SI24489A - Composition and Method for Plant Protection - Google Patents
Composition and Method for Plant Protection Download PDFInfo
- Publication number
- SI24489A SI24489A SI201300349A SI201300349A SI24489A SI 24489 A SI24489 A SI 24489A SI 201300349 A SI201300349 A SI 201300349A SI 201300349 A SI201300349 A SI 201300349A SI 24489 A SI24489 A SI 24489A
- Authority
- SI
- Slovenia
- Prior art keywords
- protein
- extract
- plant
- extracts
- solanacearum
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/50—Isolated enzymes; Isolated proteins
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pest Control & Pesticides (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Agronomy & Crop Science (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Environmental Sciences (AREA)
- Peptides Or Proteins (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
13 beljakovinskih ekstraktov iz gob in 1 beljakovinski ekstrakt iz micelija so pokazali protibakterijsko aktivnost proti R. solanacearum pokazala v različnih testih. Poleg tega je proteinska frakcija A. phalloides tudi popolnoma inhibirana rast bakterij. Ekstrakti in frakcije so prikazali ne le močno protibakterijsko aktivnost, ampak so tudi bolj pogosto prikazali baktericiden učinek kot bakteristatičen. In vivo testiranje petih izbranih ekstraktov na rastlinah paradižnika in krompirja je pripeljalo dozaključkov, da ekstrakti C. geotropa, S. variegatus in T. saponaceum zavirajo pojav bolezenskih znamenj in upočasni bakterijsko venenje tako na rastlinah paradižnika kot krompirja. Ekstrakti gob so tako pomembno orodje za zaviranje bolezni, ki jih povzroča bakterija R. solanacearum. Poleg tega zaviranje 12 R solanacearum sevov kot tudi R. mannitolilytica in E. coli zelo pomembno potrjuje širok spekter delovanja gobjih proteinskih ekstraktov, ki je koristen na področjih medicine, biotehnologije,bioremediacije/biorazgradljivosti in kmetijstva.13 protein extract from the mushroom and 1 protein extract from the mycelium showed antibacterial activity against R. solanacearum showed in various tests. In addition, the A. phalloides protein fraction also fully inhibited the growth of bacteria. The extracts and fractions showed not only a strong antibacterial activity, but also showed bactericidal effects more often than bacteristatic. In vivo testing of the five selected extracts on tomato and potato plants led to the conclusion that extracts of C. geotropa, S. variegatus and T. saponaceum inhibit the appearance of disease signs and slow down bacterial wilt both on tomato and potato plants. Mushroom extracts are such an important tool for inhibiting diseases caused by bacterium R. solanacearum. In addition, the inhibition of 12 R solanacearum strains, as well as R. mannitolilytica and E. coli, is very important in confirming a wide spectrum of action of mushroom protein extracts, which is useful in the fields of medicine, biotechnology, bioremediation / biodegradability and agriculture.
Description
KOMPOZICIJA IN METODA ZA ZAŠČITO RASTLINPLANT COMPOSITION AND METHOD
OPIS IZUMADESCRIPTION OF THE INVENTION
Področje izumaFIELD OF THE INVENTION
Predloženi izum se nanaša na metode za zmanjševanje, izkoreninjenje ali preprečevanje okužbe rastlin in površin s patogenimi bakterijami, z uporabo proteinskih ekstraktov višjih gliv iz rodu Basidiomycetes, njihove proteinske frakcije in sestavke, ki vsebuje biološko aktivni peptid ali protein.The present invention relates to methods of reducing, eradicating or preventing infection of plants and surfaces by pathogenic bacteria, using protein extracts of higher fungi of the genus Basidiomycetes, their protein fractions and compositions containing a biologically active peptide or protein.
Ozadje problemaBackground to the problem
Iskanje novih protimikrobnih učinkovin je nujno, saj se pojavljajo novi patogeni mikroorganizmi oziroma patogeni mikroorganizmi, ki okužujejo človeka, živali in rastline razvijajo odpornost proti kemičnim snovem, ki so trenutno na voljo. Vse večje težave povzročajo odpornih sevi bakterij, ne samo v bolnišnicah, ampak tudi tistih, ki povzročajo bolezni na rastlinah, saj povzročajo velike izgube pridelka tako na poljih, kot tudi pri skladiščenju. Eden od teh primerov je rastlinska patogena bakterija Ralstonia solanacearum (Smith, 1896) , ki povzroča bakterijsko venenje in veliko gospodarsko škodo na številnih gostiteljskih rastlinah, vključno z nekaterimi najpomembnejšimi poljščinami, kot so krompir, paradižnik, banane, tobak, ingver in jajčevci. Ta bakterija je lahko tudi prosto živeča kot saprofit v zemlji ali v vodi, zato je namakanje vode običajno vzrok za njeno razširjanje. Patogen lahko širi tudi z okuženim orodjem, semeni, žuželkami in preko korenin. Kljub obsežnim študijam o bakteriji R. solanacearum in njenem pomenu v kmetijstvu, trenutno ne obstaja učinkovito biološko ali kemično sredstvo za njen nadzor ali izkoreninjenje. Poleg slednje obstajajo še druge pomembne rastlinske patogene bakterije, kot sta Ervvinia amylovora in Dickeya dadantii, ki povzročata velike izgube pridelka. Trenutno sredstvo za zatiranje bolezni, ki jih povzročajo zgoraj naštete bakterije ni na voljo.The search for new antimicrobials is essential as new pathogens or pathogens infect humans, animals and plants, and develop resistance to the currently available chemical substances. Increasing problems are caused by resistant strains of bacteria, not only in hospitals, but also in plant-borne diseases, causing large crop losses both in the fields and in storage. One such example is the plant pathogenic bacterium Ralstonia solanacearum (Smith, 1896), which causes bacterial wilting and great economic damage to many host plants, including some of the most important crops such as potatoes, tomatoes, bananas, tobacco, ginger and eggplants. This bacterium can also be wild as a saprophyte in soil or in water, so water irrigation is usually the cause of its spread. The pathogen can also spread through infected tools, seeds, insects and across roots. Despite extensive studies on R. solanacearum and its importance in agriculture, there is currently no effective biological or chemical means to control or eradicate it. In addition to the latter, there are other important plant pathogenic bacteria, such as Ervvinia amylovora and Dickeya dadantii, which cause high crop losses. Currently, a remedy for the diseases caused by the bacteria listed above is not available.
Zaradi visokih cen proizvodnje in dragih postopkov registracije kemično sintetiziranih spojin, naravne snovi in naravni izdelki postajajo vse bolj in bolj zanimivi za komercializacijo. Približno 60 % od 260 encimov na trgu izviraj iz gliv, čeprav le pet od teh izvira iz višjih gliv. Primer beljakovine izolirane iz gob, ki je komercialno dostopna je encim 6-fitaza iz Peniophora lycii, ki se uporablja kot krmni dodatek, ki poveča privzem fosforja in mineralov v črevesju neprežvekovalcev. Hidrofobini so še ena pomembna skupina proteinov, ki jih najdemo samo v kraljestvu gliv. Njihova značilnost je, da spremenijo površinsko napetost s spremembno hidrofilnosti oziroma hidrofobnosti površine, kar jim daje veliko možnosti za različne biotehnološke in medicinske aplikacije. V procesih beljenja, proizvodnji smol in papirja, za katerega so že na voljo glivni encimi (ksilanaze, lipaze in amilaze), bi lahko koristila tudiDue to high production costs and expensive registration procedures for chemically synthesized compounds, natural substances and natural products are becoming more and more interesting for commercialization. About 60% of the 260 enzymes on the market come from fungi, though only five of them come from higher fungi. An example of a commercially available mushroom isolated protein is the enzyme 6-phytase from Peniophora lycii, which is used as a feed additive that increases the uptake of phosphorus and minerals in the gut of non-ruminants. Hydrophobins are another important group of proteins found only in the kingdom of fungi. Their characteristic is that they change the surface tension by changing the hydrophilicity or hydrophobicity of the surface, which gives them many possibilities for various biotechnological and medical applications. It could also benefit from bleaching, resin and paper production for which fungal enzymes (xylanases, lipases and amylases) are already available
raznolikost encimov iz višjih gliv. Različne hidrolaze se uporabljajo v organski sintezi, vključno nitrilaze, esteraze, amidaze, proteaze in lipaze, vendar nobena ne izhaja iz višjih gliv. Številne oksidoreduktaze iz gob igrajo pomembno vlogo v biosintezi in z njo povezanimi aplikacijami in vključujejo lakaze, peroksidaze in tirozinaze. Tirozinaze omogočajo tudi možnost za pretvorbo monofenolov v difenole, ki se uporabljajo pri proizvodnji antioksidantov kot aditivi za živila ali zdravil. Poleg tega se glivične tirozinaze iz aspergilov uporablja v proizvodnji L-DOPA iz L -tirozina za uporabo pri zdravljenju zgodnje Parkinsonove bolezni in srčnih bolezni. Tirozinaze iz višjih gliv ponujajo možnost za proizvodnjo hidrogelov, ki bi se lahko uporabljali za proizvodnjo umetnih tkiv, pa tudi v proizvodnji lepil, matrik za dostavo drog in kožnih nadomestkov. Uporaba beljakovin iz gob je bila objavljena v preglednem članku Erjavec et al. (2012).a variety of enzymes from higher fungi. Various hydrolases are used in organic synthesis, including nitrilases, esterases, amidases, proteases, and lipases, but none comes from higher fungi. Many mushroom oxidoreductases play an important role in biosynthesis and related applications and include laccase, peroxidase, and tyrosinase. Tyrosinases also provide the opportunity to convert monophenols to diphenols used in the production of antioxidants as food additives or medicines. In addition, the fungal tyrosinase from aspergillus is used in the production of L-DOPA from L-tyrosine for use in the treatment of early Parkinson's disease and heart disease. Tyrosinases from higher fungi offer the possibility of producing hydrogels that could be used to produce artificial tissues, as well as in the production of adhesives, drug delivery matrices and skin substitutes. The use of mushroom protein was published in a review article by Erjavec et al. (2012).
Iz patenta USA, 2011/0136758 je znano, da imajo polisaharidi, pridobljeni iz nekaterih bazidiomicect, fungicidno in nematicidno aktivnost. Poleg tega je znano, da je lahko sestavek ekstrakta bazidiomicet uporaben za imunsko modulacijo, kot je opisano v US 2006/ 0.263.384.From US patent 2011/0136758 it is known that polysaccharides derived from some bazidiomicect have fungicidal and nematicidal activity. In addition, it is known that the composition of the bazidiomycet extract may be useful for immune modulation as described in US 2006 / 0.263.384.
1) Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J (2012) Proteins of higher fungi from forestto application. Trends in Biotechnology 30: 259-273.1) Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotich J (2012) Proteins of higher fungi from forestto application. Trends in Biotechnology 30: 259-273.
2) Pohleven J, Brzin J, Vrabec L, Leonardi A, Čoki A, Štrukelj B, Kos J, Sabotič J (2011) Basidiomycete Clitocybe nebularis is rich in lectins with insecticidal activities. 2011/05/11: 1141-1148. 10.1007/s00253-011-3236-0.2) Pohleven J, Brzin J, Sparrow L, Leonardi A, Coki A, Štrukelj B, Kos J, Sabotich J (2011) Basidiomycete Clitocybe nebularis is rich in lectins with insecticidal activities. 2011/05/11: 1141-1148. 10.1007 / s00253-011-3236-0.
3) Sabotič J, Popovič T, Puizdar V, Brzin J (2009) Macrocypins, a family of cysteine protease inhibitors from the basidiomycete Macrolepiota procera. FEBS Journal 276: 4334-4345.3) Sabotich J, Popovich T, Puizdar V, Brzin J (2009) Macrocypins, a family of cysteine protease inhibitors from the basidiomycete Macrolepiota procera. FEBS Journal 276: 4334-4345.
4) Stasyk, T., Lutsik-Kordovsky, M., VVernstedt, C., Antonyuk, V., Klyuchivska, O., Souchelnytskyi, S., Hellman, U. and Stoika, R. (2010). A new highly toxic protein isolated from the death cap Amanita phalloides is an L-amino acid oxidase. FEBS Journal 277, 1260-9.4) Stasyk, T., Lutsik-Kordovsky, M., Vernstedt, C., Antonyuk, V., Klyuchivska, O., Souchelnytskyi, S., Hellman, U., and Stoika, R. (2010). A new highly toxic protein isolated from the death cap Amanita phalloides is an L-amino acid oxidase. FEBS Journal 277, 1260-9.
5) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. Journal of Applied Microbiology, 100, (2) 2192325) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. Journal of Applied Microbiology, 100, (2) 219232
6) Lindequist, U., Niedermeyer, T.H.J., & Julich, W.D. 2005. The Pharmacological Potential of Mushrooms. Evidence-based Complementary and Alternative Medicine, 2, (3) 285-2996) Lindequist, U., Niedermeyer, T.H.J., & Julich, W.D. 2005. The Pharmacological Potential of Mushrooms. Evidence-Based Complementary and Alternative Medicine, 2, (3) 285-299
7) Xu, X., Yan, H., Chen, J., & Zhang, X. Bioactive proteins from mushrooms. Biotechnology Advances In Press, Corrected Proof. 2011.7) Xu, X., Yan, H., Chen, J., & Zhang, X. Bioactive proteins from mushrooms. Biotechnology Advances In Press, Corrected Proof. 2011.
8) MACROCYPIN P-2011003048) MACROCYPIN P-201100304
9) MUSHROOM EXTRACTS HAVING ANTICANCER ACTIVITY US 20060057157 A19) MUSHROOM EXTRACTS HAVING ANTICANCER ACTIVITY US 20060057157 A1
10) L-AMINO ACID OXIDASE WO 1994025574 A110) L-AMINO ACID OXIDASE WO 1994025574 A1
DefinicijeDefinitions
V okviru predloženega izuma imajo našteti izrazi naslednji pomen:In the context of the present invention, the following terms have the following meanings:
Bazidiomicete ali Basidiomycota je eden od dveh velikih debel, ki skupaj z deblom Ascomycota, tvorijo podkraljestvo Dikarya, pogosto imenovan kot višje glive v kraljestvu gliv.Basidiomycetes or Basidiomycota is one of two large trunks that, together with the trunk of Ascomycota, form the sub-kingdom of Dikarya, often referred to as the higher fungi in the kingdom of fungi.
Izraz gobe v predloženi prijavi uporabljamo namesto izraza »bazidiomicete«, material iz gob se nanaša na kakršenkoli material, plodno telo, micelij, ekstrakt, tkivo, itd pridobljen iz bazidiomicet predloženega izuma. V opisu izuma se izraza gobe in bazidiomicete uporabljata izmenično.The term mushrooms in the present application is used instead of the term "bazidiomycetes", the material from the mushrooms refers to any material, the fruiting body, mycelium, extract, tissue, etc. obtained from the bazidiomycetta of the present invention. In the description of the invention, the terms mushrooms and basidiomycetes are used interchangeably.
Proteinski ekstrakt, kot ga uporabljamo v predloženi prijavi se nanaša na ekstrakt, pridobljen iz posebnih vrst bazidiomicet, kot je definirano v tem zahtevku, iz posebnih ekstraktov, dobljenih iz plodnih teles in/ali micelija. Proteinski ekstrakt v tem izumu vsebuje beljakovine ali beljakovinam podobne snovi. Proteinska frakcija je del proteinskega ekstrakta in specifičnega proteina, ki ga lahko izoliramo tako iz proteinskega ekstrakta koti tudi proteinske frakcije. Proteinski ekstrakt lahko obsegaj proteinske komplekse ali konstrukte ali konjugate katerih del je protein. Postopki za pridobivanje izvlečkov so opisani spodaj in primeri so na voljo v podpoglavju eksperimentov.The protein extract as used in the present application relates to an extract obtained from specific types of basidiomycetes as defined in this claim, from special extracts obtained from fruiting bodies and / or mycelium. The protein extract of the present invention contains proteins or protein-like substances. The protein fraction is part of a protein extract and a specific protein that can be isolated from both the protein extract and the protein fraction. A protein extract may comprise protein complexes or constructs or conjugates of which a protein is a component. The procedures for extraction are described below and examples are provided in the experiments section.
Proteinska frakcija, kot ga uporabljamo v predloženi prijavi je frakcija, dobljena iz proteinskega ekstrakta, ki je bogatejša v proteinih v primerjavi s proteinskim ekstraktom zaradi postopkov čiščenja kot je npr. kromatografija.The protein fraction as used in the present application is the fraction obtained from protein extract which is richer in protein compared to protein extract due to purification processes such as e.g. chromatography.
Izolirana proteinska komponenta se nanaša na protein, ki je bil izoliran iz proteinskega ekstrakta ali proteinske frakcije v tem izumu, s pomočjo metod, ki so znani strokovnjakom s področja, kot npr. kromatografijo, ali protein, ki je bil določen v proteinskem ekstraktu ali proteinska frakcija predloženega izuma in je bil izdelan z metodo rekombinantnih proteinov. Izolirana proteinska komponenta je lahko protein ali peptid, ki ima biološko aktivnost in ga lahko opišemo tudi kot biološko aktivni protein ali peptid. Primeri so encimi in lektini.An isolated protein component refers to a protein that has been isolated from a protein extract or protein fraction of the present invention, using methods known to one of skill in the art, such as e.g. chromatography, or a protein that has been determined in a protein extract or a protein fraction of the present invention and has been produced by the recombinant protein method. The isolated protein component can be a protein or peptide that has biological activity and can also be described as a biologically active protein or peptide. Enzymes and lectins are examples.
Izraza protein in peptid uporabljamo izmenično.The terms protein and peptide are used interchangeably.
Rastlinske patogene bakterije se nanaša na bakterije, ki vplivajo ali škodujejo rastline, na primer ki povzročajo venenje in / ali da so škodljiva za rast ali donos rastlin, zlasti rastline, ki jih gojimo v kmetijstvu ali vrtnarstvu.Plant pathogenic bacteria refers to bacteria that affect or harm plants, for example, that cause wilting and / or that are detrimental to the growth or yield of plants, especially plants grown in agriculture or horticulture.
Izraz rastlina vključuje celotno rastlino, kot tudi rastlinska tkiva ali dele rastlin. Rastline so pretežno poljščine, kot so krompir ali zelenjava.The term plant includes the whole plant, as well as plant tissues or parts of plants. The plants are mainly crops such as potatoes or vegetables.
