SI24144A - Nanocomposite ultrafiltration membrane production procedure with integrated mineral clay particles for sewage water cleaning - Google Patents

Nanocomposite ultrafiltration membrane production procedure with integrated mineral clay particles for sewage water cleaning Download PDF

Info

Publication number
SI24144A
SI24144A SI201200222A SI201200222A SI24144A SI 24144 A SI24144 A SI 24144A SI 201200222 A SI201200222 A SI 201200222A SI 201200222 A SI201200222 A SI 201200222A SI 24144 A SI24144 A SI 24144A
Authority
SI
Slovenia
Prior art keywords
membrane
hydrogel
nanocomposite
process according
manufacturing process
Prior art date
Application number
SI201200222A
Other languages
Slovenian (sl)
Inventor
Manja KureÄŤiÄŤ
Smole Majda Sfiligoj
Alenka Ojstršek
Silvo Hribernik
Kleinschek Karin Stana
Original Assignee
Manja KureÄŤiÄŤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manja KureÄŤiÄŤ filed Critical Manja KureÄŤiÄŤ
Priority to SI201200222A priority Critical patent/SI24144A/en
Publication of SI24144A publication Critical patent/SI24144A/en

Links

Abstract

Izum se nanaša na postopek izdelave nanokompozitne ultrafiltracijske membrane z vključenimi delci mineralov glin, ki imajo veliko aktivno površino ter odlično sposobnost adsorpcije različnih onesnaževal iz odpadnih vod. Predlagani postopek zajema predobdelavo PP membrane v acetonu ter omakanje mokre membrane z raztopino monomera z dispergiranimi O-MMT delci (organsko modificiran montmorilonit) z obdelavo v ultrazvoku. Sledi in-situ polimerizacija nanokompozitnega hidrogela v porah PP membrane s pomočjo UVA svetlobe. Po opisanem postopku je celotna površina membrane prekrita s hidrogelom oz. hidrogel polimerizira tudi v notranjosti PP membrane. Mehanizem odstranjevanja onesnaževal iz odpadne vode je v tem primeru kombinacija filtracije in adsorpcije, zaradi česar je učinek čiščenja večji kot v primeru komercialnih ultrafiltracijskih membran, kjer se onesnaževala na membrani zadržijo le mehansko.The invention relates to a process for the production of a nanocomposite ultrafiltration membrane with incorporated minerals of clay minerals having a large active surface and an excellent ability to adsorize the various pollutants from the waste water. The proposed process comprises pretreating the PP membrane in acetone and wetting the wet membrane with a monomer solution with dispersed O-MMT particles (organically modified montmorillonite) by treatment in ultrasound. The in-situ polymerization of the nanocomposite hydrogel in the pore PP of the membrane is followed by UVA light. According to the procedure described, the entire surface of the membrane is covered with a hydrogel or The hydrogel also polymerizes in the interior of the PP membrane. The mechanism of removing pollutants from waste water is in this case a combination of filtration and adsorption, which makes the cleaning effect greater than in the case of commercial ultrafiltration membranes, where the pollutants on the membrane are retained only mechanically.

Description

• · · · · * β β· ·• · · · · * β β · ·

POSTOPEK IZDELAVE NANOKOMPOZITNE ULTRAFILTRACIJSKE MEMBRANE Z VKLJUČENIMI DELCI MINERALOV GLIN ZA ČIŠČENJEPROCESS OF PRODUCTION OF NANOCOMPOSITE ULTRAFILTRATION MEMBRANE WITH INCLUDED CLINICAL MINERAL PARTICLES FOR CLEANING

ODPADNIH VODWASTE WATER

PODROČJE IZUMAFIELD OF THE INVENTION

Predloženi izum sodi na področje varstva okolja in materialov, nanaša pa se na postopek izdelave nanokompozitne ultrafiltracijske membrane, katere aktivni del predstavljajo naravni, okolju prijazni delci mineralov glin, ki imajo veliko aktivno površino ter odlično sposobnost adsorpcije barvil, težkih kovin, herbicidov, pesticidov, itd., za čiščenje odpadnih vod.The present invention relates to the field of environmental protection and materials, and relates to a process for the production of nanocomposite ultrafiltration membranes, the active part of which is a natural, environmentally friendly clay mineral particles having a large active surface and an excellent ability to adsorb dyes, heavy metals, herbicides, pesticides, etc. for wastewater treatment.

PODROČJE TEHNIKETECHNICAL FIELD

Tehnična izboljšava te iznajdbe je uporaba mineralov glin v ultrafiltracijski membrani, ki s povečanjem števila aktivnih mest v membrani izboljša sposobnost odstranjevanja različnih onesnaževal iz odpadne vode v primerjavi s konvencionalnimi ultrafiltracijskimi membranami. Mehanizem odstranjevanja onesnaževal iz odpadne vode je v tem primeru kombinacija filtracije in adsorpcije, zaradi česar je učinek čiščenja večji kot v primeru komercialnih ultrafiltracijskih membran, kjer se onesnaževala na membrani zadržijo le mehansko.A technical improvement of this invention is the use of clay minerals in the ultrafiltration membrane, which, by increasing the number of active sites in the membrane, improves the ability to remove various pollutants from wastewater compared to conventional ultrafiltration membranes. The mechanism of removal of pollutants from wastewater in this case is a combination of filtration and adsorption, which makes the cleaning effect greater than in the case of commercial ultrafiltration membranes, where the pollutants on the membrane are retained only mechanically.

Odpadne vode številnih industrij ustvarjajo velike količine obarvanih odpadnih vod. Že majhna prisotnost obarvanih izpustov vpliva na okolje, saj zavira fotosintezo v vodnem ekosistemu. Obarvane odplake delujejo škodljivo tudi na človeka, saj lahko nanj vplivajo mutageno in/ali karcinogeno. Povzročajo lahko poškodbe v reproduktivnem sistemu, jetrih, možganih in privedejo do odpovedi ledvic.The wastewater of many industries generates large amounts of colored wastewater. Even the small presence of colored releases has an environmental impact, as it inhibits photosynthesis in the aquatic ecosystem. Colored effluents also have a detrimental effect on humans, as they can be mutagenic and / or carcinogenic. They can cause damage to the reproductive system, liver, brain and lead to kidney failure.

