JP2012253004A5 - - Google Patents

Download PDF

Info

Publication number
JP2012253004A5
JP2012253004A5 JP2011263721A JP2011263721A JP2012253004A5 JP 2012253004 A5 JP2012253004 A5 JP 2012253004A5 JP 2011263721 A JP2011263721 A JP 2011263721A JP 2011263721 A JP2011263721 A JP 2011263721A JP 2012253004 A5 JP2012253004 A5 JP 2012253004A5
Authority
JP
Japan
Prior art keywords
film
metal oxide
oxide semiconductor
porous
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011263721A
Other languages
Japanese (ja)
Other versions
JP2012253004A (en
JP5358790B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011263721A priority Critical patent/JP5358790B2/en
Priority claimed from JP2011263721A external-priority patent/JP5358790B2/en
Publication of JP2012253004A publication Critical patent/JP2012253004A/en
Publication of JP2012253004A5 publication Critical patent/JP2012253004A5/ja
Application granted granted Critical
Publication of JP5358790B2 publication Critical patent/JP5358790B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

一方、色素増感型太陽電池やキャパシタのようなエネルギーディバイスを、フィルム電極を用いて薄層化し、デバイス本体の軽量化、フレキシブル化の要請がある。このため、導電性プラスチックフィルムを導電性基板として用いる色素増感型太陽電池(以下、「フィルム型色素増感型太陽電池」という。)が提案されている。ところで、光電極は金属酸化物半導体ナノ粒子を含む分散液を導電性基板上に塗布し、これを加熱処理(乾燥・焼成)することで多孔質膜を導電性基板上に形成し、これに色素を担持することで製作している。しかしながら、フィルム型色素増感型太陽電池では、導電性ガラス基板を用いる色素増感型太陽電池(以下、「ガラス型色素増感型太陽電池」という。)のように加熱温度を450℃以上とすること(以下、「高温製膜処理法」という。)ができないため、加熱温度を160℃以下とする加熱処理(乾燥・焼成)をして多孔質膜を導電性基板上に形成している(以下、「低温製膜処理法」という)。
On the other hand, energy devices such as dye-sensitized solar cells and capacitors are thinned using film electrodes, and there is a demand for lighter and more flexible device bodies. Thus, dye-sensitized using a conductive plastic film as the conductive substrate solar cell (hereinafter, referred to as "film-type dye-sensitized solar cell".) Has been proposed. By the way, the photoelectrode is formed by applying a dispersion containing metal oxide semiconductor nanoparticles onto a conductive substrate, and heat-treating (drying and firing) it to form a porous film on the conductive substrate. It is manufactured by carrying a dye. However, in a film-type dye-sensitized solar cell, the heating temperature is set to 450 ° C. or higher as in a dye-sensitized solar cell using a conductive glass substrate (hereinafter referred to as “glass-type dye-sensitized solar cell”). (Hereinafter referred to as “high-temperature film-forming method”), the porous film is formed on the conductive substrate by heat treatment (drying / firing) at a heating temperature of 160 ° C. or less. (Hereinafter referred to as “low-temperature film-forming treatment method”).

しかしながら、特許文献3では金属酸化物半導体ナノ粒子分散液(同文献において、「酸化チタンゾル液」)調製は、酸化チタン微粒子の前駆体であるチタンアルコキシドの加水分解により行われているが、酸化チタン微粒子の粒径については示されていない。特許文献4では、分散液組成を連続または不連続に変化させるため、塗布工程の制御が煩雑になるという問題がある。
However, in Patent Document 3, a metal oxide semiconductor nanoparticle dispersion (in the same document, “titanium oxide sol liquid”) is prepared by hydrolysis of titanium alkoxide , which is a precursor of titanium oxide fine particles. The particle size of the fine particles is not shown. In patent document 4, since a dispersion composition is changed continuously or discontinuously, there exists a problem that control of an application | coating process becomes complicated.

