlakaWireless radio frequency identification (RFID) pressure gauge

Pri tej metodi se v vakuumsko izolacijsko ploščo že med proizvodnjo vstavi elektronsko napravo, ki po zaključku izdelave pomeri zračni tlak v plošči in preko radio frekvenčnih valov javi višino zračnega tlaka v plošči na posebni čitalnik. Slabost te metode je, da je za uporabo v serijski proizvodnji neprimerna, ker je takšna elektronska naprava predraga in se zato uporablja le za vzorčenje.In this method, an electronic device is inserted into the vacuum insulation board already during production, which measures the air pressure in the board after the production and reports the height of the air pressure in the board to a special reader via radio frequency waves. The disadvantage of this method is that it is unsuitable for use in series production because such an electronic device is too expensive and is therefore used only for sampling.

Patent EP 1493007 Al (Caps)Patent EP 1493007 Al (Caps)

Pri tej metodi se v vakuumsko izolacijsko ploščo med izdelavo vstavi trden toplotno prevoden material, npr. kovinsko ali keramično ploščico, ki služi kot toplotni ponor (heat sink). Pri drugačni različici merilne metode lahko ta ploščica služi kot izvor toplote (heat source). Toplotni ponor je nameščen tako, da ga od ovojnine plošče loči le testna plast, ki je tanka, zračno porozna, odprto celična, nano-strukturirana folija (thin layer, test layer), na primer polistirenska folija, katere toplotna prevodnost se spreminja v odvisnosti od zračnega tlaka. Merilna sonda, ki se jo na merjeni del pritisne z zunanje strani vakuumsko izolacijske plošče, je ogreta na določeno temperaturo, ki je višja od temperature v vakuumsko izolacijski plošči. Na ta način se doseže konduktivni toplotni tok preko testne plasti. Merilna sodna meri temperaturo in posledično toplotni tok, iz česar se sklepa na tlak v vakuumsko izolacijski plošči. Ker se del toplotnega toka odvaja na vse strani tudi preko ovojnine, mora celotna meritev potekati v nadzorovani, temperaturno kontrolirani komori, kar precej oteži postopek meritve.In this method, a solid thermally conductive material is inserted into the vacuum insulation board during fabrication, e.g. metal or ceramic tile that serves as a heat sink. In a different version of the measurement method, this plate can serve as a heat source. The heat sink is installed so that it is separated from the panel envelope only by a test layer, which is a thin, air-porous, open-cell, nano-structured film (thin layer, test layer), for example a polystyrene film whose thermal conductivity varies depending on from air pressure. The measuring probe, which is pressed against the measured part from the outside of the vacuum insulation board, is heated to a certain temperature, which is higher than the temperature in the vacuum insulation board. In this way, a conductive heat flux is achieved through the test layer. The measuring vessel measures the temperature and consequently the heat flow, from which it is inferred the pressure in the vacuum insulation board. Since part of the heat flow is dissipated on all sides also through the packaging, the entire measurement must take place in a controlled, temperature-controlled chamber, which makes the measurement process much more difficult.

Patent DE 103 48 169 Al (Caps)Patent DE 103 48 169 Al (Caps)

Tu gre za podobno metodo kot v patentu EP 1493007 Al (Caps), le da meritev ni izvedena v temperaturno kontrolirani komori. Sicer se tudi pri tej metodi uporablja toplotni ponor (heat sink) in testna plast, katere toplotna prevodnost je odvisna od zračnega tlaka. Tlak se meri na podlagi merjenja toplotnega toka zaradi termične kondukcije preko testne plasti (thin layer, test layer) iz toplejšega na hladnejši del.This is a similar method as in patent EP 1493007 Al (Caps), except that the measurement is not performed in a temperature-controlled chamber. Otherwise, this method also uses a heat sink and a test layer, the thermal conductivity of which depends on the air pressure. The pressure is measured based on the measurement of heat flux due to thermal conduction through the test layer (thin layer, test layer) from the warmer to the colder part.

Patent EP 2 069 742 BI (Caps)Patent EP 2,069,742 BI (Caps)

V tem primeru gre za merjenje toplotnega toka kot posledico toplotne kondukcije preko tanke testne plasti (thin layer, test layer). Razlika od prej omenjenih patentov je ta, da ni uporabljen toplotni ponor (heat sink) ali izvor toplote (heat source) v obliki toplotno prevodne ploščice. Vakuumsko izolacijska plošča oziroma njena ovojnina je v tem primeru izdelana tako, da ob robu plošče tvori žepek s testno plastjo, pri čemer je žepek povezan z notranjostjo plošče in je v njem posledično enak tlak. Pri merjenju se žepek vstavi v merilno sondo tako, da se spodnja in zgornja stran žepka dotika različnih delov merilne sonde. En del merilne sonde je toplejši, drugi del pa hladnejši, s čimer dosežemo toplotni tok na podlagi kondukcije preko testne plasti, ki je v žepku. Dodatna slabost te rešitve je npr. potreba po izdelavi testnega žepka, ki se nahaja zunaj plošče. Zato se ta metoda v industrijski proizvodnji praktično ne uporablja.In this case, it is a measurement of heat flux as a consequence of thermal conduction through a thin test layer (thin layer, test layer). The difference from the previously mentioned patents is that no heat sink or heat source in the form of a heat-conducting plate is used. In this case, the vacuum insulation plate or its packaging is made in such a way that it forms a pocket with a test layer at the edge of the plate, whereby the pocket is connected to the inside of the plate and consequently has the same pressure. When measuring, the pocket is inserted into the measuring probe so that the bottom and top of the pocket touch different parts of the measuring probe. One part of the measuring probe is warmer and the other part is colder, thus achieving heat conduction based on conduction through a test layer that is in the pocket. An additional disadvantage of this solution is e.g. the need to make a test pocket located outside the plate. Therefore, this method is practically not used in industrial production.

Skupna lastnost opisanih metod po EP 1493007 Al, DE 103 48 169 Al in EP 2 069 742 BI je, da uporabljajo tako imenovano testno plast (thin layer, test layer), ki je narejena iz odprto-celičnega, nanoporoznega materiala, na primer fiberglasa, poliuretanske pene, polistirenske pene,poliestrske pene, kremenjaka, aerogela, poliuretanske mate, polistirenske mate. Bistvena lastnost materialov testne plasti je, da se njihova toplotna prevodnost spreminja v odvisnosti od zračnega tlaka. Toplotni tok skozi testno plast pri teh metodah je posledica termične kondukcije, to je prehajanja toplote iz toplejšega na hladnejši del preko trdne snovi ali stika dveh trdnih snovi. Slabost teh metod je, da je toplotna prevodnost uporabljenih materialov v odvisnosti od tlaka nelinearna ravno v področju, ki je pomembno za merjenje v industrijsko izdelanih vakuumsko izolacijskih ploščah, to je od 1 mbar do 20mbar, kar rezultira v znatnih pogreških izmerjenega tlaka. K temu moramo prišteti še napake, ki se pojavijo kot posledica neenakomernosti testne plasti, različne strukture ovojnine ali različnih temperatur okolice med meritvijo.A common feature of the described methods according to EP 1493007 A1, DE 103 48 169 A1 and EP 2 069 742 BI is that they use a so-called test layer (thin layer, test layer), which is made of open-cell, nanoporous material, such as fiberglass , polyurethane foams, polystyrene foams, polyester foams, quartz, aerogels, polyurethane mats, polystyrene mats. An essential property of the test layer materials is that their thermal conductivity varies depending on the air pressure. The heat flux through the test layer in these methods is due to thermal conduction, i.e. the transfer of heat from the warmer to the colder part via a solid or the contact of two solids. The disadvantage of these methods is that the thermal conductivity of the materials used as a function of pressure is nonlinear precisely in the area important for measurement in industrially produced vacuum insulation boards, ie from 1 mbar to 20mbar, resulting in significant errors of measured pressure. To this must be added the errors that occur as a result of the unevenness of the test layer, the different structure of the packaging or the different ambient temperatures during the measurement.