Minerali glin so naravni, okolju prijazni materiali z veliko aktivno površino, ki se zadnje čase pogosto uporabljajo z namenom adsorbcije in odstranjevanja organskih nečistoč iz vode. Z organsko modifikacijo jim povečamo sorpcijsko kapaciteto za nepolame organske spojine (fenoli, naftaleni, benzeni, antraceni, itd.), barvila in ione težkih kovin. Njihova prednost v primerjavi z aktivnim ogljem je cenovna ugodnost, visoka kemijska in mehanska stabilnost ter ekološka neoporečnost. Najpogosteje uporabljeni minerali glin za adsorbcijo barvil v • · · · · tekstilnih odpadnih vodah so sepiolit, zeolit, montmorilonit, smektit in bentonit. Vendar pa je praktična uporabnost razpršenih delcev kot adsorbentov omejena. Problem predstavlja predvsem ločevanje trdnih delcev iz tekočine po postopku čiščenja. Zato je namen izuma razviti takšno ultrafiltracijsko membrano, ki bo imela delce mineralov glin vključene v pomi sistem membrane tako, da se bo adsorpcijska sposobnost (aktivna površina) delcev za odstranjevanje onesnaževal iz odpadnih vod ohranila. Pri membranskih sistemih z razpršenimi adsorbenti separacija trdno-tekoče ni potrebna, poleg tega je njihova prednost tudi možnost nadgradnje z enostavnim združevanjem večjih membran ali z uporabo membrane z večjo aktivno površino.Clay minerals are naturally occurring, environmentally friendly materials with a high active surface area, which are often used lately for the purpose of adsorption and removal of organic impurities from water. Organic modification enhances their sorption capacity for non-flammable organic compounds (phenols, naphthalenes, benzenes, anthracenes, etc.), dyes and heavy metal ions. Their advantage over charcoal is its affordability, its high chemical and mechanical stability and its ecological integrity. The most commonly used clay minerals for dye adsorption in textile waste water are sepiolite, zeolite, montmorillonite, smectite and bentonite. However, the practical utility of dispersed particles as adsorbents is limited. The problem is primarily the separation of solids from the liquid after the cleaning process. It is therefore an object of the invention to develop such an ultrafiltration membrane that will have clay mineral particles incorporated into the membrane membrane system so that the adsorption capacity (active surface) of the particles to remove pollutants from wastewater is maintained. For membrane systems with diffused adsorbents, solid-liquid separation is not required, and their advantage is the possibility of upgrading by simply combining larger membranes or using a membrane with a larger active surface.

ZNANO STANJE TEHNIKEKnown state of the art

V številnih raziskavah so avtorji preučevali vpliv različnih načinov modifikacije mineralov glin (v obliki razpršenih adsorbentov) na adsorbcijo različnih barvil. Ceyhan s sodel., Turk. J. Chem. 25 (2001) 193-200, je sintetiziral heksadeciltrimetilamonijev bentonit (HDTAbentonite) in prvi izvedel študijo adsorbcije nekaterih tekstilnih barvil, kot so Everdirect Supra Yellow PG, Everdirects Supra Orange 26 CG, Everdirect Supra Rubine BL, Everdirect Supra Blue 4BL in Everdirect Supra Red BWS na Na-bentonit in HDTMA-bentonit. Ugotovil je, da čeprav Na-bentonit ni imel afinitete do teh barvil, je HDTMA-bentonit pokazal znatno sposobnost adsorbcije barvil iz raztopine. Baskaralingam s sodel., Journal of Hazardous Materials 128 (2006) 138-144, je v svoji raziskavi proučil možnosti odstranjevanja kislega barvila Acid Red 151 iz vodne raztopine z uporabo cetildimetilbenzilamonijevega bentonita in cetilpiridin bentonita in ugotovil, da modificiran bentonit izkazuje sposobnost adsorpcije kislih barvil. Podobna raziskava je potekala tudi za hektorite. Yang s sodel., Textile Research Journal 75 (2005) 622-626, je uporabil nano-montmorilonit in nekatere modificirane nanominerale glin za študij adsorpcije neionskih, anionskih in kationskih barvil. Spremljal je vpliv odvisnosti med različnimi barvili in različnimi strukturami (tako kemijske strukture kot morfologije) glin na stopnjo adsorpcije. Ugotovil je, da imajo nano-minerali glin sposobnost adsorbcije 600 mg in več adsorbata na gram adsorbenta pri razmerju tekoče/trdno 100:1. Hkrati je ugotovil tudi, da lahko nano-minerali glin adsorbirajo 90% barvila pri začetni koncentraciji barvila 6 g/L ali 60% glede na težo adsorbenta, kar kaže na visoko afiniteto adsorbenta do barvila. Ta študija je pokazala, da z določenimi modifikacijami nano-glin, npr. montmorilonita, lahko zelo enostavno dobimo odlične adsorbente za anionska, kationska in neionska barvila.In many studies, the authors have studied the influence of different modifications of clay minerals (in the form of dispersed adsorbents) on the adsorption of different dyes. Ceyhan et al., Turk. J. Chem. 25 (2001) 193-200, synthesized hexadecyltrimethylammonium bentonite (HDTAbentonite) and was the first to conduct an adsorption study of some textile dyes such as Everdirect Supra Yellow PG, Everdirects Supra Orange 26 CG, Everdirect Supra Rubine BL, Everdirect Supra Blue 4BL and Everdirect Supra Red BWS on Na-bentonite and HDTMA-bentonite. He found that although Na-bentonite had no affinity for these dyes, HDTMA-bentonite showed a significant ability to adsorb dyes from solution. Baskaralingam et al., Journal of Hazardous Materials 128 (2006) 138-144, in their study examined the possibility of removing Acid Red 151 acidic dye from aqueous solution using cetyldimethylbenzylammonium bentonite and cetylpyridine bentonite and found that modified bentonite exhibits acid dye adsorption capacity . A similar survey was also conducted for hectorites. Yang et al., Textile Research Journal 75 (2005) 622-626, used nano-montmorillonite and some modified clay nanominerals to study the adsorption of non-ionic, anionic and cationic dyes. He monitored the influence of the dependence between different dyes and different structures (both chemical structures and morphologies) of the clays on the adsorption rate. He found that clay nano-minerals have an adsorption capacity of 600 mg and more of adsorbate per gram of adsorbent at a liquid / solid ratio of 100: 1. At the same time, he also found that clay nano-minerals can adsorb 90% of the dye at an initial dye concentration of 6 g / L or 60% based on the weight of the adsorbent, indicating a high affinity of the adsorbent for the dye. This study showed that with certain modifications of nano-clays, e.g. montmorillonite, we can very easily get excellent adsorbents for anionic, cationic and non-ionic dyes.

