SI24659A - Method for tetragonal zirconia oxide thin films growth suitable for catalytic devices - Google Patents

Method for tetragonal zirconia oxide thin films growth suitable for catalytic devices Download PDF

Info

Publication number
SI24659A
SI24659A SI201400111A SI201400111A SI24659A SI 24659 A SI24659 A SI 24659A SI 201400111 A SI201400111 A SI 201400111A SI 201400111 A SI201400111 A SI 201400111A SI 24659 A SI24659 A SI 24659A
Authority
SI
Slovenia
Prior art keywords
zirconium
zirconium oxide
tetragonal
thin layer
synthesis
Prior art date
Application number
SI201400111A
Other languages
Slovenian (sl)
Inventor
Miran MOZETIČ
Nikolas Panagiotopoulos
Giorgos A. Evangelakis
Original Assignee
Institut "Jožef Stefan"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut "Jožef Stefan" filed Critical Institut "Jožef Stefan"
Priority to SI201400111A priority Critical patent/SI24659A/en
Priority to PCT/SI2015/000012 priority patent/WO2015142295A1/en
Publication of SI24659A publication Critical patent/SI24659A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8474Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

Pričujoči izum sodi v področje metod za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti, pri čemer inovativna metoda vsebuje interakcijo med tankimi plastmi cirkonija ali materialov, ki vsebujejo cirkonij, z reaktivnim plinom, ki vsebuje kisik, pri povišani temperaturi in ob prisotnosti oscilirajočega magnetnega polja. Pričujoči izum omogoča izdelavo tetragonalnega cirkonijevega oksida in njegovo uporabo za obdelavo nevarnih organskih plinov ali tekočin.The present invention falls within the scope of methods for the synthesis of tetragonal zirconium oxide in the form of thin layers, the innovative method comprising interaction between thin zirconium layers or zirconium-containing materials with a reactive gas containing oxygen at an elevated temperature and in the presence of an oscillating magnetic field . The present invention allows the production of tetragonal zirconium oxide and its use for treating dangerous organic gases or liquids.

Description

Metoda za sintezo tankih plasti tetragonalnega cirkonijevega oksida primernega za katalitične napraveMethod for the synthesis of tetragonal zirconium oxide thin films suitable for catalytic installations

Področje tehnikeThe field of technology

Izum sodi v področje metod za sintetiziranje stabilnega tetragonalnega cirkonijevega oksida v obliki tankih plasti, z vnaprej določeno površinsko morfologijo in z uporabo takih plasti kovinskih zlitin. Prav tako sodi v področje obdelave tovrstnih zlitin z reaktivnim plinom ob prisotnosti močnih magnetnih polj.The invention is within the scope of methods for synthesizing stable tetragonal zirconium oxide in the form of thin layers, having a predetermined surface morphology and using such metal alloy layers. It also belongs to the field of processing such alloys with reactive gas in the presence of strong magnetic fields.

Ozadje izumaBACKGROUND OF THE INVENTION

Cirkonijev oksid in katalitični materiali, ki temeljijo na cirkonijevem oksidu, so bili podrobno predstavljeni in uporabljeni v različnih aplikacijah kot so:Zirconium oxide and catalytic materials based on zirconium oxide have been presented in detail and used in various applications such as:

- zaščitne prevleke [Heiroth in sod., Acta Mater. 59, 2330 (2011)],- protective coatings [Heiroth et al., Acta Mater. 59, 2330 (2011)],

- dielektrične prevleke z visokim lomnim količnikom [US8026161 ],- dielectric coatings with high refractive index [US8026161],

- optične prevleke [Xiao in sod., Vacuum 83, 366 (2009)],- optical coatings [Xiao et al., Vacuum 83, 366 (2009)],

- katalitične prevleke za izpušne pline vozil [Alphonse in Ansart, J. Colloid Interf. Sci. 658, 336 (2009); US5532198],- catalytic coatings for vehicle exhaust gases [Alphonse and Ansart, J. Colloid Interf. Sci. 658, 336 (2009); US5532198],

- elektrolitični materiali v oksidnih gorivnih celicah [Amezaga-Madrid in sod., J. Alloy Comp. 536S, S412 (2012)],- Electrolytic materials in oxide fuel cells [Amezaga-Madrid et al., J. Alloy Comp. 536S, S412 (2012)],

- optični valovni vodniki [US7292766], inoptical waveguides [US7292766], and

- polprevodniške spominske naprave z ZrO2 dielektričnimi prevlekami [US7491654].- Semiconductor memory devices with ZrO 2 dielectric coatings [US7491654].

Poleg tega cirkonijev oksid izkazuje tudi dobro fotokatalitično aktivnost, zaradi česar se uporablja v katalitičnih aplikacijah, kot je bilo opisano v patentnih dokumentih US5532198 in US0039814, ter v članku »Heterogeneous photocatalysis: State of the art and present applications« avtorja J.-M. Herrmanna [Top. Catal. 34, 49 (2005)].In addition, zirconium oxide also exhibits good photocatalytic activity, resulting in its use in catalytic applications, as described in US Patent Nos. 5,532,198 and US0039814, and in the article "Heterogeneous Photocatalysis: State of the Art and Present Applications" by J.-M. Herrmann [Top. Catal. 34, 49 (2005)].

Fotokatalitično aktivnost trdnega materiala določata dve fizikalni lastnosti: širina optičnega prepovedanega pasu, ki je določena kot energijska razlika med valenčnim in prehodnim pasom, in kristalna struktura trdne snovi. Vpliv optičnega prepovedanega pasu pri fotokatalitičnih procesih se odraža, kadar polprevodniški material obsevamo z izvorom svetlobe, ki seva fotone z energijo večjo od širine prepovedanega pasu, kot na primer obsevanje z UV svetlobo iz ksenonske luči ali obsevanje s sončno svetlobo. V teh primerih elektroni iz valenčnega pasu prehajajo v prevodni pas tako, da ustvarijo par elektron-vrzel. Posledica tovrstnega pojava je polarizacijski potencial na površini trdnega materiala, saj sta elektron in vrzel ločena s prepovedanim pasom. V kolikor je polarizacijski potencial dovolj velik, lahko povzroči oksidacijo ali pa redukcijo različnih kemijskih snovi [US0039814]. Druga fizikalna lastnost, ki določa fotokatalitično aktivnost trdne snovi, je njena kristalna struktura. To je posledica nastanka različnih energetskih nivojev v valenčnem in prevodnem pasu fotokatalitičnega materiala, ki se razlikujejo glede na elektronsko konfiguracijo materialov z različno kristalno strukturo. Zaradi tega imajo lahko enaki materiali s podobnimi vrednostmi prepovedanega pasu različne fotokatalitične učinke, kot je to primer pri monoklinskem in tetragonalnem ZrC>2 [Gao in sod., Chem. Mater. 16, 2615(2004)].The photocatalytic activity of a solid material is determined by two physical properties: the width of the optical band gap, which is determined as the energy difference between the valence and transition bands, and the crystalline structure of the solid. The influence of the optical band gap in photocatalytic processes is reflected when the semiconductor material is irradiated with a light source that radiates photons with energy greater than the band width, such as x-ray UV irradiation or sunlight. In these cases, electrons from the valence band pass into the conduction band to create a pair of electron gaps. This phenomenon results in the polarization potential on the surface of the solid material, since the electron and the gap are separated by a forbidden band. If the polarization potential is large enough, it can lead to oxidation or reduction of various chemical substances [US0039814]. Another physical property that determines the photocatalytic activity of a solid is its crystalline structure. This is due to the formation of different energy levels in the valence and conduction band of the photocatalytic material, which differ depending on the electronic configuration of materials with different crystal structure. Therefore, identical materials with similar bandgap values may have different photocatalytic effects, as is the case with monoclinic and tetragonal ZrC> 2 [Gao et al., Chem. Mater. 16, 2615 (2004)].

Metoda za preučevanje in določanje fotokatalitičnih aktivnosti je fotokatalitična aktivnost v vodnih raztopinah. Tovrstne meritve se izvajajo pri stalni temperaturi v cevi, ki je prepustna za UV sevanje. V cev namestimo katalitični material v obliki vodne raztopine, ki vsebuje tako katalizator kot tudi molekule, ki jih je potrebno katalizirati. Pred UV obsevanjem je potrebno sistem pustiti v temnem prostoru za 30 minut, s čimer dosežemo absorpcijsko ravnovesje na površini fotokatalitičnega materiala. Po tem fotokatalitični material obsevamo z UV izvirom, na primer ksenonsko lučjo, pri čemer filtriramo kakršnokoli infrardeče sevanje, s čimer se izognemo ogrevanju fotokatalitičnega materiala. Tako začetne kot katalizirane raztopine se analizira s tekočinsko kromatografijo, s čimer se lahko določi izkupiček katalize z uporabljenim fotokatalitičnim materialom.The method for studying and determining photocatalytic activity is photocatalytic activity in aqueous solutions. Such measurements are carried out at a constant temperature in a tube that is permeable to UV radiation. A catalytic material is placed in the tube in the form of an aqueous solution containing both the catalyst and the molecules to be catalyzed. Prior to UV irradiation, the system should be left in the dark for 30 minutes to achieve an absorption balance on the surface of the photocatalytic material. Subsequently, the photocatalytic material is irradiated with a UV source, such as a xenon light, filtering out any infrared radiation to avoid heating the photocatalytic material. Both initial and catalyzed solutions are analyzed by liquid chromatography to determine the yield of catalysis with the photocatalytic material used.

