SI24372A - A method of deposition of Pt or Pd catalysts using gaseous reducing agents - Google Patents

A method of deposition of Pt or Pd catalysts using gaseous reducing agents Download PDF

Info

Publication number
SI24372A
SI24372A SI201300131A SI201300131A SI24372A SI 24372 A SI24372 A SI 24372A SI 201300131 A SI201300131 A SI 201300131A SI 201300131 A SI201300131 A SI 201300131A SI 24372 A SI24372 A SI 24372A
Authority
SI
Slovenia
Prior art keywords
platinum
palladium
precursor
complex
layer
Prior art date
Application number
SI201300131A
Other languages
Slovenian (sl)
Inventor
Lev Matoh
Ĺ kofic Irena Kozjek
Nataša Bukovec
Peter Bukovec
Original Assignee
Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo
Center odliÄŤnosti nizkoogljiÄŤne tehnologije (CO NOT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo, Center odliÄŤnosti nizkoogljiÄŤne tehnologije (CO NOT) filed Critical Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo
Priority to SI201300131A priority Critical patent/SI24372A/en
Priority to EP13170845.5A priority patent/EP2671641A1/en
Publication of SI24372A publication Critical patent/SI24372A/en

Links

Landscapes

  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Abstract

Predložen izum prikazuje praktično metodo za preprost nanos kovinskih katalitskih nano-delcev ali plasti pri nizkih temperaturah. Z uporabo reducenta v plinasti fazi je mogoče nanesti kovinsko platino ali paladij na različne substrate. Predložen izum rešuje problem nanosa katalitske platina ali paladija na fleksibilne termoplastične substrate, ki niso stabilni pri višjih temperaturah. Na ta način pripravljena platina ali paladij sta uporabna kot imobiliziran katalizator ali elektrokatalizator v Grazlovih celicah, gorivnih celicah in za elektro-okisdacijo/redukcijo organskih spojin. Nadalje predložen izum zagotavlja praktično metodo za nanos električno prevodnih kovinskih plasti pri nizkih temperaturah z odličnim oprijemom in nizko upornostjo.The present invention provides a practical method for the simple application of metal catalytic nanoparticles or layers at low temperatures. Using a reducing gas in the gaseous phase, it is possible to apply metal platinum or palladium to various substrates. The present invention solves the problem of applying a catalytic platinum or palladium to flexible thermoplastic substrates that are not stable at higher temperatures. In this way, prepared platinum or palladium is useful as an immobilized catalyst or electro catalyst in Graz cells, fuel cells, and for electro-oxidation / reduction of organic compounds. Furthermore, the present invention provides a practical method for applying electrically conductive metal layers at low temperatures with excellent grip and low resistance.

Description

Metoda za nanos platinskega ali paladijevega katalizatorja z uporabo reducenta v plinasti faziMethod for the application of a platinum or palladium catalyst using a gaseous phase reducing agent

Področje izumaFIELD OF THE INVENTION

Predložen izum se nanaša na metodo nanosa platinskih ali paladijevih nano-delcev ali plasti pri nizki temperaturi. Bolj natančno se izum nanaša na novo metodo nanosa platine ali paladija s kemijsko redukcijo platinskega ali paladijevega prekurzorja (kompleksa) z uporabo redukcijskega reagenta v plinasti fazi.The present invention relates to a method of depositing platinum or palladium nano-particles or layers at low temperature. More specifically, the invention relates to a novel method of applying platinum or palladium by chemical reduction of a platinum or palladium precursor (complex) using a gaseous phase reduction reagent.

Tehnični problemA technical problem

Med perspektivnimi vrstami solarnih celic so barvno občutljive solarne celice (dyesensitised šolar celiš - DSSCs) relativno poceni in imajo ugodno razmerje med proizvodno ceno in izkoristkom (B. O'Regan, M. Gratzel, Nature 353 (1991) 737-740; T.N. Murakami, M. Gratzel, Inorg. Chim. Acta 361 (2008) 572-580). Del DSSC je nasprotna elektroda, ki katalizira redukcijo trijodida do jodida, tako regenerira elektrolit in omogoča proizvodnjo električne energije. Tipična elektroda je pripravljena z nanosom tanke plasti katalizatorja na optično prepustno elektrodo (optically transparent electrode - OTE), običajno z SnO2:F prevlečenim steklom. Od različnih katalizatorjev, ki lahko katalizirajo omenjeno reakcijo, je platina najbolj učinkovita.Among perspective types of solar cells, color-sensitive solar cells (DSSCs) are relatively inexpensive and have a favorable production-cost ratio (B. O'Regan, M. Gratzel, Nature 353 (1991) 737-740; TN Murakami , M. Gratzel, Inorg. Chim. Acta 361 (2008) 572-580). Part of the DSSC is a counter electrode that catalyzes the reduction of triiodide to iodide, thus regenerating the electrolyte and allowing electricity to be produced. A typical electrode is prepared by applying a thin layer of catalyst to an optically transparent electrode (OTE), typically SnO 2 : F coated glass. Of the various catalysts that can catalyze said reaction, platinum is the most effective.