Minerale glin vključujemo v polimerne hidrogele predvsem zaradi izboljšanja mehanskih in termičnih lastnosti, stabilnosti in nabrekanja hidrogela. Xia s sodel., Polymer 44 (2003) 33893393, je izdelal hidrogel s vključenimi delci Na+- montmorilonita kot ojačitveni del hidrogelne matrice z namenom izboljšanja mehanskih lastnosti ali sposobnosti nabrekanja hidrogela. Takšni hidrogeli so pritegnili veliko pozornosti predvsem na področju medicine, senzorjev in separacijskih procesov. Liang s sodel., Advances in Colloid andInterface Science 134-135 (2007) 151-166, je uporabil organsko modificiran montmorilonit za pripravo hidrogela in ugotovil, da se poveča stopnja nabrekanja ter da se izboljšajo termične lastnosti nanokompozitnega hidrogela v primerjavi s konvencionalnim N-isopropilakrilamidnim (NIPAM) hidrogelom. Haraguchi s sodel., Current Opinion in Solid State and Materials Science 11 (2007) 47-54; Advanced Materials 14 (2002) 1120-1124; Macromolecules 35 (2002) 10162-10171, je sintetiziral hidrogel z vključenimi delci laponita brez prisotnosti zamreževalca. Razplasteni laponit-ni delci so delovali kot multifunkcionalni zamreževalec, ki polimerne verige zasidra na delcih in tako tvori hidrogelno mrežo.Clay minerals are incorporated into polymer hydrogels mainly to improve mechanical and thermal properties, stability and swelling of the hydrogel. Xia et al., Polymer 44 (2003) 33893393, designed a hydrogel with Na + - montmorillonite particles incorporated as a reinforcing part of the hydrogel matrix in order to improve the mechanical properties or swelling ability of the hydrogel. Such hydrogels have attracted a great deal of attention especially in the fields of medicine, sensors and separation processes. Liang et al., Advances in Colloid andInterface Science 134-135 (2007) 151-166, used organically modified montmorillonite for hydrogel preparation and found that the swelling rate was increased and that the thermal properties of nanocomposite hydrogel were improved compared to conventional N- isopropylacrylamide (NIPAM) hydrogel. Haraguchi et al., Current Opinion in Solid State and Materials Science 11 (2007) 47-54; Advanced Materials 14 (2002) 1120-1124; Macromolecules 35 (2002) 10162-10171, synthesized a hydrogel with incorporated laponite particles without the presence of a crosslinker. The layered laponite particles acted as a multifunctional crosslinker that anchors the polymer chains to the particles, forming a hydrogel network.

Postopek sinteze hidrogela v porah membrane je izvedel Ronald F. Childs s sodel., Journal of Membrane Science 108 (1995) 37-56, ki je uporabil predvsem polielektrolitske hidrogele s številnimi stranskimi skupinami, ki so sposobne ionske izmenjave. Kot kationsko izmenjevalni hidrogel je uporabil poli(4-vinil piridin), medtem ko je za anionsko izmenjevalni hidrogel uporabil poli(stiren sulfonsko) kislino. Polnjenje por nosilnega materiala je izvedel s pomočjo in-situ polimerizacije ali s pomočjo zamreženja polielektrolitskega hidrogela v porah substrata z UV svetlobo. Kot nosilni material je uporabil PP mikroporozni substrat, ki omejuje nabrekanje hidrogela in daje celotnemu sistemu mehansko trdnost. Od takrat je njegova skupina raziskovalcev izdelala številne membrane z zapolnjenimi porami z različnimi polielektrolitskimi hidrogeli, ki imajo izboljšane in bolj enakomerne lastnosti, v primerjavi z membranami, ki imajo stene por prevlečene z ionsko izmenjevalno snovjo, United States Patent, Patent no: US 6,258,276 BI; Journal of Membrane Science 135 (1997) 81-92; Desalination 140 (2001) 265-275; Journal of Membrane Science 152 (1999) 129-140; Journal of Membrane Science 136 (1997) 221-232; Journal of Membrane Science 153 (1999) 45-56; Desalination 121 (1999) 149-158; Separation and Purification Technology 22-23 (2001) 507-517; Journal of Membrane Science 254 (2005) 89-99.The process of hydrogel synthesis in membrane pores was performed by Ronald F. Childs et al., Journal of Membrane Science 108 (1995) 37-56, which used mainly polyelectrolyte hydrogels with numerous ion-exchange capable side groups. Poly (4-vinyl pyridine) was used as the cation-exchange hydrogel, while poly (styrene sulfonic) acid was used for the anion-exchange hydrogel. The filling of the pores of the carrier material was performed by in situ polymerization or by crosslinking of polyelectrolyte hydrogel in the pores of the substrate by UV light. As a carrier material, it used a PP microporous substrate, which limits the swelling of the hydrogel and gives the whole system mechanical strength. Since then, his team of researchers has produced numerous filled pore membranes with different polyelectrolyte hydrogels that have improved and more uniform properties compared to membranes having pore walls coated with an ion exchange substance, United States Patent, Patent no: US 6,258,276 BI ; Journal of Membrane Science 135 (1997) 81-92; Desalination 140 (2001) 265-275; Journal of Membrane Science 152 (1999) 129-140; Journal of Membrane Science 136 (1997) 221-232; Journal of Membrane Science 153 (1999) 45-56; Desalination 121 (1999) 149-158; Separation and Purification Technology 22-23 (2001) 507-517; Journal of Membrane Science 254 (2005) 89-99.

