SI24129A - The process for preparation thin film of Pt catalyst at low temperatures - Google Patents

The process for preparation thin film of Pt catalyst at low temperatures Download PDF

Info

Publication number
SI24129A
SI24129A SI201200188A SI201200188A SI24129A SI 24129 A SI24129 A SI 24129A SI 201200188 A SI201200188 A SI 201200188A SI 201200188 A SI201200188 A SI 201200188A SI 24129 A SI24129 A SI 24129A
Authority
SI
Slovenia
Prior art keywords
solution
precursor
minutes
ethanol
platinum
Prior art date
Application number
SI201200188A
Other languages
Slovenian (sl)
Inventor
Lev Matoh
Ĺ kofic Irena Kozjek
Nataša Bukovec
Peter Bukovec
Original Assignee
Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo
Center odliÄŤnosti nizkoogljiÄŤne tehnologije (CO NOT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo, Center odliÄŤnosti nizkoogljiÄŤne tehnologije (CO NOT) filed Critical Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo
Priority to SI201200188A priority Critical patent/SI24129A/en
Priority to EP13170845.5A priority patent/EP2671641A1/en
Publication of SI24129A publication Critical patent/SI24129A/en

Links

Landscapes

  • Hybrid Cells (AREA)

Abstract

Predloženi izum se nanaša na nov postopek priprave tankih plasti katalitsko aktivne platine pri nizkih temperaturah z uporabo reducentov v plinasti fazi, na postopek nanosa katalitsko aktivne platine na steklene, keramične in polimerne substrate ter na ogljik, polprevodniške materiale in ostale kovinske okside. Nov postopek rešuje problem nanosa plasti elementarne platine pri nizki temperaturi, kar omogoča nanos tudi na termično nestabilne substrate. Platina pripravljena na ta način se lahko uporabi kot imobiliziran katalizator ter kot elektrokatalizator za Graetzlove solarne celice, gorivne celice in elektro-oksidacijo/redukcijo organskih spojin, če je Pt nanešena na električno prevoden substrat.The present invention relates to a novel process for the preparation of thin layer of catalytic active platinum at low temperatures using gaseous phase reducing agents, on a catalytic active platinum application to glass, ceramic and polymer substrates, and on carbon, semiconductor materials and other metal oxides. The new process solves the problem of applying a layer of elementary platinum at low temperature, which allows the application of thermally unstable substrates. A platinum prepared in this way can be used as an immobilized catalyst and as an electro catalyst for Graetz's solar cells, fuel cells and electro-oxidation / reduction of organic compounds when Pt is applied to an electrically conductive substrate.

Description

Postopek priprave tanke plasti Pt katalizatorja pri nizkih temperaturahThe process of preparing a thin layer of Pt catalyst at low temperatures

Področje izumaFIELD OF THE INVENTION

Predloženi izum se nanaša na nov postopek priprave tankih plasti katalitsko aktivne platine - v nadaljevanju Pt - pri nizki temperaturi z reducentom v plinasti fazi.The present invention relates to a new process for the preparation of thin films of catalytically active platinum - hereinafter Pt - at low temperature with a gas phase reducing agent.

Tehnični problemA technical problem

Solarne celice Gratzlovega tipa (dye-sensitized šolar celiš, DSSC) sodijo med potencialne kandidate za solarne celice naslednje generacije, ker naj bi bile cenovno ugodnejše zaradi nižje cene uporabljenih materialov in hitre produkcije; glej B. O'Regan, M.Gratzel, Nature 353 (1991) 737-740; T.N.Murakami, M.Gratzel, Inorg.Chim.Acta 361 (2008) 572-580). Eden od bistvenih delov te celice je protielektroda, ki zbira elektrone iz zunanjega tokokroga in katalizira redoks regeneracijo elektrolita. Značilna protielektroda je narejena tako, da se na stekleno ploščico, ki je prekrita s prevodno plastjo, nanese plast katalizatorja.Gratzle-type solar cells (DSSC) are potential candidates for next-generation solar cells because they are considered to be more affordable due to lower cost of materials used and rapid production; see B. O'Regan, M.Gratzel, Nature 353 (1991) 737-740; T.N.Murakami, M.Gratzel, Inorg.Chim.Acta 361 (2008) 572-580). One of the essential parts of this cell is the counter electrode, which collects electrons from the outer circuit and catalyzes the redox regeneration of the electrolyte. A typical counter electrode is made by applying a catalyst layer to a glass plate covered with a conductive layer.

Pri izdelavi protielektrode so bili do sedaj preizkušeni različni materiali, med vsemi pa je največjo učinkovitost pokazal nanos platine. Pri izdelavi Pt-protielektrode na stekleni ploščici je potrebno platino aktivirati pri temperaturah nad 400°C.Different materials have been tested so far in the manufacture of the counter electrode, with platinum application being the most effective. When manufacturing a Pt-counter electrode on a glass plate, platinum must be activated at temperatures above 400 ° C.

Atraktivno smer razvoja predstavljajo fleksibilne DSSC celice, pri katerih so elektrode nanešene na polimerne materiale. Prednosti uporabe polimernih materialov so dodatno znižanje stroškov proizvodnje in večja fleksibilnost uporabe. Eden od večjih problemov izdelave fleksibilnih DSSC celic je priprava Pt-protielektrode na polimerni foliji. Težava ni samo v nanosu katalizatorja na polimere, temveč predvsem v nizki temperaturi priprave in aktiviranja katalizatorja, ki zaradi omejene termične stabilnosti določenih polimernih substratov ne sme preseči določene temperature. Prav tako mora imeti Pt katalizator zaradi boljšega delovanja veliko specifično površino, zaradi cene Pt pa mora biti količina uporabe čim manjša.Flexible DSSC cells in which the electrodes are applied to polymeric materials are an attractive development direction. Advantages of using polymeric materials are further reduction of production costs and greater flexibility of use. One of the major problems of making flexible DSSC cells is the preparation of a Pt-counter electrode on a polymer film. The problem lies not only in the application of the catalyst to the polymers, but especially in the low temperature of preparation and activation of the catalyst, which, due to the limited thermal stability of certain polymer substrates, may not exceed a certain temperature. Also, for better performance, the Pt catalyst must have a large specific surface area and, due to the Pt price, the amount of use should be kept to a minimum.

Zaradi vseh omenjenih razlogov obstaja potreba po izboljšanem postopku izdelave protielektrode na polimerni foliji pri nizkih temperaturah, tako da bo plast platine zelo tanka, obenem pa bo imela dovolj veliko površino in katalitsko učinkovitost ter dobro oprijemljivost na substrat.For all these reasons, there is a need for an improved process for producing a counter electrode on a polymer film at low temperatures so that the platinum layer is very thin, while having a sufficiently large surface area and catalytic efficiency and good adhesion to the substrate.

Pričujoči izum zadovoljuje to potrebo, saj je predmet izuma nov način priprave katalitske plasti platine pri nizki temperaturi, z izjemno oprijemljivostjo, velikostjo delcev manjših od 50 nm, enakomerno pokritostjo površine substrata, ter katalitsko aktivnostjo, ki je primerljiva z visokotemperaturnim Pt katalizatorjem.The present invention satisfies this need, since the object of the invention is a novel method of preparing a low temperature platinum catalyst layer with extreme adhesion, particle size of less than 50 nm, uniform coverage of the substrate surface, and catalytic activity comparable to a high temperature Pt catalyst.

Stanje tehnikeThe state of the art

Elementarna platina ima odlične katalitske lastnosti, zato se že dolgo uporablja v različnih vejah tehnike. Znanih je več metod priprave katalizatorja, kot n.pr.: sol-gel sinteza, elektrodepozicija, nanos iz raztopine z uporabo reducentov (electroless deposition), hidrotermalne in solvotermalne metode ter različne fizikalne tehnike kot sta naprševanje in laserska ablacija; glej Aicheng Chen, Peter Holt-Hindle, Chem. Rev. 110 (2010) 3767-3804).Elemental platinum has excellent catalytic properties and has long been used in various branches of the art. Several catalyst preparation methods are known, such as: sol-gel synthesis, electrodeposition, electroless deposition, hydrothermal and solvothermal methods, and various physical techniques such as sputtering and laser ablation; see Aicheng Chen, Peter Holt-Hindle, Chem. Rev. 110 (2010) 3767-3804).

Za kemijske metode je značilno, da postopek priprave poteka v dveh fazah. Prva faza je redukcija izhodne spojine do elementarne platine, druga pa je aktivacija platine pri temperaturah, ki so praviloma višje od 400°C. Ena od obeh faz je običajno povezana tudi z nanosom katalitske plasti na trden substrat.Chemical methods are characterized by the fact that the preparation process is carried out in two stages. The first stage is the reduction of the starting compound to elemental platinum, and the second is the activation of platinum at temperatures generally higher than 400 ° C. One of the two phases is also usually associated with the deposition of a catalytic layer on a solid substrate.