• ·• ·

Fotokatalitična aktivnost se za vsak fotokatalitični material razlikuje. Najbolj pogosto uporabljena oksida prehodnih kovin, ki izkazujeta visoko stopnjo fotokatalitične aktivnosti sta TiO2 v obliki anatasa in ZrO2 v tetragonalni obliki. Raziskave objavljene v člankih avtorjev Bethke in sod. [Catal. Lett. 25, 37 (1994)], Lo in sod. [Sol. Energ. Mat. Sol. C. 91, 1765 (2007)] ter Chien in sod. [J. Hazard. Matter. 151,461 (2008)] so pokazale, da izkazuje cirkonij visoko fotokatalitično aktivnost za katalizo nevarnih ogljikovodikov, kloridov in nitridov, kot so CH4, C2H6, HCHO, CH3OH, in HCOOH, CCI4, NOX.The photocatalytic activity differs for each photocatalytic material. The most commonly used transition metal oxides exhibiting high levels of photocatalytic activity are anatase TiO 2 and tetragonal ZrO 2 . Research published in the articles by Bethke et al. [Catal. Lett. 25, 37 (1994)], Lo et al. [Sol. Energ. Mat. Sol. C. 91, 1765 (2007)] and Chien et al. [J. Hazard. Matter. 151,461 (2008)] have shown that zirconium exhibits high photocatalytic activity for the catalysis of hazardous hydrocarbons, chlorides and nitrides such as CH 4 , C 2 H6, HCHO, CH 3 OH, and HCOOH, CCI 4 , NO X.

Cirkonijev oksid se lahko nahaja v različnih oblikah, to je v monoklinski kristalni obliki, v tetragonalni obliki, v obliki tankih plasti ali v prahu. Ne glede na obliko je stabilizacija cirkonijevega oksida izjemno zahtevna, prav tako pa je omejeno tudi znanje o nastanku cirkonijevega oksida v obliki tankih plasti, ki bi imel izboljšano fotokatalitično aktivnost.Zirconium oxide can be present in a variety of forms, that is, in monoclinic crystalline form, in tetragonal form, in thin film form or in powder form. Regardless of its form, stabilization of zirconium oxide is extremely demanding, and knowledge of the formation of zirconium oxide in the form of thin layers, which would have improved photocatalytic activity, is also limited.

Ena od poglavitnih prednosti stabiliziranega cirkonijevega oksida v tanki plasti je dejstvo, da ga je mogoče nanesti na različne tehnološke izdelke in komponente, kot na primer na industrijske cevi, dele vozil, strehe in okna, s čimer omogočijo fotokatalitično uničenje nevarnih molekul, ki so lahko prisotne v atmosferi ali pa nastanejo v industriji. Naslednja velika prednost cirkonijevega oksida v obliki tankih plasti je zmožnost preprostega čiščenja, kadar pride do kontaminacije med uporabo, pri čemer tovrstno čiščenje ne povzroči izgube fotokatalitične aktivnosti. Tovrstne izgube so sicer značilne za cirkonijev oksid v obliki prahu.One of the major advantages of stabilized zirconium oxide in a thin layer is the fact that it can be applied to various technological products and components, such as industrial pipes, vehicle parts, roofs and windows, thereby allowing the photocatalytic destruction of dangerous molecules that may be present in the atmosphere or occur in the industry. Another major advantage of zirconium oxide in the form of thin films is the ability to simply purify when contamination occurs during use, without such purification causing loss of photocatalytic activity. Such losses are, however, typical of zirconium oxide in powder form.

Tehnični problem, ki ga pričujoči izum rešuje, je zasnova metode sinteze stabilnega tetragonalnega cirkonijevega oksida v tankih plasteh, ki bo imel izboljšane fotokatalitične lastnosti in bo primeren za industrijsko sintezo ter uporabo.A technical problem to be solved by the present invention is the design of a method of synthesis of stable tetragonal zirconium oxide in thin layers, which will have improved photocatalytic properties and will be suitable for industrial synthesis and use.

Rešitev tehničnega problema naj omogoča uporabo tetragonalnega cirkonijevega oksida v tankih plasteh sintetiziranega po metodi po izumu pri fotokatalitičnih procesih, pri čemer naj bo metoda hitra, cenovno ugodna, primerna za industrijske aplikacije, sintetizirani material pa naj ima izboljšane lastnosti.The solution of the technical problem should allow the use of tetragonal zirconium oxide in thin layers synthesized according to the method according to the invention in photocatalytic processes, whereby the method should be fast, affordable, suitable for industrial applications, and the synthesized material should have improved properties.

Znano stanje tehnikeThe prior art

Tetragonalni cirkonijev oksid v obliki tankih plasti ali v prahu se najpogosteje stabilizira z različnimi aliovalentnimi dopanti kot so na primer Y3+, Ca2+ in Na+ ale cello tetravalentni Si4+, Ce4+, Ge4+ in pentavalentni Nb5+, Ta5+. Ključni del za stabilizacijo je nižja valenca ali večja vsebnost (v primerjavi z Zr4+ ioni) in po trenutnem prepričanju se to zgodi preko zamenjave teh ionov z aliovalentinimi ioni, kar vodi k nastanku primanjkljaja kisika. Primanjkljaj kisika pa povzroči nastanek polihidronov z osmimi koordinatami, ki je mnogo bližje simetriji tetragonalnega cirkonijevega oksida [Ray in sod., J. Am. Ceram. Soc. 86, 514 (2003); Ray in sod., Mater. Lett. 53, 145 (2002)] kadar uporabimo dopante z nižjo valenco ali višjo velikostjo (Nb, Ta, V) [Gopalakrishnan in Ramanathan, J. Mater. Sci. 46, 5768 (2011)]. Tovrstna stabilizacija nastane zaradi dveh razlogov: a) matrica cirkonijevega oksida je bolj pozitivno nabita, tako da nastane 8-koordinatna simetrija, prav tako pa močne vezi med Ta-0 ali Nb-O-Zr prepreči re-orientacijo atomov, kar bi sicer vodilo k nastanku stabilne monoklinske kristalne strukture ZrO2 pri sobni temperaturi; b) stabilizacija tetragonalnega cirkonijevega oksida se lahko doseže tudi z majhnimi dopanti z nizko valenco. To se zgodi zaradi tega, ker nastane primanjkljaj kisika in manjše enotne celice promovirajo nastanek tetragonalne faze, ki ima manjši volumen enotne celice kot monoklinski cirkonijev oksid [Ramaswamy in sod., Catal. Today 97, 63 (2004)].Tetragonal zirconium oxide in the form of a thin layer or powder is most commonly stabilized by various aliovalent dopants such as, for example, Y 3+ , Ca 2+ and Na + ale cello tetravalent Si 4+ , Ce 4+ , Ge 4+ and pentavalent Nb 5+ , This 5+ . A key part of the stabilization is lower valence or higher content (compared to Zr4 + ions), and it is currently believed that this occurs through the replacement of these ions with aliovalentin ions, leading to the formation of oxygen deficiency. However, oxygen deficiency causes the formation of polyhydrons with eight coordinates, which is much closer to the symmetry of tetragonal zirconium oxide [Ray et al., J. Am. Ceram. Soc. 86, 514 (2003); Ray et al., Mater. Lett. 53, 145 (2002)] when using lower valence or higher size dopants (Nb, Ta, V) [Gopalakrishnan and Ramanathan, J. Mater. Sci. 46, 5768 (2011)]. This kind of stabilization is due to two reasons: a) the zirconium oxide matrix is more positively charged, thus creating 8-coordinate symmetry and also strong bonds between Ta-0 or Nb-O-Zr prevent the re-orientation of the atoms, which would otherwise lead to the formation of a stable monoclinic crystal structure of ZrO 2 at room temperature; b) Tetragonal zirconia stabilization can also be achieved with small low-valence dopants. This is because oxygen deficiency occurs and smaller single cells promote the formation of a tetragonal phase that has a smaller single cell volume than the monoclinic zirconium oxide [Ramaswamy et al., Catal. Today 97, 63 (2004)].

Sinteza in rast stabilnega tetragonalnega cirkonijevega oksida pri sobni temperaturi je bila opisana v več člankih in patentnih dokumentih.The synthesis and growth of stable tetragonal zirconium oxide at room temperature has been described in several articles and patent documents.

Tang in sod., [J. Am. Chem. Soc. 130, 2676 (2008)] ter Sato in sod., [J. Am. Chem. Soc. 132, 2538 (2010)] so opisali sintezo in stabilizacijo cirkonijevega oksida pri sobni temperaturi v obliki prahu.Tang et al., [J. Am. Chem. Soc. 130, 2676 (2008)] and Sato et al., [J. Am. Chem. Soc. 132, 2538 (2010)] described the synthesis and stabilization of zirconium oxide at room temperature in powder form.