Okolje se nanaša na okolico, ki obdaja rastlino ali predmet, ki ga ščitimo. Okolje, ki je obdelano s kompozicijo predloženega izuma je zlasti območje, ki je nagnjeno k okužbam s patogenimi bakterijami ali je onesnaženo. Okolje obsega tla okoli rastlin kot tudi namakalne vode.Environment refers to the environment surrounding the plant or object we are protecting. The environment treated with the composition of the present invention is, in particular, an area that is prone to infection or contamination by pathogenic bacteria. The environment includes soil around plants as well as irrigation water.
Zemlja so tla, v kateri se pridelujejo rastline in kjer patogene bakterije lahko živijo.Soil is the soil in which plants are grown and where pathogenic bacteria can live.
Izraz površina zajema trde površine, kot tudi površino objekta, kot orodje ali površino rastlinskih delov, kot so korenine.The term surface covers hard surfaces, as well as the surface of an object, as a tool or the surface of plant parts, such as roots.
Donos je opredeljen kot merljiva ekonomska vrednost pridelka. Ta se lahko opredeli v smislu količine in / ali kakovosti.Yield is defined as the measurable economic value of the crop. This can be defined in terms of quantity and / or quality.
Izraz zmanjšuje v smislu predloženega izuma se nanaša na sredstvo ali sestavek, ki zmanjšuje in zato zmanjša negativni učinek povzročen s patogenimi bakterijami npr. z zmanjšanjem števila patogenih bakterij, ki okužujejo pridelek, tla, okolje, površine itd, ali upočasni napredovanje bolezni.The term "reducing" of the present invention refers to an agent or composition that reduces and therefore reduces the negative effect caused by pathogenic bacteria, e.g. by reducing the number of pathogenic bacteria that infect the crop, soil, environment, surfaces, etc., or slowing the progression of the disease.
Izraz izkoreninjenje v kontekstu tega izuma pomeni, da patogene bakterije, s katerimi so okužene rastline, okolje, tla ali površine, so izničene ali uničene na primer tako, da njihovo razmnoževanje ni več mogoče.The term eradication in the context of the present invention means that pathogenic bacteria that infect plants, the environment, soil or surfaces are destroyed or destroyed, for example, such that their reproduction is no longer possible.
Izraz »preprečiti« v kontekstu tega izuma pomeni, da z dodajanjem kompozicije v smislu predloženega izuma, nobena patogena bakterija ne more naseliti tretirane površine ali rastline. To je mogoče doseči z neposrednim učinkom kompozicije tega izuma ali s povečanjem obramba gostitelja.The term "prevent" in the context of the present invention means that by adding the composition of the present invention, no pathogenic bacterium can inhabit the treated surface or plant. This can be achieved by the direct effect of the composition of the present invention or by enhancing the host defense.
Bakterijska vrsta R. solanacearum sestavlja kompleks, ki obsega štiri filotipe (I do IV), ki ustrezajo geografskim poreklom. Filotipi so določene z filogenetsko analizo sekvenc. Vsaka skupina vsebuje več biovarjev glede na njihove biokemične lastnosti in 5 ras določenih na podlagi razlik v gostiteljskih rastlinah (Fegan in Prior, 2005, Budenhagen, 1962). Vsak filotip vsebuje več sekvevarjev, to je skupin sevov z visoko ohranjenimi zaporedji znotraj območja genoma.The bacterial species R. solanacearum is a complex comprising four phylogotypes (I to IV) corresponding to geographical origins. Phylogotypes were determined by phylogenetic sequence analysis. Each group contains several biovars according to their biochemical properties and 5 races determined based on differences in host plants (Fegan and Prior, 2005; Budenhagen, 1962). Each filotype contains multiple sequesters, that is, groups of strains with highly conserved sequences within the genome region.
Podroben opis izumaDETAILED DESCRIPTION OF THE INVENTION
Izumitelji so ugotovili, da proteinski ekstrakt pridobljen iz ene izmed specifičnih vrst gob ali delcev ali njihovih sestavnih delov, kot je definirano zgoraj, ima antibakterijsko delovanje, zlasti aktivnost proti rastlinskim patogenim bakterijam. Ne glede na teorijo se domneva, da so biološko aktivni proteini ali peptidi, ki so v beljakovinskih ekstraktih, odgovorni za učinek. S karakterizacijo proteinskih komponent v ekstraktu so ugotovili da ima ~ 180 kDa proteinski kompleks antibakterijsko aktivnost. Nadaljnje analize potrdijo najmanj eno aktivno sestavino, kot je L - aminokislinska oksidaza. To je bilo že znano, da Amanita phalloides, zelo strupena goba, vsebuje L - aminokislinsko oksidazo. Sedaj je bilo ugotovljeno, da posebne vrste gob, kot je definirano zgoraj, obsegajo biološko aktivne proteine ali peptide, od katerih je ena L aminokislinska oksidaza, ki ima aktivnost proti patogenim bakterijam, zato se lahko uporabi za zaščito rastlin. Kot je razvidno iz slike 10, imajo L- aminokislinske oksidaze prisotne v zmeseh tega izuma antibakterijsko aktivnost; specifičnost različnih L- aminokislinskih oksidaz se lahko razlikujejo.The inventors have found that the protein extract obtained from one of the specific types of mushrooms or particles or their constituents, as defined above, has antibacterial activity, especially activity against plant pathogenic bacteria. Whatever the theory, it is believed that the biologically active proteins or peptides contained in the protein extracts are responsible for the effect. Characterization of the protein components in the extract revealed that ~ 180 kDa protein complex had antibacterial activity. Further analyzes confirm at least one active ingredient, such as L - amino acid oxidase. It was already known that Amanita phalloides, a very toxic mushroom, contains L - amino acid oxidase. It has now been found that specific types of mushrooms, as defined above, comprise biologically active proteins or peptides, one of which is an amino acid oxidase that has activity against pathogenic bacteria and can therefore be used to protect plants. As can be seen from Figure 10, the L-amino acid oxidases present in the compositions of this invention have antibacterial activity; the specificity of different L-amino acid oxidases may differ.
Vidik tega izuma je metoda za zmanjšanje, odpravljanje ali preprečevanje okužbe rastlin ali površin s patogenimi bakterijami, z uporabo na rastlinah ali površinah ali v okolju sestavek, ki obsega proteinski ekstrakt iz Basidiomycet izbranih iz Amanita phalloides, Amanita muscaria, Amanita virosa, Boletus luridiformis, Clitocybe geotropa, Gomphidius glutinosus, Tricholoma saponaceum, Hypholoma sp., Agaricus moelleri, Albatrellus ovinus, Bovista nigrescens, Suillus variegatus, Tricholoma ustale ali proteinske frakcije ali njenega sestavnega dela.An aspect of the present invention is a method of reducing, eliminating or preventing infection of plants or surfaces by pathogenic bacteria, using on plants or surfaces or in an environment a composition comprising a protein extract of Basidiomycet selected from Amanita phalloides, Amanita muscaria, Amanita virosa, Boletus luridiformis, Clitocybe geotropa, Gomphidius glutinosus, Tricholoma saponaceum, Hypholoma sp., Agaricus moelleri, Albatrellus ovinus, Bovista nigrescens, Suillus variegatus, Tricholoma stale or protein fractions or its constituent.
Predloženi izum zagotavlja sestavek, ki je učinkovita proti patogenim bakterijam in obsega antibakterijsko aktivno komponento. V eni od izvedb sestavek obsega vsaj proteinski izvleček iz bazidiomicet izbranih izmed Amanita phalloides, Amanita muscaria, Amanita virosa, Boletus luridiformis, Clitocybe geotropa, Gomphidius glutinosus, Tricholoma saponaceum, Hypholoma sp., Agaricus moelleri, Albatrellus ovinus, Bovista nigrescens, Suillus variegatus, Tricholoma ustale. Ta ekstrakt je mogoče dobiti iz gob in / ali njihovega micelija. Tako se lahko trosnjake kot tudi micelij ali oboje uporabi za pridobivanje ekstrakta. Ekstrakt lahko nadalje očistimo ali ločimo da bi dobili proteinske frakcije ali aktivne sestavine, kot so encimi. V nadaljnjih izvedbah pričujočega izuma se lahko proteinske frakcije ali aktivne komponente uporabljajo v tem sestavku v smislu predloženega izuma.The present invention provides a composition that is effective against pathogenic bacteria and comprises an antibacterially active component. In one embodiment, the composition comprises at least a protein extract of basidiomycetes selected from Amanita phalloides, Amanita muscaria, Amanita virosa, Boletus luridiformis, Clitocybe geotropa, Gomphidius glutinosus, Tricholoma saponaceum, Hypholoma spus, Agaricusususeri, Alaricusususellus, Agaricusususellus, Su, Tricholoma rose. This extract can be obtained from mushrooms and / or mycelium. Both the cane as well as the mycelium, or both can be used to obtain the extract. The extract can be further purified or separated to obtain protein fractions or active ingredients such as enzymes. In further embodiments of the present invention, protein fractions or active components may be used in this composition of the present invention.
Ekstrakt predloženega izuma lahko dobi z nabiranjem gobjega materiala, t.j. trosnjakov in/ali micelija posebnih zgoraj opisanih bazidiomicet. Ekstrakt se lahko pridobi kot je dobro znano strokovnjaku, na primer z uporabo topila ali pufra za ekstrakcijo ali z ločevanjem tekočine iz trdnega materiala. Veliko različnih topil ali pufrov, ki so znani strokovnjaku, se lahko uporabi za pripravo ekstraktov in frakcij, dokler je topilo ali pufer biološko kompatibilen in lahko ekstrahira beljakovinske snovi. Ekstrakte z visoko vsebnostjo proteinov se lahko proizvaja z gojenjem gob in vitro.An extract of the present invention may be obtained by harvesting a sponge material, i.e. reeds and / or mycelium of the specific basidiomycetes described above. The extract may be obtained as is well known to the person skilled in the art, for example by using a solvent or extraction buffer or by separating the liquid from a solid material. Many of the various solvents or buffers known to the person skilled in the art can be used to prepare extracts and fractions, as long as the solvent or buffer is biocompatible and can extract protein substances. High protein extracts can be produced by growing mushrooms in vitro.
V eni izvedbi lahko proteinski ekstrakt in/ali del proteina dobimo z zamrzovanjem materiala iz gob pri temperaturi med -20°C in -80°C, odtajanjem zamrznjenega materiala in ločevanjem tekočine od trdnih snovi, na primer s stiskanjem odtajane mase. V drugi izvedbi lahko gobji material mehansko zdrobimo, homogeniziramo ali biološko razgradimo in dobljeni material lahko ekstrahiramo s topilom ali pufrom ali material pa lahko material ločimo v tekoče in trdne frakcije.In one embodiment, the protein extract and / or part of the protein can be obtained by freezing the mushroom material at a temperature between -20 ° C and -80 ° C, thawing the frozen material and separating the liquid from solids, for example by compressing the thawed mass. In another embodiment, the mushroom material may be mechanically crushed, homogenized or biodegradable, and the resulting material may be extracted with solvent or buffer, or the material may be separated into liquid and solid fractions.
Tekočina ali ekstrakt pridobljen zgoraj je proteinski ekstrakt uporabljen v predloženem izumu, ki vsebuje biološko aktivno snov. Ekstrakt lahko nadalje očistimo z dializo na primer proti destilirani vodi, pri čemer so odstranjene molekule z nizko molekulsko maso. Preferenčno je mejna masa pod 4000 Da, na primer okoli 3000 Da. Ekstrakt se lahko uporablja v tekoči obliki ali pa jih lahko posušimo, na primer z liofilizacijo. Za shranjevanje se prednostno uporablja ekstrakt v suhi obliki, kot je liofilizirani obliki. Kadar jih uporabljamo za zaščito rastlin se posušen ekstrakt lahko ponovno vzpostavi, kot je dobro znano strokovnjaku. Vodni medij, prednostno pufer, še zlasti izotonični pufer, kot Tris - HCI, se lahko uporablja za pripravo. Pufer ima prednostno skoraj nevtralen pH, na primer v območju od 6 do 8, prednostno 6,8-7,6. Proteinski ekstrakt ali rekonstituiran ekstrakt se lahko uporablja kot koncentrat in koncentracija proteinov v končnem sestavku se lahko prilagodi, kot je dobro znano, na primer z uporabo pufra, kot je Tris - HCI pufer. Uporabna koncentracija proteina je v razponu od 0,1 do 10 mg/ml, prednostno 0,2 do 5,0 mg/ml. Lahko uporabimo tudi višje koncentracije.The liquid or extract obtained above is a protein extract used in the present invention containing a biologically active substance. The extract can be further purified by dialysis for example against distilled water, with low molecular weight molecules being removed. Preferably the weight limit is below 4000 Da, for example about 3000 Da. The extract can be used in liquid form or can be dried, for example by lyophilization. The extract is preferably used in the dry form, such as the lyophilized form. When used to protect plants, the dried extract can be reconstituted as is well known to one skilled in the art. An aqueous medium, preferably a buffer, especially an isotonic buffer such as Tris - HCI, can be used for preparation. The buffer preferably has a near-neutral pH, for example in the range of 6 to 8, preferably 6.8-7.6. A protein extract or reconstituted extract can be used as a concentrate and the protein concentration in the final composition can be adjusted as is well known, for example, using a buffer such as Tris - HCI buffer. The useful protein concentration is in the range of 0.1 to 10 mg / ml, preferably 0.2 to 5.0 mg / ml. Higher concentrations can also be used.
Proteinski ekstrakt se lahko nadalje očisti, da dobimo frakcijo, ki je obogatena z beljakovinami - proteinska frakcija. Proteinske frakcije lahko pripravimo, kot je znano strokovnjaku. Metode za ločevanje ali izolacije proteinov v ekstraktu, so dobro znane v stroki, kot je kromatografija, na primer gelska kromatografija ali ionsko izmenjalna kromatografija. Proteinska frakcija ali izolirana proteinska komponenta imata to prednost, da je vsebina bolj določena in bolje kompatibilna.The protein extract can be further purified to give a protein-enriched fraction - the protein fraction. Protein fractions can be prepared as known to one skilled in the art. Methods for separating or isolating proteins in an extract are well known in the art, such as chromatography, such as gel chromatography or ion exchange chromatography. The protein fraction or the isolated protein component has the advantage of making the content more defined and more compatible.
Kot je opisano zgoraj se predpostavlja, da je, vsaj del aktivne snovi v beljakovinskem ekstraktu ali proteinski frakciji vsaj en biološko aktiven peptid ali protein, kot je Laminokislinska oksidaza.As described above, it is assumed that at least part of the active substance in the protein extract or protein fraction is at least one biologically active peptide or protein such as Laminic Acid Oxidase.
Iz proteinske frakcije se aktivni proteini lahko izolirajo, na primer L-aminokislinska oksidaza. Aktiven protein ima ugodne lastnosti, in da se omogoči proizvodnja visokih količinah, se lahko pridobi tudi v očiščeni obliki, pridobljenega iz gobjega materiala ali z rekombinantno proizvodnjo proteina v E. coli, ali katerega koli drugega proizvodnega organizma, ki je dobro znan strokovnjaku.From the protein fraction, the active proteins can be isolated, for example L-amino acid oxidase. The active protein has favorable properties and, in order to allow production of high quantities, it can also be obtained in purified form obtained from a sponge material or by recombinant production of a protein in E. coli or any other production organism that is well known to the person skilled in the art.
Proteinski ekstrakt, kot je zgoraj ali proteinska frakcija ali proteinska komponenta, se lahko uporabljajo, kot je pridobljena. To lahko steriliziramo, če je to potrebno za preprečitev kontaminacije, na primer z uporabo sterilne filtracije.A protein extract such as the above or a protein fraction or protein component can be used as obtained. This can be sterilized if necessary to prevent contamination, for example by using sterile filtration.
Za shranjevanje beljakovinskega ekstrakta, frakcije ali posušenega praška preferenčno uporabljamo zamrzovanje. Za kratek čas shranjevanja je uporabna temperatura v območju od -20 do -40 ° C. Za dolgotrajno shranjevanje je bolje uporabiti temperaturo skladiščenja v območju od -60 do -80 0 C.Freezing is preferably used to store the protein extract, fraction or dried powder. For short storage times, temperatures in the range of -20 to -40 ° C are applicable. For long-term storage, it is better to use a storage temperature of -60 to -80 0 C.
Nadaljnji vidik predloženega izuma je postopek za pridobivanje proteinskih ekstraktov iz gob, kot je definirano zgoraj in v zahtevku 1, z nabiranjem plodnih teles in/ali micelija bazidiomicet, zamrzovanjem materiala pri temperaturi med -20 ° C in - 80 ° C, tajanjem materiala, ločevanjem na tekoče in trdne delce, in vračanjem tekočine kot proteinskega ekstrakta.A further aspect of the present invention is a process for the production of protein extracts from mushrooms as defined above and in claim 1, by harvesting fruiting bodies and / or mycelium basidiomycet, freezing the material at a temperature between -20 ° C and - 80 ° C, thawing the material, separating them into liquid and solid particles, and returning the liquid as a protein extract.
V nadaljnji izvedbi je proteinski ekstrakt osnova za izolacijo aktivnih proteinov, kot so encimi in lektini, na primer L-aminokislinska oksidaza. Izolacijo je mogoče doseči z uporabo kromatografskih metod, kot je znano strokovnjaku.In a further embodiment, the protein extract is the basis for isolating active proteins such as enzymes and lectins, for example L-amino acid oxidase. Isolation can be achieved by using chromatographic methods as known to one skilled in the art.
Nadaljnji vidik predloženega izuma je sestavek za zaščito pridelka, ki obsega proteinski ekstrakt, proteinsko frakcijo, komponento in/ali encim v smislu predloženega izuma beljakovin in kmetijsko primerno pomožno snov.A further aspect of the present invention is a crop protection composition comprising a protein extract, a protein fraction, a component and / or an enzyme of the present invention of proteins and an agricultural auxiliary.
Sestavek lahko obsega kmetijsko ali vrtnarsko sprejemljivo raztopino, nosilec, polnilo, podaljševalec ali adjuvans.The composition may comprise an agriculturally or horticultural acceptable solution, carrier, filler, extender or adjuvant.
Sestavek za zaščito pridelka lahko dodatno obsega en ali več nadaljnjih biološko aktivnih sredstev, kot so herbicidi, pesticidi, fungicidi, rastni faktorji ali gnojila.The crop protection composition may additionally comprise one or more further biologically active agents such as herbicides, pesticides, fungicides, growth factors or fertilizers.