Zadnje čase se veliko truda vlaga v nanos tankih plasti platine pri nizki temperaturi in v razvoj fleksibilnih DSSCs. Radi bi razširili možnost njihove uporabe in odpravili omejitve zaradi rigidnosti steklene OTE, ki se uporablja v konvencionalnih solarnih celicah. Glavni problem pri doseganju tega cilja predstavlja relativno visoka temperatura, ki je potrebna za redukcijo nanesenega platinskega prekurzorja do kovinske platine (nad 400 °C), kar je za plastične substrate previsoko (P. Li, J. Wu, J. Lin, M. Huang, Z. Lan, Q. Li, Electrochim. Acta (2008) 53, 4161-4166).Lately, a lot of effort has been put into applying thin layers of platinum at low temperature and developing flexible DSSCs. We would like to extend the possibility of their use and remove restrictions due to the rigidity of the glass OTE used in conventional solar cells. The main problem in achieving this is the relatively high temperature required to reduce the deposited platinum precursor to metal platinum (above 400 ° C), which is too high for plastic substrates (P. Li, J. Wu, J. Lin, M. Huang, Z. Lan, Q. Li, Electrochim. Acta (2008) 53, 4161-4166).

Obstaja več različnih metod za nanos platinskih delcev pri nizki temperaturi na različne substrate, vendar večina zahteva zapleteno in drago opremo ali pa so postopki preveč zapleteni za praktično uporabo. Pomembno je razviti preprosto in učinkovito metodo nanosa nano-delcev platine pri nizkih temperaturah. Eden od načinov za dosego cilja je uporaba raztopine reducenta, vendar ima ta metoda več pomanjkljivosti:There are several different methods for applying platinum particles at low temperature to different substrates, but most require complex and expensive equipment or the procedures are too complicated for practical use. It is important to develop a simple and effective method of depositing platinum nano-particles at low temperatures. One way to achieve this is to use a reducing agent, but this method has several disadvantages:

(1) slaba oprijemljivost platinskih delcev na površino (2) plasti ni enakomerna zaradi združevanja delcev v tekoči fazi in točkastega nanosa zaradi tvorbe kapljic med sušenjem raztopine (3) tako pripravljeni platinski delci imajo slab oprijem in jih lahko enostavno obrišemo.(1) poor adhesion of platinum particles to the surface (2) the layers are not uniform due to the pooling of the particles in the liquid phase and point application due to the droplet formation during solution drying (3) the platinum particles thus prepared have a poor adhesion and can be easily wiped off.

Opis izumaDescription of the invention

Predložen izum je rezultat potreb omenjenih zgoraj in omogoča enostavno redukcijo prekurzorja platine ali paladija pri nizkih temperaturah in ohranja oz. izboljšuje dobre lastnosti platine, reducirane pri temperaturah nad 400 °C. Na predstavljen način je mogoče pripraviti elektrokatalitske delce platine ali paladija na transparentnih elektrodah, ki jih lahko uporabljamo v elektrokemijskih solarnih celicah.The present invention is the result of the needs mentioned above and allows for a simple reduction of the platinum or palladium precursor at low temperatures and maintains or maintains. improves platinum good properties reduced at temperatures above 400 ° C. In the presented manner, it is possible to prepare electrocatalytic platinum or palladium particles on transparent electrodes that can be used in electrochemical solar cells.