Potreba po nizkotemperaturnem nanosu platine se je pojavila z začetkom razvoja fleksibilne Gratzlove solarne celice. Ena od prvih fleksibilnih protielektrod je bila izdelana pri sobni temperaturi z mehanskim nanosom polprevodnega prahu Sb:SnO2 obogatenega s Pt na PET folijo; glej H.Lindstrom et al., Nano Lett., 1 (2001) 97-100). Avtorji poročajo, da je izkoristek (angl.: overall šolar to electric conversion efficiencies) tako pripravljenih nanostrukturiranih filmov do 4,9 %. Ta tip protielektrode je temno obarvan in zato ni primeren za obrnjene solarne celice, pri katerih sončna svetloba vstopa skozi protielektrodo.The need for low-temperature platinum deposition emerged with the start of the development of a flexible Gratzel solar cell. One of the first flexible counter electrodes was fabricated at room temperature by mechanically applying a semiconductor powder of Sb: SnO 2 enriched with Pt onto a PET film; see H.Lindstrom et al., Nano Lett., 1 (2001) 97-100). The authors report that the overall schoolchild to electric conversion efficiencies of nanostructured films thus prepared is up to 4.9%. This type of counter electrode is dark colored and therefore not suitable for inverted solar cells where sunlight enters through the counter electrode.

-3Pri izdelavi Gratzlove solarne celice s fotoanodo na titanovi foliji, so protielektrodo pripravili z elektrokemijsko depozicijo platine na ITO/polietilen naftalat (ITO/PEN); glej S.lto et al., Chem.-3When producing Gratzl solar cells with a photoanode on titanium foil, the counter electrode was prepared by electrochemical deposition of platinum on ITO / polyethylene naphthalate (ITO / PEN); see S.lto et al., Chem.

Commun. 38 (2006) 4004-4006.Commun. 38 (2006) 4004-4006.

Tanke plasti pripravljene iz raztopin z omenjenimi metodami v glavnem ne dosegajo kvalitete filmov pripravljenih pri višjih temperaturah, zato je bila predlagana metoda zaporedne ionske adsorpcije in reakcije, opisana v Successive lonic Layer Adsorption and Reaction, ŠILAR, S.Lindroos, M.Leskela, Solution Processing of Inorganic Materials, editor D.B.Mitzi, John Wiley & Sons, Inc. 2009, 239-282. Pri ŠILAR metodi se substrat izmenično potaplja v kationski in anionski prekurzor, vmes pa se substrat temeljito spira v čistem topilu, običajno v vodi. Tanki filmi rastejo plast za plastjo skozi ponavljanje omenjenih ciklov. Po zaključenem nanosu se serija plasti običajno še termično obdela, kar je odvisno od narave plasti in predvidene uporabe. ŠILAR metoda je primerna za plasti, ki nastanejo z reakcijo med kationom in anionom, n.pr. ZnS, nastanek elementarne platine pa ne poteka po tem mehanizmu.The thin films prepared from the solutions by the above methods generally do not achieve the quality of the films prepared at higher temperatures, therefore, the sequential ion adsorption and reaction method described in Successive Lonic Layer Adsorption and Reaction, ŠILAR, S.Lindroos, M.Leskela, Solution Inorganic Materials Processing, edited by DBMitzi, John Wiley & Sons, Inc. 2009, 239-282. In the ŠILAR method, the substrate is immersed immersed in the cationic and anionic precursors, while the substrate is thoroughly washed in a pure solvent, usually in water. Thin films grow layer by layer through repetition of said cycles. After the application is complete, the batch of layers is usually still thermally treated, depending on the nature of the layer and the intended use. The SILAR method is suitable for layers formed by the reaction between a cation and an anion, e.g. ZnS, but elemental platinum formation does not proceed by this mechanism.

Hitrejše nanašanje prekurzorjev na substrat je bilo doseženo z metodo Reakcija ionske plasti s plinom je opisano v Ion Layer Gas Reaction, ILGAR, S.Lindroos, M.Leskela, Solution Processing of Inorganic Materials, editor D.B.Mitzi, John Wiley & Sons, Inc. 2009, 239-282. V tem primeru se ionski prekurzor najprej nanese na substrat, nato posuši in izpostavi reakciji s plinom. Ciklusi se ponavljajo dokler ne dosežemo zaželene debeline plasti. Po potrebi se tanko plast še termično obdela. Z ILGAR metodo so bili do sedaj pripravljene tanke plasti iz oksidov, halogenidov in halkogenidov.Faster precursor deposition on the substrate was achieved by the Ion Layer Gas Reaction method described in Ion Layer Gas Reaction, ILGAR, S.Lindroos, M.Leskela, Solution Processing of Inorganic Materials, edited by D.B.Mitzi, John Wiley & Sons, Inc. 2009, 239-282. In this case, the ion precursor is first applied to the substrate, then dried and exposed to the reaction with the gas. The cycles are repeated until the desired layer thickness is reached. If necessary, the thin layer is still thermally treated. So far, thin layers of oxides, halides and chalcogenides have been prepared using the ILGAR method.

Direkten nanos tekočega reducenta na tanko plast prekurzorja omogoči ponovno raztapljanje le-tega in povzroči nastanek neenakomernega sloja. To je posledica velike površinske napetosti reducenta, zaradi česar se le-ta zbere v kapljice, kar povzroči še dodatno aglomeracijo Pt.Direct application of a liquid reducing agent to a thin layer of precursor allows it to re-dissolve and reduce the formation of an uneven layer. This is due to the high surface tension of the reducing agent, which causes it to accumulate in droplets, which causes further agglomeration of Pt.

Obstoječi postopki nanosa platine iz raztopin so problematični, ker pri redukciji Pt prekurzorjev v raztopinah nanodelci platine aglomerirajo v prevelike skupke, pri nanosu le-tehExisting processes for platinum deposition from solutions are problematic because, when Pt precursors are reduced in solutions, platinum nanoparticles agglomerate into oversized clusters when applied.

-4na substrat in naknadni nizkotemperaturni obdelavi pa je oprijem slab, spceifična površina pa manjša.-4 on the substrate and subsequent low-temperature treatment, however, the adhesion is poor and the specific surface area is smaller.

Opis izumaDescription of the invention

Predmet izuma je nov način priprave Pt (platina) katalizatorja pri nizki temperaturi z uporabo reducenta v plinasti fazi.The subject of the invention is a novel method of preparing a low temperature Pt (platinum) catalyst using a gaseous phase reducing agent.

Novost, ki jo predstavlja ta metoda je aplikacija reducenta v plinasti fazi. Posledica tega je dejstvo, daje kvaliteta plasti odvisna samo od kvalitete nanosa prekurzorja in reakcije na stiku med plinom in prekurzorjem.The novelty of this method is the application of the gaseous phase reducing agent. As a consequence, the quality of the layer depends only on the quality of the precursor application and the reaction between the gas and the precursor.

Prednosti te metode so relativno hiter način nanosa, dobra kontrola nad porazdelitvijo in velikostjo delcev, možnost nanosa na vse oblike substratov ter predvsem nizka temperatura nanosa in redukcije, ki omogoča nanos tudi na termično nestabilne substrate kot so polimerni materiali.The advantages of this method are the relatively fast application method, good control over the particle size distribution and size, the possibility of application to all substrate shapes, and especially the low application and reduction temperature, which also allows application to thermally unstable substrates such as polymeric materials.

Pt katalizator pripravljen na ta način se lahko uporablja kot elektro-katalizator (Gratzlove solarne celice, gorivne celice, elektrooksidacija organskih spojin), če je Pt nanešena na električno prevoden substrat, in kot imobiliziran katalizator pri kemijskih reakcijah.The Pt catalyst prepared in this way can be used as an electro-catalyst (Gratzel solar cells, fuel cells, electrooxidation of organic compounds) if Pt is applied to an electrically conductive substrate, and as an immobilized catalyst for chemical reactions.

Nizkotemperaturni Pt katalizator po predloženem izumu je značilen po zelo dobri oprijemljivosti na substrat (podlago) kot so steklo, keramika, polimeri, ogljik, polprevodniki itd., in visoko stopnjo katalitske učinkovitosti.The low temperature Pt catalyst of the present invention is characterized by a very good adhesion to the substrate (substrate) such as glass, ceramics, polymers, carbon, semiconductors, etc., and a high degree of catalytic efficiency.

Plast elementarne platine na substratu je karakterizirana z rentgensko fotoelektronsko spektroskopijo (XPS), ki potrjuje, da je 100 % platine v elementarnem stanju. Delci elementarne platine so manjši od 50 nm (ocena iz SEM slik) in so enakomerno porazdeljeni po površini substrata. Adhezija na substrat je zelo dobra, saj se plast platine ne da odstraniti niti z intenzivnim brisanjem ali drgnjenjem niti v ultrazvočni kopeli.The elemental platinum layer on the substrate is characterized by x-ray photoelectron spectroscopy (XPS), which confirms that 100% of the platinum is in the elemental state. Elemental platinum particles are smaller than 50 nm (estimate from SEM images) and are evenly distributed over the substrate surface. The adhesion to the substrate is very good as the platinum layer cannot be removed either by intensive wiping or scraping or in an ultrasonic bath.