Do zdaj znani načini merjenja zračnega tlaka v vakuumsko izolacijskih ploščah so relativno dragi zaradi opreme ali dolgotrajni zaradi zapletenosti izvajanja meritve, zato niso primerni za merjenje vsake plošče v serijski proizvodnji.Until now, the known methods of measuring air pressure in vacuum insulation panels are relatively expensive due to the equipment or time-consuming due to the complexity of the measurement, so they are not suitable for measuring each panel in series production.

KRATEK OPIS IZUMABRIEF DESCRIPTION OF THE INVENTION

Merjenje zračnega tlaka v vakuumsko izolacijskih ploščah po zadevnem izumu je izvedeno tako, da se v vakuumsko izolacijsko ploščo že med izdelavo pod ovojnino vstavi indukcijsko grelno telo, v nadaljevanju indukcijsko telo. V tipični izvedbi bo indukcijsko telo vgrajeno v vakuumski senzor, ki je poleg indukcijskega telesa sestavljen še iz zračne komore. Položaj vakuumskega senzorja je takšen, da se zračna komora nahaja med indukcijskim telesom in ovojnino vakuumske plošče. Zračna komora ima eno ali več odprtin, da je tlačno povezana s prostorom izven vakuumskega senzorja, torej s prostorom v vakuumski plošči. Posledično je v zračni komori enaka zmes plinov in enak tlak kot v sredici oziroma v notranjosti vakuumsko izolacijske plošče, ko je vakuumski senzor vstavljen v vakuumsko izolacijsko ploščo. Ko je vakuumsko izolacijska plošča do konca izdelana in ovojnina neprodušno zaprta, se lahko začne izvajati merjenje tlaka. Z zunanje strani se vakuumsko izolacijski plošči približa merilno sondo, in sicer na mestu, kjer se nahaja vakuumski senzor pod ovojnino. Merilna sonda vsebuje generator izmeničnega elektromagnetnega polja in merilnik temperature. Z generatorjem izmeničnega elektromagnetnega polja se doseže, da se indukcijsko telo v vakuumskem senzorju segreje, z merilnikom temperature pa se meri temperaturo na površini vakuumske plošče, kjer se nahaja vakuumski senzor. Na ta način se meri toplotni tok skozi zračno komoro, v kateri je ista zmes plinov in tlak kot v vakuumski plošči. Toplotni tok prehaja skozi zračno komoro na podlagi toplotne konvekcije. Ker sta toplotna prevodnost zraka oziroma zmesi plinov, ki se nahaja v vakuumsko izolacijski plošči oziroma v zračni komori, ter posledično toplotni tok skozi zračno komoro odvisna od tlaka, se lahko iz izmerjene temperature na mestu, kjer se zračna komora dotika ovojnine, sklepa na toplotno prevodnost in posledično na višino tlaka v vakuumsko izolacijski plošči.The measurement of the air pressure in the vacuum insulation plates according to the present invention is carried out by inserting an induction heating body, hereinafter referred to as an induction body, into the vacuum insulation plate already during production. In a typical embodiment, the induction body will be built into a vacuum sensor, which in addition to the induction body also consists of an air chamber. The position of the vacuum sensor is such that the air chamber is located between the induction body and the packaging of the vacuum plate. The air chamber has one or more openings to be pressure-connected to the space outside the vacuum sensor, i.e. to the space in the vacuum plate. As a result, the air chamber has the same gas mixture and the same pressure as in the core or inside the vacuum insulation board when the vacuum sensor is inserted into the vacuum insulation board. Once the vacuum insulation board is fully fabricated and the packaging is airtight, a pressure measurement can be started. From the outside, the measuring probe approaches the vacuum insulation plate at the place where the vacuum sensor is located under the packaging. The measuring probe contains an alternating electromagnetic field generator and a temperature meter. An alternating electromagnetic field generator is used to heat the induction body in the vacuum sensor, and a temperature meter is used to measure the temperature on the surface of the vacuum plate where the vacuum sensor is located. In this way, the heat flow through the air chamber is measured, in which the same mixture of gases and pressure is as in the vacuum plate. The heat flow passes through the air chamber on the basis of thermal convection. Since the thermal conductivity of air or a mixture of gases located in the vacuum insulation plate or in the air chamber, and consequently the heat flow through the air chamber depends on the pressure, the measured temperature at the point where the air chamber touches the packaging can be deduced conductivity and consequently to the pressure level in the vacuum insulation board.

Izum bo podrobneje opisan v nadaljevanju in na slikah, ki predstavljajo:The invention will be described in more detail below and in the figures representing:

Slika 1 in 2 predstavljata različne možnosti vstavljanja vakuumskega senzorja v vakuumsko izolacijsko ploščo;Figures 1 and 2 show different options for inserting a vacuum sensor into a vacuum insulation board;

Slika 3 predstavlja izvedbeni primer vakuumskega senzorja - perspektivni pogledFigure 3 presents an embodiment of a vacuum sensor - perspective view

Slika 4 predstavlja drug izvedben primer vakuumskega senzorja - pogled od spodajFigure 4 shows another embodiment of a vacuum sensor - bottom view

Slika 5 predstavlja nadaljnji izvedben primer vakuumskega senzorja vstavljenega v vakuumsko izolacijsko ploščoFigure 5 shows a further embodiment of a vacuum sensor inserted in a vacuum insulation board

Slika 6 predstavlja izvedbeni primer merilne sondeFigure 6 shows an embodiment of a measuring probe

PODROBEN OPIS IZUMADETAILED DESCRIPTION OF THE INVENTION

Merjenje tlaka v vakuumsko izolacijski plošči po zadevnem izumu poteka na tak način, da se v vakuumsko izolacijsko ploščo, ki je sestavljena iz sredice 1 in ovojnine 2, že med izdelavo vstavi indukcijsko telo 5. Zaradi lažje izvedbe, je indukcijsko telo 5 lahko vgrajeno v predizdelan vakuumski senzor 3, ki se ga med izdelavo vakuumsko izolacijske plošče vstavi v vakuumsko izolacijsko ploščo pod ovojnino 2, prednostno tik pod ovojnino 2.The pressure measurement in the vacuum insulation board according to the present invention is carried out in such a way that an induction body 5 is inserted into the vacuum insulation board consisting of a core 1 and a package 2 already during production. For easier implementation, the induction body 5 can be installed in a prefabricated vacuum sensor 3 which is inserted into the vacuum insulation plate under the package 2, preferably just below the package 2, during the manufacture of the vacuum insulation board.