Da bi dosegli zastavljeno, predložen izum predlaga metodo kemijske redukcije platinskega ali paladijevega prekurzorja pri nizkih temperaturah z uporabo reducentov v plinasti fazi. Prijavitelji so ugotovili, da nanašanje tekočega reducenta neposredno na substrat povzroča aglomeracijo nano-delcev platine ali paladija. Prekurzor se raztopi v raztopini reducenta in velika površinska napetost onemogoča tvorbo enakomerne plasti med sušenjem. Za bolj enakomerno porazdeljene kovinske delce platine ali paladija smo vzorce izpostavili param reducenta. Ker se prekurzor ne more raztopiti v procesu redukcije, ne pride do premikanja delcev in je kakovost tanke plasti odvisna samo od nanosa raztopine prekurzorja in od stopnje redukcije na meji trdno-plin. Naneseni nano-delci platine ali paladija imajo odličen oprijem in jih ne moremo obrisati s podlage ali jih odstraniti v ultrazvočni kopeli. Dobra oprijemljivost je rezultat interakcije nano-delcev s površino substrata in je povezana s površinsko energijo delcev. Ker se površinska energija po tvorbi delcev hitro zmanjšuje zaradi prerazporeditve atomov na površini, se lahko oprijemljivost izboljša z upočasnitvijo staranja nano-delcev pred njihovo vezavo. Omenjeno smo dosegli s tvorbo nanodelcev neposredno na površini substrata na fazni meji trdno-plin.In order to achieve this, the present invention proposes a method of chemical reduction of a platinum or palladium precursor at low temperatures using reducing agents in the gaseous phase. Applicants have found that applying a liquid reducing agent directly to the substrate causes agglomeration of platinum or palladium nano-particles. The precursor dissolves in the reducing solution and high surface tension prevents the formation of a uniform layer during drying. For more evenly distributed platinum or palladium metal particles, the samples were exposed to reducing vapor. Since the precursor cannot be dissolved in the reduction process, no particle movement occurs and the quality of the thin layer depends only on the application of the precursor solution and on the degree of reduction at the solid-gas interface. The applied platinum or palladium nano particles have excellent adhesion and cannot be wiped off or removed in an ultrasonic bath. Good adhesion results from the interaction of nano-particles with the substrate surface and is related to the surface energy of the particles. As the surface energy decreases rapidly after particle formation due to the redistribution of atoms on the surface, the adhesion can be improved by slowing the aging of the nanoparticles before their binding. This was achieved by forming nanoparticles directly on the substrate surface at the solid-gas phase boundary.

Prijavitelji so ugotovili, da opisan izum omogoča nanos električno prevodne plasti platine ali paladija na fleksibilne substrate. S povečanjem količine nanesene platine ali paladija nad 30 pg cm'2 delci platine ali paladija raje tvorijo neprekinjeno plast kot izolirane delce, posledica pa je sposobnost prevajanja električnega toka.Applicants have found that the present invention allows the application of an electrically conductive layer of platinum or palladium on flexible substrates. By increasing the amount of platinum or palladium deposited above 30 pg cm ' 2, platinum or palladium particles prefer to form a continuous layer rather than isolated particles, resulting in the ability to conduct electricity.

Nadalje je mogoče razširiti opisan izum na pripravo kovinskih nano-delcev paladija ali prevodne plasti paladija na enak način kot platine.It is further possible to extend the present invention to the preparation of palladium metal nanoparticles or palladium conductive layers in the same manner as platinum.

Kratek opis slikShort description of the pictures

Slika 1 prikazuje XPS spekter vzorcev z reducirano platino.Figure 1 shows the XPS spectrum of reduced platinum samples.

Slika 2 prikazuje XPS spekter vzorcev z reducirano paladijem.Figure 2 shows the XPS spectrum of reduced palladium samples.

Opis postopka po izumuDescription of the process according to the invention

Metoda za nanos platinskih nano-delcev po izumu vsebuje dve stopnji. Prva stopnja je nanos kompleksa platinskega prekurzorja. Najprej raztopimo kompleks prekurzorja, običajno H2PtCl6 v primernem topilu. Običajno je to organsko topilo z nizko površinsko napetostjo, na primer etanol, ki omogoča nanos enakomerne plasti prekurzorja. Običajno uporabljamo za nanos prekurzorja na substrat metodo vrtenja ali razmaza, vendar je možen nanos tudi s tehniko potapljanja, pršenja ali adsorpcije platinskega kompleksa. Koncentracija in prostornina raztopine prekurzorja je odvisna od želene količine platine. Plasti se nato posušijo pri sobni temperaturi na zraku.The method for depositing the platinum nano-particles according to the invention comprises two steps. The first stage is the application of the platinum precursor complex. First, we dissolve the precursor complex, usually H 2 PtCl6, in a suitable solvent. Typically, it is an organic solvent with low surface tension, for example ethanol, which allows a uniform layer of precursor to be applied. Typically, a rotation or smear method is used to apply the precursor to the substrate, but it is also possible to apply the platinum complex immersion, spray or adsorption technique. The concentration and volume of the precursor solution depends on the amount of platinum desired. The layers are then dried at room temperature in air.