Kompozicija za zaščito rastlin predloženega izuma lahko vsebuje ali proteinski ekstrakt, kot je opisano zgoraj, ali proteinske frakcije ali izolirane proteine, kot so encimi in lektini.The plant protection composition of the present invention may contain either a protein extract as described above or protein fractions or isolated proteins such as enzymes and lectins.
Posamezne proteine lahko dobimo tudi s kromatografijo ali metodami elektroforeze metode, na primer gelsko kromatografijo in ionsko izmenjalno kromatografijo ali nativno PAGE.Individual proteins can also be obtained by chromatography or electrophoresis methods, for example gel chromatography and ion exchange chromatography or native PAGE.
Ugotovljeno je bilo, da je oziroma so proteinski ekstrakt, proteinska frakcija ali izolirani aktivni protein ali encim aktiven proti rastlinskim patogenim bakterijam, ki jih je sicer težko nadzorovati. Po drugi strani, ekstrakt ne poškoduje rastlin, tako da ga je mogoče uporabiti za boj proti bakterijam.Protein extract, protein fraction or isolated active protein or enzyme has been found to be active against plant pathogenic bacteria that are otherwise difficult to control. On the other hand, the extract does not damage the plants so it can be used to fight bacteria.
Ekstrakt predloženega izuma je učinkovit proti pomembnim rastlinskim patogenim bakterijam, kot so tiste iz rodov Ralstonia, Ervvinia, Dickeya, Pectobacterium, Xanthomonas, Agrobacterium in Escherichia. Zlasti se lahko kompozicija predloženega izuma uporablja za zmanjšanje, odpravo ali preprečitev okužbe z Ralstonia solanacearum, Ervvinia amylovora, Dickeya dadantii, Ralstonia mannitolilytica in Escherichia coli. Te bakterije okužujejo pomembne kmetijske in vrtnarske rastline, kot so krompir, paradižnik, banane, tobak, ingver in jajčevci.The extract of the present invention is effective against important plant pathogenic bacteria such as those of the genera Ralstonia, Ervvinia, Dickeya, Pectobacterium, Xanthomonas, Agrobacterium and Escherichia. In particular, the composition of the present invention can be used to reduce, eliminate or prevent infection with Ralstonia solanacearum, Ervvinia amylovora, Dickeya dadantii, Ralstonia mannitolilytica and Escherichia coli. These bacteria infect important agricultural and horticultural plants such as potatoes, tomatoes, bananas, tobacco, ginger and aubergines.
Ugotovljeno je bilo, da je proteinski ekstrakt, proteinska frakcija ali izoliran biološko aktiven protein, pridobljen iz Agaricus moelleri, Amanita phalloides ali Tricholoma saponaceum zlasti aktivna proti bakteriji Escherichia coli. Zato se kompozicija predloženega izuma, ki obsega proteinski ekstrakt, proteinsko frakcijo ali izoliramo biološko aktiven protein, pridobljen iz Agaricus moelleri, Amanita phalloides ali Tricholoma saponaceum med drugim uporablja za zmanjševanje, izkoreninjenje ali preprečevanje okužbe z E.coli.Protein extract, protein fraction or isolated biologically active protein derived from Agaricus moelleri, Amanita phalloides or Tricholoma saponaceum has been found to be particularly active against Escherichia coli. Therefore, a composition of the present invention comprising a protein extract, protein fraction or isolating a biologically active protein derived from Agaricus moelleri, Amanita phalloides or Tricholoma saponaceum is used inter alia to reduce, eradicate or prevent E. coli infection.
Poleg tega je bilo ugotovljeno, da je proteinski ekstrakt, proteinska frakcija ali izoliran biološko aktiven protein, pridobljen iz Amanita phalloides zlasti aktiven proti R. mannitolilytica. Zato kompozicija tega izuma, ki obsega proteinski ekstrakt, proteinsko frakcijo ali izoliran biološko aktivni protein, pridobljen iz Amanita phalloides med drugim uporablja za zmanjševanje, izkoreninjenje ali preprečevanje okužbe z R. mannitolilytica.In addition, the protein extract, protein fraction or isolated biologically active protein derived from Amanita phalloides was found to be particularly active against R. mannitolilytica. Therefore, a composition of the present invention comprising a protein extract, a protein fraction or an isolated biologically active protein derived from Amanita phalloides is used inter alia to reduce, eradicate or prevent infection with R. mannitolilytica.
Ugotovljeno je bilo, da je L-aminokislinska oksidaza, izolirana iz Amanita phalloides ali Clitocybe geotropa posebej aktivna proti R. solanacearum. L-aminokislinska oksidaza izolirana iz Amanita phalloides ali Clitocybe geotropa se tako uporablja za zmanjševanje ali odpravljanje okužbe z R. solanacearum na rastlinah, v okolju rastlin ali na površinah ali za preprečevanje okužbe z R. solanacearum.L-amino acid oxidase isolated from Amanita phalloides or Clitocybe geotropa was found to be particularly active against R. solanacearum. L-amino acid oxidase isolated from Amanita phalloides or Clitocybe geotropa is thus used to reduce or eliminate R. solanacearum infection on plants, in plant environments or on surfaces, or to prevent R. solanacearum infection.
Ugotovljeno je bilo, da so proteinski ekstrakti, pridobljeni iz Clitocybe geotropa, Suillus variegatus in Tricholoma saponaceum posebej aktivni proti bakterijskemu venenju, ki ga povzroča R. solanacearum. Zato se proteinski ekstrakti pridobljeni iz Clitocybe geotropa, Suillus variegatus in Tricholoma saponaceum uporabljajo pri metodah in kompozicijah predloženega izuma in še zlasti za zatiranje R. solanacearum.Protein extracts obtained from Clitocybe geotropa, Suillus variegatus and Tricholoma saponaceum have been found to be particularly active against bacterial wilting caused by R. solanacearum. Therefore, protein extracts obtained from Clitocybe geotropa, Suillus variegatus and Tricholoma saponaceum are used in the methods and compositions of the present invention, and in particular for the control of R. solanacearum.
Kompozicija predloženega izuma je koristna za zdravljenje okolja v katerem rastline rastejo, zemlje, vode ali površine rastlin kot tudi trdih površin. Tako je zagotovljen postopek za zmanjševanje, izkoreninjenje ali preprečevanje okužbe s patogenimi bakterijami v okolju rastlin ali na površinah, z nanašanjem kompozicije, ki obsega proteinski ekstrakt ali proteinske frakcije ali biološko aktivno sestavino, kot je definirano zgoraj za okolje rastlin, tla, površine rastlinskih delov ali trdih površin. Kompozicijo predloženega izuma lahko apliciramo na površine okuženih s patogenimi bakterijami, za znižanje ali odpravo bakterij ali pa se lahko uporabljajo za zaščito neonesnažene površin pred okužbo z bakterijami. Poleg tega se lahko kompozicije predloženega izuma uporabljajo za razkuževanje okolja rastlin, tal ali površin.The composition of the present invention is useful for treating the environment in which plants grow, soil, water or plant surfaces as well as hard surfaces. This provides a process for reducing, eradicating or preventing infection with pathogenic bacteria in plant or plant environments, by applying a composition comprising a protein extract or protein fractions or a biologically active ingredient as defined above for the plant environment, soil, plant surface or hard surfaces. The composition of the present invention can be applied to surfaces infected with pathogenic bacteria, to reduce or eliminate bacteria, or can be used to protect non-contaminated surfaces against bacterial infection. In addition, the compositions of the present invention can be used to disinfect the environment of plants, soil or surfaces.
Gobji material predloženega izuma je še posebej uporaben za zaščito pridelkov, vključno krompirja, paradižnika, jajčevcev, tobaka, banan in ingverja, prednostno rastlin iz družine Solanaceae. Pogosteje gojene rastline te družine, so rastline iz rodu Solanum, zlasti paradižnik - S. Iycopersicum, krompir - S. tuberosum in jajčevci - S. melongena.The mushroom material of the present invention is particularly useful for protecting crops, including potatoes, tomatoes, aubergines, tobacco, bananas and ginger, preferably plants of the Solanaceae family. The more commonly grown plants of this family are plants of the genus Solanum, especially tomatoes - S. Iycopersicum, potatoes - S. tuberosum and eggplants - S. melongena.
Poleg tega je bilo ugotovljeno, da lahko gobji material predloženega izuma uporabimo tudi za zdravljenje divjih gostiteljskih rastlin, zlasti gostiteljske rastline razhudnikovk pa tudi divje gostitelji iz družine Urticaceae. To je zelo pomembno, saj so divje gostiteljske rastline potencialni vir širjenja bolezni, zlasti kadar poteka namakanje. Primeri divjih gostiteljev so Solanum dulcamara, Solanum nigrum in Urtica dioica.In addition, it was found that the mushroom material of the present invention can also be used to treat wild host plants, in particular host plant plants, and wild hosts of the Urticaceae family. This is very important as wild host plants are a potential source of disease spread, especially when irrigation is taking place. Examples of wild hosts are Solanum dulcamara, Solanum nigrum, and Urtica dioica.
Proteinski ekstrakt, proteinske frakcije in izolirane proteinske komponente predloženega izuma so bile testirane na njihov učinek na rast rastlin. Ugotovljeno je bilo, da ne njihov ekstrakt ali njihove učinkovine niso imeli negativnega učinka na rast rastlin, ki jih ščitijo. Ekstrakti so bili preizkušen v primerjavi z negativnimi in pozitivnimi kontrolnimi rastlinami in ni bilo moč opaziti niti pozitivnega niti negativnegaThe protein extract, protein fractions and isolated protein components of the present invention were tested for their effect on plant growth. It was found that neither their extract or their active ingredients had any negative effect on the growth of the plants protecting them. The extracts were tested against negative and positive control plants and neither positive nor negative were observed
vpliva na rast rastlin. Tako je očitno, da so kompozicije v smislu predloženega izuma biološko kompatibilne z rastlinami in niso škodljive za njihovo rast.affects plant growth. Thus, it is apparent that the compositions of the present invention are biologically compatible with the plants and not detrimental to their growth.
Nadalje je bila testirana protibakterijska aktivnost in vitro ter in vivo. Nekateri ekstrakti so pokazali manjšo aktivnost, kadar so bili uporabljeni na rastlinah. Pri drugih ekstraktih je bil učinek na rastlinah boljši kot in vitro. Ne glede na teorijo se predpostavlja, da imajo ekstrakti, ki so bolj učinkoviti in vivo kot in vitro vpliv na obrambni sistem rastline. Uporaba teh ekstraktov je bolj zaželena, saj krepijo naravni obrambni sistem rastlin rastline, ki se zato bori proti patogeni bakteriji sama in je zato potrebna uporaba minimalne količina aktivne učinkovine.Antibacterial activity was further tested in vitro and in vivo. Some extracts showed less activity when used on plants. For other extracts, the effect on plants was better than in vitro. Regardless of the theory, extracts that are more effective in vivo than in vitro are assumed to have an effect on the plant's defense system. The use of these extracts is more desirable because they strengthen the plant's natural defense system, which therefore fights the pathogenic bacterium itself and therefore requires the use of a minimal amount of active substance.
Preizkušanje vpliva beljakovinskih ekstraktov na rastlinsko patogeno bakterijo Ralstonia solanacearum se je izkazalo za zelo uspešno. V začetnih presejalnih testih je bilo aktivnih in vitro skoraj 18% ekstraktov iz različnih vrst gob. Prvič smo testirali delovanje ekstraktov proti 12 sevom R. solanacearum, ki zajemajo različne filotipe. Medtem ko je šest ekstraktov popolnoma inhibiralo rast R. solanacearum in vitro, je bilo več variabilnosti inhibicije opaziti pri ekstraktih iz Agaricus moelleri, Tricholoma ustale, Albatrellus ovinus in Clitocybe nebularis - od nič inhibicije do popolne inhibicije bakterijskega razmnoževanja. Ker se ekstrakti med testiranjem niso spremenili, se domneva, da so nekateri sevi bakterije R. solanacearum bolj občutljivi kot drugi, vendar niso opazili nobene povezave filotipi ali razvrstitvijo v biovarje. Ralstonia mannitollilytica je bila občutljiv na ekstrakte gob predloženega izuma, saj ima zelo podobno DNA zaporedje kot R. solanacearum. Poleg tega smo E. coli testirali, ker se pogosto uporablja kot proizvodni organizem rekombinantnih proteinov iz gliv. Ekstrakti T. saponaceum, A. phalloides in A. moelleri so popolnoma inhibirali E. coli in vitro. Na splošno velja, da je širok spekter aktivnosti proti sevom R. solanacearum velika prednost, saj lahko aktivni protein izoliramo in uporabimo kot sredstvo za zaščito rastlin ali katero drugo aplikacijo.Testing the effect of protein extracts on the plant pathogen Bacterium Ralstonia solanacearum has proven to be very successful. In the initial screening tests, almost 18% of the extracts from different types of mushrooms were active in vitro. For the first time, we tested the performance of extracts against 12 strains of R. solanacearum spanning different phyllotypes. While six extracts completely inhibited the growth of R. solanacearum in vitro, more variability of inhibition was observed in extracts from Agaricus moelleri, Tricholoma ustale, Albatrellus ovinus and Clitocybe nebularis - from zero inhibition to complete inhibition of bacterial propagation. As the extracts did not change during testing, it is assumed that some strains of R. solanacearum are more sensitive than others, but no association was observed with phyllotypes or classification into biovars. Ralstonia mannitollilytica was sensitive to the mushroom extracts of the present invention because it has a very similar DNA sequence to R. solanacearum. In addition, E. coli has been tested because it is widely used as a production organism for recombinant proteins from fungi. T. saponaceum, A. phalloides and A. moelleri extracts completely inhibited E. coli in vitro. In general, a wide range of activity against R. solanacearum strains is considered to be a great advantage, since the active protein can be isolated and used as a plant protection agent or any other application.
Clitocybe geotropa je bila zelo učinkovita in vitro in in vivo proti različnim sevom in zlasti proti 12 sevom Ralstonia solanacearum. Zato so ekstrakti Clitocybe geotropa, proteinske frakcije ali proteinske komponente iz njih priporočeni za uporabo kot sredstvo za zaščito rastlin.Clitocybe geotropa was highly effective in vitro and in vivo against various strains, and in particular against 12 strains of Ralstonia solanacearum. Therefore, Clitocybe geotropic extracts, protein fractions or protein components from them are recommended for use as a plant protection product.
Izum je podrobneje razložen s pomočjo primerov. Primeri se ne smejo razlagati kot omejevanje izuma ali področja.The invention is explained in more detail by way of examples. Cases should not be construed as limiting the invention or scope.
PRIMER 1EXAMPLE 1
Materiali in metodeMaterials and methods
Bakterijska kultura in priprava inokulumaBacterial culture and inoculum preparation
Ralstonia solanacearum (Smith, 1896) Yabuuchi et al. 1996 (rasa 3, biovar 2), sev NCPBB 4156, je bila v glavnem uporabljajo v poskusih, kakor tudi drugi sevi R. solanacearum ter Escherichia coli in Ralstonia mannitolilytica (glej Tabelo 3). Bakterije se gojijo pri 28 0 C na trdnem gojišču, ki vsebuje kvasni ekstrakt, pepton, glukozo in agar - YPGA vsebuje 5 g / L kvasnega ekstrakta, 5 g / L proteoznega peptona, 10 g / L glukoze, 12 g / L AGA, s pH naravnanim na 7,2-7,4. kot tudi na Kelmanovem tetrazolij mediju (Kelman, 1954) z namenom opazovanja tipične morfologije kolonij. Bakterijska suspenzija za rast v tekočem YPGA je bila pripravljena v 0,01 M fosfatnem pufru s soljo (PBS), ki vsebuje 1,071 g /1 Na2HPO4, 0,4 g / I NaH2PO4 χ 7H2O, 8 g / I NaCI in s pHuaravnanim na 7,2. Koncentracija bakterij v in vitro in in vivo testi je bila ocenjena z merjenjem OD pri 595 nm z uporabo McFarland standarda. Koncentracija živih bakterij (CFU/mL) je bila določena z nanosom redčitev na YPGA medij in štetjem CFU po 48ih urah.Ralstonia solanacearum (Smith, 1896) Yabuuchi et al. 1996 (race 3, biovar 2), strain NCPBB 4156, was mainly used in experiments, as were other strains of R. solanacearum and Escherichia coli and Ralstonia mannitolilytica (see Table 3). The bacteria are grown at 28 0 C on a solid medium containing yeast extract, peptone, glucose and agar - YPGA contains 5 g / L yeast extract, 5 g / L protease peptone, 10 g / L glucose, 12 g / L AGA, with pH adjusted to 7.2-7.4. as well as on Kelman's tetrazolium medium (Kelman, 1954) in order to observe the typical colony morphology. The bacterial growth suspension in liquid YPGA was prepared in 0.01 M phosphate buffered saline (PBS) containing 1.071 g / l Na2HPO4, 0.4 g / I NaH2PO4 χ 7H2O, 8 g / I NaCI and pH adjusted 7.2. Bacterial concentration in in vitro and in vivo assays was estimated by measuring OD at 595 nm using the McFarland standard. The concentration of live bacteria (CFU / mL) was determined by applying the dilutions to YPGA medium and counting the CFU after 48 hours.
Glivna kulturaFungal culture
Miceliji Clitocybe geotropa micelij smo izolirali iz svežih plodov teles, nabranih v naravi. Micelij gojimo v tekoči SMY mediju, ki vsebuje 10 g saharoze, 10 g sladnega ekstrakta, 4 g kvasnega ekstrakta in 1000 ml ddH2O brez uravnavanja pH. Koščki micelija, ki so zrasli na trdnem SM gojišču (vsebuje 10 g agar), smo prenesli v 200 ml tekočega SMY medija v erlenmajerici. Inkubirali smo jih 6 tednov pri sobni temperaturi, v temi in brez stresanja. Micelij smo zbrali in shranili pri -20 ° C.Mycelia of the Clitocybe myotrope geotropes were isolated from fresh fruits of bodies harvested in nature. The mycelium was grown in liquid SMY medium containing 10 g of sucrose, 10 g of malt extract, 4 g of yeast extract and 1000 ml of ddH2O without pH adjustment. Mycelia pieces grown on solid SM medium (containing 10 g agar) were transferred to 200 ml of liquid SMY medium in a conical flask. They were incubated for 6 weeks at room temperature, in the dark and without shaking. The mycelium was collected and stored at −20 ° C.