Vakuumski senzor 3 je sestavljen iz zračne komore 4 in indukcijskega telesa 5. Pri vstavljanju vakuumskega senzorja 3 v vakuumsko izolacijsko ploščo je pomembno, da se zračna komora 4 nahaja med indukcijskim telesom 5 in ovojnino 2, kjer se bo izvedla meritev temperature.The vacuum sensor 3 consists of an air chamber 4 and an induction body 5. When inserting the vacuum sensor 3 into the vacuum insulation board, it is important that the air chamber 4 is located between the induction body 5 and the package 2, where the temperature measurement will be performed.

Ena od možnosti vstavljanja vakuumskega senzorja 3 je ta, da se ga enostavno položi na sredico 1 predno se izsesa zrak in ustvari podtlak, ter ovojnino neprodušno zapre, na primer zvari. Ta možnost je prikazana na sliki 1.One of the possibilities of inserting the vacuum sensor 3 is that it is simply placed on the core 1 before the air is sucked out and a vacuum is created, and the package is sealed, for example welded. This option is shown in Figure 1.

Na sliki 2 je prikazana druga možnost vstavljanja, da se v sredici 1 izdela utor 8, v katerega se namesti vakuumski senzor 3. Na slednji način dosežemo, da se vakuumski senzor 3 ne premika med samim postopkom izsesavanja zraka in nepredušnim zapiranjem ovojnine 2 okoli sredice 1, ter da vakuumsko izolacijska plošča nima izbokline na mestu, kjer je vdelan vakuumski senzor 3.Figure 2 shows another insertion option to make a groove 8 in the core 1, in which the vacuum sensor 3 is installed. In the latter way, the vacuum sensor 3 is not moved between the suction process and the airtight closure of the package 2 around the core. 1, and that the vacuum insulation board does not have a bulge at the place where the vacuum sensor 3 is embedded.

Indukcijsko telo 5 je izdelano iz materiala s feromagnetnimi lastnostmi, kot je na primer železo, da učinkovito služi kot indukcijsko grelno telo, ko se ga postavi v izmenično elektromagnetno polje. Pri materialu s feromagnetnimi lastnostmi, ki je izpostavljen izmeničnemu elektromagnetnemu polju, pride do segrevanja tudi zaradi zaželenih histereznih izgub na podlagi magnetne histereze, ki se pretvorijo v Joulovo toploto.The induction body 5 is made of a material with ferromagnetic properties, such as iron, to effectively serve as an induction heater when placed in an alternating electromagnetic field. In the case of a material with ferromagnetic properties that is exposed to an alternating electromagnetic field, heating also occurs due to the desired hysteresis losses based on magnetic hysteresis, which are converted into Joule heat.

Zračna komora 4 služi temu, da ustvari prostor določenih dimenzij nad indukcijskim telesom 5 skozi katerega se razširja toplota. Na drugi strani zračne komore 4, to je na strani ovojnine 2, merimo temperaturo, ki je odvisna od toplote, ki jo ustvari indukcijsko telo 5 in toplotne prevodnosti zmesi plinov pod določenim tlakom v zračni komori 4. Zračna komora 4 je tlačno povezana z zunanjostjo vakuumskega senzorja 3, kar predstavlja notranjost vakuumsko izolacijske plošče, kadar je vakuumski senzor 3 vstavljen v vakuumsko izolacijsko ploščo. Tlačna povezava je izvedena preko ene ali več odprtin, s čimer dosežemo, da je v zračni komori 4 ista zmes plinov in isti tlak kot v sredici 1 oziroma v notranjosti vakuumsko izolacijske plošče.The air chamber 4 serves to create a space of certain dimensions above the induction body 5 through which heat is distributed. On the other side of the air chamber 4, ie on the packaging side 2, we measure the temperature depending on the heat generated by the induction body 5 and the thermal conductivity of the gas mixture under a certain pressure in the air chamber 4. The air chamber 4 is pressure-connected to the outside of the vacuum sensor 3, which represents the interior of the vacuum insulation plate when the vacuum sensor 3 is inserted into the vacuum insulation plate. The pressure connection is made through one or more openings, so that in the air chamber 4 there is the same mixture of gases and the same pressure as in the core 1 or inside the vacuum insulation plate.

Pri izvedbi zračne komore 4 je potrebno paziti, da se notranja prostornina zračne komore 4 zaradi podtlaka v njej in posledično pritiska nanjo ne deformira na tak neželen način, da izgubi bodisi potrebno prostornino, skozi katero merimo toplotni tok, bodisi tlačno povezavo z notranjostjo vakuumsko izolacijske plošče.When making the air chamber 4, it is necessary to make sure that the inner volume of the air chamber 4 is not deformed in such an undesirable way due to the vacuum in it and consequently the pressure on it, that it loses either the required volume through which heat flow is measured or the pressure connection plates.

V enem od izvedbenih primerov je zračna komora 4 izdelana tako, da dno zračne komore 4 predstavlja indukcijsko telo 5, ki je v obliki ploščice. Ploščica je prednostno okrogle oblike, lahko pa je tudi večkotnik. Zgornji del zračne komore 4 je izdelan iz zgornje stene 9, ki je prav tako v obliki ploščice enake ali približno enake površine kot ploščica indukcijskega telesa 5.In one of the embodiments, the air chamber 4 is designed so that the bottom of the air chamber 4 represents an induction body 5, which is in the form of a plate. The tile is preferably round in shape, but can also be polygonal. The upper part of the air chamber 4 is made of an upper wall 9, which is also in the form of a plate of the same or approximately the same surface as the plate of the induction body 5.

Zgornja stena 9 mora biti dovolj čvrsta, da zdrži pritisk podtlaka in prepreči deformacijo zračne komore 4 ob pritisku zunanjega tlaka, ter dovolj toplotno prevodna, da ne povzroča napake pri merjenju toplotnega toka skozi zračno komoro 4.The upper wall 9 must be strong enough to withstand the vacuum pressure and prevent deformation of the air chamber 4 under external pressure, and sufficiently thermally conductive so as not to cause an error in measuring the heat flow through the air chamber 4.