以下、本願発明の多孔質半導体微粒子層の製造方法及び本願発明の多孔質半導体微粒子層を用いた光電極並びに当該光電極を用いた色素増感型太陽電池について説明する。
図1に示すように、本願発明の色素増感型太陽電池は、透明プラスチックフィルム基板11上に透明導電層12を積層した透明導電性基板上に、増感色素14を担持した金属酸化物半導体ナノ粒子からなる多孔質半導体微粒子層13を形成した光電極層1、電解液層2及びプラスチック基板31上に透明導電層32を積層した対向電極3で構成されている。本願発明の光電極を構成する金属酸化物半導体ナノ粒子からなる多孔質半導体微粒子層13は、一次粒子の平均粒径が異なる2つの金属酸化物半導体ナノ粒子からなる多次粒子により構成されている。電解液層2は、溶媒中に電解質が溶解している電解液からなる。
Hereinafter, a method for producing a porous semiconductor fine particle layer of the present invention, a photoelectrode using the porous semiconductor fine particle layer of the present invention, and a dye-sensitized solar cell using the photoelectrode will be described.
As shown in FIG. 1, the dye-sensitized solar cell of the present invention is a metal oxide semiconductor having a sensitizing dye 14 supported on a transparent conductive substrate in which a transparent conductive layer 12 is laminated on a transparent plastic film substrate 11. It is composed of a photoelectrode layer 1 in which a porous semiconductor fine particle layer 13 made of nanoparticles is formed, an electrolyte layer 2, and a counter electrode 3 in which a transparent conductive layer 32 is laminated on a plastic substrate 31. The porous semiconductor fine particle layer 13 composed of metal oxide semiconductor nanoparticles constituting the photoelectrode of the present invention is composed of multi-particles composed of two metal oxide semiconductor nanoparticles having different average particle diameters of primary particles. . The electrolytic solution layer 2 is made of an electrolytic solution in which an electrolyte is dissolved in a solvent.

本願発明の金属酸化物半導体ナノ粒子分散液に使用する溶媒は、水及び水と相溶性がある炭素数5以下のアルコールを選択することができる。なかでも、沸点が75℃〜120℃、より好ましくは、80℃〜100℃であって、かつ融点が−80℃以下、より好ましくは−100℃以下であるアルコールが特に好ましい。沸点が75℃〜120℃、より好ましくは、80℃〜100℃のアルコールを選択することによって、導電性基板上に塗布した後溶媒の揮散が容易で多孔質半導体微粒子層の形成を容易に行うことができるからである。また、融点が−80℃以下、より好ましくは−100℃以下のアルコールを選択することで分散組成物を噴霧する際に溶媒の揮散による気化熱によって分散溶媒が固化して導電性基板上に形成された多孔質半導体微粒子層の層構造が不均一となることを防ぐことができるからである。
本願発明で好ましいアルコール類の具体例としては、1−プロパノール、2−プロパノール、1−メトキシ−2−プロパノール、2−エトキシエタノール、及びこれらとエタノールの混合物がある。より好ましくは、1−プロパノールまたは1−プロパノールとエタノールの混合物である。前記アルコール類は、本願金属酸化物半導体微粒子分散液の全組成中に5〜90wt%、好ましくは30〜80wt%、より好ましくは40〜70wt%含まれる。
本願発明の金属酸化物半導体ナノ粒子分散液には、前記アルコールに加えて水が分散溶媒として用いられる。これは、金属酸化物半導体ナノ粒子の分散安定性を維持し、分散液の粘度を適性に維持する目的で添加するものである。前記分散液の含水率は15〜35wt%である。
As the solvent used for the metal oxide semiconductor nanoparticle dispersion of the present invention, water and alcohol having 5 or less carbon atoms compatible with water can be selected. Among them, an alcohol having a boiling point of 75 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C., and a melting point of −80 ° C. or lower, more preferably −100 ° C. or lower is particularly preferable. By selecting an alcohol having a boiling point of 75 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C., it is easy to volatilize the solvent after coating on the conductive substrate and easily form the porous semiconductor fine particle layer. Because it can. In addition, when an alcohol having a melting point of −80 ° C. or lower, more preferably −100 ° C. or lower is selected, the dispersion solvent is solidified by the heat of vaporization due to evaporation of the solvent and formed on the conductive substrate. This is because it is possible to prevent the layer structure of the formed porous semiconductor fine particle layer from becoming non-uniform.
Specific examples of alcohols preferable in the present invention include 1-propanol, 2-propanol, 1-methoxy-2-propanol, 2-ethoxyethanol, and a mixture of these and ethanol. More preferably, it is 1-propanol or a mixture of 1-propanol and ethanol. The alcohol is contained in the total composition of the metal oxide semiconductor fine particle dispersion of the present application in an amount of 5 to 90 wt%, preferably 30 to 80 wt%, more preferably 40 to 70 wt%.
In the metal oxide semiconductor nanoparticle dispersion of the present invention, water is used as a dispersion solvent in addition to the alcohol. This is added for the purpose of maintaining the dispersion stability of the metal oxide semiconductor nanoparticles and maintaining the viscosity of the dispersion at an appropriate level. The water content of the dispersion is 15 to 35 wt%.