Priprava ekstraktovPreparation of extracts
Ves gobji material (vrste iz dveh debel Basidiomycota in Ascomycota) smo nabrali v naravi, označili in zamrznili pri -20 ° C ali -80 0 C. Od 150 gob, je bilo 141 identificiranih do vrste in 9 do rodu. Gobje ekstrakte pripravimo s homogenizacijo odtajanih trosnjakov in centrifugiranjem pri 16000 g 5 min da odstranimo netopne snovi. Proteinsko ekstrakcijo iz surovega ekstrakta smo izvedli z obarjanjem z acetonom z dodatkom 4 volumnov hladnega (-20°C) acetona in 40 minutno inkubacijo na ledu. Po centrifugiranju pri 10000 g in 4 0 C smo pelet posušili na zraku pri 4 0 C in shranili pri -20 ° C. Ekstrakt micelija pripravimo s homogenizacijo v tekočem dušiku z uporabo terilnice in shranimo pri -20 ° C. Pred uporabo smo proteinske ekstrakte raztopili v 0,05 M Tris - HCI pufru, ki vsebuje 0,1 M NaCI, pH 7,4, centrifugirali pri 16000g 5 min, da smo odstranili netopne snovi, filtrirali preko sterilnega 0,20 um filter ( Millex ® - LG ) za preprečevanje okužb in zamrznili pri -20 0 C za kratkoročno shranjevanje ali -80 ° C za dolgotrajno shranjevanje. Približno vsebnost beljakovin v ekstraktih smo določili z uporabo Bio -Rad proteinov (Bio -Rad, ZDA), po priporočilih proizvajalca.All mushroom material (species from the two thick Basidiomycota and Ascomycota) were collected in nature, labeled and frozen at -20 ° C or -80 0 C. Of the 150 mushrooms, 141 were identified to species and 9 to genus. The mushroom extracts were prepared by homogenizing the thawed reeds and centrifuging at 16000 g for 5 min to remove insoluble matter. Protein extraction from the crude extract was performed by acetone precipitation by adding 4 volumes of cold (-20 ° C) acetone and incubation on ice for 40 minutes. After centrifugation at 10,000 g and 4 0 C, the pellet was air dried at 4 0 C and stored at -20 ° C. The mycelium extract was prepared by homogenization in liquid nitrogen using a mortar and stored at -20 ° C. Before use, protein extracts dissolved in 0.05 M Tris - HCI buffer containing 0.1 M NaCI, pH 7.4, centrifuged at 16000g for 5 min to remove insoluble matter, filtered through a sterile 0.20 μm filter (Millex ® - LG) to prevent infection and freeze at -20 0 C for short-term storage or -80 ° C for long-term storage. The approximate protein content of the extracts was determined using Bio-Rad proteins (Bio-Rad, USA), as recommended by the manufacturer.
In vitro presejalni testIn vitro screening
Za opazovanje vpliva ekstraktov gob v tekočem mediju, smo privzeli test rasti v mikrotitrskih ploščicah s 96 luknjicami (dno U -oblike, Golias, Labortehnika). Mešanica je vsebovala: 75 pl_ YPG medija ( glej YPGA medij, samo brez dodanega agarja ), 75 pL suspenzije Ralstonia solanacearum (107 celic / ml), 42,5 pL 0,01 M PBS in 7,5 μΙ_ ekstrakta gobe. Pozitivna kontrola, negativna kontrola in kontrola sterilnosti ekstrakta so bili prisotni na vsaki plošči. Pozitivne kontrole so vsebovale 75 75 pL suspenzije Ralstonia solanacearum, 75 μΙ_ YPG medija in 50 μΐ_ 0,01 M PBS. Negativne kontrole vsebujejo 75 μΙ_ YPG medija in 125 pL 0,01 M PBS, medtem ko kontrole sterilnosti ekstrakta vsebujejo 75 pL YPG medija, 117,5 pL 0,01 M PBS in 7,5 pL ekstrakta gob. Vsak vzorec in kontrola je bil prisoten v dveh ponovitvah, kontrola sterilnosti ekstrakta pa v eni luknjici. Plošče smo inkubirali v termo stresalniku (PST - 60HL - 4, BIOSAN) pri 28 0 C in 400 rpm 72 ur. Zaviranje rasti smo spremljali spektrofotometrično z več meritvami OD595 (Tecan GENIOS) v 24 urah. Po 24 urah je bilo 30 ml odpipetiranih iz vsake luknjice, na sveže YPGA gojišče, da smo ocenili ali je učinek baktericiden (bakterije ne rastejo po prenosu ) ali bacteristatičen (bakterije rastejo po prenosu). Izhodni podatki so bili zbrani s programsko opremo Magellan, V. 6.2.To observe the effect of mushroom extracts in the liquid medium, a growth test in 96-well microtiter plates (U-shaped bottom, Golias, Labortehnika) was taken. The mixture contained: 75 pl_ of YPG medium (see YPGA medium, without agar alone), 75 pL of Ralstonia solanacearum suspension (10 7 cells / ml), 42.5 pL of 0.01 M PBS and 7.5 μΙ_ of mushroom extract. Positive control, negative control, and sterility control of the extract were present on each plate. Positive controls contained 75 75 pL of Ralstonia solanacearum suspension, 75 μΙ_ YPG medium, and 50 μΐ_ 0.01 M PBS. Negative controls contain 75 μΙ_ YPG medium and 125 pL 0.01 M PBS, while extract sterility controls contain 75 pL YPG medium, 117.5 pL 0.01 M PBS and 7.5 pL mushroom extract. Each sample and control were present in two replicates and the sterility control of the extract was in one hole. The plates were incubated in a thermo shaker (PST - 60HL - 4, BIOSAN) at 28 0 C and 400 rpm for 72 hours. Growth inhibition was monitored spectrophotometrically with several OD595 measurements (Tecan GENIOS) over 24 hours. After 24 hours, 30 ml were pipetted from each well onto fresh YPGA medium to evaluate whether the effect was bactericidal (bacteria do not grow after transfer) or bacteristatic (bacteria grow after transfer). Output data were collected using Magellan software, V. 6.2.
RezultatiResults
In vitro presejalni test protibakterijske aktivnosti olivnih ekstraktovIn vitro screening of the antibacterial activity of olive extracts
Gobji trosnjaki so bili zbrani v slovenskih gozdovih v obdobju več sezon in identificirani do vrste (Tabela 1). Povprečna vsebnost beljakovin je pokazala variabilnost med različnimi izvlečki in je bila med 5,9 ± 2,6 mg/mL. Pri prvem pregledu delovanja ekstraktov gob proti Ralstonia solanacearum Z 30 (NCPPB 4156), je bila presejalni test v mikrotitrski ploščici optimiziran za zagotovitev zanesljivih in ponovljivih rezultatov. Tekoče PGA gojišče in inkubacija pri 28 ° C so primerni za preizkušanje inhibicije bakterije R. solanacearum, R. mannitolilytica in E. coli. Absorbanco smo merili 24 ur, saj je bila določena v predhodnih poskusih, kot najbolj informativna časovna točka za določanje antibakterijske aktivnosti (zaviralne lastnosti) ekstraktov. Skupaj smo testirali 150 vzorcev iz 94 različnih vrst, 148 gobjih ekstraktov in 2 ekstrakta micelija. Od 150 ekstraktov, je14 vzorcev (13 ekstrakti gob in 1 ekstrakt micelija C. geotropa) zaviralo rast R. solanacearum in vitro (Tabela 1). Ti ekstrakti so kazali različne stopnje zaviranja rasti R. solanacearum Z30 v primerjavi z dinamiko rasti pozitivne kontrole: popolno zaviranje (Amanita phalloides, Amanita muscaria, Amanita virosa, Boletus luridiformis, C. geotropa, ekstrakt micelija C. geotropa, Gomphidius glutinosus, Tricholoma saponaceum, Hypholoma sp), delno zaviranje (Agaricus moelleri, Albatrellus ovinus, Bovista nigrescens, Suillus vanegatus, Tricholoma ustale) ali nobenega zaviranja (Clitocybe nebularis, Ramaria flava). Stopnja inhibicije reprezentativnih ekstraktov je prikazana na Sliki 1.Mushroom reeds were collected in Slovenian forests over several seasons and identified by species (Table 1). The average protein content showed variability between the different extracts and was between 5.9 ± 2.6 mg / mL. At the first examination of the performance of mushroom extracts against Ralstonia solanacearum Z 30 (NCPPB 4156), the microtiter plate screening was optimized to ensure reliable and reproducible results. Liquid PGA medium and incubation at 28 ° C are suitable for testing inhibition of R. solanacearum, R. mannitolilytica and E. coli. Absorbance was measured for 24 hours as it was determined in previous experiments as the most informative time point for determining antibacterial activity (inhibitory properties) of extracts. In total, we tested 150 samples from 94 different species, 148 mushroom extracts and 2 mycelium extracts. Of the 150 extracts, 14 samples (13 mushroom extracts and 1 mycelium C. geotropa extract) inhibited R. solanacearum growth in vitro (Table 1). These extracts showed different rates of growth inhibition of R. solanacearum Z30 compared to the growth dynamics of the positive control: complete inhibition (Amanita phalloides, Amanita muscaria, Amanita virosa, Boletus luridiformis, C. geotropa, mycelium C. geotropa extract, Gomphidius glutinosap, Trich , Hypholoma sp), partial inhibition (Agaricus moelleri, Albatrellus ovinus, Bovista nigrescens, Suillus vanegatus, Tricholoma ustale) or no inhibition (Clitocybe nebularis, Ramaria flava). The inhibition rate of representative extracts is shown in Figure 1.
Za 20 vrst gob smo analizirali protibakterijsko aktivnost več kot enega ekstrakta iste vrste (Tabela 1). 8 Tricholoma saponaceum ekstraktov je popolnoma inhibiralo R. solanacearum in 1 pa je kazal delno inhibicijo (8 /1). Podobne rezultate smo opazili pri ekstraktih C. geotropa (9/ 3) in ekstraktih A. phalloides (7 /3). To ni nepričakovano, saj so poročali, da se lahko sestava in vsebnost beljakovin in drugih snovi zelo razlikuje in je odvisna od rastišča, vremenskih razmer (razpoložljivost vode, temperatura) in starosti plodnega telesa.The antibacterial activity of more than one extract of the same species was analyzed for 20 mushroom species (Table 1). 8 Tricholoma saponaceum extracts completely inhibited R. solanacearum and 1 showed partial inhibition (8/1). Similar results were observed for C. geotropa (9/3) and A. phalloides (7/3) extracts. This is not unexpected, as it has been reported that the composition and content of proteins and other substances can vary greatly, depending on the habitat, weather (water availability, temperature) and age of the fertile body.
Tabela 1: Presejalni test v mikrotitrskih ploščicah: in vitro smo testirali 150 ekstraktov iz 94 vrst višjih gliv (gob), ki zastopajo 26 družinTable 1: Microtiter plate screening test: 150 extracts from 94 species of fungi (mushrooms) representing 26 families were tested in vitro
CD cCD c
4—» »N4— »» N
O coAbout co
TOTO
ΌΌ
CO CO 2 Λ1 COCO CO 2 Λ1 CO
TO TO C TO Φ Π3TO TO C TO Φ Π3
Ό TO C OΌ TO C O
Tl <d «5 ”to ro c -σ ·° -σ τιTl <d «5» to ro c -σ · ° -σ τι
TOTO
ΌΌ
CD CD = Ό Ό _$3 TO 0 Ό Ό <oCD CD = Ό Ό _ $ 3 TO 0 Ό Ό <o
TOTO
Ό ”ra .g Ό 73Ra ”ra .g Ό 73
CD 'o7_ —CD 'o7_ -
<0<0
COCO., LTD
TOTO
X)X)
OOh
CTCT
TOTO
COCO., LTD
CDCD
C >NC> N
OOh
CD =3CD = 3
JD (D z 2 cJD (D with 2 c
CDCD
C >NC> N
CDCD
JOJO
OOh
O)O)
CD >CD>
0)0) TO 0) 0) 0) TO 0)0) 0) TO 0) 0) 0) TO 0)
C C Ό C C C □ CC C Ό C C C □ C
0) TO 0) 0) 0) C Ό C C C0) TO 0) 0) 0) C Ό C C C
TO “DTO “D
0) 0) 0) 0) TO C C C C Ό0) 0) 0) 0) TO C C C C C Ό
0)0)
C to toC to it
C C cv εC C cv ε
.£ T3 δ TO TO. £ T3 δ TO TO
TO l·— O 2 TOTO l · - O 2 TO
E oE o
oo
TOTO
EE
TO TO c υ TO TOTO TO c υ TO TO
- S 2 S.TO TO TO P Q- TO p ε- S 2 S.TO TO TO P Q- TO p ε
Si u .cSi in .c
TO C .3 5?TO C .3 5?
TO TO εTO TO ε
o oo o
S n5 .C p. cS n 5 .C p. c
CDCD
ΌΌ
0)0)
CC
V) •S coV) • S co
Φ εΦ ε
TO oTO o
TOTO
OOh
CC
TO >. TOTO>. TO
E c o TO Ό 05 «E c o TO Ό 05 «
TOTO
COCO., LTD
0) c0) c
ε toε to
TO TO TO ε ε ε o o o o o o -c -c -c U .TO TOTO TO TO ε ε ε o o o o o o -c -c -c U .TO TO
CD CD O C Ό <M εCD CD O C Ό <M ε
C §C §
TO εTO ε
o oo o
-c-c
TO .52 PTO .52 P
TO o 2 c:TO 2 c:
„ δ s-g _ o •C <0„Δ s-g _ o • C <0
CD 0) 0) 0) 0) O C C C CCD 0) 0) 0) 0) O C C C C
TOTO
TO .8TO .8
TO TO O 2:TO TO O 2:
ε toε to
TO TOTO TO
OOh
C C TO TO O) 05 <NC C TO TO O) 05 <N
COCO., LTD
ΦΦ
Od to 42 2 TO εOf which 42 2 TO ε
£.§>£ .§>
IsIs
S- s.S- s.
,9 05 O -j, 9 05 O -j
CO δCO δ
Φ c:: C:
_ S <\J -ffi_ S <\ J -ffi
CO 0) .3 Cp p cCO 0) .3 Cp p c
TO -C -Q U TO TO 3 3 ε ε h—- k- l·*· l·- K— h- h* l·—TO -C -Q U TO TO 3 3 ε ε h—- k- l · * · l · - K— h- h * l · -
<0<0
CO oCO o
.c =3.c = 3
O)O)
CO .3 §CO .3 §
-S t-S t
δδ
o.o.
fC'fC '
0)0)
CC
TOTO
TOTO
ΌΌ
TO £ -D CTO £ -D C
0)0)
CC
0) 0) TO TO0) 0) TO TO
C C T3 OC C T3 O
0) TO C Ό o0) TO C Ό o
oo
ΦΦ
o. co coo. co co
O * i Si o p š kO * i Si o p w k
Φ 5Φ 5
-J <-J <
CDCD
CC
TO Φ TO Φ
TOTO
TOTO
O ·§O · §
CC
TO εTO ε
co c:co c:
Φ oΦ o
coco
Ž.CDŽ.CD
5S r s o TO5S r s o TO
I εI ε
TO TO TO c C TO TO ε ε cTO TO TO c C TO TO ε ε c
cmcm
-.Sto ™ O) p-.So ™ O) p
-c-c
o.o.
cc
TO εTO ε
TO TO r***c c TO TO ε ε 'τ ςο coTO TO r *** c c TO TO ε ε 'τ ςο co
1§ o δ1§ o δ
-Q O) TO TO 3 3-Q O) TO TO 3 3
COCO., LTD
8S °2 TO TO TO8S ° 2 TO TO TO
33
3 3 3 CO <Z) C0 CO3 3 3 CO <Z) C0 CO
TO ♦—TO ♦ -
TOTO
S”S ”
TOTO
C δC δ
j§ •i <0j§ • i <0
0) cd0) cd
0) o0) o
‘5 co'5 co
0)0)
ΦΦ
OOh
Φ c:: C:
δδ
CD co sCD co s
c:c:
ΦΦ
E o šE o š
CDCD
-2 φ .c δ-2 φ .c δ
L? φ h- cd φ o -2 εL? φ h − cd φ o −2 ε
TO £ c TO OTO £ c TO O
TOTO
O &O &
OOh
O. g ” o TO O 2 TO TO 5 TO P S 45 cS 2 o o φO. g ”o TO O 2 TO TO 5 TO P S 45 cS 2 o o φ
φ φφ φ
o cdo cd
II
0) « ω d) C <s CD Ϊ Ί3 >» c TO0) « ω d) C <s CD Ϊ Ί3>» c TO
ΌΌ
0) 0) 0) 0) 0) c c c c c0) 0) 0) 0) 0) c c c c c
TOTO
CC
TOTO
OOh
TOTO
TO δTO δ
TOTO
TOTO
OOh
TOTO
CC
TOTO
C δC δ
o υo υ
TO 3 §·TO 3 § ·
Φ 3 2 δ φ co 3 c;Φ 3 2 δ φ co 3 c;
CD co .3CD co .3
CD .CCD .C
ΈΈ
OOh
0) c0) c
0) c0) c
φ g E >§ i oφ g E > § io
t ot o
δδ
TO εTO ε
o 2 iSo 2 iS
TO δTO δ
oo
TO εTO ε
oo
TOTO
X3X3
TOTO
I oAnd o
o iSo iS
CD TO TOCD TO TO
Ό Ό ΌΌ Ό Ό
0)0)
CC
TO .OTO .O
-G-G
CD &CD &
•c• c
CDCD
CC
CD 0) C CCD 0) C C
C ҤC Ҥ
TO 3 .C C Š5 O d-oTO 3 .C C W5 O d-o
-C 3 n, -52 P $£ g-C 3 n, -52 P $ £ g
Φ CDΦ CD
CJCJ
CD .C δCD .C δ
.φ.φ
LLLL
O.O.
TOTO
O O -c: -c & & o o c. c.O O -c: -c & & o o c. c.
SS X 3:SS X 3:
(D(D
Ό (DD (D
Ό (ΟΌ (Ο
Ό (0 Φ Ό Ό φ φ φ c -σ c (β φ Ή CΌ (0 Φ Ό Ό φ φ φ c −σ c (β φ Ή C
ΦΦ
CC
ΦΦ
ΌΌ
Φ σΦ σ
φ οφ ο
φ φ φ φ d) φ c c c c c c εφ φ φ φ d) φ c c c c c c c ε
=3= 3
T3 c:T3 c:
Φ £Φ £
E (O c:E (O c:
Φ oΦ o
co toco to
ΦΦ
ΦΦ
CL (/>CL (/>
<0<0
Ci.Ci.