··· ·· ···· ·· ·

Po pregledu stanja raziskav smo ugotovili, da izdelava nanokompozitne membrane, katere pore so zapolnjene s hidrogelom z vključenimi delci organsko modificiranega montmorilonita razplastenimi v hidrogelni matrici, predstavlja novost na področju nanokompozitnih membran. Prav tako je novost uporaba takšne membrane za odstranjevanje barvil iz tekstilnih odpadnih vod.After reviewing the state of the research, we have found that the manufacture of nanocomposite membranes, the pores of which are filled with hydrogel with incorporated particles of organically modified montmorillonite layered in a hydrogel matrix, is a novelty in the field of nanocomposite membranes. Another novelty is the use of such a membrane to remove dyes from textile wastewater.

OPIS IZUMADESCRIPTION OF THE INVENTION

Pričujoči izum opisuje postopek izdelave ultrafiltracijske membrane z in-situ polimerizacijo nanokompozitnega hidrogela v porah PP membrane, v kateri predstavljajo aktivni del naravni, okolju prijazni delci mineralov glin, ki imajo veliko aktivno površino ter odlično sposobnost adsorpcije barvil, težkih kovin, herbicidov, pesticidov, itd., za čiščenje odpadnih vod.The present invention describes a process for manufacturing an ultrafiltration membrane by in-situ polymerization of nanocomposite hydrogel in pores of a PP membrane, in which the active part is a natural, environmentally friendly clay mineral particles having a large active surface and an excellent ability to adsorb dyes, heavy metals, herbicides, pesticides, etc. for wastewater treatment.

Za pripravo nanokompozitne membrane smo uporabili polipropilensko (PP) filtmo membrano proizvajalca Wathman Internacional Ltd. (Anglija) z velikostjo por 0,2 pm. Uporabili smo krožne vzorce PP membrane premera 90 mm.To prepare the nanocomposite membrane, we used a polypropylene (PP) film membrane manufactured by Wathman Internacional Ltd. (England) with a pore size of 0.2 pm. 90 mm circular PP membrane membranes were used.

Pri izdelavi kompozitnega hidrogela smo raztopili monomer (N-isopropil akrilamid NIPAM), zamreževalec (Ν,Ν-metilenbisakrilamid - BIS) in fotoiniciator (Irgacure 2959) v vodni disperziji O-MMT delcev (organsko modificiran montmorilonit tipa Nanofil 8, proizvajalca Sud Chemie, Nemčija), dispergiranih v raztopini 1 g/L površinsko aktivnega sredstva Inutec SPI (Orafti Bio Based Chemicals). Masni delež zamreževalca je bil 1 ut%, masni delež O-MMT delcev pa 0,25; 0,5; 0,75 in 1 ut% z ozirom na maso monomera, ki smo jih vključili v kompozitni hidrogel.In the manufacture of the composite hydrogel, the monomer (N-isopropyl acrylamide NIPAM), crosslinker (Ν, Ν-methylenebisacrylamide - BIS) and photoinitiator (Irgacure 2959) were dissolved in an aqueous dispersion of O-MMT particles (organically modified montmorillonite, type Nalcafil Chem, manufactured by Nalcafil Chem. Germany) dispersed in a solution of 1 g / L surfactant Inutec SPI (Orafti Bio Based Chemicals). The crosslinker content was 1 wt% and the O-MMT particle weight was 0.25; 0.5; 0.75 and 1 wt%, based on the weight of monomers included in the composite hydrogel.

Zaradi hidrofobnosti in nekompatibilnosti membrane s hidrogelom smo membrano pred polimerizacijo hidrogela predobdelali po različnih postopkih. Uporabili smo omakalno sredstvo Tanaterge INF (Tanatex), katerega smo enkrat raztopili v vodi, drugič v acetonu, ter aceton, kot sredstvo za omakanje. Omakalna sredstva so bila uporabljena z namenom doseganja večjega nanosa kompozitnega hidrogela v pore PP membrane. Nanokompozitini hidrogel smo polimerizirali v porah membrane po dveh postopkih. Pri prvem postopku smo suho PP membrano potopili v raztopino monomera z dispergiranimi O-MMT delci, pri drugem postopku pa smo omočeno PP membrano potopili v raztopino monomera z dispergiranimi O-MMT delci. Pred postopkom polimerizacije smo raztopine monomera v katerih je bila potopljena PP membrana prepihovali z N2.Due to the hydrophobicity and incompatibility of the membrane with the hydrogel, the membrane was pretreated according to various procedures before polymerization of the hydrogel. We used Tanaterge INF (Tanatex), which was dissolved once in water, second in acetone, and acetone as a wetting agent. The wetting agents were used to achieve greater deposition of composite hydrogel in the pores of PP membranes. The nanocomposite hydrogels were polymerized in the pores of the membrane after two procedures. In the first method, the dry PP membrane was immersed in a monomer solution with dispersed O-MMT particles, and in the second method, a wetted PP membrane was immersed in a monomer solution with dispersed O-MMT particles. Prior to the polymerization process, the monomer solutions in which the submerged PP membrane was immersed were purged with N2.

..... .. :..... ..:

Kompozitni hidrogel smo polimerizirali v porah PP membrane na tak način, da smo omočeno in z monomemo raztopino z vključenimi O-MMT delci prepojeno PP membrano vstavili med dve PET foliji, tako da smo plasti rahlo stisnili in s tem odstranili odvečno raztopino in iztisnili zračne mehurčke. Tako pripravljen vzorec smo vstavili v UV komoro in obsevali 2 uri z UVA svetlobo z valovno dolžino 350 nm. Po končani polimerizaciji smo folije odstranili in PP membrano spirali v 500 mL destilirane vode z namenom odstranitve nezreagiranega monomera in zamreževalca. Spirali smo 4 dni pri čemer smo vodo zamenjali večkrat na dan.The composite hydrogel was polymerized in the pores of the PP membrane in such a way that the wetted and monomial solution with the included O-MMT particles was embedded in the dipped PP membrane between two PET films, so that the layers were gently compressed, thereby removing excess solution and squeezing air bubbles. . The sample thus prepared was inserted into a UV chamber and irradiated for 2 hours with UVA light with a wavelength of 350 nm. After polymerization was complete, the films were removed and the PP membrane was washed in 500 mL of distilled water to remove unreacted monomer and crosslinker. We rinsed for 4 days, replacing water several times a day.