Zračna komora 4 v tem izvedbenem primeru je narejena tako, da se med indukcijskim telesom 5 in zgornjo steno 9 pritrdi eden ali več distančnikov 6. Tlačno povezanost med notranjostjo vakuumsko izolacijske plošče in zračno komoro 4 se doseže na enega od naslednjih načinov ali z njihovo kombinacijo :The air chamber 4 in this embodiment is made by attaching one or more spacers 6 between the induction body 5 and the upper wall 9. The pressure connection between the interior of the vacuum insulation plate and the air chamber 4 is achieved in one of the following ways or by a combination thereof :

- da se naredi eno ali več lukenj v indukcijsko telo 5; prednostno je v indukcijskem telesu le ena drobna izvrtina 7;- to make one or more holes in the induction body 5; preferably there is only one small hole 7 in the induction body;

- da se naredi eno ali več lukenj v distančnik 6;- to make one or more holes in the spacer 6;

- da je distančnik 6 oziroma so distančniki nameščeni na tak način, da po obodu ne izpolnjujejo v celoti reže med indukcijskim telesom 5 in zgornjo steno 9.that the spacer 6 or the spacers are arranged in such a way that they do not completely fill the gap around the circumference between the induction body 5 and the upper wall 9.

Na sliki 3 je prikazan izvedbeni primer vakuumskega senzorja 3, pri čemer zračno komoro 4 na spodnji strani zamejuje indukcijsko telo 5 v obliki okrogle ploščice, na zgornji strani jo zamejuje zgornja stena 9 pretežno enake oblike, pri čemer je v distančniku 6 narejena odprtina 10, ki predstavlja tlačno povezavo med zračno komoro 4 in notranjostjo vakuumsko izolacijske plošče. Prostor zračne komore 4 na tej sliki ni viden, saj se nahaja v notranjosti omenjenih elementov.Figure 3 shows an embodiment of a vacuum sensor 3, wherein the air chamber 4 is bounded on the underside by an induction body 5 in the form of a round plate, on the upper side by an upper wall 9 of substantially the same shape, with an opening 10 made in the spacer 6. which represents the pressure connection between the air chamber 4 and the inside of the vacuum insulation board. The space of the air chamber 4 is not visible in this figure, as it is located inside the said elements.

Na sliki 4 je prikazana spodnja stran izvedbenega primera vakuumskega senzorja 3, ki ima drugačno izvedbo tlačne povezave od tega na sliki 3. Kot na sliki 3, je zračna komora 4 na spodnji strani zamejena z indukcijskim telesom 5 v obliki okrogle ploščice, na zgornji strani je zamejena z zgornjo steno 9 pretežno enake oblike. Razlika je v tem, da je distančnik 6 izdelan kot prstan, tako da je reža med indukcijskim telesom 5 in zgornjo steno 9 ob robu zaprta po celem obodu. Tlačno povezavo med zračno komoro 4 in notranjostjo vakuumsko izolacijske plošče v tem izvedbenem primeru dosežemo z drobno izvrtino 7 v indukcijskem telesu 5. Zgornja stena 9 na tej sliki ni vidna, saj se v pogledu s spodnje strani nahaja za indukcijskim telesom 5.Figure 4 shows the underside of an embodiment of a vacuum sensor 3 having a different design of the pressure connection than in Figure 3. As in Figure 3, the air chamber 4 is bounded at the bottom by an induction body 5 in the form of a round plate, at the top is bounded by an upper wall 9 of substantially the same shape. The difference is that the spacer 6 is made as a ring, so that the gap between the induction body 5 and the upper wall 9 at the edge is closed around the entire circumference. The pressure connection between the air chamber 4 and the inside of the vacuum insulation plate in this embodiment is achieved by a small hole 7 in the induction body 5. The upper wall 9 is not visible in this figure, as in the bottom view it is behind the induction body 5.

Da dodatno zmanjšamo napako merjenja, lahko za zgornjo steno 9 izberemo material, ki ima v vertikalni smeri dobro toplotno prevodnost, v horizontalni smeri pa je dober izolator, npr. FR4, ki se uporablja pri proizvodnji plošč za tiskana vezja. Takšne toplotno izolativne lastnosti zgornje stene 9 nam po eni strani dodatno preprečujejo vpliv prehajanja toplote, ki bi se širila preko distančnika 6 na osrednji del zgornje stene 9, kjer se preko ovojnine 2 meri temperatura; po drugi strani pa nam omogoča čim bolj nemoten prenos toplote v vertikalni smeri iz zračne komore 4 preko zgornje stene 9 na ovojnino 2, kjer se meri temperatura.To further reduce the measurement error, we can choose for the upper wall 9 a material that has good thermal conductivity in the vertical direction and a good insulator in the horizontal direction, e.g. FR4 used in the manufacture of printed circuit boards. Such heat-insulating properties of the upper wall 9 further prevent us, on the one hand, from influencing the transfer of heat which would spread through the spacer 6 to the central part of the upper wall 9, where the temperature is measured via the package 2; on the other hand, it allows us to transfer heat as smoothly as possible in the vertical direction from the air chamber 4 through the upper wall 9 to the packaging 2, where the temperature is measured.

Zgornja stena 9 je lahko na spodnji strani, to je na strani, ki je obrnjena proti zračni komori 4 in indukcijskemu telesu 5, prevlečena s tanko plastjo svetlečega materiala, na primer aluminijasto folijo ali pa je obarvana s svetlečo barvo na aluminijevi podlagi, s čimer je ustvarjena refleksno plast, ki preprečuje prenos toplote kot posledico radiacije z indukcijskega telesa 5 skozi zračno komoro 4 na zgornjo steno 9. Pri metodi merjenja po zadevnem izumu je zaželen le toplotni tok skozi zračno komoro 4 zaradi toplotne konvekcije, saj toplotni tok zaradi radiacije prispeva k napaki merjenja.The upper wall 9 can be coated with a thin layer of luminous material, such as aluminum foil, on the underside, ie on the side facing the air chamber 4 and the induction body 5, or painted with a luminous paint on an aluminum base, thus a reflex layer is created which prevents heat transfer as a result of radiation from the induction body 5 through the air chamber 4 to the upper wall 9. In the measurement method according to the present invention, only heat flow through the air chamber 4 due to thermal convection is desirable. to the measurement error.

Slika 5 prikazuje prerez izvedbenega primera, pri katerem je v zgornji steni 9 izvedena odprtina 19, prednostno okrogle oblike, ki je namenjena temu, da odpravimo vpliv toplotne vztrajnosti materiala zgornje stene 9 na meritev temperature na zgornjem delu zračne komore 4. Ta odprtina mora biti dovolj majhna, da razlika med zunanjim tlakom in podtlakom v vakuumsko izolacijski plošči ne poškoduje ovojnine 2, ko se ta vboči v zračno komoro 4, ter da se ovojnina 2 ne vboči do te mere, da bi segla skozi celotno zračno komoro 4 in se dotaknila indukcijskega telesa 5.Figure 5 shows a cross-section of an embodiment in which an opening 19 is made in the upper wall 9, preferably round in shape, intended to eliminate the influence of thermal inertia of the upper wall material 9 on the temperature measurement at the upper part of the air chamber 4. This opening must be small enough that the difference between the external pressure and the vacuum in the vacuum insulation plate does not damage the package 2 when it is inserted into the air chamber 4, and that the package 2 does not enter to such an extent that it reaches through the entire air chamber 4 and touches induction body 5.