本願発明の電解液は、電解質と溶媒を基本としており、その電解液構成分について下記に説明する。電解質は、ヨウ素(I2 )と金属ヨウ化物若しくは有機ヨウ化物との組み合わせ、臭素(Br2 )と金属臭化物若しくは有機臭化物との組み合わせのほか、フェロシアン酸塩/フェリシアン酸塩やフェロセン/フェリシニウムイオンなどの金属錯体、ポリ硫化ナトリウム、アルキルチオール/アルキルジスルフィドなどのイオウ化合物、ビオロゲン色素、ヒドロキノン/キノンなどを挙げることができる。上記金属化合物のカチオンとしてはLi、Na、K、Mg、Ca、Csなど、また上記有機化合物のカチオンとしてはテトラアルキルアンモニウム類、ピリジニウム類、イミダゾリウム類などの4級アンモニウム化合物が好ましいが、これらに限定されるものではない。また、これらを二種類以上混合して用いてもよい。この中でも、I2 とLiI、NaIやイミダゾリウムヨーダイドなどの4級アンモニウム化合物を組み合わせた電解質が好ましい。電解質塩の濃度は溶媒に対して0.05〜10Mが好ましく、さらに好ましくは0.2〜3Mである。I2 やBr2 の濃度は0.0005〜1Mが好ましく、さらに好ましくは0.001〜0.5Mである。また、4−tert−ブチルピリジンやベンズイミダゾリウム類などの各種添加剤を加えることも好ましい。
The electrolytic solution of the present invention is based on an electrolyte and a solvent, and the components of the electrolytic solution will be described below. Electrolytes include combinations of iodine (I 2 ) with metal iodide or organic iodide, bromine (Br 2 ) with metal bromide or organic bromide, ferrocyanate / ferricyanate and ferrocene / ferri Examples include metal complexes such as sinium ions, sodium polysulfide, sulfur compounds such as alkyl thiol / alkyl disulfide, viologen dyes, hydroquinone / quinone, and the like. Lithium, Na, K, Mg, Ca, Cs and the like are preferable as the cation of the metal compound, and quaternary ammonium compounds such as tetraalkylammonium, pyridinium, and imidazolium are preferable as the cation of the organic compound. It is not limited to. Two or more of these may be mixed and used. Among these, electrolytes in which I 2 and a quaternary ammonium compound such as LiI, NaI or imidazolium iodide are combined are preferable. The concentration of the electrolyte salt is preferably 0.05 to 10M, more preferably 0.2 to 3M with respect to the solvent. The concentration of I 2 or Br 2 is preferably 0.0005 to 1M, more preferably 0.001 to 0.5M. It is also preferable to add various additives such as 4-tert-butylpyridine and benzimidazoliums.

[3] 対向電極
対向電極は光電変換素子を光化学電池としたときに正極として作用するものである。対向電極は、透明基板および透明導電層からなることが好ましい。透明基板および透明導電層の詳細は、光電極層の透明基板および透明導電層と同様である。対向電極の触媒層は、触媒作用を有する貴金属粒子が好ましい。対向電極の導電性膜上に触媒層を付与することで好ましい触媒層付きの対向電極が作製できる。貴金属粒子としては、触媒作用のあるものであれば特に限定されるものではないが、好ましくは比較的高い触媒作用を有する金属白金、金属パラジウム及び金属ルテニウムの少なくとも一種類から構成することが好ましい。触媒層の付与方法は特に限定されないが、例えばこれらの金属を蒸着法あるいはスパッタ法で付与してもよく、また該金属微粒子を溶媒に分散させて得られる分散液を、塗布あるいは噴霧などで対向電極も導電性層の上に設置してもよい。分散法で設置する場合は、その分散液に更にバインダーを含有させてもよく、導電性高分子が好ましく用いられる。該導電性高分子としては、導電性を有し、前記貴金属粒子を分散させることができるものであれば特に限定されないが、導電性の高い方が好ましい。
[3] Counter electrode The counter electrode functions as a positive electrode when the photoelectric conversion element is a photochemical battery. The counter electrode is preferably composed of a transparent substrate and a transparent conductive layer. The details of the transparent substrate and the transparent conductive layer are the same as those of the transparent substrate and the transparent conductive layer of the photoelectrode layer. The catalyst layer of the counter electrode is preferably noble metal particles having a catalytic action. A preferred counter electrode with a catalyst layer can be produced by providing a catalyst layer on the conductive film of the counter electrode. The noble metal particles are not particularly limited as long as they have a catalytic action, but are preferably composed of at least one of metal platinum, metal palladium and metal ruthenium having a relatively high catalytic action. The method for applying the catalyst layer is not particularly limited. For example, these metals may be applied by a vapor deposition method or a sputtering method, and a dispersion obtained by dispersing the metal fine particles in a solvent may be coated or sprayed. The electrode may also be placed on the conductive layer. When installing a distributed method may contain a further binder to the dispersion, the conductive polymer is preferably used. The conductive polymer is not particularly limited as long as it has conductivity and can disperse the noble metal particles, but higher conductivity is preferable.