-5Primerna velikost delcev platine, enakomerna porazdelitev teh delcev, velika specifična površina in njihova dobra adhezija na substrat so posledica specifičnega vrstnega reda postopkov, oziroma kemijskih reakcij pri opisanem postopku. Te lastnosti so dosežene tako, da je Pt prekurzor raztopljen v primernem topilu najprej enakomerno nanešen na substrat in nanešena plast posušena. Z uporabo primernega reducenta, ki je apliciran v plinski fazi, je platina reducirana do elementarnega stanja. S tem je preprečeno ponovno raztapljanje, do katerega bi prišlo, če bi tekoč reducent nanesli neposredno na plast prekurzroja in posledično aglomeracija delcev pri redukciji. Hkrati pa se ohrani enakomerna porazdelitev Pt nano-delcev po površini. Tekoči reducenti imajo namreč veliko površinsko napetost, ki, za razliko od uporabljenih topil pri nanosu prekurzroja, preprečuje enakomeren nanos Pt na površino substrata, saj se pred popolno osušitvijo zberejo v kapljice, kjer se bistveno poveča koncentracija Pt in povzroči nastanek velikih skupkov po osušitvi. Temperatura redukcije je prirejena glede na parni tlak reducenta.-5The adequate size of platinum particles, the uniform distribution of these particles, the large specific surface area and their good adhesion to the substrate are due to the specific order of the processes or chemical reactions in the process described. These properties are achieved by first dissolving the Pt precursor dissolved in a suitable solvent evenly onto the substrate and drying the applied layer. Using a suitable reducing agent applied in the gas phase, the platinum is reduced to its elemental state. This prevents re-dissolving which would occur if the liquid reducing agent were applied directly to the precursor layer and, consequently, agglomeration of the particles upon reduction. At the same time, the uniform distribution of Pt nano-particles across the surface is maintained. Liquid reducing agents have a high surface tension, which, unlike the solvents used in the application of precursors, prevents the uniform application of Pt to the substrate surface, since they are collected in droplets before complete drying, which significantly increases the concentration of Pt and leads to the formation of large aggregates after drying. The reduction temperature is adjusted according to the vapor pressure of the reducing agent.

Opis postopka po izumuDescription of the process according to the invention

Slike prikazujejo:Pictures show:

Slika 1 predstavlja SEM sliko nano-platine nanesene s »spin-coating« metodo na steklo prevlečeno s SnO2:F prevodnim slojem pri 50.000-kratni povečavi.Figure 1 presents a SEM image of a nano-platinum applied by spin-coating method on a SnO 2 : F-coated glass layer at 50,000 magnification.

Slika 2 predstavlja SEM sliko nano-platine nanesene s »spin-coating« metodo na steklo prevlečeno s SnO2:F prevodnim slojem pri 100.000-kratni povečavi.Figure 2 represents a SEM image of a nano-platinum applied by spin-coating method on a SnO 2 : F-coated glass layer at 100,000 magnification.

Slika 3 predstavlja SEM sliko nano-platine nanesene s »spin-coating« metodo na steklo prevlečeno s SnO2:F prevodnim slojem pri 300.000-kratni povečavi.Figure 3 represents a SEM image of a nano-platinum applied by spin-coating method on a SnO 2 : F-coated glass layer at 300,000 magnification.

Slika 4 predstavlja SEM sliko nano-platine nanesene z »drop-coating« metodo na steklo prevlečeno s SnO2:F prevodnim slojem pri 100.000-kratni povečavi.Figure 4 represents a SEM image of a nano-platinum deposited by a drop-coating method on a SnO 2 : F-coated glass layer at 100,000 magnification.

Slika 5 predstavlja SEM sliko nano-platine nanesene z »drop-coating« metodo na steklo prevlečeno s SnO2:F prevodnim slojem pri 200.000-kratni povečavi.Figure 5 represents a SEM image of a nano-platinum deposited by a drop-coating method on a SnO 2 : F-coated glass layer at 200,000 magnification.

-6Slika 6 predstavlja SEM sliko nano-platine nanesene z »drop-coating« metodo na steklo prevlečeno s SnO2:F prevodnim slojem pri 400.000-kratni povečavi.-6Figure 6 is a SEM image of a nano-platinum deposited by a drop-coating method on a SnO 2 : F-coated glass layer at 400,000 magnification.

Slika 7 predstavlja XPS spekter prevodnega stekla in plasti Pt na prevodnem steklu.Figure 7 represents the XPS spectrum of conductive glass and the Pt layer on conductive glass.

Slika 8 predstavlja XPS spekter platine 4f v plasti platine.Figure 8 represents the XPS spectrum of platinum 4f in the platinum layer.

Slika 9 predstavlja prvih 10 ciklov narejenih s ciklično voltametrijo v jodidnem elektrolitu.Figure 9 represents the first 10 cycles made by cyclic voltammetry in an iodide electrolyte.

Slika 10 predstavlja 1000 ciklov narejenih v 0,1 M HCIO4.Figure 10 represents 1000 cycles made in 0.1 M HCIO 4 .

Slika 11 predstavlja 1000 ciklov narejenih v jodidnem elektrolitu.Figure 11 represents 1000 cycles made in an iodide electrolyte.

Slika 12 predstavlja lOOte cikle vzorcev z nanesenimi različnimi masami Pt v 0,1 M HCIO4.Figure 12 represents lOOte cycles of samples with different Pt masses applied in 0.1 M HCIO 4 .

Slika 13 predstavlja lOOte cikle vzorcev z nanesenimi različnimi masami Pt v jodidnem elektrolitu.Figure 13 represents the lOOte cycles of samples deposited with different masses of Pt in the iodide electrolyte.

Slika 14 predstavlja l-V graf sestavljene gratzlove solarne celice.Figure 14 is a l-V graph of a compound gratzl solar cell.

Predmet izuma je postopek za pripravo plasti elementarne platine pri nizki temperaturi z uporabo reducenta v plinasti fazi. Postopek je označen s tem, da vsebuje stopnje:The subject of the invention is a process for preparing a low temperature elemental platinum layer using a gaseous phase reducing agent. The process is characterized in that it contains the steps of:

a) Priprava raztopine Pt-prekurzorja.a) Preparation of Pt precursor solution.

Prekurzor je topen kompleks platine, prednostno heksakloroplatinova(IV) kislina (H2PtCI6) in njene soli.The precursor is a soluble platinum complex, preferably hexachloroplatinic (IV) acid (H 2 PtCI 6 ) and salts thereof.

Topila so tista znana topila, ki raztapljajo prekurzorje po izumu in obsegajo vodo ali organske spojine ali mešanico organskih spojin oziroma mešanico vode in organskih spojin. Prednostno je to mešanica vode in alkohola, pri čemer je alkohol prednostno etanol in je razmerje med alkoholom in vodo več kot 1: 1, prednostno 97 % EtOH.Solvents are those known solvents that dissolve precursors of the invention and comprise water or organic compounds or a mixture of organic compounds or a mixture of water and organic compounds. Preferably, it is a mixture of water and alcohol, the alcohol being preferably ethanol and the alcohol-water ratio being more than 1: 1, preferably 97% EtOH.

b) Nanos Pt-prekurzorja na substrat.b) Application of the Pt precursor to the substrate.

Substrati so snovi, ki so termično obstojne najmanj do 100 °C in kemično odporne na Pt-prekurzor, topilo in reducent, prednostno steklo, polimeri, keramika, ogljik, polprevodniki, kovinski oksidi.Substrates are substances that are thermally resistant to at least 100 ° C and chemically resistant to Pt precursor, solvent and reducing agent, preferential glass, polymers, ceramics, carbon, semiconductors, metal oxides.

c) Osušitev nanosa iz stopnje b).c) Dehumidification of step b).

• ·• ·

-7d) Redukcija osušenega nanosa Pt-prekurzorja iz stopnje b) do elementarne platine z uporabo reducenta v plinasti fazi.-7d) Reduction of the dried deposition of the Pt precursor from step b) to elemental platinum using a gaseous phase reducing agent.

Reducenti v okviru izuma so tisti, ki pri temperaturi do 170 °C v plinastem stanuju reducirajo osušen prekurzor v okvru izuma, prednostno so to: mravljična kislina, etilen glikol, metanal, etanal in propanal.The reducing agents of the invention are those which, at a temperature of up to 170 ° C in a gaseous residence, reduce the dried precursor within the scope of the invention, preferably are: formic acid, ethylene glycol, methanal, ethanal and propanal.