Chen in sod. [Scripta Mater. 68, 559 (2013)] so opisali sintezo tankega filma iz stabilnega nosilnega tetragonalnega ZrO2 pri sobni temperaturi brez dopantov. Sonderby in sod. [Surf. Coat. Tech. 206, 4126 (2012)] in Garcia in sod. [Thin Solid Films 370, 173 (2000)] so opisali uporabo reaktivnega magnetronskega naprševanjaChen et al. [Scripta Mater. 68, 559 (2013)] have described the synthesis of a thin film from a stable carrier tetragonal ZrO2 at room temperature without dopants. Sonderby et al. [Surf. Coat. Tech. 206, 4126 (2012)] and Garcia et al. [Thin Solid Films 370, 173 (2000)] have described the use of reactive magnetron sputtering

in nanosa iz parne faze z uporabo metalo-organskih substanc za neposredno rast z itrijem stabiliziranega cirkonijevega oksida v obliki tanke plasti.and vapor phase application using direct-growth metal-organic substances with yttrium stabilized zirconium oxide in the form of a thin layer.

Scherrer in sod. [Adv. Funct. Mater. 21, 3967 (2011)] so opisali tvorjenje tankih filmov z itrijem stabiliziranega cirkonija z razpršilno pirolizo pri 370 °C. Film je kristaliziral pri temperaturi v rangu med 400 °C in 900 °C. Popolnoma kristalizirani tanki filmi z itrijem stabiliziranega cirkonija so bili dobljeni s segrevanjem na 900 °C ali z izotermnim mirovanjem pri temperaturi 600 °C v trajanju vsaj 17 ur.Scherrer et al. [Adv. Funct. Mater. 21, 3967 (2011)] described the formation of yttrium stabilized zirconium films by spray pyrolysis at 370 ° C. The film crystallized at a temperature in the range of 400 ° C to 900 ° C. Fully crystallized yttrium stabilized zirconium thin films were obtained by heating to 900 ° C or isothermal quenching at 600 ° C for at least 17 hours.

Lamas in sod. [Thin Solid Films 520, 4782 (2012)] so opisali tvorjenje tankih filmov z itrijem stabiliziranega cirkonija z uporabo magnetronskega naprševanja iz dveh virov. Piascik in sod. [J. Vac. Sci. Technol. A 23, 1419 (2005)] so uporabili radiofrekvenčno magnetronsko naprševanje za tvorjenje tankih filmov z itrijem stabiliziranega cirkonija pri temperaturi med 22 in 300 °C, pritisku 5 do 25 mTorr, in kombinaciji plina Ar/O. Patentna prijava US20110319655 opisuje postopek za pripravo materiala za katalizatorje, ki je sestavljen iz naravnega silikata v prahu ter cirkonijevega hidroksida v prahu, pri čemer se mešanica žge pri temperaturi višji od 620 °C.Lamas et al. [Thin Solid Films 520, 4782 (2012)] described the formation of yttrium stabilized zirconium thin films using magnetron sputtering from two sources. Piascik et al. [J. Vac. Sci. Technol. A 23, 1419 (2005)] used radio frequency magnetron sputtering to form thin films with yttrium stabilized zirconium at a temperature between 22 and 300 ° C, a pressure of 5 to 25 mTorr, and an Ar / O gas combination. US20110319655 describes a process for the preparation of catalyst material consisting of natural silicate powder and zirconium hydroxide powder, whereby the mixture is fired at a temperature higher than 620 ° C.

Patent US20060245999 opisuje postopek za sintezo tetragonalnega cirkonija, ki vključuje sledeče korake: (a) dodatek prekurzorja cirkonija precipitacijskemu agensu, da nastane prvi precipitat; (b) izpostavitev prvega precipitata v raztopini temperaturam višjim od približno 80 °C do približno 120 °C za vsaj eno uro, da nastane raztopljena mešanica; (c) sušenje mešanice, da nastane suh amorfni cirkonij; in (d) žganje suhega amorfnega cirkonija do končnega cirkonija, ki vsebuje približno 99.9 % tetragonalnega cirkonija.US20060245999 describes a process for the synthesis of tetragonal zirconium, which comprises the following steps: (a) adding a zirconium precursor to a precipitation agent to form a first precipitate; (b) exposing the first precipitate in solution to temperatures above about 80 ° C to about 120 ° C for at least one hour to form a dissolved mixture; (c) drying the mixture to form dry amorphous zirconium; and (d) firing dry amorphous zirconium to finished zirconium containing about 99.9% tetragonal zirconium.

Z zgoraj navedenimi tehnikami so bili pripravljeni tetragonalni in kubični ZrO2 filmi, ki so primerni za uporabo za ojačitve zobne keramike, kot zaščitne ali optične prevleke, kot katalitične prevleke na anodah kisikovih gorivnih celic in kot univerzalni senzorji za izpušne pline.The above techniques have prepared tetragonal and cubic ZrO 2 films suitable for use in dental ceramic reinforcement, as protective or optical coatings, as catalytic coatings on oxygen fuel cell anodes, and as universal exhaust gas sensors.

Različne raziskave so bile opravljene s ciljem povečanja fotokatalitične aktivnosti tetragonalne oblike cirkonijevega oksida.Various studies have been carried out with the aim of increasing the photocatalytic activity of the tetragonal form of zirconium oxide.

Pomembne katalitične lastnosti tetragonalnega cirkonijevega oksida stabiliziranega z bakrovim oksidom so bile objavljene za primer redukcije dušikovih oksidov in pri pripravi metanola [Luo in sod., Appl. Catal. A423- 424, 121 (2012); Pumama in sod.,Important catalytic properties of copper oxide stabilized tetragonal zirconium oxide have been published for the case of nitrogen oxide reduction and for the preparation of methanol [Luo et al., Appl. Catal. A423-424, 121 (2012); Pumama et al.,

Catal. Lett. 94, 61 (2004); Bethke in sod., Catal. Lett. 25, 37 (1994)]. Tovrstna fotokatalitična aktivnost tega materiala je bila pripisana nastanku aktivnih mest na katalitični podpori (v tem primeru cirkonijev oksid) [Aguila in sod., Appl. Catal. A 360, 98 (2009); Burch in Flambard, J. Catal. 78, 389 (1982)]. Poleg tega podatki o katalitičnih aktivnosti iz različnih študij kažejo, da imajo izboljšano fotokatalitično aktivnost tudi katalitični materiali, ki so stabilizirani s T1O2, AI2O3, S1O2 in ZnO. Raziskave na področju stabilizacije cirkonijevega oksida z bakrom so pokazale povišano aktivnost za tetragonalno obliko v primerjavi z amorfno ali monoklinsko [Mercera in sod., Appl. Catal. 57, 127 (1990), Aguila in sod., Appl. Catal. B 77, 325 (2008); Ma in sod., J. Mol. Catal. A 231, 75 (2005)]. Colon s sodelavci [Appl. Catal. B 67, 41 (2006)] je predlagal dodatne kovinske elemente, ki lahko povečajo fotokatalitično aktivnost na fotokatalizatorjih zaradi tega, ker delujejo kot mesta za zajetje naboja, s čimer zmanjšajo rekombinacijo para elektron-vrzel. Poleg tega kovinski elementi, ki se uporabljajo za stabilizacijo cirkonijevega oksida (Y, Nb, Fe) in kot dopanti (Mn, Cu) povečajo fotokatalitično aktivnost cirkonijevega oksida [Alvarez et al, Appl. Catal B 73, 34 (2007); Wyrwalski in sod., J. Mater. Sci. 40, 933 (2005)]. Aliovalentni dopanti se lahko klasificirajo kot donorji in akceptorji, kar pomeni, da igrajo vlogo valenčnih nadomestil ali nizkovalenčnih ionov upoštevaje ionsko izmenjavo Zr4+ ionov cirkonijevega oksida [Chu in sod., Integr. Ferroelectr. 58, 1293 (2003)]. S tem v zvezi je možno pričakovati povečano fotokatalitično aktivnost cirkonijevega oksida, kateremu je dodan Nb5+in Cu2,1+.Catal. Lett. 94, 61 (2004); Bethke et al., Catal. Lett. 25, 37 (1994)]. This photocatalytic activity of this material has been attributed to the formation of active sites on catalytic support (in this case zirconium oxide) [Aguila et al., Appl. Catal. A 360, 98 (2009); Burch and Flambard, J. Catal. 78, 389 (1982)]. In addition, the catalytic activity data from various studies indicate that enhanced photocatalytic activity also has catalytic materials stabilized by T1O2, AI2O3, S1O2 and ZnO. Studies on the stabilization of zirconium oxide by copper have shown increased activity for tetragonal form compared to amorphous or monoclinic [Mercera et al., Appl. Catal. 57, 127 (1990), Aguila et al., Appl. Catal. B 77, 325 (2008); Ma et al., J. Mol. Catal. A 231, 75 (2005)]. Colon et al [Appl. Catal. B 67, 41 (2006)] suggested additional metallic elements that can increase photocatalytic activity on photocatalysts because they act as charge capture sites, thereby reducing electron-gap pair recombination. In addition, metal elements used to stabilize zirconium oxide (Y, Nb, Fe) and as dopants (Mn, Cu) increase the photocatalytic activity of zirconium oxide [Alvarez et al, Appl. Catal B 73, 34 (2007); Wyrwalski et al., J. Mater. Sci. 40, 933 (2005)]. Aliiovalent dopants can be classified as donors and acceptors, meaning that they play the role of valence substitutes or low-valence ions by considering the Zr 4+ ion exchange of zirconium ions [Chu et al., Integr. Ferroelectr. 58, 1293 (2003)]. In this regard, it is possible to expect increased photocatalytic activity of zirconium oxide to which Nb 5+ and Cu 2,1+ are added.