本願発明のフィルム型光電池の全体の厚さは、機械的フレキシブル性と性能安定性を保証する目的から、150μm〜500μm、好ましくは250μm〜450μmが好ましい。本願発明の多層構成のフィルム型光電池には所望に応じ、短絡防止のためのセパレータを含ませることも推奨される。セパレータを形成する材料は電気的に絶縁性の材料であり、その形体はフィルム形体、粒子形体、電解質層と一体化した形体のいずれであってもよいが、フィルム形体のセパレータを用いることが好ましい。
The total thickness of the film type photovoltaic cell of the present invention is preferably 150 μm to 500 μm, preferably 250 μm to 450 μm, for the purpose of ensuring mechanical flexibility and performance stability. It is also recommended to include a separator for preventing a short circuit in the multi-layer film type photovoltaic cell of the present invention, if desired. The material forming the separator is an electrically insulating material, and the shape thereof may be any of a film shape, a particle shape, and a shape integrated with the electrolyte layer, but it is preferable to use a film shape separator. .

本願発明で好ましく用いられるバリアー性のある基板あるいは包装材料の好ましい水蒸気透過度は、40℃、相対湿度90%(90%RH)の環境下で0.1g/m/日以下であり、より好ましくは0.01g/m/日以下であり、更に好ましくは0.0005g/m/日以下であり、特に好ましくは0.00001g/m/日以下である。また、環境温度が60℃、90%RHでのより過酷な場合でも、バリアー性のある基板あるいは包装材料の水蒸気透過度は、より好ましくは0.01g/m/日以下であり、更に好ましくは0.0005g/m/日以下であり、特に好ましくは0.00001g/m/日以下である。またバリアー性のある基板あるいは包装材料の酸素透過率は25℃、0%RHの環境下において、好ましくは約0.001g/m/日以下であり、より好ましくは0.00001g/m/日以下が好ましい。
The preferred water vapor permeability of the substrate or packaging material having a barrier property preferably used in the present invention is 0.1 g / m 2 / day or less in an environment of 40 ° C. and a relative humidity of 90% (90% RH), preferably not more than 0.01 g / m 2 / day, more preferably not more than 0.0005 g / m 2 / day, particularly preferably not more than 0.00001 / m 2 / day. Further, even when the environmental temperature is 60 ° C. and 90% RH, the water vapor permeability of the substrate or packaging material having a barrier property is more preferably 0.01 g / m 2 / day or less, and still more preferably. Is 0.0005 g / m 2 / day or less, particularly preferably 0.00001 g / m 2 / day or less. The oxygen permeability 25 ° C. of the substrate or packaging materials with barrier property, in an environment of RH 0%, preferably not more than about 0.001 g / m 2 / day, more preferably 0.00001 / m 2 / Days or less are preferred.

(1) 金属酸化物半導体ナノ粒子分散液(以下「ペースト」という。)の調製
アナターゼ型結晶を含む二酸化チタンナノ粒子(平均粒径60nm)〔昭和電工製、商品名スーパータイタニア〕を10g、そしてブルッカイト型結晶の粒子を含む二酸化チタンナノ粒子(平均粒径15nm)が分散された酸性のゾル水溶液(濃度20質量%)24gを、エタノール66gに混合した。この混合物を自転/公転併用式のミキシングコンディショナーを使って均一に攪拌混合することによって、白色の粘性液体組成物(質量100g)を調製した。このペーストは二酸化チタンと溶媒のみからなり、バインダーを含んでいない粘性のバインダフリーペーストである(実施例1−1)。次に同様の調整法で表1の実施例1−2〜4−6のペーストを作製した。
(1) Preparation of Metal Oxide Semiconductor Nanoparticle Dispersion (hereinafter referred to as “Paste”) 10 g of titanium dioxide nanoparticles (average particle size 60 nm) containing anatase type crystals (trade name Super Titania, manufactured by Showa Denko), and brookite 24 g of an acidic sol aqueous solution (concentration: 20% by mass) in which titanium dioxide nanoparticles (type particle size: 15 nm) containing type crystal particles were dispersed was mixed with 66 g of ethanol. A white viscous liquid composition (mass: 100 g) was prepared by uniformly stirring and mixing this mixture with a rotating / revolving mixing conditioner. This paste is composed of only titanium dioxide and a solvent, and is a viscous binder-free paste containing no binder (Example 1-1). Next, pastes of Examples 1-2 to 4-6 in Table 1 were prepared by the same adjustment method.