Nanokompozitno membrano z delci mineralov glin vključenimi v hidrogelu, smo uporabili za razbarvanje odpadnih vod, z adsorpcijo molekul barvila na obsežno specifično površino delcev.A nanocomposite membrane with particles of clay minerals included in the hydrogel was used to discolor the wastewater by adsorbing the dye molecules to a large specific particle surface.

Vpliv različnih postopkov predobdelave PP membrane na sposobnost navzemanja nanokompozitnega hidrogela, kar je predmet izuma, pojasnjujemo s povečanjem mase membrane po in-situ UV polimerizaciji nanokompozitnega hidrogela. Rezultati so zbrani v preglednici 1.The effect of various PP membrane pretreatment processes on the uptake ability of the nanocomposite hydrogel, which is the subject of the invention, is explained by the increase in membrane mass after in situ UV polymerization of the nanocomposite hydrogel. The results are summarized in Table 1.

Oznake različno predobdelanih PP membran v preglednicah in na slikah so naslednje:The labels of the various pre-treated PP membranes in the tables and figures are as follows:

T - PP membrana, kije bila obdelana z omakalnim sredstvom raztopljenim v vodi TA - PP membrana, kije bila obdelana z omakalnim sredstvom raztopljenim v acetonu A - PP membrana, kije bila obdelana z acetonom kot omakalno sredstvo S - PP membrana, predobdelana in suha potopljena v monomemo raztopino M - PP membrana, predobdelana in mokra potopljena v monomemo raztopino U - PP membrana, predobdelana in potopljena v monomemo raztopino, obdelana z ultrazvokomT - PP membrane treated with wetting agent dissolved in water TA - PP membrane treated with wetting agent dissolved in acetone A - PP membrane treated with acetone as wetting agent S - PP membrane pre-treated and dry submerged M - PP membrane pre-treated and wet submerged U-PP diaphragm solution, pre-treated and submerged in ultrasound monomial solution

Preglednica 1: Povečanje mase PP membrane po in-situ UV polimerizaciji nanokompozitnega hidrogela v odvisnosti od načina omakanjaTable 1: Increase in PP membrane mass after in situ UV polymerization of nanocomposite hydrogel depending on the wetting mode

Iz preglednice 1 je razvidno, da se, pri vzorcih predobdelanih v omakalnem sredstvu Tanaterge INF raztopljenim v vodi, masa PP membrane poveča od 1,6 do 2,3% v odvisnosti od stanja predobdelane PP membrane (suha ali mokra). Z ultrazvočno obdelavo PP membrane dosežemo še dodatno povečanje mase in sicer pri suhi PP membrani potopljeni v monomemo raztopino in obdelani v ultrazvoku se masa poveča za 3,4%, medtem ko pri PP membrani, ki je bila mokra potopljena v monomemo raztopino in obdelana v ultrazvoku za 3%.Table 1 shows that, for samples pretreated with Tanaterge INF dissolved in water, the PP membrane mass increases from 1.6 to 2.3% depending on the condition of the pre-treated PP membrane (dry or wet). The ultrasonic treatment of the PP membrane achieves an additional increase in mass: in the dry PP membrane immersed in the monomial solution and treated in the ultrasound, the mass increases by 3.4%, while in the PP membrane which is wet immersed in the monomial solution and treated in ultrasound by 3%.

*·*··* · * · ·

Ultrazvočna obdelava PP membrane omogoča boljše prodiranje večje količine monomeme raztopine v pore PP membrane. V primeru PP membrane predobdelane z omakalnim sredstvom Tanaterge INF raztopljenim v acetonu in suhe potopljene v monomemo raztopino je povečanje mase za 2,3%, medtem ko je pri PP membrani, ki je bila suha potopljena v monomemo raztopino in obdelana v ultrazvoku povečanje mase za 1,1%. Povečanje mase PP membrane je naj večje pri PP membranah, ki smo jih mokre potopili v monomemo raztopino, in sicer pri PP membrani predobdelani z omakalnim sredstvom Tanaterge INF raztopljenim v acetonu in mokri potopljeni v monomemo raztopino znaša povečanje mase 5,5%, ter pri PP membrani predobdelani z omakalnim sredstvom Tanategre INF raztopljenim v acetonu in mokri potopljeni v monomemo raztopino in obdelani z ultrazvokom 14,9%. Tudi v tem primem obdelava z ultrazvokom dodatno poveča maso PP membrane.The ultrasonic treatment of the PP membrane allows better penetration of a larger amount of the monomeme solution into the pores of the PP membrane. In the case of PP membranes pretreated with Tanaterge INF dissolved in acetone and dry immersed in the monomial solution, the mass increase is 2.3%, whereas for the PP membranes dry immersed in the monomial solution and treated in ultrasound, the mass increases by 1.1%. The increase in PP membrane mass is greatest for PP membranes that have been immersed in a wet monomer solution, with a PP membrane pre-treated with Tanaterge INF dissolved in acetone and wet immersed in a monomial solution, and a 5.5% increase in mass PP membranes pretreated with Tanategre INF wetting agent dissolved in acetone and wet immersed in a monomial solution and sonicated 14.9%. Even in this case, ultrasound treatment further increases the mass of the PP membrane.

Pri PP membranah, ki so bile omočene z acetonom, posušene in suhe potopljene v monomemo raztopino, se masa ni povečala. Aceton, s katerim smo PP membrano predobdelali, pri sušenju izhlapi in tako ne pripomore k izboljšanju prehajanja monomeme raztopine v pomi sistem membrane. Znatno povečanje mase pa je zaznati pri PP membrani, ki smo jo predobdelali v acetonu in jo mokro potopili v monomemo raztopino, saj znaša povečanje mase 28%, oz. v primem PP membrane predobdelane v acetonu in mokre potopljene v monomemo raztopino ter obdelane v ultrazvoku celo za 50%.In acetone-wetted PP membranes, dried and immersed in a monomial solution, the mass did not increase. The acetone with which the PP membrane was pretreated evaporates during drying and thus does not help to improve the passage of the monomeme solution into the pompous membrane system. However, a significant increase in mass was detected in the PP membrane, which was pretreated in acetone and immersed in a monomial solution wet, since the increase in mass was 28%, respectively. in the case of PP membranes pretreated in acetone and wet immersed in a monomial solution and ultrasound treated as much as 50%.