Stopnja a)Level a)

Prednostno pripravimo raztopino heksakloroplatinove(IV) kisline H2PtCI6 v organskem topilu ali mešanici organskega topila in vode, pri čemer je organsko topilo prednostno alkohol, bolj prednostno 97 % etanol. Izbira topila vpliva tudi na viskoznost pripravljene raztopine H2PtCI6. Pomembna za nanos enakomernega sloja sta predvsem površinska napetost topila in hidrofilnost substrata.Preferably, a solution of hexachloroplatinic (IV) acid H 2 PtCI 6 is prepared in an organic solvent or a mixture of organic solvent and water, the organic solvent being preferably alcohol, more preferably 97% ethanol. The choice of solvent also affects the viscosity of the prepared H 2 PtCI 6 solution. The surface tension of the solvent and the hydrophilicity of the substrate are particularly important for the application of a uniform layer.

Stopnja b)Level b)

Pt prekurzor iz stopnje a) nanesemo na substrat:Pt precursor from step a) is applied to the substrate:

1) s tehniko adsorpcije Pt kompleksa na površino substrata, tako da substrat potopimo v raztopino iz stopnje a) s koncentracijo od 106 M do nasičene raztopine. Čas namakanja je od 1 minute do 24 ur, prednostno 30 minut. Po namakanju substrat temeljito speremo s čistim topilom.1) by the technique of adsorption of the Pt complex onto the substrate surface, so that the substrate is immersed in the solution of step a) at a concentration of 10 6 M to a saturated solution. The soaking time is from 1 minute to 24 hours, preferably 30 minutes. After soaking, the substrate is thoroughly washed with a clean solvent.

2) s tehniko potapljanja - »dip-coating«, tako da substrat potopimo v raztopino iz stopnje a) in izvlečemo z enakomerno hitrostjo. Hitrost je odvisna od želene debeline nanesene plasti, praviloma pa je med 0,1 in 100 cm/min.2) dip dip coating, so that the substrate is immersed in the solution from step a) and extracted at a steady rate. The velocity depends on the desired thickness of the applied layer, and is generally between 0.1 and 100 cm / min.

Možen je dodatek organskih molekul v raztopino, ki se zamrežijo in povečajo viskoznost raztopine, npr. Citronska kislina v EtOH, ali nanos omakal na substrat, ki izboljšajo oprijem prekurzorja na površino substrata, npr. 1 % raztopina etolata TD 80, in tako omogočajo nanos debelejših in bolj enakomernih plasti. Vplivajo pa tudi na kompaktnost dobljenih plasti inOrganic molecules may be added to the solution, which crosslinks and increase the viscosity of the solution, e.g. Citric acid in EtOH, or coating the substrate to improve the adhesion of the precursor to the substrate surface, e.g. 1% solution of TD 80 etholate, allowing for the application of thicker and more even layers. They also affect the compactness of the resulting layers and

-8posledično na njihovo specifično površino. Problem pa je, da organske molekule lahko ostanejo adsorbirane na površino in lahko zmanjšajo delovanje katalizatorja.-8 subsequently to their specific surface. The problem, however, is that organic molecules can remain adsorbed to the surface and can reduce the catalyst's performance.

3) s tehniko »spin coating«, tako da ustrezno količino raztopine iz stopnje a) kapnemo na vrteč substrat. Količina Pt in debelina sloja sta pogojeni s koncentracijo raztopine, hitrostjo vrtenja substrata ter velikostjo substrata. Čas vrtenja substrata po nanosu raztopine je od 10 sekund do 1 minute in je odvisen od časa potrebnega da se vzorec posuši, pri čemer je količina nanesenega prekurzorja prednostno od 10 μί/cm2 do 100 pL/cm2, bolj prednostno 25 pL/cm2 in je odvisna od hitrosti vrtenja substrata in uporabljenega topila. Hitrost vrtenja spin coaterja je prednostno od 500 do 10000 vrtljajev/min, bolj prednostno 2000 vrtljajev/min.3) using the spin coating technique, by dropping the appropriate amount of solution from step a) onto a rotating substrate. The amount of Pt and the thickness of the layer are dependent on the concentration of the solution, the speed of rotation of the substrate and the size of the substrate. The rotation time of the substrate after application of the solution is from 10 seconds to 1 minute and depends on the time required for the sample to dry, with the amount of precursor applied preferably from 10 μί / cm 2 to 100 pL / cm 2 , more preferably 25 pL / cm 2 and depends on the speed of rotation of the substrate and the solvent used. The spin speed of the spin coater is preferably from 500 to 10,000 rpm, more preferably 2000 rpm.

4) s tehniko »spray-coating«, tako da raztopino iz stopnje a), s koncentracijo od 10'5 6 M do nasičene raztopine, razpršimo po površini substrata in pustimo, da se posuši. Volumen uporabjene raztopine je od 1 pL do 320 pL na 1 cm2 substrata. Temperatura substrata je od 0 do 150 °C, in je odvisna od uporabljenega topila.4) spray-coating, so that the solution from step a), with a concentration of 10 ' 5 6 M to a saturated solution, is sprayed over the surface of the substrate and allowed to dry. The volume of solution used is from 1 pL to 320 pL per 1 cm 2 of substrate. The substrate temperature is from 0 to 150 ° C and depends on the solvent used.

5) s tehniko »drop-coating«, tako da raztopino iz stopnje a), s koncentracijo od 106 M do nasičene raztopine, razlijemo po površini substrata in pustimo, da se posuši. Volumen uporabjene raztopine je od 1 pL do 320 pL na 1 cm2 substrata. Temperatura substrata je od 0 do 150 “C, in je odvisna od uporabljenega topila.5) using a drop-coating technique, pour the solution from step a) at a concentration of 10 6 M to a saturated solution over the substrate surface and allow to dry. The volume of solution used is from 1 pL to 320 pL per 1 cm 2 of substrate. The substrate temperature is from 0 to 150 “C, and depends on the solvent used.

Stopnja c)Level c)

Po nanosu prekurzorja vzorec temeljito posušimo pri temperaturi od 0 do 170 °C, prednostno na sobni temperaturi. Ta korak je bistvenega pomena za doseganje dobrega oprijema Pt na substrat.After precursor application, the sample is thoroughly dried at a temperature of from 0 to 170 ° C, preferably at room temperature. This step is essential to achieve good Pt adhesion to the substrate.

-9Stopnja d)-9Stage d)

Osušen nanos iz stopnje b) izpostavimo reducentu v plinastem stanju, pri čemer je reducent prednostno mravljinčna kislina, ki je segreta na temperaturo od 100 do 170 °C, prednostnoThe dried application of step b) is exposed to the reducing agent in a gaseous state, the reducing agent being preferably formic acid heated to a temperature of 100 to 170 ° C, preferably

150 °C, za čas od 1 do 60 min, prednostno za 15 min.150 ° C for 1 to 60 min, preferably 15 min.

Cikel nanosa in redukcije lahko poljubno ponavljamo ter tako povečamo količino Pt na substratu. Pri večkratnem nanosu prekurzorja se tehnike nanosa lahko poljubno kombinirajo. Največja možna količina Pt pri enkratnem nanosu in redukciji je odvisna od uporabljene tehnike in narašča od 1) do 5). Prav tako narašča tudi količina in velikost aglomeratov. Tehnika nanosa vpliva tudi na enakomernost nanesenega sloja, ki pada od 1) do 5).The application and reduction cycles can be arbitrarily repeated to increase the amount of Pt on the substrate. Multiple precursor application can be combined with any application technique. The maximum amount of Pt in single application and reduction depends on the technique used and increases from 1) to 5). The quantity and size of agglomerates is also increasing. The application technique also affects the uniformity of the applied layer, which falls from 1) to 5).

S tehniko adsorbcije je možen nanos Pt katalizatorja na substrate vseh oblik in ne samo ravnih plošč.With the adsorption technique, it is possible to apply Pt catalyst on substrates of all shapes and not just flat plates.

Analitske metodeAnalytical methods

1. Vrstična elektronska mikroskopija (SEM)1. Linear electron microscopy (SEM)

Slike so bile posnete na Zeiss ULTRA Plus vrstičnem elektronskem mikroskopu. Slike od 1 do 3 prikazujejo površino stekla prevlečenega s SnO2:F prevodnim slojem in nanesene nano-delce Pt s »spin-coating« metodo pri različnih povečavah. Dobro so razvidni veliki kristali SnO2, ki so naključno razporejeni po površini, ter delci Pt, ki jih lahko vidimo kot bele pike. Zaradi tehnike nanosa so delci Pt razporejeni predvsem okoli večjih kristalov SnO2 in med stiki teh kristalov kamor so se ujeli pri nanosu prekurzorja. Na sliki 3 je dobro razvidna velikost Pt delcev, ki je le nekaj nm.Images were taken on a Zeiss ULTRA Plus line electron microscope. Figures 1 to 3 show the surface of the SnO 2 : F-coated glass layer and applied Pt nano-particles using the spin-coating method at different magnifications. The large SnO 2 crystals, which are randomly distributed over the surface, and the Pt particles, which can be seen as white dots, are well evident. Due to the deposition technique, the Pt particles are distributed mainly around the larger SnO 2 crystals and between the contacts of these crystals where they are trapped during the precursor application. Figure 3 clearly shows the Pt particle size, which is only a few nm.