§§
Φ §Φ §
COCO., LTD
O y>About y>
co co oco co o
E § t 3 ,φ .Φ c: c:E § t 3, φ .Φ c: c:
φ φ ε ε φ φ ££ Ctφ φ ε ε φ φ ££ Ct
Φ 2 o. co φ 3 3 .c S o coO 2 o. co φ 3 3 .c S o co
ΦΦ
3.3.
CL (/) coCL (/) co
Φ £Φ £
CO CO 3 3CO CO 3 3
Φ Φ «3 33 Φ «3 3
ΦΦ
ΦΦ
Φ oΦ o
s cos co
ΦΦ
ΦΦ
CDCD
COCO., LTD
CDCD
OOh
COCO., LTD
-C t-C t
ΦΦ
ΦΦ
Φ φΦ φ
£ φ£ φ
φ φφ φ
ϋ φϋ φ
II
Φ =3 co .2 εΦ = 3 co .2 ε
Φ <o oΦ <o o
φφ
-j co co .o .3 *= -2 O 3 <0 CO .3 3 3 3 Φ JO *+w-j co co .o .3 * = -2 O 3 <0 CO .3 3 3 3 Φ JO * + w
O o φ Φ -J 3O o φ Φ -J 3
CL (/) (0 oCL (/) (0 o
φ —jφ —j
Φ Φ Φ Ό D CΌ Φ Φ Ό D C
COCO., LTD
Φ εΦ ε
ΦΦ
COCO., LTD
ΦΦ
O (OO
ΦΦ
ΦΦ
CO co coCO co co
55. o o o -c -c -c 8-8-88 2 2 §?§!§?55. o o o -c -c -c 8-8-88 2 2 §? §! §?
III ,C S o CD § i> 8 fc to cIII, C S o CD § i> 8 fc to c
CDCD
U to eIn that e
EE
IP cIP c
CDCD
O.O.
CD .O) c c -pCD .O) c c -p
ΦΦ
Φ oΦ o
Φ &Φ &
—J s—J s
·§ o· § o
0Q ΤΓΤΓ0Q ΤΓΤΓ
XX
3.3.
ss
CD & ® 8 5CD & ® 8 5
Φ oΦ o
Φ φΦ φ
S φS φ
φ φφ φ
ε .φε .φ
Φ φΦ φ
φ φφ φ
o •2 co coo • 2 co co
K .O)K .O)
OOh
S φS φ
φ coφ co
K sK s
Φ oΦ o
;§; §
Φ coΦ co
Φ čo coCo čo co
Φ (9- ΦΦ (9- Φ
V} Φ Φ o oV} Φ Φ o o
«3«3
Φ iS coΦ iS co
ΦΦ
O .ε §O .ε §
O φO φ
J2 φJ2 φ
O <0O <0
Φ φΦ φ
p ε ε -=3 p ε ε - = 3
EE
E gE g
Q)Q)
ΦΦ
ΦΦ
ΦΦ
OOh
ΦΦ
O Φ 9 -3 EO -3 9 -3 E
OOh
O co <About co <
ΦΦ
Φ C cΦ C c
ΌΌ
ΦΦ
T5 φ 45 ΌT5 φ 45 Ό
ΦΦ
DD
S φ o X φ Φ φ Φ 3 3S φ o X φ Φ φ Φ 3 3
55
O) CO CO CD E EO) CO CO CD E E
U. U. U. φ φ Φ 3 3 3 3 3 3 P 3 P φU. U. U. φ φ Φ 3 3 3 3 3 3 P 3 P φ
φ φφ φ
o φo φ
Φ Φ (Π Φ D O -q OO Φ (Π Φ D O -q O
Φ Φ c -σ coΦ Φ c -σ co
-σ-σ
CD CD CD CD C C C c cuCD CD CD CD C C C c c cu
CO .3CO .3
ΦΦ
Φ 3. .3 ΦΦ 3. .3 Φ
PP
-Q O-Q O
E 3, .8 čd 5 'c o. § §E 3, .8 čd 5 'c o. § §
ΦΦ
ΦΦ
Φ oΦ o
Φ £Φ £
.3.3
COCO., LTD
Φ εΦ ε
o oo o
-3 Φ cl φ S φ−3 Φ cl φ S φ
Φ <Z)Φ <Z)
CLCL
COCO., LTD
COCO., LTD
E oE o
o 8 .C Φ 3. P S 3 3* γρτo 8 .C Φ 3. P S 3 3 * γρτ
ΦΦ
X φX φ
φ inhibicijaf R. solanacearum v in vitro testihφ inhibition of R. solanacearum in in vitro assays
E coE co
O «Ό isO «Ό is
EE
CD co o -Q 'c cg g E co co E E o o o o -c -c .cj .o t (2CD co o -Q 'c cg g E co co E E o o o o -c -c .cj .o t (2
E co aS p CD 4= £ O C tD t O) co φ O.E co aS p CD 4 = £ O C tD t O) co φ O.
§,£ o .co§, £ o .co
Φ 3 § -Q φ O) 3 φ Φ§ 3 § -Q φ O) 3 φ Φ
33
O 3 coAbout 3 co
S 8 c o oS 8 c oo
S <2 co *S O Φ ϋS <2 co * S O Φ ϋ
CD u -Q CO =§ t o od ii o o S o oCD in -Q CO = § to of ii oo S oo
oo
ΦΦ
O)O)
Φ '-'J 3 ΦΦ '-'J 3 Φ
2 3 3. Φ Φ -J —J2 3 3. Φ Φ -J —J
3 2 23 2 2
Φ .33 .3
2 <0 O)2 <0 O)
Φ - 3 .co .co Φ 3. 3. V φ φ -J —J & 'p to 8 p >2 io 3 co -Q co co E E >Φ - 3 .co .co Φ 3. 3. V φ φ -J —J & 'p to 8 p> 2 io 3 co -Q co co E E>
pp
ΦΦ
ΌΌ
CC
Φ >OO> Oh
OOh
OOh
DD
O cAbout c
coco
NN
0) >0)>
ro φro φ
Ό .Ω oΌ .Ω o
Έ jo φΈ jo φ
<n o<n o
CL coCL co
D 'E' co .c □D 'E' co .c □
o cl oo cl o
E co ωE co ω
Φ c. C
Φ c _ φ >N D) =>Φ c _ φ> N D) =>
Ξ OΞ O
-q «Λ-q «Λ
Φ* O. C co co 'clΦ * O. C co co 'cl
E oE o
t_ ct_ c
coco
2SČ CO — >1N2S CO -> 1N
KI L- — >NKI L- -> N
DD
W 1 ω E « i_ >W 1 ω E «i_>
φφ
LΦ φ£LΦ φ £
O >O>
> '*= co> '* = co
Φ c. C
o tn o __ φo tn o __ φ
>N O ZJ CL >N C> N O ZJ CL> N C
W o >WW o> W
> Ql Ol S- i_ i_> Ql Ol S- i_ i_
PRIMER 2EXAMPLE 2
Materiali in metodeMaterials and methods
Test patogenosti na paradižnikuPathogenicity test on tomatoes
Rastline paradižnika (L. esculentum cv. Moneymaker) so bili uporabljene v in vivo testu v rastlinjaku. Pred inokulacijo smo rastline posadili v substrat kjer so rasle pri 21 °C v svetlobi in v temi z 90 pmol m'2 s1 fotonskega obsevanja (L36VV/77 luč, Osram, Nemčija) in 16h fotoperiodi. Rastline smo inokulirali v fazi dveh do treh pravih listov z z mešanico R. solanacearum in ekstrakti gob. Rastline smo inokulirali s koncentracijo bakterij 105 cfu/ml, ki smo jo v prejšnjih poskusih potrdili kot najnižjo koncentracijo, ki povzroča značilne simptome na vseh rastlinah. Ekstrakti gob, ki so zavirali rast R. solanaceraum in vitro so bili dodani R. solanacearum suspenziji v razmerju 1:10. Rastline negativne kontrole smo inokulirali z 0,01 M PBS in pozitivne kontrolne rastline samo s suspenzijo R. solanacearum brez ekstrakta. Z uporabo sterilne igle (Icogamma plus 0.6mm x 25mm, Novico, Italija) smo stebli vbodli med kličnima listoma, po naslednjem postopku: na konici sterilne igle smo izbrizgali kapljico in prebodli steblo. Ko je igla prebodla steblo, smo na drugi strani naredili še eno kapljico suspenzije in iglo potegnili nazaj. Z vsako suspenzijo bakterije in ekstrakta smo inokulirali vsaj 40 rastlin, 42 pozitivne kontrolne in 20 rastlin negativne kontrole. Rastline, smo opazovali vsaj 14 dni, pri 28°C dnevni temperaturi in 20°C nočni temperaturi, pri 90 pmol m'2 s'1 fotonskega obsevanja in 16h fotoperiodi. Rastline smo spremljali vsaj 14 dni, stopnjo bolezenskih znamenj (simptomov) smo ocenjevali po številčnih razredih VVinsteada in Kelmana (1952), in sicer: 0 (brez simptomov), 1 (eno list uvel), 2 (2-3 listi uveli), 3 (vsi listi razen vrha rastline uveli), 4 (vsi listi in vrh uvel), 5 (rastlina mrtva).Tomato plants (L. esculentum cv. Moneymaker) were used in an in vivo test in a greenhouse. Prior to inoculation, plants were planted in the substrate where they grew at 21 ° C in light and in the dark with 90 pmol m ' 2 with 1 photon irradiation (L36VV / 77 light, Osram, Germany) and 16 h photoperiods. Plants were inoculated in phase two to three straight leaves with a mixture of R. solanacearum and mushroom extracts. Plants were inoculated with a bacterial concentration of 10 5 cfu / ml, which in the previous experiments was confirmed as the lowest concentration that causes characteristic symptoms on all plants. Mushroom extracts that inhibited the growth of R. solanaceraum in vitro were added to the R. solanacearum suspension at a ratio of 1:10. Negative control plants were inoculated with 0.01 M PBS and positive control plants only with R. solanacearum suspension without extract. Using a sterile needle (Icogamma plus 0.6mm x 25mm, Novico, Italy), the stitches were stabbed between the germs, using the following procedure: a droplet was injected at the tip of the sterile needle and pierced the stem. When the needle pierced the stem, we made another drop of suspension on the other side and pulled the needle back. At least 40 plants, 42 positive controls and 20 negative control plants were inoculated with each bacterial and extract suspension. Plants were observed for at least 14 days at 28 ° C daytime temperature and 20 ° C nighttime temperature at 90 pmol m ' 2 s' 1 photon irradiation and 16 h photoperiods. The plants were monitored for at least 14 days, and the rate of disease signs (symptoms) was evaluated according to the numerical classes of Winstead and Kelman (1952), namely: 0 (no symptoms), 1 (one leaf uvel), 2 (2-3 leaves introduced). 3 (all leaves except the top of the plant withered), 4 (all leaves and the top withered), 5 (plant dead).
Test patogenosti na krompirjuPathogenicity test on potatoes
Mikropropagirane rastline krompirja Solanum tuberosum (cv. Desiree) smo gojili v tkivni kulturi 4 tedne, preden smo jih posadili v lončke z zemljo. Po rasti 14 dni v zemlji pri 22°C dnevne temperature, 20°C nočne temperature in pri osvetlitvi 90 pmol m2 s'1 fotonskega obsevanja in 16-h fotoperiodi, smo rastline inokulirali s suspenzijo bakteri in ekstrakti 1 cm nad podlago (zemljo) in inkubirali pri 25°C dnevni in nočni temperaturi ter osvetlitvi 90 pmol m'2 s'1 fotonskega obsevanja in 16-h fotoperiodi. Z vsako suspenzijo bakterij in ekstraktov smo inokulirali 42 rastlin, prav tako 42 rastlin pozitivne kontrole (samo R. solanaearum) in 20 rastlin negativne kontrole (0.01 M PBS). Rastline smo spremljali vsaj 14 dni, stopnjo bolezenskih znamenj smo ocenjevali po številčnih razredih VVinsteada in Kelmana (1952), in sicer: 0 ( brez simptomov ), 1 (eno list uvel), 2 ( 2-3 listi uveli), 3 (vsi listi razen vrha rastline uveli), 4 (vsi listi in vrh uvel), 5 (rastlina mrtva).Micropropagated potato plants of Solanum tuberosum (cv. Desiree) were grown in tissue culture for 4 weeks before being planted in soil pots. After growing for 14 days in the soil at 22 ° C daytime temperature, 20 ° C nighttime temperature and illumination of 90 pmol m 2 s' 1 photon irradiation and 16 h photoperiods, the plants were inoculated with bacteria and extracts 1 cm above the ground (soil ) and incubated at 25 ° C day and night temperature and illumination with 90 pmol m ' 2 s' 1 photon irradiation and 16 h photoperiods. With each bacterial and extract suspension, 42 plants were inoculated, as well as 42 positive control plants (R. solanaearum only) and 20 negative control plants (0.01 M PBS). The plants were monitored for at least 14 days, and the rate of disease signs was assessed according to the numerical classes of Winstead and Kelman (1952), namely: 0 (no symptoms), 1 (one leaf uvel), 2 (2-3 leaves introduced), 3 (all leaves except the top of the plant withered), 4 (all leaves and the wilt tip), 5 (plant dead).
Kvantifikacija R. solanacearum v rastlinah z uporabo real-time PCRQuantification of R. solanacearum in plants using real-time PCR
Koncentracijo R. solanacearum smo spremljali z uporabo metode PCR v realnem. Rastlinsko tkivo smo vzorčili pred in po tem, ko so opazili simptome. Tkivo stebla paradižnika smo vzorčili tako, da smo odrezali 5 mm dolge odseke nad točko inokulacije pri prvem in drugem nodiju. Vzorčili smo rastline, ki so kazale različne stopnje simptomov, in sicer najmanj 3 rastline na simptom. Če so samo 3 rastline ali manj kazale določeno stopnjo bz, jih nismo vzorčili in vključili v qPCR analizo. Čeprav so bile rastline, ki prikazujejo različne stopnje simptomov vzorčene enakomerno med skupinami, lahko rastline, ki niso bile vzorčene (glej Materiali in metode), povzročijo manj kot 5% odstopanja v odstotkih uvelih rastlin, zaradi nižjega skupnega števila rastlin.The concentration of R. solanacearum was monitored using the real-time PCR method. Plant tissue was sampled before and after symptoms were observed. The tissue of the tomato stem was sampled by cutting 5 mm long sections above the inoculation point at the first and second nodules. We sampled plants that showed different levels of symptoms, at least 3 plants per symptom. If only 3 plants or less showed a certain degree of bz, we did not sample and include them in the qPCR analysis. Although plants displaying different levels of symptoms were sampled uniformly between groups, plants that were not sampled (see Materials and Methods) may produce less than 5% variation in the percentage of wilted plants due to the lower total number of plants.
Vzorce rastlinskega tkiva smo razrezali na pol in shranili v 1,5 ml Eppendorf mikrocentrifugirkah. V sterilnih pogojih smo dodali 500 μΙ_ 0,01 M PBS dodan, zmešali in inkubirali 10 minut pri sobni temperaturi. Po inkubaciji smo 400 pL suspenzije shranili v mikrocentrifugirkah pri -20°C do uporabe. V teh vzorcih smo nato ugotavljali prisotnost DNA R. solanacearum z uporabo PCR v realnem času (TaqMan) PCR. Na osnovi preliminarnih poizkusov (podatki niso prikazani), za uspešno pomnoževanje tarčne DNA ni bila potrebna izolacija bakterijske DNA ali segrevanje vzorcev. Protokol, ki smo ga uporabili v našem poskusu, vključno s začetnimi oligonukleotidi in sondami, so razvili Weller in sod., 2000. 10 ml reakcije so bile izvedene v ploščah 384 luknjicami (MicroAmp, Applied Biosystems). PCR mešanica za detekcijo realnem času tako R. solanacearum (16S rDNA gena) in citokrom oksidaznega gena (COX), je vsebovala 5,0 pl_ TaqMan master mixa JP6251 (Applied Biosystems, 2002), 0,9 pL 10 pmol / pL RS- IF, RS - II - R ali COX F, COX -R, 0,2 pL 10 pmol / pL L RS- P ali COX - P, 1 pL deionizirane vode in 2 pL vzorca. Poleg vzorcev iz testa patogenosti, smo na vsako ploščico nanesli standardne krivulje R. solanacearum in COX ter NTC (kontrola brez tarče). Za pomnoževanje in merjenje fluorescence smo uporabili aparaturo ABI Prism Sequence Detection System 7900 HT. Cikli so potekali po naslednjem protokolu: 2 min pri 50 ° C, 10 min pri 95 ° C, čemur je sledilo 45 dvostopenjski ciklov 15 sekund pri 95 0 C in 1 minuto pri 60 0 C. Podatki so bili zbrani v programski opremi SDS 2.2.3, ter izvoženi in analizirani s programom Microsoft Excel. Bakterijska koncentracija je bila določena z uporabo R. solanacearum standardne krivulje v koncentracijah 100 celic/ml do 108 celic/ml.Samples of plant tissue were cut in half and stored in 1.5 ml Eppendorf microcentrifuges. Under sterile conditions, 500 μΙ_ 0.01 M PBS was added, mixed and incubated for 10 minutes at room temperature. After incubation, 400 µL of the suspension was stored in microcentrifuges at -20 ° C until use. In these samples, the presence of R. solanacearum DNA was then determined using real-time (TaqMan) PCR. On the basis of preliminary experiments (data not shown), bacterial DNA isolation or sample warming was not required for successful amplification of the target DNA. The protocol used in our experiment, including initial oligonucleotides and probes, was developed by Weller et al., 2000. 10 ml reactions were performed in 384-well plates (MicroAmp, Applied Biosystems). Real-time PCR blend for both R. solanacearum (16S rDNA gene) and cytochrome oxidase gene (COX) contained 5.0 pl_ TaqMan master mix JP6251 (Applied Biosystems, 2002), 0.9 pL 10 pmol / pL RS- IF, RS - II - R or COX F, COX - R, 0.2 pL 10 pmol / pL L RS - P or COX - P, 1 pL of deionized water and 2 pL of sample. In addition to samples from the pathogenicity test, standard R. solanacearum and COX curves and NTC (no target control) were applied to each plate. ABI Prism Sequence Detection System 7900 HT was used to amplify and measure fluorescence. The cycles were performed according to the following protocol: 2 min at 50 ° C, 10 min at 95 ° C, followed by 45 two-step cycles of 15 seconds at 95 0 C and 1 minute at 60 0 C. The data were collected in SDS 2.2 software. .3, and exported and analyzed using Microsoft Excel. The bacterial concentration was determined using the R. solanacearum standard curve at concentrations of 100 cells / ml to 10 8 cells / ml.