Morfologijo in-situ polimerizirane nanokompozitne ultrafiltracijske membrane, ki je bila predobdelana v acetonu in mokra potopljena v monomemo raztopino ter obdelana v ultrazvoku, ki je predmet izuma, pojasnjujemo s posnetki vrstičnega elektronskega mikroskopa (SEM) na sliki 1.The morphology of the in situ polymerized nanocomposite ultrafiltration membrane, which was pretreated in acetone and wet immersed in the monomial solution and treated in the ultrasound of the invention, is explained by the electron microscope (SEM) images in Figure 1.

Slika 1: SEM posnetki nanokompozitne ultrafiltracijske PP membrane po UV polimerizaciji nanokompozitnega hidrogela v membrani; a - površina membrane, ki je bila predobdelana v acetonu in mokra potopljena v monomemo raztopino z O-MMT delci; b - površina membrane, ki je bila predobdelana v acetonu in mokra potopljena v monomemo raztopino z O-MMT delci, ter obdelana v ultrazvoku; c - prerez membrane, ki je bila predobdelana v acetonu in mokra potopljena v monomemo raztopino z O-MMT delci, ter obdelana v ultrazvokuFigure 1: SEM images of the nanocomposite ultrafiltration PP membrane after UV polymerization of the nanocomposite hydrogel in the membrane; a - the surface of the membrane, which has been pretreated in acetone and wet immersed in a monomemic solution with O-MMT particles; b - the surface of the membrane, which has been pretreated in acetone and wet immersed in a monomemic solution with O-MMT particles and treated in ultrasound; c - cross-section of a membrane that has been pretreated in acetone and wet immersed in a monomemic solution with O-MMT particles and treated in ultrasound

Iz SEM posnetkov površin PP membrane (slika la in lb) je jasno razvidna polimerizacija hidrogela v porah membrane. Videz membrane in količina nanosa nanokompozitnegaThe SEM images of the PP membrane surfaces (Figs. 1a and 1b) clearly show the polymerization of the hydrogel in the pores of the membrane. Membrane appearance and amount of nanocomposite application

- ’ - · · .- '- · ·.

hidrogela sta odvisna od vrste predobdelave. Pri membrani predobdelani v acetonu, ki smo jo še mokro potopili v monomemo raztopino z O-MMT delci ter obdelali z ultrazvokom, je celotna površina prekrita s hidrogelom, v primerjavi z membrano, ki ni bila obdelana z ultrazvokom, kjer je površina le delno prekrita s hidrogelom. Iz SEM posnetka prereza (slika lc) je razvidno, daje hidrogel polimeriziral tudi v notranjosti PP membrane oz. da so pore PP membrane zapolnjene z nanokompozitnim hidrogelom.hydrogels depend on the type of pretreatment. In the acetone pretreated membrane, which was immersed wet in a monomial solution with O-MMT particles and treated with ultrasound, the entire surface was covered with hydrogel, compared to the ultrasound treated membrane, where the surface was only partially covered with hydrogel. It is clear from the SEM cross-sectional view (Fig. 1c) that the hydrogel polymerized also inside the PP membrane or. that the pores of PP membranes are filled with nanocomposite hydrogel.

Spremembo hidrofilno/hidrofobnega značaja PP membrane, ki je posledica polimerizacije hidrogela z vključenimi delci mineralov glin v porah membrane, pojasnjujemo z rezultati meritev stičnega kota (preglednica 2).The change in the hydrophilic / hydrophobic character of the PP membrane due to the polymerization of the hydrogel with the included clay mineral particles in the pores of the membrane is explained by the results of contact angle measurements (Table 2).

Preglednica 2: Stični koti neobdelane PP membrane in membrane z vključenim nanokompozitnim hidrogelomTable 2: Contact angles of untreated PP membranes and membranes with nanocomposite hydrogel incorporated

Iz preglednice 2 je razvidno, daje stični kot neobdelane PP membrane 139,42°, kar pomeni, daje površina membrane popolnoma hidrofobna. Po polimerizaciji hidrogela v PP membrani se stični kot v primeru vzorca PP membrane predobdelane z acetonom in mokre potopljene v monomemo raztopino nekoliko zmanjša (137,98°). Kljub temu je PP membrana še vedno hidrofobna (večji del PP membrane je ostal nepokrit z nanokompozitnim hidrogelom - slika la). Medtem ko se stični kot vzorca PP membrane, kije bila predobdelana v acetonu in mokra potopljena v monomemo raztopino in obdelana v ultrazvoku, zmanjša na 44,55°; površina je popolnoma prekrita z nanokompozitnim hidrogelom (slika lb) in zato hidrofilna. Torej ta postopek obdelave predstavlja najbolj optimalni način izdelave nanokompozitne ultrafiltracijske PP membrane z vključenimi O-MMT delci.Table 2 shows that the contact angle of untreated PP membranes is 139.42 °, meaning that the membrane surface is completely hydrophobic. After polymerization of the hydrogel in the PP membrane, the contact, as in the case of the PP membrane sample pretreated with acetone and wet immersed in the monomial solution, decreased slightly (137.98 °). Nevertheless, the PP membrane is still hydrophobic (most of the PP membrane remained uncovered by nanocomposite hydrogel - Figure 1a). While the contact angle of the PP membrane specimen pretreated in acetone and wet immersed in the monomial solution and treated in ultrasound is reduced to 44.55 °; the surface is completely covered with nanocomposite hydrogel (Fig. 1b) and therefore hydrophilic. Therefore, this treatment process represents the most optimal way of fabricating a nanocomposite ultrafiltration PP membrane with O-MMT particles involved.