Slike od 4 do 6 prikazujejo površino stekla prevlečenega s SnO2:F prevodnim slojem in nanesene nano-delce Pt s »drop-coating« metodo pri različnih povečavah. Zaradi boljšega nadzora nad količino nanešene Pt jo lahko tukaj natančno določimo in je v tem primeru 15,6 pg/cm2. Platina predstavlja bele pike, ki prekrivajo večje kristale SnO2. Na sliki 6 je razvidno,Figures 4 to 6 show the surface of SnO 2 : F-coated glass and applied Pt nano-particles using the drop-coating method at different magnifications. For better control of the amount of Pt applied, it can be accurately determined here and in this case is 15.6 pg / cm 2 . Platinum represents white dots overlying larger SnO 2 crystals. Figure 6 shows

-10da ima zaradi nepovezanosti delcev Pt veliko specifično površino, velikost delcev pa je nekaj nm.-10that has a large specific surface area due to the disconnection of the Pt particles, and the particle size is a few nm.

2. Rentgenski fotoelektronski spektrometrija (XPS)2. X-ray Photoelectron Spectrometry (XPS)

XPS smo posneli na PHI-TFA XPS spectrometeru. Slika 7 predstavlja XPS spekter stekla prekritega s SnO2:F z in brez nanosa Pt. Slika 8 predstavlja izsek iz slike 7 v 4f Pt območju, iz česar je razvidno, da se pozicije vrhov popolnoma ujemajo s signalom za elementarno platino (črtkana črta). To potrjuje, da je Pt pripravljena s to metodo v celoti reducirana.We recorded the XPS on a PHI-TFA XPS spectrometer. Figure 7 represents the XPS spectrum of SnO 2 : F coated glass with and without Pt coating. Figure 8 represents the excerpt from Figure 7 in the 4f Pt range, indicating that the peak positions are in perfect agreement with the elemental platinum signal (dashed line). This confirms that Pt prepared with this method is completely reduced.

3. Ciklična voltametrija (CV)3. Cyclic voltammetry (CV)

Ciklovoltamogrami so bili posneti na EG&G PAR273 potentiostaomt-galvanostatom z računalniškim programom Model 270 Electrochemical analysis Softwere. Jodidni elektrolit predstavlja dober približek elektrolita, ki se uporablja v Gratzlovih solarnih celicah, njegova sestava pa je sledeča: 0,5 M litijev perklorat, 50 mM litijev jodid in 10 mM jod v propilen karbonatu (PC). Slika 9 predstavlja prvih 10 ciklov vzorca s 15,6 pg/cm2 Pt narejenih v jodidnem elektrolitu. Iz grafa je razvidno, da se katalizator stabilizira že po nekaj ciklih, njegovo delovanje pa se dejansko izboljša. Sliki 10 in 11, ki predstavljata prvih 1000 ciklov v kislini oziroma jodidnem elektrolitu in potrjujeta stabilnost katalizatorja tudi po dolgotrajni uporabi.Cyclovoltammograms were recorded on an EG&G PAR273 potentiostaomt-galvanostat using the Model 270 Electrochemical analysis Softwere software. Iodide electrolyte is a good approximation of the electrolyte used in Gratzl solar cells, and its composition is as follows: 0.5 M lithium perchlorate, 50 mM lithium iodide and 10 mM iodine in propylene carbonate (PC). Figure 9 represents the first 10 cycles of the sample with 15.6 pg / cm 2 Pt made in the iodide electrolyte. The graph shows that the catalyst stabilizes after a few cycles, but its performance actually improves. Figures 10 and 11, which represent the first 1000 cycles in the acid or iodide electrolyte, respectively, and confirm the stability of the catalyst even after prolonged use.

Sliki 12 in 13 predstavljata stote cikle vzorcev z različnimi količinami nanesene Pt, ciklane v 0,1 M HCIO4 ter v jodidnem elektrolitu. Iz grafov je razvidno, da katalitska aktivnost narašča z večanjem količine Pt, vendar je delovanje očitno že pri relativno nizkih količinah (pod 1 pg/cm2).Figures 12 and 13 represent hundreds of cycles of samples with varying amounts of Pt deposited, cyclans in 0.1 M HCIO 4 and in an iodide electrolyte. The graphs show that the catalytic activity increases with increasing amount of Pt, but the activity is evident even at relatively low amounts (below 1 pg / cm 2 ).

4. Izdelava Gratzlove solarne celice s podatki4. Making Gratzl Solar Cells with Data

Celice so bile sestavljene iz komercialno dostopnih materialov, ki smo jih kupili pri Solaronixu. Delovno elektrodo smo pripravili tako da smo pasto TiO2 nanesli na površino 1 cm2 na stekelce (SnO2:F, Solaronix, Ro = 7 Ω1, OTE-optično transparentna elektroda) velikosti 2,5 xThe cells consisted of commercially available materials that we purchased from Solaronix. The working electrode was prepared by applying a TiO 2 paste to a surface of 1 cm 2 on glasses (SnO 2 : F, Solaronix, Ro = 7 Ω 1 , OTE-optically transparent electrode) 2.5 x

-112,5 cm ter jo sintrali pri 450 °C 30 minut. Elektrodo smo nato potopili v raztopino barvila (Ruthenizer 535-bis-TBS, Solaronix, 20 mg/50 mL v etanolu). Po desetih urah smo elektrodo dobro sprali in posušili. Nasprotno elektrodo smo pripravili, tako da smo Pt nanesli na OTE z »drop-coating« metodo in kemično reducirali s parami mravljične kisline pri 150 °C. Ko so bile celice sestavljene, smo jih dodatno prekrili z masko s površino 1 cm2, da bi preprečili vpliv neželjene svetlobe.-112.5 cm and sintered at 450 ° C for 30 minutes. The electrode was then immersed in a dye solution (Ruthenizer 535-bis-TBS, Solaronix, 20 mg / 50 mL in ethanol). After ten hours, the electrode was well washed and dried. The opposite electrode was prepared by applying Pt to the OTE by a drop-coating method and chemically reduced with formic acid vapor at 150 ° C. When the cells were assembled, they were additionally covered with a 1 cm 2 mask to prevent the effect of unwanted light.

Delovanje sestavljene celice smo testirali z aparaturo 73 Oriel® Sol3A™ Class AAA Solar Simulators. Glavne karakteristike kot so Voc (napetost pri odprtem tokokrogu), Jsc (gostota toka pri kratkem stiku), Fill Factor (FF) in izkoristek so podani v tabeli:The performance of the compound cell was tested with 73 Oriel® Sol3A ™ Class AAA Solar Simulators. Main characteristics such as V oc (open circuit voltage), J sc (short circuit current density), Fill Factor (FF) and efficiency are given in the table:

Voc (V) Voc (V) Jsc (mA/cm2)Jsc (mA / cm 2 ) Fill Factor Fill Factor lzkoristek(%) Utilization (%) 0,682752 0,682752 0,009261 0,009261 55,6489 55,6489 3,7198 3,7198

Slika 14 predstavlja l-V graf (tok v odvisnosti od napetosti) sestavljene celice iz katerega se da določiti FF, ki predstavlja razmerje med teoretičnim največjim izkoristkom in dejanskim, ter maksimalno moč (Pmax) in tok ter napetost pri maksimalni moči (lmax, Vmax).Figure 14 is a lV graph (current vs. voltage) of a composite cell from which the FF can be determined, which represents the relationship between theoretical maximum efficiency and actual, and maximum power (P max ) and current and voltage at maximum power (l max , V max ).