Druga stopnja vključuje izpostavitev prekurzorja platine reducentu v plinasti fazi, običajno mravljinčni kislini ali etilen glikolu, pri temperaturah nad 100 °C, in sicer med 100 °C in 170 °C, kar najlažje izvedemo tako, da damo substrat in majhno količino reducenta skupaj v ne pretesno zaprto posodo. Reducent je lahko na začetku v tekočem stanju, vendar izpareva medtem ko segrevamo posodo do želene temperature. Zaželeno je, da pare reducenta počasi uhajajo iz posode. S tem preprečimo kondenzacijo reducenta na površini vzorca. Prisotnost zraka ne vpliva na reakcijo. Po redukciji se pripravljene plasti ohladijo na zraku.The second step involves exposing the platinum precursor to the gaseous phase, usually formic acid or ethylene glycol, at temperatures above 100 ° C, between 100 ° C and 170 ° C, which is best accomplished by placing the substrate and a small amount of the reducing agent together in not a tightly closed container. The reducing agent may initially be in a liquid state but evaporate while heating the vessel to the desired temperature. It is desirable for the vapor of the reducing agent to slowly escape from the container. This prevents condensation of the reducing agent on the sample surface. The presence of air does not affect the reaction. After reduction, the prepared layers are cooled in air.

Metodo opisano v predloženem izumu lahko razdelimo na dva ločena koraka:The method described in the present invention can be divided into two separate steps:

(1) nanos kompleksa prekurzorja z uporabo različnih tehnik (2) redukcija kompleksa prekurzorja z uporabo reducenta v plinasti fazi.(1) application of precursor complex using various techniques (2) reduction of precursor complex using gaseous phase reducing agent.

Za pripravo prevodnih plasti platine moramo povečati količino nanesene platine, kar posledično poveča debelino plasti in povzroči večjo aglomeracijo delcev med nanosom raztopine prekurzorja. Da bi dosegli želeno enakomernost plasti in dober oprijem nanesenih plasti, smo najprej nanesli tanko transparentno plast hidrofilne plasti, kot sta TiO2 ali ZnO. Omenjena plast ima dve vlogi. Prvič, je hidrofilna, njena hidrofilnost nadalje narašča med sušenjem vzorca pod UV svetlobo, kar preprečuje tvorbo kapljic raztopine prekurzorja med sušenjem in omogoča enakomeren nanos (R. Sun, A. Nakajima, A. Fujishima, T. VVatanabe, K. Hashimoto, J. Phys. Chem. B, 105 (2001) 1984-1990). Drugič, deluje kot vezni element med plastjo platine in substratom, kar omogoča nanos debelejše plasti z dobrim oprijemom.In order to prepare conductive platinum layers, the amount of platinum applied must be increased, which in turn increases the thickness of the layer and results in greater agglomeration of the particles during the application of the precursor solution. To achieve the desired layer uniformity and good adhesion of the applied layers, a thin transparent layer of a hydrophilic layer such as TiO 2 or ZnO was first applied. This layer has two roles. First, it is hydrophilic, its hydrophilicity increasing further during drying of the sample under UV light, which prevents the formation of droplets of precursor solution during drying and allows a uniform application (R. Sun, A. Nakajima, A. Fujishima, T. VVatanabe, K. Hashimoto, J Phys. Chem. B, 105 (2001) 1984-1990. Second, it acts as a bonding element between the platinum layer and the substrate, allowing a thicker layer to be applied with good adhesion.

Prevodne plasti platine pripravimo s tehniko razmaza s primerno količino raztopine prekurzorja na s TiO2 prevlečen substrat in jih posušimo pod UV svetlobo. Plast suhega prekurzorja izpostavimo reducentu v plinastem stanju pri temperaturah nad 100 °C.Platinum translation layers are prepared by smearing with a suitable amount of precursor solution on a TiO 2 coated substrate and dried under UV light. The dry precursor layer is exposed to the gaseous reducing agent at temperatures above 100 ° C.