Kljub zgoraj opisanim rešitvam pa fotokatalitična aktivnost tankih plasti cirkonijevega oksida za ogljikovodike v vodnih raztopinah še ni bila raziskana v primeru dodatka manjših količin oksidov niobija in bakra. Tovrstne raziskave so dolgotrajne, drage in zahtevajo uporabo kompleksnih metod, kot na primer sol-gel, nanos z vrtenjem ali pirolizo za nanos cirkonijevih oksidov z naknadno kalcinacijo.Despite the solutions described above, the photocatalytic activity of zirconium thin films for hydrocarbons in aqueous solutions has not yet been investigated in the case of the addition of smaller amounts of niobium and copper oxides. Such research is time-consuming, costly and requires the use of complex methods, such as sol-gel, rotation or pyrolysis, for the application of zirconium oxides with subsequent calcination.

Opis rešitve tehničnega problemaDescription of solution to a technical problem

Bistvo pričujočega izuma je metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti, ki je sestavljena iz dveh ključnih korakov, in sicer se v prvem koraku z industrijsko primerno metodo nanese primerno tanko plast steklene zlitine z veliko vsebnostjo cirkonija ter z dodatkom enega ali več elementov izbranih v skupini, v kateri so baker, titan in niobij za stabilizacijo ter izboljšanje fotokatalitičnih lastnosti, v drugem koraku pa se v prisotnosti močnega oscilirajočega RF magnetnega polja tanke plasti oksidirajo s kisikom ali katerimkoli drugim plinom, ki vsebuje kisik. Metoda je hitrejša in cenovno ugodnejša od do sedaj znanih, poleg tega pa jo je možno v celoti izvesti v rahlo prilagojeni komori za depozicijo, tako da oksidacijska komora ni potrebna. Dobljen cirkonijev oksid v tankih plasteh ima izboljšane lastnosti v primerjavi z znanimi fotokatalitičnimi materiali in je primeren za uporabo v fotokatalizatorjih, kar je bilo dokazano s preverjanjem katalize dveh nevarnih onesnaževalcev, Di-tert butil katehola (DTBC) in benzojske kisline.The essence of the present invention is a method for the synthesis of tetragonal zirconium oxide in the form of a thin layer, which consists of two key steps, in the first step by applying an appropriately thin layer of high-zirconium glass alloy with the addition of one or more elements selected from the group consisting of copper, titanium and niobium to stabilize and enhance the photocatalytic properties, and in the second step, in the presence of a strong oscillating RF magnetic field, the thin layers are oxidized with oxygen or any other gas containing oxygen. The method is faster and more affordable than previously known, and it can also be performed completely in a slightly adapted deposition chamber so that no oxidation chamber is required. The obtained zirconium oxide in thin layers has improved properties compared to known photocatalytic materials and is suitable for use in photocatalysts, as evidenced by checking the catalysis of two dangerous pollutants, Di-tert butyl catechol (DTBC) and benzoic acid.

Izum bo v nadaljevanju podrobneje razložen z natančnejšim opisom in s pomočjo slik, ki prikazujejo:The invention will now be explained in more detail by a more detailed description and by means of pictures showing:

Slika 1 Amorfna struktura ternarnega kovinskega stekla (MG) v obliki tanke plasti (Zr69Cu2oNbnMG), pripravljene po metodah tega izuma. (XRD)Fig. 1 Amorphous structure of a ternary metallic glass (MG) in the form of a thin layer (Zr 69 Cu2oNbnMG) prepared according to the methods of the present invention. (XRD)

Slika 2 Krista log rafska struktura tetragonalnega cirkonijevega oksida (t-ZrC>2 na Zr-Cu-Nb MG plasti) v materialu, ki je bil sintetiziran skladno z metodami tega izuma. (XRD)Figure 2 The crystal log structure of tetragonal zirconium oxide (t-ZrC> 2 on the Zr-Cu-Nb MG layer) in a material synthesized according to the methods of the present invention. (XRD)

Slika 3 Sestava površinske plasti fotokatalizatorja (oksidirana Zr69Cu2oNbn plast), ki je bil pripravljen skladno z metodami tega izuma. (XPS)Figure 3 Composition of the surface layer of a photocatalyst (oxidized Zr 69 Cu2oNbn layer) prepared according to the methods of the present invention. (XPS)

Slika 4 Površinska morfologija tetragonalnega oksida, v materialu, ki je bil pripravljen skladno z metodami tega izuma. (AFM)Figure 4 Surface morphology of tetragonal oxide, in a material prepared in accordance with the methods of the present invention. (AFM)

Slika 5 Kinetični profili DTBC in benzojske kisline, pri čemer so omenjeni katalitični učinki v enoti ppm normalizirani na maso stabilnega tetragonalnega oksida, ki je bil pripravljen skladno z metodami tega izuma. Prikazanih je 6 krivulj, kjer je 1-Začetni [Organski substrat na gram ZrO2], 2-DTBC v t-ZrO2 plasti, 3-Benzojska kislina v t-ZrO2 plasti, 4-Začetni [Organski substrat na gram TiO2], 5-DTBC v TiO2 prahu inFigure 5 Kinetic profiles of DTBC and benzoic acid, said catalytic effects in ppm being normalized to the mass of stable tetragonal oxide prepared according to the methods of the present invention. 6 curves are shown where 1-Initial [Organic substrate per gram of ZrO2], 2-DTBC in t-ZrO2 layer, 3-Benzoic acid in t-ZrO 2 layer, 4-Initial [Organic substrate per gram of TiO 2 ]. 5-DTBC in TiO 2 powder and

6-Benzojska kislina v T1O2 prahu.6-Benzoic acid in T1O2 powder.

Slika 6 Kinetični profili DTBC in benzojske kisline, pri čemer so omenjeni katalitični učinki v enoti ppm normalizirani na geometrijsko površino stabilnega tetragonalnega oksida, ki je bil pripravljen skladno z metodami tega izuma. Prikazanih je 6 krivulj, kjer je 1-Začetni [Organski substrat na m2 ZrO2], 2-DTBC v t-ZrO2 plasti, 3-Benzojska kislina v t-ZrO2 plasti, 4-Začetni [Organski substrat na m2 TiO2], 5-DTBC v T1O2 prahu in 6-Benzojska kislina vTiO2 prahu.Figure 6 Kinetic profiles of DTBC and benzoic acid, said catalytic effects in the ppm unit being normalized to the geometric surface of the stable tetragonal oxide prepared according to the methods of the present invention. 6 curves are shown where 1-Initial [Organic substrate per m 2 ZrO2], 2-DTBC in t-ZrO2 layer, 3-Benzoic acid in t-ZrO2 layer, 4-Initial [Organic substrate per m 2 TiO2]. 5-DTBC in T1O2 powder and 6-Benzoic acid in TiO 2 powder.

Metoda za sintezo fotokatalitičnega tetragonalnega cirkonijevega oksida v obliki tankih plasti obsega uporabo dveh ključnih in industrijsko primernih korakov.The method for the synthesis of photocatalytic tetragonal zirconium oxide in the form of thin layers involves the use of two key and industrially appropriate steps.

V prvem koraku se z industrijsko napravo za nanos, prednostno z napravo za magnetronsko naprševanje, nanese primerno tanko plast steklene zlitine z veliko vsebnostjo cirkonija. Za rast tovrstnih steklastih zlitin je bistvenega pomena vsebnost bakra, saj le-ta omogoča dobro formacijo steklastih zlitin kot je to opisal Inoue s sod. [J. Non-Cryst. Solids 156-158, 473 (1993)]. V pričujočem izumu rasti stabiliziranega cirkonijevega oksida s povečano fotokatalitično aktivnostjo je vsebnost bakra v matrici kovinske steklene zlitine v obliki tanke plasti potrebna zaradi izboljšanja fotokatalitične aktivnosti, ki je posledica nastanka CuO. Poleg tega se lahko z metodo magnetronskega naprševanja tankim filmom cirkonijevega oksida doda dodatne elemente, ki so izbrani v skupini, v kateri so baker, titan in niobij. V pričujočem izumu je bil uporabljen Nb zaradi dveh razlogov: a) to je element, ki stabilizira cirkonijev oksid, b) glede na Zr4+ ione lahko niobij poveča fotokatalitično aktivnost, saj deluje kot donorski element.In the first step, an appropriately thin layer of high zirconium glass alloy is applied to an industrial application device, preferably a magnetron spray device. Copper content is essential for the growth of such glassy alloys, as it enables good formation of glassy alloys as described by Inoue et al. [J. Non-Cryst. Solids 156-158, 473 (1993)]. In the present invention for the growth of stabilized zirconium oxide with increased photocatalytic activity, the copper content of the thin-layer metallic glass alloy matrix is required in order to improve the photocatalytic activity resulting from the formation of CuO. In addition, by means of the magnetron sputtering method, zirconium oxide thin films can be added with additional elements selected from the group consisting of copper, titanium and niobium. In the present invention, Nb was used for two reasons: a) it is a zirconium stabilizing element, b) with respect to Zr 4+ ions, niobium can increase photocatalytic activity by acting as a donor element.