Analiza podatkovData analysis
Za ovrednotenje napredka bolezni na rastlinah, smo izračunali AUDPC vrednost (ang. Area Under Disease Progress Curve, območje pod krivuljo napredovanja bolezni) z uporabo R-statistical (Agricolae paket, Madden in sod., 2007). Postopek izračuna povprečno intenziteto bolezni med vsakim parom sosednjih časovnih točk in zato količinsko resnosti bolezni po času. Druge podatke smo analizirali z uporabo bodisi Microsoft Excel ali R-statistical.To evaluate disease progression on plants, we calculated the AUDPC value (Area Under Disease Progress Curve) using the R-statistical (Agricolae package; Madden et al. 2007). The procedure calculates the average disease intensity between each pair of adjacent time points and therefore the quantitative severity of the disease over time. Other data were analyzed using either Microsoft Excel or R-statistical.
RezultatiResults
Test patogenosti na rastlinah paradižnika in krompirjaPathogenicity test on tomato and potato plants
Ralstonia solanacearum povzroča bakterijsko venenje na različnih gostiteljskih rastlinah. Rastline paradižnika, ki se najpogosteje uporabljaj kot testne rastline za testiranje patogenosti R. solanacearum, vendar pa je krompir primarni gostitelj R. solanacearum v evropskem prostoru, zato smo v naši raziskavi prav tako vključili rastline krompirja za testiranje in vivo učinka gobjih ekstraktov na bakterijo R. solanacearum. Pet ekstraktov, ki so bili aktivni v in vitro presejalnih testih so bili uporabljeni v testih patogenosti na rastlinah paradižnika in krompirja (tabela 2).Ralstonia solanacearum causes bacterial wilting on a variety of host plants. Tomato plants most commonly used as test plants for testing the pathogenicity of R. solanacearum, but potatoes are the primary host of R. solanacearum in the European area, so we also included potato plants in our study to test the in vivo effects of mushroom extracts on R solanacearum. The five extracts active in in vitro screening were used in pathogenicity tests on tomato and potato plants (Table 2).
Ekstrakte A. phalloides, B. nigrescens, C. geotropa, S. variegatus in T. saponaceum, ki so inhibirali R. solanacearum in vitro smo tik pred inokulacijo zmešali s suspenzijo R. solanacearum S tem smo zmanjšali vpliv ekstrakta na začetne koncentracije R. solanacearum. Stopnja simptomov, ki smo jih opazili na rastlinah paradižnika in krompirja (Lycopersion esculentum cv. Moneymaker in Solanum tuberosum cv. Desiree ), inokulirani z mešanico R. solanacearum in ekstraktov je bila nižja v primerjavi s tistimi iz pozitivnih kontrolnih rastlin. Na rastlinah negativne kontrole krompirja in paradižnika nismo opazili simptomov.A. phalloides, B. nigrescens, C. geotropa, S. variegatus, and T. saponaceum extracts that inhibited R. solanacearum in vitro were mixed with R. solanacearum suspension immediately before inoculation, thereby reducing the effect of the extract on initial R concentrations. solanacearum. The rate of symptoms observed on tomato and potato plants (Lycopersion esculentum cv. Moneymaker and Solanum tuberosum cv. Desiree) inoculated with a mixture of R. solanacearum and extracts was lower compared to that of positive control plants. No symptoms of potato and tomato negative control were observed.
Simptomi smo pri rastlinah pozitivne kontrole opazili 4 dni po inokulaciji (dpi) (57% rastlin kaže simptome) (slika 4). 4 dpi je venelo 57% oziroma 71% rastlin paradižnika ko-inokuliranima z ekstraktoma A. phalloides in B. nigrescens, kar je pripeljalo do zaključka, da ekstrakta A. phalloides in B. nigrescens ne zavirata bolezni, ki jih povzročajo bakterije R. solanacearum na rastlinah paradižnika. Rastline paradižnika, ko-inokulirane z S. variegatus in T. saponaceum so začele veneti 4 dpi, vendar je venelo le 11 % in 27% rastlin. 14 dni po inokulaciji je kazalo simptome 95% in 100 % rastlin ko-inokuliranih z S. variegatus in T. saponaceum, vendar pa je število popolnoma uveli rastlin (razred 5) bistveno nižje v primerjavi s pozitivno kontrolo. Podobno je bilo tudi pri C. geotropa ko-inkuliranih rastlinah, saj je 4 dpi le 22% rastlin kazalo simptome. 15 dpi je 98 % rastlin ko-inokuliranihs C. geotropa kazalo bolezenska znamenja.Symptoms were observed in positive control plants 4 days after inoculation (dpi) (57% of plants showed symptoms) (Figure 4). 4 dpi drowned 57% and 71% of the tomato plants, respectively, co-inoculated with A. phalloides and B. nigrescens extracts, which led to the conclusion that A. phalloides and B. nigrescens extracts did not inhibit diseases caused by R. solanacearum bacteria on tomato plants. Tomato plants co-inoculated with S. variegatus and T. saponaceum started to wilt 4 dpi, but only 11% and 27% of plants withered. 14 days after inoculation, the symptoms showed 95% and 100% of plants co-inoculated with S. variegatus and T. saponaceum, however, the number of fully introduced plants (class 5) was significantly lower compared to the positive control. Similarly, C. geotropa was co-inculcated with 4 dpi only 22% of the plants showing symptoms. 15 dpi, 98% of plants co-inoculated with C. geotropa showed disease signs.
Zaradi obetavnih rezultatov na rastlinah paradižnika, smo poskus ponovili na rastlinah krompirja. Napredovanje bolezni je pri paradižniku potekalo hitreje v primerjavi s krompirjem. Simptome smo prvič opazili pri rastlinah pozitivne kontrole 4 dpi in sicer je 9 % rastlin krompirja kazalo simptome (slika 3). Intenzivnost simptomov je bil ocenjen kot 1 in/ali 2 po številčnih razredih VVinstead in Kelman. Prav tako so se 4 dpi pojavili simptomi pri rastlinah ko-inokuliranih z T. saponaceum, vendar je venelo le 3% rastlin (1 stopnja). Simptomi na rastlinah krompirja ko-inokuliranih s C. geotropa in S. variegatus so se pojavili 5 dpi, takrat je 15% in 24% rastlin kazalo simptome, medtem ko je 5 dpi venelo že 57% rastlin pozitivne kontrole. Počasnejše napredovanje bolezni se je nadaljevalo pri rastlinah krompirja ko-inokuliranih z ekstrakti, in sicer je 14 dpi venelo 44%, 67% in 63% rastlin ko-inokuliranih z C.Due to promising results on tomato plants, the experiment was repeated on potato plants. The disease progression in tomatoes was faster than that of potatoes. Symptoms were first observed in 4 dpi positive control plants, with 9% of potato plants showing symptoms (Figure 3). Symptom intensity was rated 1 and / or 2 by VVinstead and Kelman numerals. Likewise, 4 dpi showed symptoms in plants co-inoculated with T. saponaceum, but only 3% of plants (stage 1) wilted. Symptoms on potato plants co-inoculated with C. geotropa and S. variegatus appeared 5 dpi, at that time 15% and 24% of the plants showed symptoms, while 5 dpi evoked already 57% of the positive control plants. Slower disease progression continued in potato plants co-inoculated with extracts, with 14% dpi dropping 44%, 67% and 63% of C co-inoculated plants, respectively.
inokuliranih z C. geotropa , S. variegatus in T. saponaceum v primerjavi s 92 % rastlin pozitivne kontrole.inoculated with C. geotropa, S. variegatus and T. saponaceum compared with 92% of the positive control plants.
Rezultati testov patogenosti na paradižniku in krompirj nas privedejo do zaključka, da ekstrakti C. geotropa, S. variegatus in T. saponaceum upočasnijo napredovanje bolezni in zmanjšajo intentziteto simptomov, pri čemer so bolj učinkoviti na rastlinah krompirja kot na rastlinah paradižnika.The results of pathogenicity tests on tomatoes and potatoes lead us to conclude that extracts of C. geotropa, S. variegatus and T. saponaceum slow the progression of the disease and reduce symptom intentionality, being more effective on potato plants than on tomato plants.
Tabela 2: AUDPC smo izračunali za rastline paradižnika in krompirja ko-inokuliranimi z gobjimi ekstrakti. Vrednosti AUDPC so izražene relativno, glede na AUDPC pozitivne kontrole (% PC).Table 2: AUDPCs were calculated for tomato and potato plants co-inoculated with mushroom extracts. AUDPC values are expressed relative to AUDPC positive controls (% PC).
in vitro testi testa patogenosti paradižnik krompir cv. Desireein vitro pathogenicity tests tomato potato cv. Desiree
saponaceum a+++ inhibicija bakterij - bakterije se ne razmnožujejo (x < 15 % OD595 vrednosti pozitivne kontrole) b++ inhibicija bakterij - razmnoževanje bakterij je precej počasnejše, kot pri pozitivni kontroli (15% < x < 60 % OD595 vrednosti pozitivne kontrole) c+ inhibicija bakterij - razmnoževanje bakterij je nekoliko počasnejše, kot pri pozitivni kontroli (60% < x < 84 % OD595 vrednosti pozitivne kontrole)saponaceum a +++ bacterial inhibition - bacteria do not reproduce (x <15% of 595 positive control values) b ++ bacterial inhibition - bacterial reproduction is much slower than in positive controls (15% <x <60% of 595 values positive controls) c + bacterial inhibition - bacterial reproduction is slightly slower than positive controls (60% <x <84% OD595 positive control values)
S bakteristatičen učinek ekstrakta - bakterije ponovno rastejo, ko jih prenesemo na sveže gojiščeWith bacteristatic effect of extract - bacteria grow again when transferred to fresh medium
C baktericidni učinek ekstrakta- bakterije ne rastejo po prenosu na sveže gojjišče nt ni testiranoC bactericidal effect of extract- bacteria do not grow after transfer to fresh medium nt not tested
Število zdravih rastlin krompirja se sklada z AUDPC vrednostmi (tabela 2). Tako A. phalloides kot B. nigrescens nista zmanjšala celokupne intenzitete bolezni (AUDPC vrednosti 114% in 94 % PC), kljub temu, da sta zavirala rast R. solanacearum in vitro. Zato smo jih izključili iz testa patogenosti na rastlinah krompirja. C. geotropa, T. saponaceum in S. variegatus so celokupno zmanjšali intenziteto bolezni na rastlinah paradižnika in krompirja Zanimivo je, da Suillus variegatus ni povsem inhibiral R. solanacearum in vitro, vendar pa je zaviral napredovanje bolezni in vivo podobno kot T. saponaceum ki je popolnoma inhibiral bakterije in vitro in imeli baktericiden učinek.The number of healthy potato plants is consistent with the AUDPC values (Table 2). Both A. phalloides and B. nigrescens did not reduce overall disease intensity (AUDPC values 114% and 94% PC), despite inhibiting the growth of R. solanacearum in vitro. Therefore, we excluded them from the pathogenicity test on potato plants. C. geotropa, T. saponaceum and S. variegatus reduced the overall disease intensity in tomato and potato plants Interestingly, Suillus variegatus did not completely inhibit R. solanacearum in vitro, but inhibited disease progression in vivo similar to T. saponaceum which completely inhibited the bacteria in vitro and had a bactericidal effect.
Ekstrakti C. geotropa in T. saponaceum sta popolnoma inhibirala bakterije in vitro in in in vivo. Ekstrakti T. saponaceum, S. vahegatus in C. geotropa so zavirali bolezen, tako na paradižniku kot krompirju, vendar pa je bilo 15 dpi manj obolelih rastlin krompirja, kot paradižnika. V primerjavi s pozitivno kontrolo in glede na vrednosti AUDPC so bili ekstrakti bolj učinkoviti na krompirju kot na paradižniku. Čeprav je imel ekstrakt S. variegatus le zmerno inhibitorno aktivnost in vitro, pa je zaviral pojav in napredovanje bolezenskih znamenj tako pri paradižniku kot tudi krompirju rastlin. Ti rezultati so potrdili tudi opažanja drugih raziskovalcev, in sicer da in vivo in in vitro protimikrobni aktivnosti nista vedno povezani. Iz tega sledi, da je potrebno zgodaj vključiti testiranje inhibitornih substanc in vivo, ne le zaradi opazovanja zaviralnega učinka, vendar tudi z vidika vzpodbujanja rasti in drugih pozitivnih učinkov na rastline. Prav tako je treba vse ekstrakte, ki kažejo vsaj delno inhibitorno aktivnost in vitro upoštevati kot potencialno sredstvo za varstvo rastlin. Po drugi strani, baktericiden učinek in vitro še ne pomeni, da bo protein ali ekstrakti učinkovit tudi in vivo, kot je se je izkazalo pri A. phalloides. Kljub temu so lahko taki ekstrakti še vedno uporabni za aplikacije, kot so površinska sterilizacija ali dezinfekcija voda.C. geotropa and T. saponaceum extracts completely inhibited the bacteria in vitro and in vivo. T. saponaceum, S. vahegatus and C. geotropa extracts inhibited the disease in both tomatoes and potatoes, but there were 15 dpi fewer diseased potato plants than tomatoes. Compared to the positive control and the AUDPC values, the extracts were more effective on the potato than on the tomato. Although S. variegatus extract had only moderate inhibitory activity in vitro, it inhibited the onset and progression of disease traits in both tomato and potato plants. These results also confirmed the observations of other researchers, saying that in vivo and in vitro antimicrobial activity were not always correlated. It follows that early testing of inhibitory substances in vivo should be included, not only to observe the inhibitory effect, but also from the point of view of stimulating growth and other positive effects on plants. Likewise, any extracts showing at least partial inhibitory activity in vitro should be considered as a potential plant protection product. On the other hand, the bactericidal effect in vitro does not mean that the protein or extracts will also be effective in vivo, as has been shown in A. phalloides. Nevertheless, such extracts may still be useful for applications such as surface sterilization or water disinfection.
Večino testov patogenosti za R. solanacearum se opravi na rastlinah paradižnika, ki jih enostavno gojimo in so dovzetne za okužbe. Pri izvajanju testov patogenosti na rastlinah paradižnika, smo uporabili dve sorti paradižnika (cv. Roma in cv. Moneymaker). Ker ni bilo opaziti razlike med kultivarji, se je nadaljevalo delo na cv. Moneymaker, saj se rutinsko uporablja v diagnostiki. Preizkusili smo tudi ali ekstrakti sami po sebi vplivajo na rast rastlin. V primerjavi z negativnimi in pozitivnimi kontrolami nismo opazili ne negativnega in ne pozitivnega učinka na rast (Slika 6).Most pathogenicity tests for R. solanacearum are performed on easily grown and susceptible to tomato plants. When performing pathogenicity tests on tomato plants, we used two varieties of tomatoes (Roma and Moneymaker). As no difference was observed between cultivars, work on cv continued. Moneymaker as it is routinely used in diagnostics. We have also tested whether the extracts in themselves influence the growth of the plants. Compared to negative and positive controls, no negative or positive effect on growth was observed (Figure 6).
Načini inokulacije lahko igrajo pomembno vlogo pri ocenjevanju učinkovitosti sredstva za zaščito rastlin. Ko smo bakterijsko suspenzijo in ekstrakt zmešali pred inokulacijo, bi lahko nekatere bakterije uničili še preden bi vstopile v rastlino. Vendar pa kljub temu nekoliko nižja koncentracija ne bi imela vpliva na razvoj bolezni sicer bi to opazili pri rastlinah ko-inokuliranih z A. phalloides, ki so imeli močan protibakterijski učinek in vitro. Večina bakterij je tako preživeli in je ob vstopu v steblo prišla v idealno okolje za razmnoževanje. Nasprotno se ekstrakt ob vstopu v rastlino razredči in do neke mere izgubi stik z bakterijo. Kljub temu, pa smo opazili, da nekateri ekstrakti zaviranje nastanek in napredovanje bolezni, zaradi česar lahko sklepamo, da vplivajo na obrambni sistem rastline. Na splošno je tak učinek zelo pomemben in pogosto bolj zaželen, kot neposreden vpliv na bakterijo, saj v primerjavi z neposrednim vplivom na bakterijo povzroča večjo splošno odpornost na več različnih povzročiteljev bolezni. Za pojasnitev mehanizma delovanja in interakcij med rastlino, patogenom in gobijm ekstraktom, bi bilo potrebno analizirati izražanje genov, na primer s pomočjo sekvenciranja naslednje generacije (NGS), ang. next generation sequencing).Inoculation methods can play an important role in evaluating the effectiveness of a plant protection product. When the bacterial suspension and extract were mixed before inoculation, some bacteria could be destroyed before entering the plant. However, a slightly lower concentration would have no effect on the development of the disease, otherwise it would be observed in plants co-inoculated with A. phalloides, which had a strong antibacterial effect in vitro. Most of the bacteria are survivors and, upon entering the stem, have arrived in an ideal breeding environment. In contrast, upon entering the plant, the extract is diluted and to some extent loses contact with the bacterium. Nevertheless, we have observed that some extracts inhibit the onset and progression of the disease, leading to the conclusion that they affect the plant's defense system. In general, such an effect is very important and often more desirable than a direct effect on the bacterium, since it causes greater overall resistance to several different pathogens compared to the direct effect on the bacterium. To elucidate the mechanism of action and interactions between the plant, pathogen, and goby extract, gene expression would need to be analyzed, for example, using Next Generation Sequencing (NGS), eng. next generation sequencing).