Pmax (mW)P max (mW) lmax (A) lmax (A) Vmax(V)V max (V) 3,518619 3,518619 0,00783 0,00783 0,449352 0,449352

Izvedbeni primeriImplementation examples

Primer 1Example 1

Steklena ploščica se potopi v raztopino H2PtCl6 v etanolu. Po 10 minutah v raztopini ploščico odstranimo in temeljito speremo z etanolom. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The glass plate is immersed in a solution of H 2 PtCl6 in ethanol. After 10 minutes in the solution, the plate is removed and thoroughly washed with ethanol. After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 2Example 2

Steklena ploščica se potopi v 0,02 M raztopino H2PtCL v etanolu in se enakomerno izvleče s hitrostjo 10 cm/min. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The glass plate is immersed in 0.02 M solution of H 2 PtCL in ethanol and extracted evenly at a rate of 10 cm / min. After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 3Example 3

-120,02 M raztopino H2PtCI6v etanolu se kapne na vrtečo stekleno ploščico, tako da se raztopina enakomerno razlije po ploščici. Hitrost vrtenja je 2000 obratov/minuto. Volumen uporabljene raztopine je več kot 16 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.-120.02 M solution of H 2 PtCI 6 in ethanol is dripped onto a rotating glass tile so that the solution is evenly spilled over the tile. The speed of rotation is 2000 rpm. The volume of solution used is more than 16 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 4Example 4

Ustrezno količino 0,02 M raztopine H2PtCl6 v etanolu se enakomerno razprši po stekleni ploščici segreti na 70 ° C, tako da je količina raztopine 4 pL/cm2. Vzorec se nato izpostavi param mravljične kisline pri 150 °C za 15 minut.An appropriate amount of 0.02 M solution of H 2 PtCl6 in ethanol is uniformly dispersed over a glass plate heated to 70 ° C, so that the amount of solution is 4 pL / cm 2 . The sample is then exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 5Example 5

0,02 M raztopino H2PtCI6 v etanolu se enakomerno razlije po stekleni ploščici, tako da je količina raztopine 4 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The 0.02 M solution of H 2 PtCI 6 in ethanol is poured evenly over the glass tile so that the amount of solution is 4 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 6Example 6

Polimerna folija se potopi v raztopino H2PtCI6 v etanolu. Po 10 minutah v raztopini folijo odstranimo in temeljito speremo z etanolom. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The polymer film is immersed in a solution of H 2 PtCI 6 in ethanol. After 10 minutes in the solution, remove the film and rinse thoroughly with ethanol. After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 7Example 7

Polimerna folija se potopi v 0,02 M raztopino H2PtCI6 v etanolu in se enakomerno izvleče s hitrostjo 10 cm/min. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The polymer film is immersed in 0.02 M solution of H 2 PtCI 6 in ethanol and extracted evenly at a rate of 10 cm / min. After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 8Example 8

-130,02 M raztopino H2PtCI6 v etanolu se kapne na vrtečo polimerno folijo, tako da se raztopina enakomerno razlije po foliji. Hitrost vrtenja je 2000 obratov/minuto. Volumen uporabljene raztopine je več kot 16 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.-130.02 M solution of H 2 PtCI 6 in ethanol is dripped onto a rotating polymer film so that the solution is evenly poured over the film. The speed of rotation is 2000 rpm. The volume of solution used is more than 16 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 9Example 9

Ustrezno količino 0,02 M raztopine H2PtCI6 v etanolu se enakomerno razprši po polimerni foliji segreti na 70 ° C, tako da je količina raztopine 4 pL/cm2. Vzorec se nato izpostavi param mravljične kisline pri 150 °C za 15 minut.An appropriate amount of 0.02 M solution of H 2 PtCI 6 in ethanol is uniformly dispersed over the polymer film heated to 70 ° C so that the amount of solution is 4 pL / cm 2 . The sample is then exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 10Example 10

0,02 M raztopino H2PtCI6 v etanolu se enakomerno razlije po polimerni foliji, tako da je količina raztopine 4 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The 0.02 M solution of H 2 PtCI 6 in ethanol is poured evenly over the polymer film so that the amount of solution is 4 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 11Example 11

Polimerna folija s prevodno plastjo se potopi v raztopino H2PtCI6 v etanolu. Po 10 minutah v raztopini folijo odstranimo in temeljito speremo z etanolom. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The polymer film with a conductive layer is immersed in a solution of H 2 PtCI 6 in ethanol. After 10 minutes in the solution, remove the film and rinse thoroughly with ethanol. After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 12Example 12

-14Polimerna folija s prevodno plastjo se potopi v 0,02 M raztopino H2PtCI6 v etanolu in se enakomerno izvleče s hitrostjo 10 cm/min. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.-14Polymer film with conductive layer is immersed in 0.02 M solution of H 2 PtCI 6 in ethanol and extracted evenly at a rate of 10 cm / min. After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 13Example 13

0,02 M raztopino H2PtCI6 v etanolu se kapne na vrtečo polimerno folijo s prevodno plastjo, tako da se raztopina enakomerno razlije po foliji. Hitrost vrtenja je 2000 obratov/minuto. Volumen uporabljene raztopine je več kot 16 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.A 0.02 M solution of H 2 PtCI 6 in ethanol is dripped onto a rotating polymer film with a conductive layer so that the solution is evenly spilled over the film. The speed of rotation is 2000 rpm. The volume of solution used is more than 16 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 14Example 14

Ustrezno količino 0,02 M raztopine Η2Ρΐϋβ v etanolu se enakomerno razprši po polimerni foliji s prevodno plastjo segreti na 70 ° C, tako da je količina raztopine 4 pL/cm2. Vzorec se nato izpostavi param mravljične kisline pri 150 °C za 15 minut.The appropriate amount of 0.02 M solution of Η 2 Ρΐϋβ in ethanol is uniformly dispersed over a polymer film with a conductive layer heated to 70 ° C, so that the amount of solution is 4 pL / cm 2 . The sample is then exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 15Example 15

0,02 M raztopino H2PtCI6 v etanolu se enakomerno razlije po polimerni foliji s prevodno plastjo, tako da je količina raztopine 4 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The 0.02 M solution of H 2 PtCI 6 in ethanol is poured evenly over a polymer film with a conductive layer so that the amount of solution is 4 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 16Example 16

Steklena ploščica s prevodno plastjo se potopi v raztopino H2PtCI6 v etanolu. Po 10 minutah v raztopini ploščico odstranimo in temeljito speremo z etanolom. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The glass plate with the conductive layer is immersed in a solution of H 2 PtCI 6 in ethanol. After 10 minutes in the solution, the plate is removed and thoroughly washed with ethanol. After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 17Example 17

Steklena ploščica s prevodno plastjo se potopi v 0,02 M raztopino H2PtCI5 v etanolu in se enakomerno izvleče s hitrostjo 10 cm/min. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The glass plate with the conductive layer is immersed in 0.02 M solution of H 2 PtCI 5 in ethanol and extracted evenly at a rate of 10 cm / min. After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

-15Primer 18-15Example 18

0,02 M raztopino H2PtCI6 v etanolu se kapne na vrtečo stekleno ploščico s prevodno plastjo, tako da se raztopina enakomerno razlije po ploščici. Hitrost vrtenja je 2000 obratov/min uto. Volumen uporabljene raztopine je več kot 16 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 “C za 15 minut.A 0.02 M solution of H 2 PtCI 6 in ethanol is dripped onto a rotating glass plate with a conductive layer so that the solution is evenly spilled across the plate. Rotation speed is 2000 rpm Tue. The volume of solution used is more than 16 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 19Example 19

Ustrezno količino 0,02 M raztopine H2PtCl6 v etanolu se enakomerno razprši po stekleni ploščici s prevodno plastjo segreti na 70 ° C, tako da je količina raztopine 4 pL/cm2. Vzorec se nato izpostavi param mravljične kisline pri 150 °C za 15 minut.The appropriate amount of 0.02 M solution of H 2 PtCl6 in ethanol is uniformly dispersed over a glass plate with a conductive layer heated to 70 ° C, so that the amount of solution is 4 pL / cm 2 . The sample is then exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 20Example 20

0,02 M raztopino H2PtCI6 v etanolu se enakomerno razlije po stekleni ploščici s prevodno plastjo, tako da je količina raztopine 4 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param mravljične kisline pri 150 °C za 15 minut.The 0.02 M solution of H 2 PtCI 6 in ethanol is poured evenly over a glass plate with a conductive layer so that the amount of solution is 4 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to formic acid vapor at 150 ° C for 15 minutes.