V naslednjem koraku pričujočega izuma uporabimo steklene zlitine v obliki tankih plasti kot osnovo za hitro (red velikosti je 10 s) in cenovno ugodno (kalcinacija ni potrebna) oksidacijo s kisikom v prisotnosti magnetnega polja. V prisotnosti močnega RF magnetnega polja se tanke plasti steklaste zlitine na podlagi Zr segrejejo do temperature nekaj sto stopinj Celzija, medtem ko atomarni kisikovi radikali oksidirajo podlago. Tako se omenjeni materiali oksidirajo na ta način, da tvorijo stabilno obliko tetragonalnega cirkonijevega oksida, ki raste na površini omenjenih tankih plasti.In the next step of the present invention, thin-layer glass alloys are used as a basis for rapid (order of magnitude of 10 s) and cost-effective (calcination not necessary) oxidation with oxygen in the presence of a magnetic field. In the presence of a strong RF magnetic field, thin layers of Zr-based glass alloy are heated to a temperature of several hundred degrees Celsius, while atomic oxygen radicals oxidize the substrate. Thus, said materials are oxidized in such a way as to form a stable form of tetragonal zirconium oxide that grows on the surface of said thin layers.

Metoda, ki je predmet tega izuma, se izvede po sledečih korakih:The method of the present invention is carried out in the following steps:

- izbira podlage za nanos steklaste zlitine in namestitev podlage v visoko vakuumsko komoro;- selection of the substrate for the glass alloy application and placement of the substrate in the high vacuum chamber;

- odvajanje plina iz omenjene visoko vakuumske komore, s čimer se zniža tlak v omenjeni visoko vakuumski komori v področje pod 100 Pa;- extracting gas from said high vacuum chamber, thereby reducing the pressure in said high vacuum chamber to an area below 100 Pa;

- nanos tanke plasti cirkonija ali cirkonij vsebujočega materiala na podlage z metodami vakuumske depozicije;- applying a thin layer of zirconium or zirconium-containing material to the substrates by vacuum deposition methods;

- dovajanje kisika ali kisik vsebujočega plina v omenjeno visoko vakuumsko komoro;- supplying oxygen or oxygen-containing gas to said high vacuum chamber;

- uporaba oscilirajočega magnetnega polja v omenjeni visoko vakuumski komori;- the use of an oscillating magnetic field in said high vacuum chamber;

- ogrevanje omenjene tanke plasti cirkonija ali cirkonij vsebujočega materiala z indukcijo zaradi uporabljenega magnetnega polja; in- heating said thin layer of zirconium or zirconium-containing material by induction due to the magnetic field used; and

- ohlajanje omenjene tanke plasti cirkonija ali cirkonij vsebujočega materiala do sobne temperature.- cooling said thin layer of zirconium or zirconium-containing material to room temperature.

V izvedbi, ki je primerna tudi za industrijsko uporabo, se lahko celoten postopek izvede v eni komori. Za to je potrebna majhna prilagoditev komore za depozicijo, pri čemer se z vakuumsko prenašalno roko v komoro postavi indukcijska tuljava okoli depoziranega filma steklaste kovine Zr6gCu2oNbn in se namesto argona v komoro dovaja kisik. V drugem izvedbenem primeru se lahko uporabi omenjeno visoko vakuumsko komoro zgolj za nanos omenjenih tankih plasti cirkonija ali cirkonij vsebujočega materiala, medtem ko se ostali koraki (od četrte alineje naprej) izvedejo v drugi komori.In an embodiment that is also suitable for industrial use, the entire process can be carried out in one chamber. This requires a small adjustment of the deposition chamber, by placing an induction coil in the chamber with an induction coil around the deposited Zr6gCu2oNbn glass metal film and oxygen being supplied to the chamber. In another embodiment, said high vacuum chamber may be used solely for the application of said thin layers of zirconium or zirconium-containing material, while the other steps (from the fourth indent) are carried out in the second chamber.

V prednostni izvedbi metode po izumu se tanke plasti, ki vsebujejo cirkonij, izpostavijo kisiku ali kateremu koli drugemu plinu, ki vsebuje kisik, v močnem magnetnem polju. V prednostni izvedbi se tanke plasti cirkonija ali drugih materialov, ki vsebujejo cirkonij, nanesejo na podlago na takšen način, da je vsebnost cirkonija v omenjenih tankih plasteh večja kot pet volumskih odstotkov. V nadalje prednostni izvedbi imajo tanke plasti cirkonija ali materiala, ki vsebuje cirkonij, debelino med 0,01 in 100 mikrometrov. V nadalje prednostni izvedbi so tanke plasti cirkonija ali cirkonij vsebujočega materiala steklaste cirkonij vsebujoče zlitine, vključno sIn a preferred embodiment of the method of the invention, zirconium-containing thin layers are exposed to oxygen or any other oxygen-containing gas in a strong magnetic field. In a preferred embodiment, thin layers of zirconium or other materials containing zirconium are applied to the substrate in such a way that the zirconium content of said thin layers is greater than five percent by volume. In a further preferred embodiment, the thin layers of zirconium or zirconium-containing material have a thickness between 0.01 and 100 micrometers. In a further preferred embodiment, the thin layers of zirconium or zirconium-containing material are glassy zirconium-containing alloys, including

ternarnimi ali bolj kompleksnimi kovinskimi stekli. V nadalje prednostni izvedbi se izbere plin, ki vsebuje kisik, izbran v skupini plinov, ki vključujejo, vendar niso omejeni na kisik, zrak, vodno paro, ogljikov dioksid, ogljikov monoksid in dušikove okside. Izbrana je lahko tudi mešanica omenjenih plinov s katerimkoli drugim plinom. Reakcija z reaktivnim plinom je izvedena pri temperaturi med 0 in 800 °C, prednostno pri temperaturi med 200 in 800 °C. V želeni izvedbi je gostota magnetnega polja najmanj 3 Gauss, preferenčno pa večja kot 30 Gauss. V želeni izvedbi je čas obdelave omenjenih tankih plasti cirkonija ali cirkonij vsebujočega materiala med 1 in 1000 s, pri čemer je čas večji kot 10 sekund pri gostoti magnetnega polja 300 Gauss in večji kot 100 sekund pri gostoti magnetnega polja 30 Gauss.ternary or more complex metallic glasses. In a further preferred embodiment, an oxygen containing gas is selected from the group of gases that include, but are not limited to, oxygen, air, water vapor, carbon dioxide, carbon monoxide and nitrogen oxides. A mixture of said gases with any other gas may also be selected. The reaction with the reactive gas is carried out at a temperature between 0 and 800 ° C, preferably at a temperature between 200 and 800 ° C. In a preferred embodiment, the magnetic field density is at least 3 Gauss and preferably greater than 30 Gauss. In a preferred embodiment, the processing time of said thin layers of zirconium or zirconium-containing material is between 1 and 1000 s, the time being greater than 10 seconds at a magnetic field density of 300 Gauss and greater than 100 seconds at a magnetic field density of 30 Gauss.

Tanek sloj steklaste kovine se nanese na komercialno silicijevo rezino, ki je bila izdelana po Czochralski tehniki in predstavlja n-tip Si(001) z metodo neuravnoteženega magnetronskega naprševanja. Uporabljena je bila visoko vakuumska komora izdelana iz nerjavnega jekla, v katero sta bila nameščena dva magnetronska izvira. Omenjena komora je bila izčrpana do tlaka 2 mPa z uporabo turbomolekularne in rotacijske črpalke. Uporabili smo tarči Zr in Cu visoke čistosti (99,8 % in 99,99 %), ki smo ju namestili na dve magnetronski puški, vsaka od njih je bila nameščena pod kotom 45° glede na površino podlage. Za nanos ternarne steklaste zlitine Zr-Cu-Nb je bil nameščen še dodatni disk niobija visoke čistosti (99,8 %) na Zr tarčo, tako da je pokrival okoli 10 % cirkonijeve tarče. Za razprševanje tarč smo uporabili Ar visoke čistosti (99,999 %), ki smo ga puščali v komoro iz nerjavnega jekla, tako da smo dosegli delovni tlak 4 Pa. Uporabili smo enosmerno razelektritev pri moči 60 W, ki je bila razdeljena na oba magnetrona. Nanos tanke plasti steklaste kovine na podlago smo izvedli pri sobni temperaturi podlage z razprševanjem materiala na obeh tarčah.A thin layer of vitreous metal is applied to a commercial silicon wafer, which was made by Czochral technique and represents n-type Si (001) by unbalanced magnetron sputtering. A high vacuum chamber made of stainless steel was used in which two magnetron springs were installed. Said chamber was exhausted to a pressure of 2 mPa using a turbomolecular and rotary pump. We used high purity Zr and Cu targets (99.8% and 99.99%), which were mounted on two magnetron rifles, each mounted at an angle of 45 ° with respect to the surface of the substrate. An additional high purity niobium disc (99.8%) was applied to the Zr target to apply a Zr-Cu-Nb ternary glass alloy to cover about 10% of the zirconium target. High purity Ar (99.999%) was used to diffuse the targets into a stainless steel chamber to achieve a working pressure of 4 Pa. We used DC discharge at 60 W, which was divided into both magnetrons. A thin layer of glassy metal was applied to the substrate at room temperature by spraying the material on both targets.