Nano-delce ali prevodne plasti paladija pripravimo na enak način kot platino, zamenjamo le kompleks platinskega prekurzorja s tistim, ki vsebuje paladij. Običajno je to H2PdCl4 ali njegove soli.The palladium nano-particles or conductive layers are prepared in the same way as platinum, replacing only the platinum precursor complex with that containing palladium. Typically, it is H 2 PdCl4 or salts thereof.

XPS smo uporabili, da smo potrdili, da je redukcija nanesene platine (sl. 1) in paladija (sl. 2) potekla do kovinskega stanja.XPS was used to confirm that the reduction of the applied platinum (Fig. 1) and palladium (Fig. 2) had expired to the metallic state.

Izvedbeni primeriImplementation examples

Predstavljen izum je podrobno opisan v primerih, ki pa ne omejujejo preloženega izuma.The present invention is described in detail in the examples which do not, however, limit the delayed invention.

Primer 1: Nanos elektro-katalitskih nano-delcev platine na prevodne substrateExample 1: Deposition of electro-catalytic platinum nanoparticles on conductive substrates

Primerna količina prekurzorja je s tehniko razmaza nanesena na transparentno steklo s prevodnim nanosom s fluorom dopiranim SnO2 (SnO2:F). Substrat nato posušimo na zraku pri sobni temperaturi. Po sušenju plast prekurzorja izpostavimo param mravljinčne kisline pri 100 °C za 15 minut.A suitable amount of precursor was applied to a transparent glass with a fluorine doped SnO 2 (SnO 2 : F) translucent glass. The substrate is then air-dried at room temperature. After drying, the precursor layer is exposed to formic acid vapor at 100 ° C for 15 minutes.

Primer 2: Nanos električno prevodnih plasti platineExample 2: Application of electrically conductive platinum layers

Substrat najprej prevlečemo s tanko kompaktno plastjo TiO2, nato s tehniko razmaza nanesemo kompleks platinskega prekurzorja. Na površino substrata kanemo približno 20 μΙ_ cm'2 0,01 M raztopine H2PtCl6 in posušimo na zraku pod UV svetlobo. Po sušenju kompleks prekurzorja reduciramo z izpostavitvijo substrata param mravljinčne kisline pri 100 °C za 15 minut.The substrate is first coated with a thin compact TiO 2 layer and then the smear complex is applied to the platinum precursor complex. Approximately 20 μΙ_ cm ′ 2 0.01 M H 2 PtCl6 solution is brought to the substrate surface and air-dried under UV light. After drying, the precursor complex is reduced by subjecting the substrate to formic acid vapor at 100 ° C for 15 minutes.

Claims (8)

Patentni zahtevki:Claims: 1. Metoda za nanos nano-delcev ali plasti platine ali paladija, ki vključuje nanos raztopine kompleksa prekurzorja na substrat in kemijsko redukcijo kompleksa prekurzorja, pri čemer se za kemijsko redukcijo kompleksa prekurzorja uporabi plinasto oblika reducenta.A method for depositing a platinum or palladium nano-particle or layer, comprising the application of a precursor complex solution to a substrate and the chemical reduction of a precursor complex, using a gaseous reducing agent formulation for the chemical reduction of the precursor complex. 2. Metoda po zahtevku 1, označena s tem, da je kompleks prekurzorja topen platinski kompleks, prednostno H2PtCI6 ali topen paladijev kompleks, prednostno H2PdCl4.2. The method of claim 1, wherein the precursor complex is a soluble platinum complex, preferably H 2 PtCl 6 or a soluble palladium complex, preferably H 2 PdCl4. 3. Metoda po zahtevku 1, označena s tem, da je reducent mravljinčna kislina, etilen glikol, metanal, etanal, propanal ali propanenediol.3. The method of claim 1, wherein the reducing agent is formic acid, ethylene glycol, methanal, ethanal, propanal or propanenediol. 4. Metoda po zahtevku 1, označena s tem, da kemijsko redukcijo izvajamo pri temperaturi med 100 °C in 170 °C, prednostno pri 150 °C 15 minut.Method according to claim 1, characterized in that the chemical reduction is carried out at a temperature between 100 ° C and 170 ° C, preferably at 150 ° C for 15 minutes. 5. Nasprotna elektroda za Grazlove celice, pripravljena glede na zahtevke od 14.5. Grazl cell counter electrode prepared according to claim 14. 6. Platinski ali paladijev elektrokatalizator, pripravljen glede na zahtevke od 1-4.6. Platinum or palladium electrocatalyst prepared according to claims 1-4. 7. Imobiliziran platinski ali paladijev katalizator, pripravljen glede na zahtevke od 1-4.An immobilized platinum or palladium catalyst prepared according to claims 1-4. 8. Električno prevodna plast platine ali paladija, pripravljena glede na zahtevke od 1-4, kjer je tanka transparentna hidrofilna plast nanesena na substrat pred nanosom raztopine kompleksa prekurzorja.An electrically conductive platinum or palladium layer prepared according to claims 1-4, wherein the thin transparent hydrophilic layer is applied to the substrate prior to application of the precursor complex solution.
SI201300131A 2012-06-07 2013-05-27 A method of deposition of Pt or Pd catalysts using gaseous reducing agents SI24372A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201300131A SI24372A (en) 2013-05-27 2013-05-27 A method of deposition of Pt or Pd catalysts using gaseous reducing agents
EP13170845.5A EP2671641A1 (en) 2012-06-07 2013-06-06 A method of deposition of Pt or Pd catalysts using gaseous reducing agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201300131A SI24372A (en) 2013-05-27 2013-05-27 A method of deposition of Pt or Pd catalysts using gaseous reducing agents