Primer 21Example 21

Steklena ploščica se potopi v raztopino H2PtCI6 v etanolu. Po 10 minutah v raztopini ploščico odstranimo in temeljito speremo z etanolom. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The glass plate is immersed in a solution of H 2 PtCI 6 in ethanol. After 10 minutes in the solution, the plate is removed and thoroughly washed with ethanol. After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 22Example 22

Steklena ploščica se potopi v 0,02 M raztopino H2PtCl6 v etanolu in se enakomerno izvleče s hitrostjo 10 cm/min. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The glass plate is immersed in 0.02 M solution of H 2 PtCl6 in ethanol and extracted evenly at a rate of 10 cm / min. After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 23Example 23

-160,02 M raztopino H2PtCI6 v etanolu se kapne na vrtečo stekleno ploščico, tako da se raztopina enakomerno razlije po ploščici. Hitrost vrtenja je 2000 obratov/minuto. Volumen uporabljene raztopine je več kot 16 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.-160.02 M solution of H 2 PtCI 6 in ethanol is dripped onto a rotating glass tile so that the solution is evenly spilled over the tile. The speed of rotation is 2000 rpm. The volume of solution used is more than 16 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 24Example 24

Ustrezno količino 0,02 M raztopine H2PtCl6 v etanolu se enakomerno razprši po stekleni ploščici segreti na 70 ° C, tako da je količina raztopine 4 pL/cm2. Vzorec se nato izpostavi param etilen glikola pri 150 °C za 15 minut.An appropriate amount of 0.02 M solution of H 2 PtCl6 in ethanol is uniformly dispersed over a glass plate heated to 70 ° C, so that the amount of solution is 4 pL / cm 2 . The sample is then exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 25Example 25

0,02 M raztopino H2PtCl6 v etanolu se enakomerno razlije po stekleni ploščici, tako da je količina raztopine 4 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The 0.02 M solution of H 2 PtCl6 in ethanol is poured evenly over the glass tile so that the amount of solution is 4 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 26Example 26

Polimerna folija se potopi v raztopino H2PtCl6 v etanolu. Po 10 minutah v raztopini folijo odstranimo in temeljito speremo z etanolom. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The polymer film is immersed in a solution of H 2 PtCl 6 in ethanol. After 10 minutes in the solution, remove the film and rinse thoroughly with ethanol. After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

-17Primer 27-17Example 27

Polimerna folija se potopi v 0,02 M raztopino H2PtCI6 v etanolu in se enakomerno izvleče s hitrostjo 10 cm/min. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The polymer film is immersed in 0.02 M solution of H 2 PtCI 6 in ethanol and extracted evenly at a rate of 10 cm / min. After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 28Example 28

0,02 M raztopino H2PtCI6 v etanolu se kapne na vrtečo polimerno folijo, tako da se raztopina enakomerno razlije po foliji. Hitrost vrtenja je 2000 obratov/minuto. Volumen uporabljene raztopine je več kot 16 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The 0.02 M solution of H 2 PtCI 6 in ethanol is dripped onto a rotating polymer film so that the solution is evenly poured over the film. The speed of rotation is 2000 rpm. The volume of solution used is more than 16 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 29Example 29

Ustrezno količino 0,02 M raztopine H2PtCl6 v etanolu se enakomerno razprši po polimerni foliji segreti na 70 ° C, tako da je količina raztopine 4 pL/cm2. Vzorec se nato izpostavi param etilen glikola pri 150 °C za 15 minut.An appropriate amount of 0.02 M solution of H 2 PtCl6 in ethanol is uniformly dispersed over the polymer film heated to 70 ° C so that the amount of solution is 4 pL / cm 2 . The sample is then exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 30Example 30

0,02 M raztopino H2PtCl6 v etanolu se enakomerno razlije po polimerni foliji, tako da je količina raztopine 4 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The 0.02 M solution of H 2 PtCl6 in ethanol is poured evenly over the polymer film so that the amount of solution is 4 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 31Example 31

Polimerna folija s prevodno plastjo se potopi v raztopino H2PtCI6 v etanolu. Po 10 minutah v raztopini folijo odstranimo in temeljito speremo z etanolom. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 “C za 15 minut.The polymer film with a conductive layer is immersed in a solution of H 2 PtCI 6 in ethanol. After 10 minutes in the solution, remove the film and rinse thoroughly with ethanol. After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 32Example 32

Polimerna folija s prevodno plastjo se potopi v 0,02 M raztopino H2PtClG v etanolu in se enakomerno izvleče s hitrostjo 10 cm/min. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The polymer film with a conductive layer is immersed in a 0.02 M solution of H 2 PtClG in ethanol and extracted evenly at a rate of 10 cm / min. After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

-18Primer 33-18Example 33

0,02 M raztopino H2PtCI6 v etanolu se kapne na vrtečo polimerno folijo s prevodno plastjo, tako da se raztopina enakomerno razlije po foliji. Hitrost vrtenja je 2000 obratov/minuto. Volumen uporabljene raztopine je več kot 16 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.A 0.02 M solution of H 2 PtCI 6 in ethanol is dripped onto a rotating polymer film with a conductive layer so that the solution is evenly spilled over the film. The speed of rotation is 2000 rpm. The volume of solution used is more than 16 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 34Example 34

Ustrezno količino 0,02 IVI raztopine H2PtCI6 v etanolu se enakomerno razprši po polimerni foliji s prevodno plastjo segreti na 70 ° C, tako da je količina raztopine 4 pL/cm2. Vzorec se nato izpostavi param etilen glikola pri 150 °C za 15 minut.The corresponding amount of 0.02 IVI solution of H 2 PtCI 6 in ethanol is uniformly dispersed over the polymer film with the conductive layer heated to 70 ° C, so that the amount of solution is 4 pL / cm 2 . The sample is then exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 35Example 35

0,02 M raztopino H2PtCI6 v etanolu se enakomerno razlije po polimerni foliji s prevodno plastjo, tako da je količina raztopine 4 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 “C za 15 minut.The 0.02 M solution of H 2 PtCI 6 in ethanol is poured evenly over a polymer film with a conductive layer so that the amount of solution is 4 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 36Example 36

Steklena ploščica s prevodno plastjo se potopi v raztopino H2PtCI6 v etanolu. Po 10 minutah v raztopini ploščico odstranimo in temeljito speremo z etanolom. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The glass plate with the conductive layer is immersed in a solution of H 2 PtCI 6 in ethanol. After 10 minutes in the solution, the plate is removed and thoroughly washed with ethanol. After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

• · · ·• · · ·

Primer 37Example 37

Steklena ploščica s prevodno plastjo se potopi v 0,02 M raztopino H2PtCl6 v etanolu in se enakomerno izvleče s hitrostjo 10 cm/min. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The glass plate with the conductive layer is immersed in 0.02 M solution of H 2 PtCl6 in ethanol and extracted evenly at a rate of 10 cm / min. After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 38Example 38

0,02 M raztopino H2PtCl6 v etanolu se kapne na vrtečo stekleno ploščico s prevodno plastjo, tako da se raztopina enakomerno razlije po ploščici. Hitrost vrtenja je 2000 obratov/minuto. Volumen uporabljene raztopine je več kot 16 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.A 0.02 M solution of H 2 PtCl6 in ethanol is dripped onto a rotating glass plate with a conductive layer so that the solution is evenly spilled across the plate. The speed of rotation is 2000 rpm. The volume of solution used is more than 16 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 39Example 39

Ustrezno količino 0,02 M raztopine H2PtCl6 v etanolu se enakomerno razprši po stekleni ploščici s prevodno plastjo segreti na 70 ° C, tako da je količina raztopine 4 pL/cm2. Vzorec se nato izpostavi param etilen glikola pri 150 °C za 15 minut.The appropriate amount of 0.02 M solution of H 2 PtCl6 in ethanol is uniformly dispersed over a glass plate with a conductive layer heated to 70 ° C, so that the amount of solution is 4 pL / cm 2 . The sample is then exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Primer 40Example 40

0,02 M raztopino H2PtCI6 v etanolu se enakomerno razlije po stekleni ploščici s prevodno plastjo, tako da je količina raztopine 4 pL/cm2. Po 15 minutah sušenja na sobni temperaturi se vzorec izpostavi param etilen glikola pri 150 °C za 15 minut.The 0.02 M solution of H 2 PtCI 6 in ethanol is poured evenly over a glass plate with a conductive layer so that the amount of solution is 4 pL / cm 2 . After drying at room temperature for 15 minutes, the sample is exposed to ethylene glycol vapor at 150 ° C for 15 minutes.

Postopek po izumu torej vsebuje stopnje priprave raztopine Pt-prekurzorja, nanos Ptprekurzorja na substrat, osušitev nanosa in redukcijo osušenega nanosa Pt-prekurzorja, pri čemer redukcija poteka pri temperaturi do 170 °C, prednostno pri 150 ° C, z uporabo reducenta v plinasti fazi. Pt prekurzor je topen kompleks platine, prednostnoThe process of the invention thus comprises the steps of preparing a Pt precursor solution, applying the Pt precursor to the substrate, drying the coating and reducing the dried coating of the Pt precursor, the reduction being carried out at a temperature up to 170 ° C, preferably at 150 ° C, using a reducing agent in the gaseous phase . Pt precursor is a soluble platinum complex, preferably

-20heksakloroplatinova kislina (H2PtCle) in njene soli. Topilo je voda ali organska spojina ali mešanica organskih spojin oziroma mešanica vode in organskih spojin, ki raztaplja prekurzor po predloženem izumu, prednostno je to mešanica vode in alkohola, pri čemer je alkohol prednostno etanol in je razmerje med alkoholom in vodo več kot 1 : 1, prednostno 97 % EtOH. Substrat je snov, ki je termično obstojna najmanj do 100 °C in kemično odporna na Pt-prekurzor, topilo in reducent, prednostno steklo, polimeri, keramika, ogljik, polprevodniki, kovinski oksidi. Reducent je spojina, ki pri temperaturi do 170 °C v plinastem stanuju reducira osušen prekurzor po izumu, prednostno mravljična kislina, etilen glikol, metanal, etanal in propanal. Opcije za nanos prekurzorja so adsorpcija z namakanjem, sol-gel postopek, spin-coating, spray-coating, drop-coating ali poljubne kombinacije vseh tehnik.-20hexachloroplatinic acid (H 2 PtCle) and its salts. A solvent is water or an organic compound or a mixture of organic compounds or a mixture of water and organic compounds that dissolves a precursor of the present invention, preferably a mixture of water and alcohol, the alcohol being preferably ethanol and the alcohol-water ratio being more than 1: 1 , preferably 97% EtOH. The substrate is a substance that is thermally stable to at least 100 ° C and chemically resistant to Pt precursor, solvent and reducing agent, preferably glass, polymers, ceramics, carbon, semiconductors, metal oxides. A reducing agent is a compound which, at a temperature of up to 170 ° C in a gaseous residence, reduces the dried precursor of the invention, preferably formic acid, ethylene glycol, methanal, ethanal and propanal. Options for precursor application are soaking adsorption, sol-gel process, spin coating, spray coating, drop coating or any combination of all techniques.