Da bi kar najbolj zmanjšali neželeno prehajanje toplote iz indukcijskega telesa 5 na zgornjo steno 9 preko distančnika 6, je slednji prednostno izdelan iz materiala, ki ima čim boljše toplotno izolacijske lastnosti.In order to minimize the undesired transfer of heat from the induction body 5 to the upper wall 9 via the spacer 6, the latter is preferably made of a material having the best thermal insulation properties.

Za merjenje tlaka po zadevnem izumu je potreben tudi generator izmeničnega elektromagnetnega polja 11, v nadaljevanju generator 11, ter merilnik temperature 12. Z generatorjem 11 se ustvari izmenično elektromagnetno polje primerno za gretje indukcijskega telesa 5. Zaradi tega se mora generator 11 med vzbujanjem postaviti dovolj blizu indukcijskega telesa 5, torej vakuumskega senzorja 3, ki je pred merjenjem že vstavljen v vakuumsko izolacijsko ploščo. Z merilnikom temperature 12 se meri temperaturo na tistem mestu ovojnine 2, ki je najbližje indukcijskemu telesu 5. Pri izvedbenih primerih, kjer je indukcijsko telo 5 vdelano v vakuumski senzor 3 in se ta nahaja med sredico 1 in ovojnino 2, se temperaturo meri na mestu, kjer se ovojnina 2 dotika vakuumskega senzorja 3, namreč zgornjega dela zračne komore 4, prednostno na sredini vakuumskega senzorja 3, s čimer lahko izmerimo toplotni tok na podlagi toplotne konvekcije skozi zračno komoro 4 s čim manj napakami.An alternating electromagnetic field generator 11, hereinafter referred to as a generator 11, and a temperature meter 12 are also required to measure the pressure according to the present invention. An alternating electromagnetic field suitable for heating the induction body 5 is generated by the generator 11. close to the induction body 5, ie the vacuum sensor 3, which is already inserted in the vacuum insulation board before the measurement. The temperature gauge 12 measures the temperature at the location of the package 2 closest to the induction body 5. In embodiments where the induction body 5 is integrated in the vacuum sensor 3 and is located between the core 1 and the package 2, the temperature is measured at the location , where the package 2 touches the vacuum sensor 3, namely the upper part of the air chamber 4, preferably in the middle of the vacuum sensor 3, so that the heat flow can be measured based on thermal convection through the air chamber 4 with as few errors as possible.

V enem od izvedbenih primerov je generator 11 izveden z elektronskim sklopom 18, ki generira izmenično napetost in navitjem iz debelejše večžilne žice, ki ustvarja izmenično elektromagnetno polje.In one of the embodiments, the generator 11 is implemented with an electronic assembly 18 that generates alternating voltage and a winding of a thicker multicore wire that generates an alternating electromagnetic field.

V drugem izvedbenem primeru je generator 11 izdelan iz elektronskega sklopa 18 in navitja na feritnem jedru U oblike 17, pri čemer se generator 11 med vzbujanjem prednostno postavi v tak položaj, da se vakuumski senzor 3 z indukcijskim telesom 5 in zračno komoro 4 nahaja med koncema feritnega jedra, s čimer dosežemo boljši izkoristek generatorja 11.In another embodiment, the generator 11 is made of an electronic assembly 18 and a winding on a U-shaped ferrite core 17, wherein the generator 11 is preferably positioned during excitation such that the vacuum sensor 3 with the induction body 5 and the air chamber 4 is located between the ends. ferrite core, thus achieving better efficiency of the generator 11.

Za merilnik temperature 12 se lahko uporabi različne senzorje toplote, na primer PTC upore, NTC upore ali termočlene. Zaželeno je, da ima merilnik temperature 12 čim manjšo toplotno vztrajnost, s čimer se poveča točnost meritve, skrajša čas meritve in čas v katerem je meritev mogoče ponoviti z istim merilnikom temperature.Different heat sensors, such as PTC resistors, NTC resistors or thermocouples, can be used for the temperature meter 12. It is desirable that the temperature gauge 12 has as little thermal inertia as possible, thereby increasing the accuracy of the measurement, shortening the measurement time, and the time in which the measurement can be repeated with the same temperature gauge.

Prednostno sta generator 11 in merilnik temperature 12 skupaj nameščena na merilni sondi 13, kar olajša merjenje, saj morata biti oba v času merjenja v neposredni bližini vakuumskega senzorja 3.Preferably, the generator 11 and the temperature meter 12 are mounted together on the measuring probe 13, which facilitates the measurement, as both must be in the immediate vicinity of the vacuum sensor 3 during the measurement.

Signal iz merilnika temperature 12 se v enem od izvedbenih primerov lahko vodi preko analogno digitalnega pretvornika 15 v enoto za obdelavo podatkov 14, preko katere krmilimo generator 11 in kjer se izmerjene vrednosti temperature z merilnika temperature 12 v posameznih časovnih intervalih ter čas in jakost vzbujanja generatorja 11 ustrezno obdelajo, iz česar se preko odvisnosti od toplotnega toka skozi zračno komoro 4 in toplotne prevodnosti zraka v zračni komori 4 izračuna tlak v vakuumsko izolacijski plošči. Dve od možnih metod merjenja sta opisani spodaj. Rezultat merjenja se prikaže na prikazovalniku 16. Analogno digitalni pretvornik 15, enota za obdelavo podatkov 14 in prikazovalnik 16 so prednostno nameščeni na merilni sondi 13.The signal from the temperature meter 12 can in one embodiment be routed via an analog-to-digital converter 15 to a data processing unit 14 through which the generator 11 is controlled and where the measured temperature values from the temperature meter 12 at individual time intervals and the generator excitation time and intensity 11 are treated accordingly, from which the pressure in the vacuum insulation plate is calculated depending on the heat flow through the air chamber 4 and the thermal conductivity of the air in the air chamber 4. Two of the possible measurement methods are described below. The measurement result is shown on the display 16. The analog-to-digital converter 15, the data processing unit 14 and the display 16 are preferably mounted on the measuring probe 13.