Kvantitativna določitev koncentracije R. solanacearum v tkivu paradižnika je bila določena s qPCR (Slika 11). Ker je metoda je zelo občutljiva, smo rastlinsko tkivo vzorčili v zgodnjih dni po okužbi, da bi lahko odkrili nizko koncentracijo bakterij, še preden bi lahko opazili simptome na rastlinah. Tako bi videli ali je počasnejše napredovanje bolezni posledica manjše koncentracije bakterij v rastlinskem tkivu. To v našem primeru ne drži v celoti, saj je bila koncentracija R. solanacearum v rastlinskem tkivu zelo visoka in se ni bistveno razlikovala, če smo rastlino inokulirali samo z R. solanacearum ali je bil dodana tudi ekstrakt. Kljub temu pa smo opazili večje razlike v bakterijskih koncentracijah pri rastlinah ko-inokuiliranih z R. solanacearum in ekstrakt gob, v primerjavi s pozitivnimi kontrolnimi rastlinami. Koncentracijo R. solanacearum v tkivu paradižnika tkiva smo določili z qPCR (Slika 11). V vseh inokuliranih skupinah rastlin so bile koncentracije bakterij zelo visoka in so presegale 106 celic/ml, še preden smo opazili simptome. Z napredovanjem simptomov, se bakterijska koncentracija v rastlini bistveno povečala. Bakterijska koncentracija je bila nižja v drugem nodiju v primerjavi v primerjavi s prvim nodijem, v vseh inokuliranih rastlinskih skupinah. Zanimivo je, da nismo zaznali bakterije v drugem nodiju pri stopnji simptomov 2, 3 in 5, ki smo jih ko-inokulirali s T. saponaeum. Podobne rezultate smo dobili pri rastlinah ko-inokuliranih z A. phalloides, kjer je bila koncentracija bakterij manjša ali bakterij sploh nismo zaznali pri stopnji simptomov 0, 1 in 2. Ti rezultati kažejo, da bi ekstrakta T. saponaceum in A. phalloides lahko omejila gibanje bakterij preko še neznanega mehanizma delovanja.Quantification of R. solanacearum concentration in tomato tissue was determined by qPCR (Figure 11). Because the method is very sensitive, plant tissue was sampled in the early days after infection to detect low levels of bacteria before symptoms on the plants could be observed. Thus, we would see whether the slower progression of the disease is due to a lower concentration of bacteria in the plant tissue. This is not entirely true in our case, as the concentration of R. solanacearum in plant tissue was very high and did not differ significantly if the plant was inoculated with R. solanacearum alone or an extract was also added. Nevertheless, we observed greater differences in bacterial concentrations in plants co-inoculated with R. solanacearum and mushroom extract compared with positive control plants. The concentration of R. solanacearum in the tomato tissue was determined by qPCR (Figure 11). In all inoculated groups of plants, bacterial concentrations were very high and exceeded 10 6 cells / ml before symptoms were observed. As the symptoms progressed, the bacterial concentration in the plant increased significantly. Bacterial concentration was lower in the second nodium compared to the first nodium in all inoculated plant groups. Interestingly, we did not detect the bacterium in the second nodule at the rate of symptoms 2, 3, and 5 co-inoculated with T. saponaeum. Similar results were obtained for plants co-inoculated with A. phalloides, where the bacterial concentration was lower or no bacteria were detected at the symptom rate of 0, 1, and 2. These results suggest that T. saponaceum and A. phalloides extracts could limit movement of bacteria through an as yet unknown mechanism of action.
Tabela 3: In vitro vpliv izbranih gobjih ekstraktov po 24ih urah na R. solanacearum, R. mannitolilytica in E. coli.Table 3: In vitro influence of selected mushroom extracts after 24 h on R. solanacearum, R. mannitolilytica and E. coli.
• »• »
• a «• a «
Tabela 3: In vitro vpliv izbranih gobjih ekstraktov po 24ih urah na R. solanacearum, R. mannitolilytica in E. coli (nadaljevanje).Table 3: In vitro influence of selected mushroom extracts after 24 h on R. solanacearum, R. mannitolilytica and E. coli (continued).
φ >ο >CZ)φ> ο> CZ)
ΟΟ
σ) φσ) φ
>Ν φ> Ν φ
>>
ω ωω ω
cc
ΟΟ
Ε φΕ φ
ωω
Φ c. C
ΦΦ
Φ οΦ ο
L.L.
4-*4- *
C οC ο
_Χ Φ C > 4—> Ν ο ο._Χ Φ C> 4—> Ν ο ο.
CZ) οCZ) ο
c σc σ
φφ
ΟΟ
ΟΟ
ΛΙΛΙ
Φ δ'Φ δ '
ΟΟ
-X θ' ji?-X θ 'ji?
to φto φ
ιΟ cιΟ c
>>
ο cο c
οο
ο.ο.
φφ
Ώ φΏ φ
-*—4 .X φ- * - 4 .X φ
_Ω_Ω
I φI φ
φφ
L_ to φL_ to φ
_χ φ_χ φ
c >οc> ο
CC
Φ >ΟΦ> Ο
4>44> 4
Φ to φΦ to φ
>ο >ω δ5 >ο> ω δ 5
Ο) φΟ) φ
’Ν'Ν
Φ >Φ>
(Λ(Λ
ΦΦ
CC
CZ)CZ)
ΟΟ
CC
ΦΦ
Ο α_ οΟ α_ ο
Φ cz)Φ cz)
Ε φΕ φ
c φ' ‘Cc φ '' C
-SŽ-SŽ
-X-X
ΦΦ
-Ω-Ω
Ζ -2 c ·£ — φ C . ωΖ -2 c · £ - φ C. ω
SS
-X-X
ΕΕ
4·^ (Ζ)4 · ^ (Ζ)
-X-X
ΦΦ
XX
ΦΦ
C >0 cC> 0 c
σ οσ ο
'ι_'ι_
ΦΦ
XX
ΦΦ
JO cJO c
*·* c* · * C
na podatki niso na voljodata not available
PRIMER 3EXAMPLE 3
RezultatiResults
Aktivnost proti različnim sevom R. solanacearumActivity against various R. solanacearum strains
Potem ko smo opazili inhibitorno aktivnost izbranih gobjih ekstraktov proti R. solanacearum sev NIB Z 30 in vitro in in vivo, smo preizkusili ali ekstrakti kažejo aktivnost tudi proti drugim filotipom R. solanacearum. Aktivnost 10 gobjih ekstraktov smo testiralii proti 12 različnim sevom bakterije R. solanacearum, ki predstavljajo različne filotipe in biovarje. Poleg tega smo jih testirali tudi proti frakciji Amanita phalloides, ki je bila aktivna v prejšnjih testih. Poleg filotipov R. solanacearum smo vključili tudi R. mannitolilytica, ki je bila izolirana iz okužene tekočine po avtoklaviranju, saj ima najvišjo podobnost nukleotidnega zaporedja z R. solanacearum (Coenye et al, 2003), medtem ko smo E. coli izbrali kot nepovezano Gram negativno bakterijo in potencialni produkcijski organizem za rekombinantne glivne proteine. Poleg tega je R. mannitolilytica oportunistična humana patogena bakterija, ki je povzročila več izbruhov bolezni v bolnišnicah v zadnjih letih.After observing the inhibitory activity of selected mushroom extracts against R. solanacearum strain NIB Z 30 in vitro and in vivo, we tested whether the extracts showed activity against other R. solanacearum phylogenies. The activity of 10 mushroom extracts was tested against 12 different strains of R. solanacearum representing different phylogotypes and biovars. In addition, we tested them against the fraction of Amanita phalloides that was active in previous tests. In addition to R. solanacearum phylogenies, we included R. mannitolilytica, which was isolated from the infected fluid after autoclaving, as it has the highest nucleotide sequence similarity to R. solanacearum (Coenye et al, 2003), whereas E. coli was selected as unrelated Gram a negative bacterium and a potential production organism for recombinant fungal proteins. In addition, R. mannitolilytica is an opportunistic human pathogenic bacterium that has caused several outbreaks of disease in hospitals in recent years.
Stopnja inhibicije je bila določena po tem izračunu odstotka rasti (A595) v primerjavi s pozitivno kontrolo (% PC). Ekstrakti, ki so popolnoma inhibirali rast bakterije, niso dosegli več kot rasti 15% PC, medtem ko so ekstrakti, ki niso zavirali rasti bakterij imeli vrednosti v mejah variacije pozitivne kontrole (vsaj 84% PC). Ekstrakti, ki so delno zavirale rast R. solanacearum, smo razdelili v 2 dodatni skupini, tiste med 15% in 60% PC in tisti med 60% in 84% PC. Ekstrakti Amanita phalloides in Tricholoma saponaceum so povsem zavirali rast vseh sevov bakterije R. solanacearum kot tudi R. mannitolilytica in E. coli, kar kaže na bolj splošen mehanizem delovanja. Poleg teh dveh, so Amanita virosa, Boletus luridiformis, Clitocybe geotropa in Gomphidius glutinosus povsem zaviral vse testirane vrste Ralstonia, ne pa tudi E. coli. Več variacij inhibicije smo opazili pri Agaricus placomyces var. terricolor, Tricholoma ustale in Albatrellus ovinus, ki so imeli v vseh primerih bakteristatičen vpliv na bakterije. Zanimivo A. moelleri ni povsem inhibiral večine sevov R. solanacearum, razen Z1625 in Z1754, vendar pa je inhibiral E. coli. Ekstrakta Clitocybe nebularis in Ramaria flava sta bila najmanj učinkovita. Ugotovili smo, da v našem primeru ni bilo nobene povezave med stopnjo aktivnosti in uvrstitvijo v filotipe Poleg tega, so od 6 ekstraktov, ki so popolnoma inhibirali vse seve Ralstonia, 4 od njih so iz užitnih vrst, od katerih 2 je treba pred zaužitjem predhodno skuhati.The inhibition rate was determined after this calculation of the percentage of growth (A595) compared to the positive control (% PC). Extracts that completely inhibited bacterial growth did not reach more than 15% PC growth, whereas extracts that did not inhibit bacterial growth had values within the limits of positive control variation (at least 84% PC). The extracts that partially inhibited the growth of R. solanacearum were divided into 2 additional groups, those between 15% and 60% PC and those between 60% and 84% PC. Amanita phalloides and Tricholoma saponaceum extracts completely inhibited the growth of all R. solanacearum strains as well as R. mannitolilytica and E. coli, indicating a more general mechanism of action. In addition to these two, Amanita virosa, Boletus luridiformis, Clitocybe geotropa and Gomphidius glutinosus completely inhibited all tested Ralstonia species but not E. coli. Several variations of inhibition were observed with Agaricus placomyces var. terricolor, Tricholoma ustale and Albatrellus ovinus, which in all cases had a bacteristatic effect on the bacteria. Interestingly, A. moelleri did not completely inhibit most R. solanacearum strains except Z1625 and Z1754, but did inhibit E. coli. Clitocybe nebularis and Ramaria flava extracts were least effective. We found that in our case there was no correlation between activity level and classification in the phylogotype In addition, of the 6 extracts that completely inhibited all Ralstonia strains, 4 of them are from edible species, 2 of which must be pre-ingested cook.
PRIMER 4EXAMPLE 4
Materiali in metodeMaterials and methods
Izolacija biološko aktivnih proteinovIsolation of biologically active proteins
Biološko aktivno proteinsko frakcijo smo izolirali iz Amanita phalloides in Clitocybe geotropa z uporabo gelske in ionsko-izmenjalne kromatografije. Ekstrakt smo pripravili kot je opisano v primeru 1, in se uporablja za gelske kromatografije z uporabo Sephacryl S-200, uravnoteženo v 0,02 M Tris-HCI, pH 7,5 z 0,3 M NaCI. Frakcije, ki kažejo antibakterijsko delovanje (slika 9a) zberemo, koncentriramo z ultrafiltracijo, pri čemer je cut-off molekulske mase 10 kDa in dializiramo proti 0,03 M BisTris, pH 6,5. Vzorec nato nanesemo na DEAE-Sephacel ionsko izmenjalno kolono, uravnoteženo v 0,03 M BisTris, pH 6,5. Vezane proteine smo eluirali z gradientom 0-0,4 M NaCI v istem pufru. Inhibitorne frakcije zberemo in koncentriramo z ultrafiltracijo.The biologically active protein fraction was isolated from Amanita phalloides and Clitocybe geotropes using gel and ion exchange chromatography. The extract was prepared as described in Example 1 and used for gel chromatography using Sephacryl S-200, balanced in 0.02 M Tris-HCl, pH 7.5 with 0.3 M NaCl. The fractions showing antibacterial activity (Figure 9a) were collected, concentrated by ultrafiltration, with a molecular weight cut-off of 10 kDa and dialyzed against 0.03 M BisTris, pH 6.5. The sample was then applied to a DEAE-Sephacel ion exchange column equilibrated in 0.03 M BisTris, pH 6.5. The bound proteins were eluted with a 0-0.4 M NaCI gradient in the same buffer. The inhibitory fractions were collected and concentrated by ultrafiltration.
Karakterizacija proteinovProtein characterization
Analiza proteinskih frakcij, ki so inhibirale bakterije, je bila narejena z SDS-PAGE, BlueNative PAGE (Novex NativePAGE), Bis-Tris Gel sistem (Invitrogen) in izolelektričnim fokusiranjem (Phast sistem, predpripravljeni pH 3-9 gradient geli - GE Healthcare ter Novex pH 3-7 IEF Gel sistem (Invitrogen). Analiza N -terminalnega zaporedja je bila izvedena na posameznih lisah z Edmanovo razgradnjo in uporabo avtomatiziranega sekvenatorja aminokislinskega zaporedja s tekočim impulzom Procise (Applied Biosystems). Ta je povezan z analizatorjem 120 A analizator po ločitvi proteinov s SDS-PAGE in elektroblotingom na polivinildien difluoridno membrano in barvanjem s Coomassie Brilliant Blue 250. Za identifikacijo posameznih lis smo proteine analizirali s SDS-PAGE, lise izrezali, jih razgradili s tripsinom in analizirali maso peptidov s pomočjo masne spektrometrije (ESI-MS/MS). Iskanje po podatkovnih bazah smo izvedli z Mascot interno uporabo strežnika MS/MS Ion Search. Potencialno N-glikozilacijo proteinskih frakcij smo analizirali s pomočjo rekombinantne N - Glycolidaze F (Roche), po priporočilih proizvajalca.Analysis of bacterial inhibitory protein fractions was performed with SDS-PAGE, BlueNative PAGE (Novex NativePAGE), Bis-Tris Gel System (Invitrogen), and Iselectric Focusing (Phast System, Prepared pH 3-9 Gradient Gels - GE Healthcare and Novex pH 3-7 IEF Gel System (Invitrogen) .N-terminal sequence analysis was performed on individual spots by Edman decomposition and use of an automated amino acid sequence sequencer with Procise Liquid Pulse (Applied Biosystems). separation of proteins by SDS-PAGE and electroblotting on a polyvinylidene difluoride membrane and staining with Coomassie Brilliant Blue 250. To identify individual spots, proteins were analyzed by SDS-PAGE, excised, digested with trypsin, and analyzed by peptide mass by mass spectrometry (ESI- MS / MS) Database searches were performed using Mascot internally using the MS / MS Ion Search server Potentially N-glycosyl Protein fractions were analyzed using recombinant N - Glycolidase F (Roche), as recommended by the manufacturer.
Analiza L-aminooksidazne aktivnostiAnalysis of L-aminooxidase activity
L- aminokislinko oksidazno aktivnost smo analizirali, kot je opisano v Kishimoto in Takahashi (2001). Aktivnost smo testirali v mikrotitskih ploščicah pri 37 0 C. 10 ul vzorca smo zmešali z 90 ul substrata reakcijske zmesi v fosfatnem pufru, pH 7,4 in dodali 5 mM L-amino kislino, 2 mM O-fenilendiamin, 0,81 U/ml hrenove peroksidaze. Reakcijo smo ustavili z dodatkom 50 ul 2M H2SO4 in izmerili absorbanco pri 492 nm z uporabo 630 nm kot referenčno valovno dolžino. Alternativno lahko merimo absorbanco pri 420 nm tekom poskusa. Inhibicijo z askorbinsko kislino smo testirali v končnih koncentracijah v območju od 0,1 mg/ml do 5 mg/ml. pH optimum je bil določena z uporabo citratno fosfatnega pufra (pH 2,6 - pH 7,6), fosfatnega pufra (pH 6 - pH 9) in (bi) karbonatnega pufra (pH 9 - pH 11).L-amino acid oxidase activity was analyzed as described in Kishimoto and Takahashi (2001). The activity was tested in microtiter plates at 37 0 C. 10 μl of the sample was mixed with 90 μl of the substrate of the reaction mixture in phosphate buffer, pH 7.4, and 5 mM L-amino acid, 2 mM O-phenylenediamine, 0.81 U / was added. ml of horseradish peroxidase. The reaction was stopped by the addition of 50 μl of 2M H2SO4 and the absorbance at 492 nm was measured using 630 nm as the reference wavelength. Alternatively, the absorbance at 420 nm can be measured during the experiment. Ascorbic acid inhibition was tested at final concentrations in the range of 0.1 mg / ml to 5 mg / ml. The pH optimum was determined using citrate phosphate buffer (pH 2.6 - pH 7.6), phosphate buffer (pH 6 - pH 9) and (bi) carbonate buffer (pH 9 - pH 11).
RezultatiResults
Izolacija proteinske frakcije s protibakterijsko aktivnostjo iz ekstrakta Clitocybe geotropa smo izvedli z gelsko in ionsko izmenjevalno kromatografijo. Najmočnejšo liso smo dobili z uporabo BlueNative PAGE, in sicer molekulske mase 180-200 kDa (slika 8). Liso smo izrezali in eluirali iz gela ter potrdili njeno protibakterijsko aktivnost in vitro. Z analizo SDS-PAGE smo ugotovili, da gre za proteinski kompleks, ki je sestavljen iz proteinske lise velike ~ 58 kDa in 5-6 šibkejši lis (Slika 8). Analiza masne spektrometrije ~ 58kDa lise je liso opredelila kot dihydrolipoamide dehidrogenazo (ABA73359) kot najbolj zanesljiv zadetek. To je potrdila tudi analiza masne sprektrometrije pik izrezanih iz 2D gelske elektroforeze. Določeno je bilo Nterminalno zaporedje, vendar nismo našli podobnosti z drugimi proteini v podatkovnih bazah.Isolation of the protein fraction with antibacterial activity from Clitocybe geotrop extract was performed by gel and ion exchange chromatography. The strongest lysis was obtained using BlueNative PAGE, with a molecular weight of 180–200 kDa (Fig. 8). The fox was excised and eluted from the gel and its antibacterial activity confirmed in vitro. SDS-PAGE analysis revealed that the protein complex is composed of a protein spot of ~ 58 kDa large and 5-6 weaker spots (Figure 8). Analysis of ~ 58kDa stain mass spectrometry identified the stain as dihydrolipoamide dehydrogenase (ABA73359) as the most reliable hit. This was also confirmed by the mass spectrometry analysis of pixels excised from 2D gel electrophoresis. Nterminal sequencing was determined, but we found no similarity with other proteins in the databases.