Učinek odstranjevanja barvil iz odpadnih vod s pomočjo razvite nanokompozitne ultrafiltracijske membrane, ki ima vključene delce mineralov glin, kar je predmet izuma, pojasnjujemo z rezultati, ki so predstavljeni v preglednici 3.The effect of the removal of dyes from wastewater by means of a developed nanocomposite ultrafiltration membrane containing clay mineral particles, which is the subject of the invention, is explained by the results presented in Table 3.

Za preskus razbarvanja smo pripravili vodno raztopino 0,1 g/L kislega azo barvila Acid Orange 33 (komercialno barvilo za barvanje beljakovinskih vlaken). pH raztopine barvila smo uravnali na pH 3 z 0,1 mol raztopino HC1. Neobdelano PP membrano in PP membrano z največjim deležem hidrogela (PP A/M/U) smo namestili v ultrafiltracijsko celico, skozi katero smo spuščali raztopino barvila pri različnih tlakih (100, 200 in 300 kPa). Razbarvanje s ::····An aqueous solution of 0.1 g / L Acid Orange 33 (commercial protein fiber dye) was prepared for the discoloration test. The pH of the dye solution was adjusted to pH 3 with a 0.1 mol HCl solution. The untreated PP membrane and the PP membrane with the highest hydrogel content (PP A / M / U) were placed in an ultrafiltration cell through which the dye solution was discharged at various pressures (100, 200 and 300 kPa). Discoloration with :: ····

Ο ··***·· ··· :Ο · · · · · ·:

smo določali spektrofotometrično z merjenjem absorbance raztopine barvila pred in po ultrafiltraciji.were determined spectrophotometrically by measuring the absorbance of the dye solution before and after ultrafiltration.

Preglednica 3: Stopnja odstranjevanja barvila iz raztopine ter čas prehajanja raztopine skozi neobdelano PP membrano (PP) in s hidrogelom obdelano membrano (PP A/M/U) v odvisnosti od tlaka v ultrafiltracijski celiciTable 3: Degree of removal of dye from solution and time of passage of solution through untreated PP membrane (PP) and hydrogel treated membrane (PP A / M / U) as a function of pressure in the ultrafiltration cell

Iz preglednice 3 je razvidno, daje stopnja razbarvanja pri uporabi neobdelane PP membrane pri tlaku 100 kPa 21,94%. Z višanjem tlaka v ultrafiltracijski celici se čas pretoka raztopine skozi membrano zmanjšuje. Pri višjem tlaku je potisna sila, ki povzroča pretok raztopine skozi pore membrane večja, zaradi tega se stopnja razbarvanja znižuje in znaša 15,98% pri tlaku 200 kPa ter 9,75% pri tlaku 300 kPa.Table 3 shows that the degree of discoloration using the untreated PP membrane at a pressure of 100 kPa is 21.94%. As the pressure in the ultrafiltration cell increases, the time of solution flow through the membrane decreases. At higher pressure, the pushing force that causes the solution to flow through the pores of the membrane is higher, which causes the decolourisation rate to decrease by 15.98% at a pressure of 200 kPa and 9.75% at a pressure of 300 kPa.

V primeru obdelane PP membrane so potrebni drugačni filtracijski pogoji kot v primeru neobdelane, saj polimeriziran nanokompozitni hidrogel zapolni pore in jih s tem zmanjša (kar je opazno tudi na SEM posnetkih - slika lb in lc), zato pri tlaku 100 kPa raztopina barvila ne prehaja skozi membrano. Pri tlaku 200 kPa je čas prehoda raztopine skozi membrano podaljšan na 60 minut, stopnja odstranjevanja barvila (adsorpcija molekul barvila na aktivna mesta O-MMT delcev v nanokompozitu) pa znaša 80,33%. Medtem, ko je pri tlaku 300 kPa čas prehajanja raztopine 45 minut in stopnja razbarvanja 67,30%.The treated PP membrane requires different filtration conditions than the untreated one, since the polymerized nanocomposite hydrogel fills the pores and thus reduces them (which is also observed in SEM images - Fig. 1b and 1c), so that at 100 kPa the dye solution does not pass through the membrane. At a pressure of 200 kPa, the time of passage of the solution through the membrane was extended to 60 minutes, and the removal rate of the dye (adsorption of the dye molecules to the active sites of O-MMT particles in the nanocomposite) was 80.33%. While at a pressure of 300 kPa, the passage time of the solution is 45 minutes and the degree of discoloration is 67.30%.