Slika 6 prikazuje merilno sondo 13 v izvedbenem primeru, pri katerem je uporabljen generator 11 z navitjem na feritnem jedru U oblike 17 in elektronskega sklopa 18. Prikazan je položaj sonde 13 med vzbujanjem, namreč da se vakuumski senzor 3 z indukcijskim telesom 5 in zračno komoro 4 nahaja med koncema feritnega jedra U oblike 17, s čimer dosežemo boljši izkoristek generatorja 11. Vakuumski senzor 3 je že med izdelavo vakuumsko izolacijske plošče vstavljen vanjo na sredico 1 pod ovojnino 2. Na sliki 6 so prikazani tudi ostali sestavni deli merilne sodne 13 v tem izvedbenem primeru, in sicer merilnik temperature 12, katerega položaj med merjenjem je prednostno na sredini vakuumskega senzorja 3, analogno digitalni pretvornik 15, enota za obdelavo podatkov 14 ter prikazovalnik 16. Kot omenjeno, je na sliki 6 je prikazan položaj navitja na feritnem jedru U oblike 17 ter merilnika temperature 12 glede na položaj vakuumskega senzorja 3 med vzbujanjem indukcijskega telesa 5 in med merjenjem; položaj ostalih elementov sonde 13 pa je prikazan le simbolično.Figure 6 shows a measuring probe 13 in an embodiment using a generator 11 wound on a U-shaped ferrite core 17 and an electronic assembly 18. The position of the probe 13 during excitation is shown, namely that the vacuum sensor 3 with the induction body 5 and the air chamber 4 is located between the ends of the U-shaped ferrite core 17, which achieves better efficiency of the generator 11. The vacuum sensor 3 is already inserted into the core 1 under the package 2 during the production of the vacuum insulation plate. Figure 6 also shows other components of the measuring vessel 13 in in this embodiment, a temperature meter 12, the position of which during the measurement is preferably in the middle of the vacuum sensor 3, an analog-to-digital converter 15, a data processing unit 14 and a display 16. As mentioned, Figure 6 shows the winding position on the ferrite core U of the shape 17 and the temperature gauge 12 with respect to the position of the vacuum sensor 3 during the excitation of the induction body 5 and during the measurement; the position of the other elements of the probe 13 is shown only symbolically.

Odvisnost toplotne prevodnosti zraka od zračnega tlaka je skoraj linearna v območju do 20 mbar, ki je najbolj relevantno pri proizvodnji in uporabi vakuumsko izolacijskih plošč, kar izhaja iz znanega stanja tehnike, npr. članka C.C. Minter, 1963, Effect of pressure on the thermal conductivity of a gas, Electrochemistry Branch, Chemistry Division. Zaradi te linearne odvisnostni je merjenje po zadevnem izumu dovolj natančno, pri čemer toplota prehaja skozi zračno komoro 4 zaradi toplotne konvekcije, to je prehajanja toplote iz toplejšega na hladnejši del zaradi Brovvnovega gibanja molekul plina.The dependence of the thermal conductivity of air on air pressure is almost linear in the range up to 20 mbar, which is most relevant in the production and use of vacuum insulation boards, which results from the prior art, e.g. Article C.C. Minter, 1963, Effect of pressure on the thermal conductivity of a gas, Electrochemistry Branch, Chemistry Division. Due to this linear dependence, the measurement according to the present invention is sufficiently accurate, with heat passing through the air chamber 4 due to thermal convection, i.e. the transfer of heat from the warmer to the colder part due to Brownian motion of gas molecules.

Odvisnost toplotne prevodnosti različnih materialov, ki so v znanem stanju tehnike uporabljeni kot testne plasti, od tlaka je znana in opisana na primer na spletni strani http://www.vipbau.de/e pages/technologv/vip/howthevwork.htm. Če se ta odvisnost primerja z odvisnostjo toplotne prevodnosti zraka od tlaka, je razvidno, da je odvisnost toplotne prevodnosti zraka znatno bolj linearno odvisna od tlaka v relevantnem območju, to je do 20 mbar, kot pa je toplotna prevodnost materialov, ki so uporabljeni za testno plast. Zaradi tega so rezultati meritev tlaka po zadevnem izumu bolj natančni.The dependence of the thermal conductivity of various materials used as test layers in the prior art on pressure is known and described, for example, at http://www.vipbau.de/e pages / technologv / vip / howthevwork.htm. If this dependence is compared with the dependence of air thermal conductivity on pressure, it is seen that the dependence of air thermal conductivity is significantly more linearly dependent on the pressure in the relevant range, ie up to 20 mbar, than the thermal conductivity of materials used for testing. plastic. Therefore, the results of the pressure measurements according to the present invention are more accurate.

Indukcijsko telo 5, ki je vstavljeno v vakuumsko izolacijsko ploščo na določeni razdalji od ovojnine 2, merilnik temperature 12 in generator 11 so povezani v magnetno indukcijski merilni sistem. Prednostno je indukcijsko telo 5 vdelano v vakuumski senzor 3, ki je vstavljen v vakuumsko izolacijsko ploščo na enega od zgoraj opisanih načinov.The induction body 5, which is inserted into the vacuum insulation plate at a certain distance from the package 2, the temperature meter 12 and the generator 11 are connected to a magnetic induction measuring system. Preferably, the induction body 5 is integrated in a vacuum sensor 3, which is inserted into the vacuum insulation plate in one of the ways described above.

Metoda merjenja tlaka v vakuumsko izolacijskih ploščah z magnetno indukcijskim merilnim sistemom po zadevnem izumu vsebuje naslednje korake:The method of measuring the pressure in vacuum insulation panels with a magnetic induction measuring system according to the present invention comprises the following steps:

1. Merjenje začetne temperature z merilnikom temperature 12 na mestu na ovojnini 2, ki se nahaja v neposredni bližini indukcijskega telesa 5, prednostno na sredini vakuumskega senzorja 3.Measuring the initial temperature with a temperature meter 12 at a location on the package 2 located in the immediate vicinity of the induction body 5, preferably in the middle of the vacuum sensor 3.

2. Gretje indukcijskega telesa 5 z določeno jakostjo vzbujanja generatorja 11, pri čemer trajanje časovnega intervala vzbujanja merimo in nadziramo.2. The heating of the induction body 5 with a certain excitation power of the generator 11, wherein the duration of the excitation time interval is measured and controlled.

3. Dodatno merjenje temperature z merilnikom temperature 12 na istem mestu ali bistveno istem mestu kot merjenje začetne temperature v eni ali več časovnih točkah med trajanjem ali po intervalu vzbujanja generatorja 11.3. Additional temperature measurement with a temperature meter 12 at the same place or substantially the same place as the measurement of the initial temperature at one or more time points during or after the excitation interval of the generator 11.

Po eni od možnih izvedb opisane metode je interval vzbujanja indukcijskega telesa 5 z generatorjem 11 določen v naprej. Dodatno merjenje temperature se izvede le enkrat po začetnem merjenju, in sicer prednostno v istem trenutku, ko se zaključi interval vzbujanja. Pri večjih tlakih v vakuumsko izolacijski plošči je toplotna prevodnost zraka v zračni komori 4 večja, posledično je večji toplotni tok skozi zračno komoro 4 in višja razlika med začetno in končno temperaturo pri dani jakosti in v naprej določenem časovnem intervalu vzbujanja. Pri manjših tlakih, ki so zaželeni pri vakuumsko izolacijskih ploščah, pa bo razlika med začetno in končno temperaturo manjša.According to one of the possible embodiments of the described method, the excitation interval of the induction body 5 with the generator 11 is determined in advance. Additional temperature measurement is performed only once after the initial measurement, preferably at the same time as the excitation interval ends. At higher pressures in the vacuum insulation board, the thermal conductivity of the air in the air chamber 4 is higher, consequently the higher the heat flow through the air chamber 4 and the higher the difference between the initial and final temperature at a given intensity and in a predetermined excitation time interval. At lower pressures, which are desirable for vacuum insulation boards, the difference between the initial and final temperature will be smaller.