Izolacija proteinske frakcije s protibakterijsko aktivnostjo iz ekstrakta Amanita phalloides smo izvedli z gelsko in ionsko izmenjevalno kromatografijo. Po analizi z SDS-PAGE in izoelektričnim fokusiranjem smo v frakcijah s protibakterijsko aktivnostjo opazili ~ 60 kDa liso, ki je na nativnem PAGE kazala približno molekulsko maso 200 kDa in pl 6,5 (Slika 9). Za ~ 200 kDa liso smo po izpiranju izrezane lise iz gela potrdili protibakterijsko delovanje in vit. N -terminalno zaporedje je bilo določeno z degradacijo po Edmanu, vendar nismo našli podobnosti z drugimi proteini v podatkovnih bazah. Protein je N-glikoziliran. Po deglikozilaciji s pomočjo rekombinantne N glikozidaze F smo - 60 kDa liso izrezali iz SDSPAGE, razrezali s tripsinom ter pripravili vzorec za analizo z masno spektrometrijo. Protein je bil identificiran kot toxophallin (ADA58360), ki je oksidaza L-amino kislin in je bila potrjena z encimskimi testi. L-aminokislinka oksidazna aktivnost je bila potrjena tudi v C. geotropa (frakcije 18), ki smo jo dobili z gelsko kromatografijo (Slika 8).Isolation of the protein fraction with antibacterial activity from Amanita phalloides extract was performed by gel and ion exchange chromatography. After analysis by SDS-PAGE and isoelectric focusing, ~ 60 kDa lysis was observed in the fractions with antibacterial activity, showing an approximate molecular weight of 200 kDa and pl 6.5 at native PAGE (Figure 9). Antibacterial activity and vit were confirmed for ~ 200 kDa spots after rinsing the excised gel stain. The N -terminal sequence was determined by Edman degradation, but we found no similarity with other proteins in the databases. The protein is N-glycosylated. After deglycosylation using recombinant N glycosidase F, the - 60 kDa lysis was excised from SDSPAGE, cut with trypsin, and the sample prepared for analysis by mass spectrometry. The protein has been identified as toxophallin (ADA58360), which is an oxidase of L-amino acids and has been confirmed by enzymatic assays. L-amino acid oxidase activity was also confirmed in C. geotropa (fractions 18) obtained by gel chromatography (Figure 8).
Frakcije, ki smo jih izolirali iz A. phalloides in C. geotropa kažejo L-aminokislinko oksidazno aktivnost z različnimi specifičnosti za L-amino-kisline (Slika 10). Amino kislina L-levcin je optimalen substrat za obe. Encimska aktivnost je bila v obeh primerih preprečena z dodatkom askorbinske kisline. pH optimum za encimsko aktivnost je pri pH 5 za C. geotropa in pri pH 6 za A. phalloides. Poleg tega, tako imata obe širok razpon pH delovanja, saj je pri obeh prisotna več kot 50% encimska aktivnost v območju pH 3 do pH 10.The fractions isolated from A. phalloides and C. geotropa show L-amino acid oxidase activity with different specificities for L-amino acids (Figure 10). The amino acid L-leucine is the optimal substrate for both. Enzymatic activity was prevented in both cases by the addition of ascorbic acid. The pH optimum for enzymatic activity is at pH 5 for C. geotropa and at pH 6 for A. phalloides. In addition, both have a wide range of pH activity, since they both have more than 50% enzymatic activity in the range of pH 3 to pH 10.
OPIS SKIC IZUMADESCRIPTION OF THE DRAWINGS OF THE INVENTION
Slika 1 prikazuje učinke reprezentativnih proteinskih ekstraktov gob s protibakterijskim delovanjem proti R. solanacearum Z30 in vitro. Določene so bile tri stopnje zaviranja: popolno zaviranje rasti bakterij (vrednost v mejah variacije negativne kontrole), delno zaviranje rasti bakterij (bakterij rastejo počasneje v primerjavi s pozitivno kontrolo) in ni zaviranja rasti bakterij (vrednost v mejah variacije pozitivne kontrole).Figure 1 shows the effects of representative protein extracts of mushrooms with antibacterial activity against R. solanacearum Z30 in vitro. Three levels of inhibition were determined: complete inhibition of bacterial growth (value within the limits of negative control variation), partial inhibition of bacterial growth (bacteria grow slower than positive control), and no inhibition of bacterial growth (value within the limits of positive control variation).
Slika 2 (AD) kaže napredovanje bolezenskih znamenj na krompirju cv. Desiree inokuliranih z bakterijo R. solanacearum in različnih ekstrakti gob 1. do 14. dan po inokulaciji. Simptomi so bili ocenjeni s številčnimi ocenami po VVinsteadu in Kelmanu (1952): 0 (brez simptomov), 1 (en list ovenel), 2 (2-3 listi oveneli), 3 (vsi listi razen vrha rastline oveneli) 4 (vsi listi in vrh rastline ovenel), 5 (smrt rastline). Slika 2A prikazuje rezultate, pridobljene z ekstraktov iz Suillus variegatus, slika 2B prikazuje dobljene rezultate z ekstraktov iz Tricholoma saponaceum, slika 2C prikazuje dobljene rezultate z ekstraktom iz Clitocybe geotropa in slika 2D prikazuje rezultate za pozitivno kontrolo.Figure 2 (AD) shows the progression of disease signs on potato cv. Desirees inoculated with R. solanacearum and various mushroom extracts from day 1 to day 14 after inoculation. Symptoms were evaluated by numerical ratings according to Winstead and Kelman (1952): 0 (no symptoms), 1 (one leaf of oysters), 2 (2-3 leaves of oysters), 3 (all leaves except the top of the plant oysters) 4 (all leaves and the top of the ram plant), 5 (death of the plant). Figure 2A shows the results obtained from extracts from Suillus variegatus, Figure 2B shows the results obtained from extracts from Tricholoma saponaceum, Figure 2C shows the results obtained with extract from Clitocybe geotrop and Figure 2D shows the results for positive control.
Slika 3 (AF) kaže napredovanje simptomov na paradižniku cv. Moneymaker inokuliranih z bakterijo R. solanacearum in različnih ekstrakti gob 3-14 dni po inokulaciji . Simptomi so bili ocenjeni s številčnimi ocenami po VVinsteadu in Kelmanu (1952): 0 (brez simptomov), 1 (en list ovenel), 2 (2-3 listi oveneli), 3 (vsi listi razen vrha rastline oveneli) 4 (vsi listi in vrh rastline ovenel), 5 (smrt rastline). Slika 3A prikazuje dobljene rezultate z ekstraktom iz Amanita phalloides·, slika 3B prikazuje dobljene rezultate z ekstraktom iz Bovista nigrescens·, slika 3C prikazuje dobljene rezultate z ekstraktom iz Suillus variegatus·, slika 3D prikazuje dobljene rezultate z ekstraktom iz Tricholoma saponaceum·, slika 3E kažejo rezultati, pridobljeni z ekstraktom iz Clitocybe geotropa in sliki 3F prikazuje rezultate za pozitivno kontrolo.Figure 3 (AF) shows the progression of symptoms on tomato cv. Moneymaker inoculated with R. solanacearum and various mushroom extracts 3-14 days after inoculation. Symptoms were evaluated by numerical ratings according to Winstead and Kelman (1952): 0 (no symptoms), 1 (one leaf of oysters), 2 (2-3 leaves of oysters), 3 (all leaves except the top of the plant oysters) 4 (all leaves and the top of the ram plant), 5 (death of the plant). Figure 3A shows the results obtained with an extract from Amanita phalloides ·, Figure 3B shows the results obtained with an extract from Bovista nigrescens ·, Figure 3C shows the results obtained with an extract from Suillus variegatus ·, Figure 3D shows the results obtained with an extract from Tricholoma saponaceum ·, Figure 3E shows the results obtained from an extract from the Clitocybe geotrop and Figure 3F shows the results for the positive control.
Slika 4 prikazuje rezultate SDS-PAGE in Blue-Native PAGE za ekstrakt C. geotropa in nekaterih njegovih frakcij. Izolacijo protibakterijskega proteina iz C. geotropa ekstrakta izvedemo z gelsko in ionskih izmenjevalno kromatografijo. Frakcij analizirane z SDS-PAGE (levo) in Blue-Native PAGE (desno): stolpec 1, standard, stolpec 2, ekstrakt C. geotropa·, stolpec 3, frakcije 71-85 ionsko izmenjevalna kromatografija na DEAE-Sephacel™ pri pH 6,5: stolpec 4, frakcija 18 po gelski kromatografiji na Sephacryl S-200; stolpec 5, frakcije 86-105 ionsko izmenjevalna kromatografija na DEAE-Sephacel™ pri pH 6,5.Figure 4 shows the results of SDS-PAGE and Blue-Native PAGE for the extract of C. geotrop and some of its fractions. Isolation of the antibacterial protein from C. geotropa extract was performed by gel and ion exchange chromatography. Fractions analyzed by SDS-PAGE (left) and Blue-Native PAGE (right): column 1, standard, column 2, C. geotropa extract ·, column 3, fractions 71-85 ion exchange chromatography on DEAE-Sephacel ™ at pH 6 , 5: column 4, fraction 18 by gel chromatography on Sephacryl S-200; column 5, fractions 86-105 ion exchange chromatography on DEAE-Sephacel ™ at pH 6.5.
Slika 5 (AC) prikazuje rezultate SDS-PAGE in Blue-Native PAGE za Amanita phalloides. Protibakterijski protein izoliramo iz ekstrakta A. phalloides z uporabo gelske kromatografije. Slika 5Α): gelska kromatografija in analiza protibakterijske aktivnosti v frakcijah. Slika 5Β): SDS-PAGE in 5C); izoelektrično fokusiranje in analiza frakcij iz gelske kromatografije (A). Števila nad stolpci nad (B) in (C) ustrezajo frakcijam v (A); Stolpec M označuje molekulska masa markerja v (B) in pl markerja v (C).Figure 5 (AC) shows the results of SDS-PAGE and Blue-Native PAGE for Amanita phalloides. The antibacterial protein was isolated from A. phalloides extract using gel chromatography. Figure 5Α): gel chromatography and analysis of antibacterial activity in fractions. Figure 5Β): SDS-PAGE and 5C); isoelectric focusing and analysis of fractions from gel chromatography (A). The numbers above the columns above (B) and (C) correspond to the fractions in (A); Column M is indicated by the molecular weight of the marker in (B) and the pl marker in (C).
Μ • · • ·Μ • · · ·
Slika 6 (ΑΒ) prikazuje rezultate analize specifičnosti L-amino oksidazne aktivnosti (LAO) proteinskih frakcij Amanita phalloides (6A) in Clitocybe geotropa (6B). Specifičnost LAO aktivnosti proteinskih frakcijij A. phalloides (zgornja slika) in C. geotropa (spodnja slika). Frakcije smo redčili 5-krat. Redčitev je bila določena kot najprimernejša v prejšnjih eksperimentih (ni prikazano). V test so bile vključene vse L-amino kisline in urea za negativno kontrolo. pH pufra je bil 7,5 in teste smo izvedli pri 37 ° C. Rezultati za A. phalloides so prikazani po 30 minutah inkubacije in C. geotropa po 60 minutah inkubacije. Vrednosti smo normalizirali na Leu, ki je optimalen substrat za obe oksidazi.Figure 6 (ΑΒ) shows the results of the analysis of the specificity of the L-amino oxidase activity (LAO) of the protein fractions of Amanita phalloides (6A) and Clitocybe geotropa (6B). Specificity of LAO activity of protein fractions of A. phalloides (upper image) and C. geotropa (lower image). We diluted the fractions 5 times. Dilution was found to be most appropriate in previous experiments (not shown). All L-amino acids and urea for negative control were included in the test. The pH of the buffer was 7.5 and the tests were performed at 37 ° C. Results for A. phalloides are shown after 30 minutes of incubation and C. geotropa after 60 minutes of incubation. The values were normalized to Leo, which is the optimal substrate for both oxidases.
Slika 7 (AB) kaže koncentracijo R. solanacearum v tkivu paradižnika pri različnih stopnjah simptomov (0-5). Bakterijski koncentracija je bila določena v prvem (A) in v drugem nodiju (B).Figure 7 (AB) shows the concentration of R. solanacearum in tomato tissue at different levels of symptoms (0-5). The bacterial concentration was determined in the first (A) and in the second nodium (B).
Claims (23)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201300349A SI24489A (en) | 2013-10-23 | 2013-10-23 | Composition and Method for Plant Protection |
PCT/EP2014/071216 WO2015058944A1 (en) | 2013-10-23 | 2014-10-02 | Composition and method for plant protection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201300349A SI24489A (en) | 2013-10-23 | 2013-10-23 | Composition and Method for Plant Protection |
Publications (1)
Publication Number | Publication Date |
---|---|
SI24489A true SI24489A (en) | 2015-04-30 |
Family
ID=51659654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201300349A SI24489A (en) | 2013-10-23 | 2013-10-23 | Composition and Method for Plant Protection |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI24489A (en) |
WO (1) | WO2015058944A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110563823A (en) * | 2019-10-14 | 2019-12-13 | 中华全国供销合作总社昆明食用菌研究所 | Preparation method of Boletus luteus lectin with high agglutination activity |
CN114868748A (en) * | 2020-10-29 | 2022-08-09 | 湖南艾布鲁环保科技股份有限公司 | Foliage inhibition and control agent for inhibiting heavy metal pollution of crops, preparation method thereof and method for treating heavy metal polluted rice field |
CN113564070B (en) * | 2021-07-16 | 2023-11-28 | 江苏稼润农业开发有限公司 | Edible fungus bio-fermentation element fermentation strain, fermentation method and application of edible fungus bio-fermentation element fermentation strain in rice seedling stage disease resistance |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1643250A1 (en) * | 1967-10-17 | 1971-07-29 | Boehringer Sohn Ingelheim | A new ingredient from the green tuber leaf fungus, Amanita phalloides, and a method for its isolation |
JPS5381618A (en) * | 1976-12-01 | 1978-07-19 | Noda Shiyokukin Kougiyou Kk | Chemically regulating agent for plant |
CA1100867A (en) * | 1978-03-15 | 1981-05-12 | Chiyokichi Iizuka | Method of inhibiting agricultural and horticultural crop viruses |
DK48893D0 (en) | 1993-04-30 | 1993-04-30 | Novo Nordisk As | ENZYME |
US6048714A (en) * | 1997-06-24 | 2000-04-11 | Abr, Llc | Composition having nematicidal activity |
ES2400237T3 (en) * | 2001-08-28 | 2013-04-08 | Meiji Seika Pharma Co., Ltd. | Compositions that induce resistance to plant diseases and procedure to produce them |
JP4203965B2 (en) | 2003-05-01 | 2009-01-07 | マイコロジーテクノ株式会社 | Bassidiomycetes, Bassidiomycetes extract composition, health food and immunostimulant |
US20060045887A1 (en) | 2004-08-25 | 2006-03-02 | Gavish-Galilee Bio Applications Ltd. | Mushroom extracts having anticancer activity |
EP1931360A2 (en) | 2005-08-01 | 2008-06-18 | Abr, Llc | Carbohydrate compositions from basidiomycete fungi as biocidal agents active against pathogens |
EP2222317A4 (en) * | 2007-12-28 | 2012-12-26 | Inst Nac De Pesquisa Da Amazonia Inpa | Antimicrobial composition comprising an extract of a polyporaceae and a process for making the same |
-
2013
- 2013-10-23 SI SI201300349A patent/SI24489A/en not_active IP Right Cessation
-
2014
- 2014-10-02 WO PCT/EP2014/071216 patent/WO2015058944A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2015058944A1 (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017366699A1 (en) | Modulated nutritional quality traits in seeds | |
Saber et al. | Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato | |
KR101624628B1 (en) | Novel bacillus vallismortis bs07m with promoting effect of plant growth and improving effect of cold-tolerance, and microbial agent containing the same | |
US20220132862A1 (en) | Pseudomonas sp. strain, composition comprising the same, and uses thereof | |
CN106867929B (en) | Carrot soft-rot Erwinia, plant immune activation protein secreted by same and application | |
Gadaga et al. | Phosphites for the control of anthracnose in common bean | |
KR20140127670A (en) | Endophytic bacteria Bacillus Methylotrophicus YC7007 and development of a multifunctional biopesticide and microbial fertilizer using same | |
WO2014184410A1 (en) | Strain of lactobacillus plantarum for controlling fire blight | |
KR20140071145A (en) | Novel Paenibacillus polymyxa AB-15 strain and use the same | |
CN107427011A (en) | Prevent in crops and ornamental plant, the method for the infection preferably in wine-growing and xylophyta | |
SI24489A (en) | Composition and Method for Plant Protection | |
Moghaddam et al. | Diversity, community composition, and bioactivity of cultivable fungal endophytes in saline and dry soils in deserts | |
KR20150069594A (en) | Streptomyces sp. KR-OO4 and use thereof | |
KR101756683B1 (en) | Bacillus amyloliquefaciens strain, microbial agent comprising the same and biotic pesticide comprising the same | |
WO2012123614A1 (en) | Polypeptide that induces defense against biotic stress in plants, nucleotide sequence that codes for same, microorganism, compositions and methods | |
Dube | Characterization of Alternaria Alternata Isolates Causing Brown Spotof Potatoes in South Africa | |
Ryu et al. | Potential for augmentation of fruit quality by foliar application of bacilli spores on apple tree | |
KR101971576B1 (en) | A composition for controling plant disease and promoting plant growth comprising mariniflexile rhizosphaerae trm1-10 | |
Taylor | Control of soil borne potato pathogens using Brassica spp. mediated biofumigation | |
KR20230059644A (en) | Novel Streptomyces sp. KA-1 Strain and Use Thereof | |
Lee et al. | Occurrence of bacterial soft rot of Pleurotus ostreatus caused by Burkholderia gladioli pv. agaricicola in Korea | |
JP7141388B2 (en) | Biological control of phytopathogenic microorganisms | |
KR101874535B1 (en) | Composition for Controlling Fungal Disease of Plant | |
CN101121746B (en) | Jasmonic acid induced protein related to resistance of plant disease invasion and its coding gene and application | |
Hamzah et al. | Act of malondialdehyde and total phenolic content under bean yellow mosaic virus infection and biostimulants application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20150512 |
|
KO00 | Lapse of patent |
Effective date: 20180608 |