Za določitev sestave ternarne zlitine smo uporabili elektronsko disperzivno spektrometrijo (EDS), ki je pokazala sestavo Zr69Cu2oNbn. Za določitev kristaliničnosti te plasti smo uporabili difrakcijo rentgenskih žarkov pri nizkih vpadnih kotih (XRD). Rezultat je prikazan na sliki 1, iz katere je razvidno, da je nanesen material amorfen torej neodvisen od kristaliničnosti podlage, kar je ključnega pomena za širšo uporabo metode, ki je predmet izuma.Electronic dispersion spectrometry (EDS) was used to determine the composition of the ternary alloy, which showed the composition of Zr 6 9Cu2oNbn. Low-angle (XRD) X-ray diffraction was used to determine the crystallinity of this layer. The result is shown in Figure 1, which shows that the applied material is amorphous, therefore, independent of the crystallinity of the substrate, which is crucial for the widespread use of the method of the invention.

Nanesene tanke plasti steklaste zlitine Zr69Cu2oNbn so bile obdelane z oksidativno atmosfero, da bi nastal cirkonijev oksid. Oksidacija je bila izvedena v komercialno dostopni borosilikatni cevi, v katero je bil vstavljen vzorec s tanko plastjo steklaste zlitine, pri čemer je bila cev izčrpana do končnega tlaka 1 Pa z rotacijsko črpalko, potem pa je bil vanjo dovajan kisik komercialne čistosti, tako da je bil tlak 40 Pa. Na borosilikatno cev je bila pritrjena kovinska tuljava, ki je bila priključena na radio frekvenčni izvir frekvence 13,65 MHz, s čimer se je znotraj tuljave ustvarilo oscilirajoče magnetno polje. To polje je omogočilo ogrevanje Zr6gCu2oNbn v kisikovi atmosferi in s tem nastanek oksidne plasti v nekaj 10 sekundah. Na sliki 2 je prikazan difraktogram oksidirane Zr6gCu2oNbn plasti, kot je bil določen z difrakcijo rentgenskih žarkov (XRD). Opaziti je možno nastanek tetragonalnega cirkonijevega oksida po obdelavi z oscilirajočim magnetnim poljem, pod to plastjo pa je ostanek neoksidirane steklastne zlitine Zr6gCu2oNbn, ki ostaja med oksidirano plastjo in podlago.Applied thin layers of Zr 6 9Cu 2 oNbn glass alloy were treated with an oxidizing atmosphere to form zirconium oxide. The oxidation was carried out in a commercially available borosilicate tube, into which a sample with a thin layer of glassy alloy was inserted, the tube being exhausted to a final pressure of 1 Pa by a rotary pump, and then oxygen of commercial purity was supplied thereto, so that was a pressure of 40 Pa. A metal coil was attached to the borosilicate tube, which was connected to a 13.65 MHz radio frequency source, thereby creating an oscillating magnetic field inside the coil. This field allowed the heating of Zr6gCu2oNbn in an oxygen atmosphere, and thus the formation of the oxide layer in a few 10 seconds. Figure 2 shows the diffractogram of the oxidized Zr6gCu2oNbn layer as determined by X-ray diffraction (XRD). The formation of tetragonal zirconium oxide after treatment with an oscillating magnetic field can be observed, and below this layer is a residue of the non-oxidized glass alloy Zr6gCu 2 oNbn, which remains between the oxidized layer and the substrate.

Morfologija površine sintetiziranega tetragonalnega cirkonija je bila nadalje preučena z mikroskopom na atomsko silo (AFM). Gladka površina kovinskega steklastega filma Zr6gCu2oNbn se je po oksidaciji spremenila v relativno grobo površino kot je razvidno iz slike 4. Nanostrukturirana površina nastalega filma tetragonalnega cirkonija ima večjo aktivno površino, kar se kaže kot prednost pri izboljšani katalitični učinkovitosti v primerjavi s površinami gladkih filmov.The surface morphology of the synthesized tetragonal zirconium was further examined using an atomic force microscope (AFM). The smooth surface of the Zr6gCu2oNbn metallic glass film changed to a relatively coarse surface after oxidation as shown in Figure 4. The nanostructured surface of the resulting tetragonal zirconium film has a larger active surface, which is an advantage in the improved catalytic efficiency over the smooth film surfaces.

Kljub temu, da na difraktogramu ni opaziti značilnih difrakcijskih vrhov Nb in Cu oksidov, smo jih opazili z rentgensko fotoelektronsko spektroskopijo, ki kaže na prisotnost majhne količine Nb2O3 kot kaže slika 3. Ti oksidi naj bi izboljšali fotokatalitski izkupiček predlaganega katalizatorja narejenega s specifično metodo.Although no significant diffraction peaks of Nb and Cu oxides were observed on the diffractogram, they were observed by X-ray photoelectron spectroscopy, indicating the presence of a small amount of Nb 2 O3 as shown in Figure 3. These oxides are expected to improve the photocatalytic yield of the proposed catalyst made with specific method.

Produkt dobljen z metodo, ki je predmet izuma, je katalitični material, ki je primeren za fotokatalitično uničenje nevarnih odpadkov, kot so organski plini in tekočine. Po zgoraj opisani metodi so bile pripravljene tanke plasti cirkonijevega oksida, katerega fotokatalitične značilnosti smo ocenili z uporabo vodne raztopine dveh vrst nevarnih onesnaževalcev in sicer Di-tert butil katehola (DTBC) in benzojske kisline, ki sta bila analitske čistosti (99% čistost) in kupljena od proizvajalca Sigma-Aldrich (ZDA). Uspešnost katalitičnih reakcij smo izmerili z neposredno primerjavo s komercialnim fotokatalizatorjem v obliki prahu in sicer Degussa-P25 TiO2 (Degussa, Nemčija). Slednji je znan kot zelo dober fotokatalizator za različne kemične molekule [Ajmera in sod., Chem. Eng. Technol. 25, 173 (2002); Velegraki in sod., Chem. Eng. J. 140, 15 (2008)]. Topila z za HPLC primerne stopnje čistosti (acetonitril, metanol in voda LC čistosti) so bili od proizvajalca Merck (Darmstadt, Germany). Vse vodne raztopine so bile pripravljene z ultra čisto Milli-Q vodo, ki se jo pridobi s čistilnim sistemom za vodo Millipore VVaters Milli-Q.The product obtained by the method of the invention is a catalytic material that is suitable for photocatalytic destruction of hazardous wastes such as organic gases and liquids. The zirconium oxide thin films were prepared according to the method described above, the photocatalytic properties of which were evaluated using an aqueous solution of two types of hazardous pollutants, namely Di-tert butyl catechol (DTBC) and benzoic acid, which were of analytical purity (99% purity) and purchased from Sigma-Aldrich (USA). The performance of the catalytic reactions was measured by direct comparison with a commercial powder photocatalyst, namely Degussa-P25 TiO 2 (Degussa, Germany). The latter is known as a very good photocatalyst for various chemical molecules [Ajmera et al., Chem. Eng. Technol. 25, 173 (2002); Velegraki et al., Chem. Eng. J. 140, 15 (2008)]. The HPLC solvents of suitable purity levels (acetonitrile, methanol and LC water purity) were from Merck (Darmstadt, Germany). All aqueous solutions were prepared with ultra-pure Milli-Q water, which was obtained with the Millipore VVaters Milli-Q water purification system.

Fotokatalitični eksperimenti so bili izvedeni z aparatom Suntest XLS+ proizvajalca Atlas (Nemčija) opremljenim s ksenonsko žarnico. Svetlobni vir je bil omejen s posebnimi steklenimi filtri, ki omejujejo prenos valovnih dolžin pod 290 nm. Hladilni tokokrog z vodo iz pipe je bil uporabljen za odstranitev IR radiacije, kar je preprečilo segrevanje suspenzije. Eksperimenti obsevanja so bili izvedeni z uporabo vodne raztopine DTBC ali benzojske kisline (0,5 mg/L) in filma tetragonalnega cirkonija pridobljenega z metodo po izumu. Kontrolni eksperimenti obsevanja so bili narejeni z uporabo komercialno dostopnega Degussa-P25 T1O2 kot katalizatorja (100 mg/L).Photocatalytic experiments were performed with an Atlas (Germany) Suntest XLS + apparatus equipped with a xenon lamp. The light source was limited by special glass filters limiting the transmission of wavelengths below 290 nm. A tap water cooling circuit was used to remove IR radiation, which prevented the suspension from heating. Irradiation experiments were performed using an aqueous solution of DTBC or benzoic acid (0.5 mg / L) and a tetragonal zirconium film obtained by the method of the invention. Irradiation control experiments were performed using commercially available Degussa-P25 T1O2 as a catalyst (100 mg / L).

V vseh eksperimentih so bile raztopine pripravljene z mešanjem pred in med obsevanjem. Suspenzije so bile pred obsevanjem inkubirane 30 minut v temi, zato da se je vzpostavilo adsorpcijsko ravnotežje na polprevodniški površini. Med potekom reakcij so bili pri specifičnih časovnih intervalih iz reaktorja odvzeti vzorci za nadaljnjo analizo. Pred preverjanjem fotokatalitične razgradnje so bili izvedeni eksperimenti neposredne fotolize, da se oceni njen obseg pri fotokatalitični razgradnji DTBC in benzojske kisline.In all experiments, the solutions were prepared by mixing before and during irradiation. The suspensions were incubated for 30 minutes in the dark before irradiation to establish an adsorption equilibrium on the semiconductor surface. During the course of the reactions, samples were taken from the reactor at specific time intervals for further analysis. Prior to verifying photocatalytic degradation, direct photolysis experiments were performed to evaluate its extent in the photocatalytic degradation of DTBC and benzoic acid.