Po drugi od možnih izvedb zgoraj opisane metode je v naprej določena razlika med začetno temperaturo in končno temperaturo. Merimo časovni interval vzbujanja indukcijskega telesa 5, ki traja toliko časa, da se doseže v naprej določena razlika med začetno temperaturo in končno temperaturo. Zaradi tega temperaturo merimo večkrat znotraj intervala vzbujanja indukcijskega telesa 5. Pri večjih tlakih v vakuumsko izolacijski plošči bo toplotna prevodnost zraka v zračni komori 4 večja, posledično bo večji toplotni tok skozi zračno komoro 4 in krajše trajanje intervala gretja in merjenja temperature, da se doseže v naprej določena razlika med začetno in končno temperaturo pri dani jakosti vzbujanja. Pri manjših tlakih, ki so zaželeni pri vakuumsko izolacijskih ploščah, pa bo trajanje intervala gretja daljše.According to another of the possible embodiments of the method described above, the difference between the initial temperature and the final temperature is determined in advance. We measure the excitation time interval of the induction body 5, which lasts until a predetermined difference between the initial temperature and the final temperature is reached. Therefore, the temperature is measured several times within the excitation interval of the induction body 5. At higher pressures in the vacuum insulation board, the thermal conductivity of the air in the air chamber 4 will be higher, consequently the higher heat flow through the air chamber 4 and shorter heating and temperature measurement intervals. a predetermined difference between the initial and final temperature at a given excitation strength. However, at lower pressures, which are desirable for vacuum insulation panels, the duration of the heating interval will be longer.

Claims (15)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Vakuumski senzor (3) za merjenje tlaka v vakuumsko izolacijski plošči, označen s tem, da je sestavljen iz indukcijskega telesa (5), ki je izdelano iz materiala s feromagnetnimi lastnostmi, in zračne komore (4), pri čemer je zračna komora (4) v tlačni povezavi z zunanjostjo vakuumskega senzorja (3).Vacuum sensor (3) for measuring the pressure in a vacuum insulating plate, characterized in that it consists of an induction body (5) made of a material with ferromagnetic properties and an air chamber (4), the air chamber being (4) in pressure connection with the outside of the vacuum sensor (3). 2. Vakuumski senzor 3 po zahtevku 1, označen s tem, da je zračna komora (4) izvedena kot prostor med indukcijskim telesom (5), zgornjo steno (9) in enim ali več distančniki (6) med indukcijskim telesom (5) in zgornjo steno (9).Vacuum sensor 3 according to claim 1, characterized in that the air chamber (4) is designed as a space between the induction body (5), the upper wall (9) and one or more spacers (6) between the induction body (5) and the upper wall (9). 3. Vakuumski senzor (3) po zahtevkih 1 ali 2, označen s tem, da je tlačna povezava zračne komore (4) z zunanjostjo vakuumskega senzorja (3) izvedena kot ena ali več izvrtin (7) v indukcijskem telesu (5).Vacuum sensor (3) according to claims 1 or 2, characterized in that the pressure connection of the air chamber (4) with the outside of the vacuum sensor (3) is made as one or more holes (7) in the induction body (5). 4. Vakuumski senzor (3) po zahtevku 2, označen s tem, da je tlačna povezava zračne komore (4) z zunanjostjo vakuumskega senzorja (3) izvedena kot ena ali več odprtin (10) v distančniku (6).Vacuum sensor (3) according to Claim 2, characterized in that the pressure connection of the air chamber (4) with the outside of the vacuum sensor (3) is made as one or more openings (10) in the spacer (6). 5. Vakuumski senzor (3) po zahtevkih 2 do 4, označen s tem, da je v zgornji steni (9) izvedena odprtina (19).Vacuum sensor (3) according to Claims 2 to 4, characterized in that an opening (19) is provided in the upper wall (9). 6. Vakuumski senzor (3) po zahtevku 2 ali 3, označen s tem, da je indukcijsko telo (5) v obliki ploščice okrogle površine, da je zgornja stena (9) v obliki ploščice enake površine kot indukcijsko telo (5), ter da je distančnik (6) v obliki prstana.Vacuum sensor (3) according to claim 2 or 3, characterized in that the induction body (5) is in the form of a round surface plate, that the upper wall (9) is in the form of a plate of the same surface as the induction body (5), and that the spacer (6) is in the shape of a ring. 7. Vakuumski senzor (3) po zahtevkih 2 do 6, označen s tem, da je zgornja stena (9) izdelana iz materiala, ki ima v vertikalni smeri dobro toplotno prevodnost, v horizontalni smeri pa je dober izolator, prednostno iz FR4.Vacuum sensor (3) according to Claims 2 to 6, characterized in that the upper wall (9) is made of a material having good thermal conductivity in the vertical direction and a good insulator in the horizontal direction, preferably of FR4. 8. Vakuumski senzor (3) po zahtevkih 2 do 7, označen s tem, da je zgornja stena (9) na strani, ki je obrnjena proti indukcijskemu telesu (5), prevlečena s tanko plastjo svetlečega materiala, prednostno aluminijasto folijo ali obarvana s svetlečo barvo na aluminijevi podlagi.Vacuum sensor (3) according to Claims 2 to 7, characterized in that the upper wall (9) on the side facing the induction body (5) is coated with a thin layer of luminous material, preferably aluminum foil or colored with shiny paint on an aluminum base. 9. Magnetno indukcijski sistem za merjenje tlaka v vakuumsko izolacijski plošči, označen s tem, da ga tvori indukcijsko telo (5), ki je izdelano iz materiala s feromagnetnimi lastnostmi in je vstavljeno v vakuumsko izolacijsko ploščo na določeni razdalji od ovojnine (2), merilnik temperature (12) in generator (11).Magnetic induction system for measuring the pressure in a vacuum insulating plate, characterized in that it is formed by an induction body (5) made of a material with ferromagnetic properties and inserted into the vacuum insulating plate at a certain distance from the package (2), temperature gauge (12) and generator (11). 10. Sistem po zahtevku 9, označen s tem, da je generator (11) sestavljen iz navitja na feritnem jedru U oblike (17) ter elektronskega sklopa (18).System according to claim 9, characterized in that the generator (11) consists of a winding on a U-shaped ferrite core (17) and an electronic assembly (18). 11. Sistem po zahtevkih 9 do 10, označen s tem, da vsebuje tudi enoto za obdelavo podatkov (14), analogno digitalni pretvornik (15) in prikazovalnik (16).System according to claims 9 to 10, characterized in that it also comprises a data processing unit (14), an analog-to-digital converter (15) and a display (16). 12. Sistem po zahtevkih 9 do 11, označen s tem, da je indukcijsko telo (5) vdelano v vakuumski senzor (3).System according to Claims 9 to 11, characterized in that the induction body (5) is integrated in the vacuum sensor (3). 13. Metoda merjenja tlaka v vakuumsko izolacijski plošči, označena s tem, da vsebuje naslednje korake:13. A method of measuring the pressure in a vacuum insulation board, characterized in that it comprises the following steps: - merjenje začetne temperature z merilnikom temperature (12) na mestu na ovojnini (2), ki se nahaja v neposredni bližini indukcijskega telesa (5), prednostno na sredini vakuumskega senzorja (3);- measuring the initial temperature with a temperature meter (12) at a location on the package (2) located in the immediate vicinity of the induction body (5), preferably in the middle of the vacuum sensor (3); - gretje indukcijskega telesa (5) z določeno jakostjo vzbujanja generatorja (11), pri čemer časovni interval vzbujanja merimo in nadziramo;- heating the induction body (5) with a certain excitation power of the generator (11), the excitation time interval being measured and controlled; - dodatno merjenje temperature z merilnikom temperature (12) na istem mestu ali bistveno istem mestu kot merjenje začetne temperature v eni ali več časovnih točkah med trajanjem ali po intervalu vzbujanja generatorja (11).- additional temperature measurement with a temperature meter (12) at the same place or substantially the same place as the measurement of the initial temperature at one or more time points during or after the generator excitation interval (11). 14. Metoda po zahtevku 13, označena s tem, da je interval vzbujanja indukcijskega telesa (5) z generatorjem (11) določen v naprej ter da se dodatno merjenje temperature izvede le enkrat po začetnem merjenju, in sicer prednostno v istem trenutku, ko se zaključi interval vzbujanja.Method according to claim 13, characterized in that the excitation interval of the induction body (5) is determined in advance by the generator (11) and that the additional temperature measurement is performed only once after the initial measurement, preferably at the same time as complete the excitation interval. 15. Metoda po zahtevku 13, označena s tem, da se meri trajanje časovnega intervala vzbujanja indukcijskega telesa (5), ki traja toliko časa, da se doseže v naprej določeno razliko med začetno temperaturo in končno temperaturo, pri čemer se temperaturo meri večkrat znotraj intervala vzbujanja indukcijskega telesa (5).Method according to claim 13, characterized in that the duration of the time interval of excitation of the induction body (5) is measured, which lasts so long as to achieve a predetermined difference between the initial temperature and the final temperature, the temperature being measured several times within the excitation interval of the induction body (5).
SI201400314A 2014-09-15 2014-09-15 Magnetic induction system, a sensor and a method for measuring air pressure in vacuum insulation panels SI24816A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201400314A SI24816A (en) 2014-09-15 2014-09-15 Magnetic induction system, a sensor and a method for measuring air pressure in vacuum insulation panels
PCT/SI2015/000027 WO2016043670A1 (en) 2014-09-15 2015-08-24 Magnetic induction system, a sensor and a method for measuring air pressure in vacuum insulation panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201400314A SI24816A (en) 2014-09-15 2014-09-15 Magnetic induction system, a sensor and a method for measuring air pressure in vacuum insulation panels