Claims (7)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Postopek izdelave nanokompozitne ultrafiltracijske membrane z vključenimi delci mineralov glin, značilen po tem, da kot nosilni material uporabimo komercialno PP membrano.A process for manufacturing a nanocomposite ultrafiltration membrane with clay mineral particles incorporated, characterized in that a commercial PP membrane is used as the carrier material. 2. Postopek izdelave po zahtevku 1, značilen po tem, da komercialno PP membrano omočimo v acetonu.A manufacturing process according to claim 1, characterized in that the commercial PP membrane is wetted in acetone. 3. Postopek izdelave po predhodnih zahtevkih, značilen po tem, da za polnjenje por nosilnega materiala uporabimo nanokompozitni hidrogel v katerega potopimo omočeno membrano po zahtevku 2 in jo obdelamo z ultrazvokom.A manufacturing process according to the preceding claims, characterized in that a nanocomposite hydrogel is used for filling the pores of the support material into which the dipped membrane is dipped according to claim 2 and ultrasound treated. 4. Postopek izdelave po predhodnih zahtevkih, značilen po tem, da nanokompozitni hidrogel v porah membrane in-situ polimeriziramo z UVA svetlobo (pri 350 nm), najmanj 2 uri.A manufacturing process according to the preceding claims, characterized in that the nanocomposite hydrogel is polymerized in situ with membrane UVA light (at 350 nm) for at least 2 hours. 5. Postopek izdelave po predhodnih zahtevkih, značilen po tem, daje celotna površina PP membrane prekrita z nanokompozitnim hidrogelom.A manufacturing process according to the preceding claims, characterized in that the entire surface of the PP membrane is covered with a nanocomposite hydrogel. 6. Postopek izdelave po predhodnih zahtevkih, značilen po tem, da za izdelavo nanokompozitnega hidrogela raztopimo monomer (N-isopropil akrilamid NIPAM), zamreževalec (Ν,Ν-metilenbisakrilamid - BIS) in fotoiniciator (Irgacure 2959) v vodni disperziji delcev mineralov glin.Manufacturing process according to the preceding claims, characterized in that for the production of the nanocomposite hydrogel, the monomer (N-isopropyl acrylamide NIPAM), the crosslinker (Ν, Ν-methylenebisacrylamide - BIS) and the photoinitiator (Irgacure 2959) are dissolved in aqueous dispersion of particulate minerals. 7. Postopek izdelave po predhodnih zahtevkih, značilen po tem, daje masni delež delcev mineralov glin najmanj 1 ut.%.A manufacturing process according to the preceding claims, characterized in that the weight fraction of the clay mineral particles is at least 1% by weight. 1/21/2 Preglednica 1Table 1 Vzorec The pattern Povečanje mase (%) Weight gain (%) PP_T/S PP_T / S 1,6 1.6 PPT/M PPT / M 2,3 2.3 PP_T/S/U PP_T / S / U 3,4 3.4 PP T/M/U PP T / M / U 3 3 PPTA/S PPTA / S 2,3 2.3 PPTA/M PPTA / M 5,5 5.5 PP_TA/S/U PP_TA / S / U 1,1 1.1 PPTA/M/U PPTA / M / U 14,9 14.9 PPA/S PPA / S 0 0 PP_A/M PP_A / M 28,1 28.1 PP_A/S/U PP_A / S / U 0 0 PP A/M/U PP A / M / U 50,3 50.3
Preglednica 2Table 2 Vzorec The pattern Stični kot (°) Contact angle (°) Standardna napaka (°) Standard error (°) PP PP 139,42 139.42 1,73 1,73 PP A/M PP A / M 137,98 137.98 3,23 3.23 PP A/M/U PP A / M / U 44,55 44.55 2,75 2.75
Preglednica 3 Table 3 Vzorec The pattern Tlak (kPa) Pressure (kPa) Cas prehajanja (min) Pass time (min) Stopnja razbarvani a (%) The rate discolored a (%) PP PP 100 100 11 11 21,94 21,94 PP PP 200 200 4 4 15,98 15.98 PP PP 300 300 1 1 9,75 9.75 PP A/M/U PP A / M / U 200 200 60 60 80,33 80.33 PP A/M/U PP A / M / U 300 300 45 45 67,30 67.30
2/22/2
SI201200222A 2012-07-02 2012-07-02 Nanocomposite ultrafiltration membrane production procedure with integrated mineral clay particles for sewage water cleaning SI24144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201200222A SI24144A (en) 2012-07-02 2012-07-02 Nanocomposite ultrafiltration membrane production procedure with integrated mineral clay particles for sewage water cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201200222A SI24144A (en) 2012-07-02 2012-07-02 Nanocomposite ultrafiltration membrane production procedure with integrated mineral clay particles for sewage water cleaning

Publications (1)

Publication Number Publication Date
SI24144A true SI24144A (en) 2014-01-31

Family

ID=50000154

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201200222A SI24144A (en) 2012-07-02 2012-07-02 Nanocomposite ultrafiltration membrane production procedure with integrated mineral clay particles for sewage water cleaning

Country Status (1)

Country Link
SI (1) SI24144A (en)

Similar Documents

Publication Publication Date Title
Köse et al. Applications and impact of nanocellulose based adsorbents
Ibrahim et al. Synthesis of super hydrophilic cellulose-alpha zirconium phosphate ion exchange membrane via surface coating for the removal of heavy metals from wastewater
Buruga et al. A review on functional polymer-clay based nanocomposite membranes for treatment of water
Sajid et al. Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review
Ngah et al. Adsorption of dyes and heavy metal ions by chitosan composites: A review
Wang et al. Perfluorooctane sulfonate and perfluorobutane sulfonate removal from water by nanofiltration membrane: The roles of solute concentration, ionic strength, and macromolecular organic foulants
Crozes et al. Effect of adsorption of organic matter on fouling of ultrafiltration membranes
Xie et al. Physical and chemical treatments for removal of perchlorate from water–a review
Ma et al. Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB): Batch and column studies
Chen et al. Preparation, characterization and adsorption properties of a novel 3-aminopropyltriethoxysilane functionalized sodium alginate porous membrane adsorbent for Cr (III) ions
Changani et al. Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry
US10143972B2 (en) Ultrafiltration membrane and a preparation method thereof
CN101394917A (en) Porous diffusion type flat-film separating device, flat-film condensing device, regenerated cellulose porous film for porous diffusion, and non-destructive type flat-film inspecting method
US20150021267A1 (en) Preparation method of granular oxide adsorbent, and water treatment method using same
Abd Hamid et al. Role of clay-based membrane for removal of copper from aqueous solution
Yi et al. Factorial design applied to flux decline of anionic polyacrylamide removal from water by modified polyvinylidene fluoride ultrafiltration membranes
Li et al. Integrating cationic metal-organic frameworks with ultrafiltration membrane for selective removal of perchlorate from Water
Nguyen et al. Adsorption removal of tetracycline from water using poly (vinylidene fluoride)/polyaniline-montmorillonite mixed matrix membranes
Xie et al. A hybrid adsorption/ultrafiltration process for perchlorate removal
Kotp Removal of organic pollutants using polysulfone ultrafiltration membrane containing polystyrene silicomolybdate nanoparticles: Case study: Borg El Arab area
Musarurwa et al. Application of polysaccharide-based metal organic framework membranes in separation science
Rahman et al. Nitrate removal using poly-o-toluidine zirconium (IV) ethylenediamine as adsorbent: Batch and fixed-bed column adsorption modelling
Gwon et al. Prussian blue decoration on polyacrylonitrile nanofibers using polydopamine for effective Cs ion removal
Ganiyu et al. Adsorptive removal of organic pollutants from contaminated waters using zeolitic imidazolate framework Composites: A comprehensive and Up-to-date review
Zhu Rejection of organic micropollutants by clean and fouled nanofiltration membranes

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20140224

KO00 Lapse of patent

Effective date: 20160223