Gratzlova solarna celica po izumu vsebuje protielektrodo, pripravljeno po postopku po izumu.The Gratzel solar cell according to the invention contains a counter electrode prepared according to the process of the invention.

Imobiliziran Pt katalizatorje pripravljen po postopku po izumu.Immobilized Pt catalysts prepared by the process of the invention.

Pt elektro-katalizator pripravljen po postopku po izumu.Pt electro-catalyst prepared according to the process of the invention.

Claims (8)

Patentni zahtevkiPatent claims 1. Postopek priprave tanke plasti Pt katalizatorja, kjer postopek vsebuje stopnje priprave raztopine Pt-prekurzorja, nanos Pt-prekurzorja na substrat, osušitev nanosa in redukcijo osušenega nanosa Pt-prekurzorja, označen s tem, da redukcija poteka pri temperaturi do 170 °C, prednostno pri 150 ° C, z uporabo reducenta v plinasti fazi.1. A process for preparing a thin layer of Pt catalyst, wherein the process comprises the steps of preparing a Pt precursor solution, applying the Pt precursor to the substrate, drying the coating and reducing the dried coating of the Pt precursor, characterized in that the reduction takes place at a temperature up to 170 ° C, preferably at 150 ° C using a gaseous phase reducing agent. 2. Postopek po zahtevku 1, označen s tem, da je Pt prekurzor topen kompleks platine, prednostno heksakloroplatinova kislina (lEPtCU) in njene soli.2. The process of claim 1, wherein the Pt precursor is a soluble platinum complex, preferably hexachloroplatinic acid (lEPtCU) and salts thereof. 3. Postopek po zahtevku 1, označen s tem, da je topilo voda ali organska spojina ali mešanica organskih spojin oziroma mešanica vode in organskih spojin, ki raztaplja prekurzor po predloženem izumu, prednostno je to mešanica vode in alkohola, pri čemer je alkohol prednostno etanol in je razmerje med alkoholom in vodo več kot 1 : 1, prednostno 97 % EtOH.Process according to claim 1, characterized in that the solvent is water or an organic compound or a mixture of organic compounds or a mixture of water and organic compounds that dissolves the precursor of the present invention, preferably a mixture of water and alcohol, the alcohol being preferably ethanol and the alcohol to water ratio is more than 1: 1, preferably 97% EtOH. 4. Postopek po zahtevku 1, označen s tem, da je substrat snov, ki je termično obstojna najmanj do 100 °C in kemično odporna na Pt-prekurzor, topilo in reducent, prednostno steklo, polimeri, keramika, ogljik, polprevodniki, kovinski oksidi.Process according to claim 1, characterized in that the substrate is a substance that is thermally stable to at least 100 ° C and chemically resistant to Pt precursor, solvent and reducing agent, preferred glass, polymers, ceramics, carbon, semiconductors, metal oxides . 5. Postopek po zahtevku 1, označen s tem, da je reducent spojina, ki pri temperaturi do 170 °C v plinastem stanuju reducira osušen prekurzor po izumu, prednostno mravljična kislina, etilen glikol, metanal, etanal in propanal.Process according to claim 1, characterized in that the reducing agent is a compound which, at a temperature of up to 170 ° C in the gaseous state, reduces the dried precursor of the invention, preferably formic acid, ethylene glycol, methanal, ethanal and propanal. 6. Postopek po zahtevku 1, označen s tem, da so opcije za nanos prekurzorja adsorpcija z namakanjem, sol-gel postopek, spin-coating, spray-coating, drop-coating ali poljubne kombinacije vseh tehnik.Process according to claim 1, characterized in that the precursor application options are soaking adsorption, sol-gel process, spin coating, spray coating, drop coating or any combination of all techniques. 7. Gratzlova solarna celica, ki vsebuje protielektrodo, pripravljeno po zahtevku 1.A Gratzel solar cell containing the counter electrode prepared according to claim 1. 8. Imobiliziran Pt katalizator pripravljen po zahtevku 1.An immobilized Pt catalyst prepared according to claim 1. -229. Pt elektro-katalizator pripravljen po zahtevku 1.-229. Pt electro-catalyst prepared according to claim 1.
SI201200188A 2012-06-07 2012-06-07 The process for preparation thin film of Pt catalyst at low temperatures SI24129A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201200188A SI24129A (en) 2012-06-07 2012-06-07 The process for preparation thin film of Pt catalyst at low temperatures
EP13170845.5A EP2671641A1 (en) 2012-06-07 2013-06-06 A method of deposition of Pt or Pd catalysts using gaseous reducing agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201200188A SI24129A (en) 2012-06-07 2012-06-07 The process for preparation thin film of Pt catalyst at low temperatures

Publications (1)

Publication Number Publication Date
SI24129A true SI24129A (en) 2013-12-31

Family

ID=49784753

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201200188A SI24129A (en) 2012-06-07 2012-06-07 The process for preparation thin film of Pt catalyst at low temperatures

Country Status (1)

Country Link
SI (1) SI24129A (en)

Similar Documents

Publication Publication Date Title
Yoshida et al. Electrochemical self‐assembly of nanoporous ZnO/Eosin Y thin films and their sensitized photoelectrochemical performance
Shinde et al. Revisiting metal sulfide semiconductors: A solution‐based general protocol for thin film formation, hall effect measurement, and application prospects
CN102332356A (en) DSSC and manufacturing approach thereof
JP6853382B2 (en) A method for producing a light absorbing material having a perovskite structure, and a variable composition liquid polyhalide for carrying out the method.
US9575388B2 (en) Electrochromic devices and method of manufacturing the same
Guerra et al. Implications of TiO 2 surface functionalization on polycrystalline mixed halide perovskite films and photovoltaic devices
CN110504370A (en) A method of preparing caesium doping mixing perovskite solar battery in air environment
WO2004068627A1 (en) Photoelectric conversion element and process for fabricating the same, electronic apparatus and process for fabricating the same, and semiconductor layer and process for forming the same
Gopi et al. One-step synthesis of solution processed time-dependent highly efficient and stable PbS counter electrodes for quantum dot-sensitized solar cells
Hu et al. Transparent conductive oxide layer and hole selective layer free back-contacted hybrid perovskite solar cell
Muhyuddin et al. A new insight into solar paint concept: regeneration of CuS nanoparticles for paintable counter electrodes in QDSSCs
Couzon et al. Electrochemical observation of the plasmonic effect in photochromic Ag nanoparticle filled mesoporous TiO2 films
JP2012253004A5 (en)
Bo et al. From red selenium to cuprous selenide: a novel and facile route to a high performance metal selenide cathode for sensitized solar cells
SI24129A (en) The process for preparation thin film of Pt catalyst at low temperatures
Punnoose et al. In situ synthesis of CuS nano platelets on nano wall networks of Ni foam and its application as an efficient counter electrode for quantum dot sensitized solar cells
KR20150091447A (en) Electrochemical method of graphene oxide deposition, graphene oxide deposited substrate made by the same, and electric device including the same
JP4668660B2 (en) Method for producing porous metal oxide dye composite film
CN105679856A (en) Preparation method for Mg-doped ZnO thin film window layer through low-temperature solution method and application therefor
KR101220454B1 (en) Non-aqueous Paste Composition for Semiconductor Electrode of Dye-Sensitized Solar Cells, Method for Preparing the Composition and Dye-Sensitized Solar Cells Using the Same
KR101774353B1 (en) Dual porous structure and preparing method of the same, and electrode for photoelectrochemical cell including the same
CN104576071B (en) A kind of ruthenium complex monomolecular film and the method that ruthenium complex monomolecular film is prepared on HOPG
KR101363593B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell including the same
EP2671641A1 (en) A method of deposition of Pt or Pd catalysts using gaseous reducing agents
US9799457B2 (en) Electrode for solar cells and preparation method

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20140115

KO00 Lapse of patent

Effective date: 20190215