このITO−PETフィルムのITO面に、表1の実施例、比較例の二酸化チタン分散ペーストを、塗布膜厚が約5ミクロンになるようにDEVILVIS社製エアースプレイ・モデルJJを用いて、エアー圧0.8MPa、距離25cmの条件でスプレイ塗布し、室温で乾燥後、さらに150℃で10分間乾燥を行って多孔性の酸化チタン粒子層を担持したフィルム電極を作製した。
On the ITO surface of this ITO-PET film, the titanium dioxide dispersion pastes of the examples and comparative examples in Table 1 were applied using an air spray model JJ manufactured by DEVILVIS so that the coating film thickness was about 5 microns. Spray coating was performed under the conditions of 0.8 MPa and a distance of 25 cm, followed by drying at room temperature, and further drying at 150 ° C. for 10 minutes to produce a film electrode carrying a porous titanium oxide particle layer.

(3) フィルム型太陽電池の光電変換特性の評価
500Wのキセノンランプを装着した太陽光シミュレータ用を用いて、上記のフィルム型光電池に対し、入射光強度が100mW/cm 2 のAM1.5模擬太陽光を、色素増感半導体フィルム電極側から照射した。電池は恒温装置のステージ上に密着して固定し、照射中の素子の温度を40℃に制御した。電流電圧測定装置を用いて、素子に印加するDC電圧を10mV/秒の定速でスキャンし、素子の出力する光電流を計測することにより、光電流−電圧特性を測定した。これにより求められた上記の各種素子のエネルギー変換効率(η)を、フィルム電極の塗工に用いたペーストの組成とともに、表1に示す。
(3) Evaluation of photoelectric conversion characteristics of film-type solar cell Using a solar simulator equipped with a 500 W xenon lamp, an AM1.5 simulation with an incident light intensity of 100 mW / cm 2 for the above-mentioned film-type photovoltaic cell. Sunlight was irradiated from the dye-sensitized semiconductor film electrode side. The battery was fixed in close contact with the stage of the thermostat, and the temperature of the element during irradiation was controlled at 40 ° C. The photocurrent-voltage characteristics were measured by scanning the DC voltage applied to the element at a constant speed of 10 mV / sec and measuring the photocurrent output from the element using a current-voltage measuring device. Table 1 shows the energy conversion efficiencies (η) of the various elements obtained in this way, together with the composition of the paste used for coating the film electrode.

(4) ペーストの耐剥離性評価
上記のITO−PETフィルムのITO面に表1の実施例、比較例の二酸化チタン分散ペーストを塗布膜厚が約5ミクロンになるようにエアスプレイ塗布し、150℃で5分間乾燥させて得られた乾燥膜を、フィルムを曲率1.0cm -1 まで機械的に10回曲げる疲労試験を行い、多孔性半導体層の剥離の状態を目視によって判定した。これらの評価の結果を、AA:極めて良い、A:良い、B:悪いが許容内、C:悪い、の四段階で判定し、結果を表1に示した。
(4) Evaluation of Paste Resistance to Peeling The ITO surface of the ITO-PET film was air spray-coated with the titanium dioxide dispersion pastes of the examples and comparative examples in Table 1 so that the coating film thickness was about 5 microns. A dry film obtained by drying at 5 ° C. for 5 minutes was subjected to a fatigue test in which the film was mechanically bent 10 times to a curvature of 1.0 cm −1 , and the peeled state of the porous semiconductor layer was visually determined. The results of these evaluations were determined in four stages: AA: extremely good, A: good, B: bad but acceptable, and C: bad. The results are shown in Table 1.