Publications (1)

Publication Number Publication Date
SI24372A true SI24372A (en) 2014-11-28

Family

ID=51946250

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201300131A SI24372A (en) 2012-06-07 2013-05-27 A method of deposition of Pt or Pd catalysts using gaseous reducing agents

Country Status (1)

Country Link
SI (1) SI24372A (en)

Similar Documents

Publication Publication Date Title
Kodama et al. Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt
Halme et al. Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates
Nezu et al. Light soaking and gas effect on nanocrystalline TiO2/Sb2S3/CuSCN photovoltaic cells following extremely thin absorber concept
Reculusa et al. Design of catalytically active cylindrical and macroporous gold microelectrodes
US10087531B2 (en) Impregnation process using a bio-templating method for nano-catalyst incorporation into the electrodes of solid-state electrochemical cells
US9001410B2 (en) Process for manufacturing an electrochromic article
CN109292918B (en) Preparation method of DSA electrode
Kim et al. Optimal‐Temperature‐Based Highly Efficient NiS Counter Electrode for Quantum‐Dot‐Sensitized Solar Cells
JP2013503966A (en) Low temperature platinum for dye-sensitized solar cells
US10695723B2 (en) Dye sensitized photoactive surfaces
Gutkowski et al. Efficient deposition of semiconductor powders for photoelectrocatalysis by airbrush spraying
US9299991B2 (en) Electrochemical deposition of nanoscale catalyst particles
CN102677124B (en) Preparation method of photocatalytic film with energy storage function
Kwok et al. Chemisorption threshold of thiol-based monolayer on copper: effect of electric potential and elevated temperature
SI24372A (en) A method of deposition of Pt or Pd catalysts using gaseous reducing agents
JP2006073487A (en) Counterelectrode for dye-sensitized solar cell, manufacturing method thereof, and dye-sensitized solar cell
WO2015002285A1 (en) Method for manufacturing semiconductor film, raw-material particles for semiconductor film manufacture, semiconductor film, photoelectrode, and dye-sensitized solar cell
JP2006073488A (en) Dye-sensitized solar cell and manufacturing method thereof
Sayahi et al. Cost-effective fabrication of perdurable electrodeposited TiO 2 nano-layers on stainless steel electrodes applicable to photocatalytic degradation of methylene blue
Watson et al. Acid Treatment of Titania Pastes to Create Scattering Layers in Dye‐Sensitized Solar Cells
KR102201896B1 (en) Massive Fabrication Method of Perovskite Solar Cell
Khan et al. Improving the photoelectrochemical stability of a bismuth vanadate photoanode for solar water oxidation
EP2671641A1 (en) A method of deposition of Pt or Pd catalysts using gaseous reducing agents
Heil et al. Effects of controlled surface treatment on titanium dioxide electrode nanostructure for dye-sensitized solar cells
Heim et al. Hierarchical Macro‐mesoporous Pt Deposits on Gold Microwires for Efficient Methanol Oxidation

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20141202

KO00 Lapse of patent

Effective date: 20190108