Za analizo fotodegradacije organskih nečistoč je bila uporabljena tekočinska kromatografija visoke ločljivosti (HPLC). Koncentracijo DTBC in benzojske kisline smo določili s kromatografom vrste Dionex P680 HPLC, ki je bil opremljen s serijo fotodiodnih detektorjev vrste Dionex PDA-100 (250 mm dolžine x 4,6 mm notranjega premera, 5 mikrometrov velikost zrn) nameščenih v analizno kolono vrste Supelco (Bellefonte, PA, USA). Mobilna faza HPLC je bila mešanica destilirane vode s pH 3 (pH uravnan z metanojsko kislino) (70) in acetonitrila (30) ter 15:85 razmerja benzojske kisline in DTBC pri pretoku 1 ml/min. Temperatura analizne kolone je bila °C. Koncentracijo DTBC in benzojske kisline smo merili pri valovnih dolžinah 200 nm in 228 nm za DTBC in benzojsko kislino.High resolution liquid chromatography (HPLC) was used to analyze the photodegradation of organic impurities. The concentration of DTBC and benzoic acid was determined by a Dionex P680 HPLC chromatograph equipped with a series of Dionex PDA-100 photodiode detectors (250 mm x 4.6 mm internal diameter, 5 micron grain size) mounted in a Supelco analysis column (Bellefonte, PA, USA). The mobile phase of HPLC was a mixture of distilled water with pH 3 (pH adjusted by methanoic acid) (70) and acetonitrile (30) and a 15:85 ratio of benzoic acid and DTBC at a flow rate of 1 ml / min. The temperature of the assay column was ° C. DTBC and benzoic acid concentrations were measured at 200 nm and 228 nm wavelengths for DTBC and benzoic acid, respectively.

Za primer DTBC smo opazili degradacijo 54,89 % po 180 minutah v prisotnosti cirkonija kot katalizatorja. Meritve z benzojsko kislino so pokazale 20 % degradacijo pri enakem času obsevanja z UV svetlobo intenzitete 600 W/m2. Opazili smo tudi nekoliko izboljšano fotokatalitsko degradacijo, če smo uporabili UV svetlobo intenzitete 750 W/m2. Navedeni rezultati kažejo, da je fotodegradacija za primer benzojske kisline manjša kot pri fotolizi, medtem ko je za primer DTBC večja.For the case of DTBC, a degradation of 54.89% was observed after 180 minutes in the presence of zirconium as a catalyst. Measurements with benzoic acid showed a 20% degradation at the same irradiation time with 600 W / m 2 UV light. A slightly improved photocatalytic degradation was also observed when a 750 W / m 2 UV light was used. The above results show that the photodegradation in the case of benzoic acid is lower than in the case of photolysis, while in the case of DTBC it is higher.

Obe kemični spojini sta bili uspešno razgrajeni tudi v vodni suspenziji titanijevega dioksida po krajšem času obsevanja. Normalizacija na enoto mase je prikazana na sliki 5, na enoto površine pa na sliki 6. Obe sliki kažeta, da ima tetragonalni cirkonijev oksid, ki je predmet tega izuma, bistveno boljšo fotokatalitično učinkovitost od titanovega oksida s komercialno oznako Degusa P-25. Bolj specifično je opaziti, da uspe tetragonalni cirkonijev oksid doseči konverzijo 22 ppm/gram DTBC v 25 minutah pod vplivom 600 W obsevanja. Za primerjavo lahko titanov dioksid konvertira zgolj 4,8 ppm tega materiala pri enakih razmerah, pri čemer je učinek še posebej opazen, če fotokatalitično intenziteto normaliziramo glede na specifično velikost površine, kot je prikazano na sliki 6.Both chemical compounds were also successfully decomposed in an aqueous suspension of titanium dioxide after a short irradiation time. The normalization per unit mass is shown in Figure 5 and per unit area in Figure 6. Both figures show that the tetragonal zirconium oxide of the present invention has significantly better photocatalytic performance than titanium oxide with the commercial designation Degus P-25. More specifically, tetragonal zirconium oxide is able to achieve a conversion of 22 ppm / gram DTBC in 25 minutes under the influence of 600 W irradiation. In comparison, titanium dioxide can only convert 4.8 ppm of this material under the same conditions, the effect being particularly noticeable when the photocatalytic intensity is normalized to the specific surface size, as shown in Figure 6.

Rezultat metode po izumu je tetragonalen cirkonijev oksid v tankih plasteh, ki je stabilen pri sobni temperaturi, ki ima boljše lastnosti od do zdaj znanih fotokatalitičnih materialov, ki so pripravljeni s katerokoli drugo znano tehniko. Pomembna prednost metode, ki je predmet tega izuma, je tudi izredna stabilnost inovativnega katalizatorja. Poleg tega je mogoča sinteza stabiliziranega tetragonalnega cirkonijevega oksida pri sobni temperaturi. Oboje je zelo pomembno, saj omogoča čiščenje površine katalizatorja po kontaminaciji, ki lahko nastane zaradi prekomerneThe result of the method of the invention is tetragonal zirconium oxide in thin layers, which is stable at room temperature, having better properties than photocatalytic materials known to date, prepared by any other known technique. An important advantage of the method of the present invention is the exceptional stability of the innovative catalyst. Furthermore, synthesis of stabilized tetragonal zirconium oxide at room temperature is possible. Both are very important as it enables the cleaning of the catalyst surface after contamination, which can result from excessive

uporabe. Čiščenje je mogoče izvesti ne da bi izgubili aktivni material ali spremenili njegove površinske lastnosti in s tem poslabšali fotokatalitično aktivnost.of use. Purification can be carried out without losing the active material or altering its surface properties, thereby impairing photocatalytic activity.

Posebej velja poudariti, da metoda, ki je predmet izuma, omogoča hitro in cenovno ugodno tehnologijo za izdelavo cirkonijevega oksida v obliki tankih plasti, ki je primeren za uporabo v fotokatalizatorjih. Celotno metodo po izumu je možno opraviti v komori za depozicijo, ki jo je potrebno le malo preurediti, tako da oksidacijska komora ni potrebna.It should be particularly emphasized that the method of the invention provides a fast and cost-effective technology for the production of zirconium oxide in the form of thin layers, which is suitable for use in photocatalysts. The entire method of the invention can be carried out in a deposition chamber which needs only a little rearrangement so that no oxidation chamber is needed.

Claims (14)

1. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti, sestavljena iz dveh ključnih korakov, in sicer se v prvem koraku z industrijsko primerno metodo nanese primerno tanko plast steklene zlitine z veliko vsebnostjo cirkonija ter z dodatkom elementa izbranega v skupini, v kateri so baker, titan in niobij, v drugem koraku pa se v prisotnosti močnega oscilirajočega RF magnetnega polja tanke plasti oksidirajo s kisikom ali katerimkoli drugim plinom, ki vsebuje kisik.1. A method for the synthesis of tetragonal zirconium oxide in the form of a thin layer, consisting of two key steps, applying in the first step an appropriately thin layer of high-zirconium glass alloy with the addition of an element selected from the group consisting of copper, titanium and niobium, and in the second step, in the presence of a strong oscillating RF magnetic field, the thin films are oxidized with oxygen or any other oxygen-containing gas. 2. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po zahtevku 1, značilna po tem, da se izvede po sledečih korakih:Method for the synthesis of tetragonal zirconium oxide in the form of thin films according to claim 1, characterized in that it is carried out in the following steps: - izbira podlage za nanos steklaste zlitine in namestitev podlage v visoko vakuumsko komoro;- selection of the substrate for the glass alloy application and placement of the substrate in the high vacuum chamber; - odvajanje plina iz omenjene visoko vakuumske komore, s čimer se zniža tlak v omenjeni visoko vakuumski komori v področje pod 100 Pa;- extracting gas from said high vacuum chamber, thereby reducing the pressure in said high vacuum chamber to an area below 100 Pa; - nanos tanke plasti cirkonija ali cirkonij vsebujočega materiala na podlage z metodami vakuumske depozicije;- applying a thin layer of zirconium or zirconium-containing material to the substrates by vacuum deposition methods; - dovajanje kisika ali kisik vsebujočega plina v omenjeno visoko vakuumsko komoro;- supplying oxygen or oxygen-containing gas to said high vacuum chamber; - uporaba oscilirajočega magnetnega polja v omenjeni visoko vakuumski komori;- the use of an oscillating magnetic field in said high vacuum chamber; - ogrevanje omenjene tanke plasti cirkonija ali cirkonij vsebujočega materiala z indukcijo zaradi uporabljenega magnetnega polja; in- heating said thin layer of zirconium or zirconium-containing material by induction due to the magnetic field used; and - ohlajanje omenjene tanke plasti cirkonija ali cirkonij vsebujočega materiala do sobne temperature.- cooling said thin layer of zirconium or zirconium-containing material to room temperature. 3. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po zahtevku 1 in 2, značilna po tem, da je lahko izvedena v eni komori ali v dveh, pri čemer se koraki od vključno četrte alineje naprej izvedejo v drugi komori, ki ni visoko vakuumska komora za nanos materiala.Method for the synthesis of tetragonal zirconium oxide in the form of thin films according to claims 1 and 2, characterized in that it can be carried out in one or two chambers, the steps of which, including the fourth indent, are carried out in another chamber not high vacuum chamber for material deposition. 4. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po kateremkoli izmed zahtevkov od 1 do 3, značilna po tem, da je omenjena tanka plast cirkonija ali materiala, ki vsebuje cirkonij, steklasta zlitina cirkonija in katerega drugega materiala, ki ga izberemo s seznama elementov bakra, titanija in/ali niobija.Method for the synthesis of tetragonal zirconium oxide in the form of a thin layer according to any one of claims 1 to 3, characterized in that said thin layer of zirconium or zirconium-containing material is a glass zirconium alloy and any other material selected from lists of copper, titanium and / or niobium elements. 5. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po kateremkoli izmed zahtevkov od 1 do 4, značilna po tem, da je omenjena tanka plast cirkonija ali materiala, ki vsebuje cirkonij, pripravljena z tehnikami vakuumskega nanosa.Method for the synthesis of tetragonal zirconium oxide in the form of thin films according to any one of claims 1 to 4, characterized in that said thin layer of zirconium or zirconium-containing material is prepared by vacuum deposition techniques. 6. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po kateremkoli izmed zahtevkov od 1 do 5, značilna po tem, da je tanka plast cirkonija ali materiala, ki vsebuje cirkonij, pripravljena s tehniko naprševanja, prednostno z uporabo magnetronsko naprševalnih naprav.Method for the synthesis of tetragonal zirconium oxide in the form of a thin layer according to any one of claims 1 to 5, characterized in that the thin layer of zirconium or zirconium-containing material is prepared by sputtering technique, preferably using magnetron sputtering devices. 7. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po kateremkoli izmed zahtevkov od 1 do 6, značilna po tem, da je omenjeni plin, ki vsebuje kisik, izbran s seznama plinov, kot so kisik, zrak, ogljikov dioksid, dušikovi oksidi, vodna para ali katerakoli mešanica teh plinov s katerimkoli drugim plinom.Method for the synthesis of tetragonal zirconium oxide in the form of thin films according to any one of claims 1 to 6, characterized in that said oxygen-containing gas is selected from the list of gases such as oxygen, air, carbon dioxide, nitrogen oxides , water vapor, or any mixture of these gases with any other gas. 8. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po kateremkoli izmed zahtevkov od 1 do 7, značilna po tem, da je gostota magnetnega polja najmanj 3 Gauss.Method for the synthesis of tetragonal zirconium oxide in the form of thin films according to any one of claims 1 to 7, characterized in that the magnetic field density is at least 3 Gauss. 9. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po kateremkoli izmed zahtevkov od 1 do 8, značilna po tem, da reakcija omenjene tanke plasti cirkonija ali materiala, ki vsebuje cirkonij, z reaktivnim plinom, ki vsebuje kisik, v prisotnosti magnetnega polja traja poljubno dolgo, prednostno pa med 1 s in 1000 s.Method for the synthesis of tetragonal zirconium oxide in the form of a thin layer according to any one of claims 1 to 8, characterized in that the reaction of said thin layer of zirconium or zirconium containing material with a reactive gas containing oxygen in the presence of a magnetic field lasts for any length of time, preferably between 1 s and 1000 s. 10. Metoda za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po kateremkoli izmed zahtevkov od 1 do 9, značilna po tem, da je omenjena reakcija z reaktivnim plinom, ki vsebuje kisik, izvedena pri temperaturi med 0 in 800 °C, prednostno med 200 in 800 °C.Method for the synthesis of tetragonal zirconium oxide in the form of a thin layer according to any one of claims 1 to 9, characterized in that said reaction with an oxygen-containing reactive gas is carried out at a temperature between 0 and 800 ° C, preferably between 200 and 800 ° C. 11. Tetragonalni cirkonijev oksid, sintetiziran z metodo za sintezo tetragonalnega cirkonijevega oksida v obliki tankih plasti po kateremkoli zahtevku od 1 do 10.Tetragonal zirconium oxide synthesized by the method for the synthesis of tetragonal zirconium oxide in the form of thin layers according to any one of claims 1 to 10. 12. Uporaba tetragonalnega cirkonijevega oksida iz zahtevka 11 za uničevanje nevarnih organskih plinov ali tekočin.Use of the tetragonal zirconium oxide of claim 11 for the destruction of hazardous organic gases or liquids. 13. Uporaba zahtevka 12, značilna po tem, da je omenjeno uničevanje nevarnih organskih plinov ali tekočin, fotokatalitična razgradnja.Use of claim 12, characterized in that said destruction of hazardous organic gases or liquids is photocatalytic degradation. 14. Izdelek, ki vsebuje tetragonalni cirkonijev oksid po zahtevku 11.A product containing tetragonal zirconium oxide according to claim 11.
SI201400111A 2014-03-20 2014-03-20 Method for tetragonal zirconia oxide thin films growth suitable for catalytic devices SI24659A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201400111A SI24659A (en) 2014-03-20 2014-03-20 Method for tetragonal zirconia oxide thin films growth suitable for catalytic devices
PCT/SI2015/000012 WO2015142295A1 (en) 2014-03-20 2015-03-19 Method for synthesis of tetragonal zirconia thin films suitable for catalytic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201400111A SI24659A (en) 2014-03-20 2014-03-20 Method for tetragonal zirconia oxide thin films growth suitable for catalytic devices

Publications (1)

Publication Number Publication Date
SI24659A true SI24659A (en) 2015-09-30

Family

ID=53177863

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201400111A SI24659A (en) 2014-03-20 2014-03-20 Method for tetragonal zirconia oxide thin films growth suitable for catalytic devices

Country Status (2)

Country Link
SI (1) SI24659A (en)
WO (1) WO2015142295A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US39814A (en) 1863-09-08 Improved clothes-wringing machine
FR2701472B1 (en) 1993-02-10 1995-05-24 Rhone Poulenc Chimie Process for the preparation of compositions based on mixed oxides of zirconium and cerium.
US8026161B2 (en) 2001-08-30 2011-09-27 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US7292766B2 (en) 2003-04-28 2007-11-06 3M Innovative Properties Company Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides
US7704483B2 (en) 2005-04-29 2010-04-27 Cabot Corporation High surface area tetragonal zirconia and processes for synthesizing same
KR100640654B1 (en) 2005-07-16 2006-11-01 삼성전자주식회사 Method of forming zro2 thin film using plasma enhanced atomic layer deposition and method of manufacturing capacitor of semiconductor memory device having the thin film
DE202008017277U1 (en) 2008-11-30 2009-04-30 Süd-Chemie AG catalyst support

Also Published As

Publication number Publication date
WO2015142295A1 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
Pelaez et al. Synthesis, structural characterization and evaluation of sol–gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR
Zaleska Doped-TiO2: a review
Wang et al. A spherical TiO2-Bi2WO6 composite photocatalyst for visible-light photocatalytic degradation of ethylene
JP6753844B2 (en) Multi-valence semiconductor photocatalytic material
Yang et al. Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity
US20150111724A1 (en) Visible light responsive photocatalyst by hydrophilic modification using polymer material and a method for preparing the same
Jaimy et al. Photocatalytic activity enhancement in doped titanium dioxide by crystal defects
Bellardita et al. Preparation and photoactivity of samarium loaded anatase, brookite and rutile catalysts
Goutailler et al. Low temperature and aqueous sol–gel deposit of photocatalytic active nanoparticulate TiO 2
Lu et al. Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity
Witvrouwen et al. The Use of Non‐Equilibrium Plasmas for the Synthesis of Heterogeneous Catalysts
JP4319184B2 (en) PHOTOCATALYST, ITS MANUFACTURING METHOD, AND ARTICLE USING PHOTOCATALYST
Ratova et al. Characterisation and properties of visible light-active bismuth oxide-titania composite photocatalysts
Cao et al. Monodisperse anatase titania microspheres with high-thermal stability and large pore size (∼ 80 nm) as efficient photocatalysts
Ahmadi et al. Synthesis and characterization of co-doped TiO2 thin films on glass-ceramic
Cimieri et al. Novel sol–gel preparation of V-TiO2 films for the photocatalytic oxidation of ethanol in air
Dolat et al. Preparation of photoactive nitrogen-doped rutile
EP1546041B1 (en) Process to produce solutions to be used as coating in photo-catalytic and transparent films
Channei et al. Adsorption and photocatalytic processes of mesoporous SiO2-coated monoclinic BiVO4
Pitman et al. Stabilization of reduced copper on ceria aerogels for CO oxidation
Khaksar et al. In situ solvothermal crystallization of TiO 2 nanostructure on alumina granules for photocatalytic wastewater treatment
Cimieri et al. Sol–gel preparation of pure and doped TiO 2 films for the photocatalytic oxidation of ethanol in air
Wojcieszak et al. Photocatalytic properties of nanocrystalline TiO2 thin films doped with Tb
SI24659A (en) Method for tetragonal zirconia oxide thin films growth suitable for catalytic devices
MESSEMCHE Elaboration and characterization of undoped and doped titanium dioxide thin layers by sol gel (spin coating) for photocatalytic applications

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20151027

KO00 Lapse of patent

Effective date: 20191112