Publications (1)

Publication Number Publication Date
SI24816A true SI24816A (en) 2016-03-31

Family

ID=55135502

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201400314A SI24816A (en) 2014-09-15 2014-09-15 Magnetic induction system, a sensor and a method for measuring air pressure in vacuum insulation panels

Country Status (2)

Country Link
SI (1) SI24816A (en)
WO (1) WO2016043670A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106197821A (en) * 2016-06-24 2016-12-07 南京凤源新材料科技有限公司 A kind of table full-automatic wireless remote control vacuum heat-insulating plate internal pressure measurement device
DE102018221984A1 (en) * 2018-12-17 2020-06-18 Robert Bosch Gmbh Method for producing a sensor request for determining at least one pressure of a fluid medium
CN109572649B (en) * 2018-12-30 2023-10-24 吉林东光奥威汽车制动系统有限公司 Electric vacuum pump control device suitable for plateau and plateau areas
JPWO2022130920A1 (en) * 2020-12-16 2022-06-23
KR102514494B1 (en) * 2021-08-23 2023-03-30 오씨아이 주식회사 Vacuum insulation panel and system for inspecting vacuum insulation panel
CN114791332B (en) * 2022-04-06 2023-09-15 安徽蓝格利通新材应用股份有限公司 Automatic detection device for vacuum insulation panels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215213C1 (en) 2002-04-06 2003-09-11 Va Q Tec Ag Gas pressure in sheet-enveloped evacuated thermal insulation panel determining device, has built-in covered metal plate acting as thermal reservoir
ITMI20021944A1 (en) * 2002-09-12 2004-03-13 Getters Spa METHOD, SENSOR AND APPARATUS TO MEASURE THE VACUUM, AS WELL AS
DE10348169B4 (en) 2003-10-16 2015-08-20 Va-Q-Tec Ag Apparatus and method for determining the gas pressure in metal-enveloped hollow bodies
DE102006045471A1 (en) 2006-09-26 2008-04-03 Va-Q-Tec Ag Method for determining the gas pressure in evacuated bodies

Also Published As

Publication number Publication date
WO2016043670A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
SI24816A (en) Magnetic induction system, a sensor and a method for measuring air pressure in vacuum insulation panels
CN104233203B (en) Sintering equipment, the manufacturing method of sintered body and target
KR101448375B1 (en) Cryogenic Materials Laboratory Devices
CN115113126B (en) Device and method for testing and calibrating metal Hall probe
CN105785291A (en) Permanent magnet material magnetic flux temperature stability measuring device and method thereof
CN101517389B (en) Method and device for determining the gas pressure in evacuated bodies
US3521018A (en) Temperature sensor
CN106768615B (en) A kind of low temperature warm area High Accuracy Constant Temperature test cavity
US8681493B2 (en) Heat shield module for substrate-like metrology device
KR20110055310A (en) Equipment for measuring adiabatic temperature rise of concrete and adiabatic temperature rise of concrete testing method
CN108508263B (en) Power sensor
Tan et al. A novel interdigital capacitor pressure sensor based on LTCC technology
Beaucamp-Ricard et al. Temperature measurement by microwave radiometry: Application to microwave sintering
Datskov et al. Precise thermometry for next generation LHC superconducting magnet prototypes
JPS5673317A (en) Thermal-type flow meter
EP2113709A1 (en) Heat protection tube
JP2016167423A (en) Microwave heating device
EP3460499A1 (en) Orthogonal fluxgate sensor
JP2004206901A (en) Induction heating device
CN215573424U (en) Heat insulation panel and device with heat insulation function
KR101743266B1 (en) Heater pipe apparatus for detecting a gas leak
US20160195495A1 (en) Magnetic permeability measurement of ferromagnetic wires
JP2503581Y2 (en) Thermometer calibration device
CN108508265B (en) Power sensor
CN220703245U (en) MEMS chip

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20160420

KO00 Lapse of patent

Effective date: 20180508