表1の結果から、多孔質半導体層形成用ペーストとしての実用性について以下のことが明らかである。
1.本発明の範囲以外の金属酸化物半導体ナノ粒子サイズを用いると、耐剥離性と光電変換率が共に悪化する(実施例1−1〜1−8と比較例1−1〜1−5の比較)
2.本発明の総固形分濃度より低いと光電変換率が非常に悪化し、高いと光電変換率、耐剥離性が共に非常に悪化する(実施例2−1〜2−2と比較例2−1〜2−2の比較)
3.金属酸化物半導体ナノ粒子のいずれか一方の固形分濃度が本発明の範囲より高すぎても低すぎても、耐剥離性と光電変換率が共に悪化する(実施例3−1〜3−4と比較例3−1〜3−4の比較)
4.本願発明の金属酸化物半導体ナノ粒子分散液の溶媒として使用する炭素数5以下のアルコールとしては、沸点が75℃〜120℃、かつ融点が−80℃以下のアルコールの場合が耐剥離性と光電変換率に優れ、1−プロパノール(沸点:97.2℃、融点:−126.5℃)が耐剥離性と光電変換率共に特に優れる(実施例4−3〜4−6)。
本願発明はサイズ異なる2種類の金属酸化物半導体ナノ粒子を併用し、両者のサイズと固形分濃度が本発明の範囲であるとき、さらには、アルコール溶媒の沸点と融点が本発明の範囲でるときのみ、物理特性である耐剥離性と光電変換率が共に良好な色素増感太陽電池ができることが特徴であり、非常に限られた条件でのみ達成できることが分かる。

From the results in Table 1, the following is clear regarding the practicality of the paste for forming a porous semiconductor layer.
1. When metal oxide semiconductor nanoparticle sizes other than the range of the present invention are used, both the peel resistance and the photoelectric conversion rate are deteriorated (Comparison between Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-5). )
2. When it is lower than the total solid content concentration of the present invention, the photoelectric conversion rate is extremely deteriorated, and when it is high, both the photoelectric conversion rate and the peel resistance are extremely deteriorated (Examples 2-1 to 2-2 and Comparative Example 2-1). Comparison of ~ 2-2)
3. When the solid content concentration of either one of the metal oxide semiconductor nanoparticles is too high or too low than the range of the present invention, both the peel resistance and the photoelectric conversion rate are deteriorated (Examples 3-1 to 3-4). Comparison of Comparative Examples 3-1 to 3-4)
4). As an alcohol having 5 or less carbon atoms used as a solvent for the metal oxide semiconductor nanoparticle dispersion of the present invention, an alcohol having a boiling point of 75 ° C. to 120 ° C. and a melting point of −80 ° C. or less is resistant to peeling and photoelectric. The conversion rate is excellent, and 1-propanol (boiling point: 97.2 ° C, melting point: -126.5 ° C) is particularly excellent in both peel resistance and photoelectric conversion rate (Examples 4-3 to 4-6).
The present invention uses two types of metal oxide semiconductor nanoparticles of different sizes, and when the size and solid content concentration of both are within the range of the present invention, and further, when the boiling point and melting point of the alcohol solvent are within the range of the present invention. However, it is a feature that a dye-sensitized solar cell having both good peeling resistance and photoelectric conversion ratio, which are physical properties, can be achieved, and it can be achieved only under very limited conditions.

Claims (3)

前記一次粒子の平均粒子径が10〜30nmの金属酸化物半導体ナノ粒子は、ブルッカイト型結晶を含む二酸化チタンナノ粒子を分散した酸性ゾル水溶液として調製されたものであることを特徴とする請求項1または請求項2に記載した多孔質半導体微粒子層の製造方法。
The metal oxide semiconductor nanoparticles having an average primary particle size of 10 to 30 nm are prepared as an acidic sol aqueous solution in which titanium dioxide nanoparticles containing brookite crystals are dispersed. A method for producing a porous semiconductor fine particle layer according to claim 2.
前記一次粒子の平均粒子径が40〜70nmの金属酸化物半導体ナノ粒子は、ルチル/アナターゼ混合型の結晶性の二酸化チタンナノ粒子であることを特徴とする請求項1または請求項2に記載した多孔質半導体微粒子層の製造方法。
Average particle diameter of the metal oxide semiconductor nanoparticles 40~70nm of the primary particles, porous as claimed in claim 1 or claim 2, characterized in that the crystalline titanium dioxide nanoparticles of rutile / anatase mixed For producing a fine semiconductor particle layer.
導電性基板上に請求項1乃至請求項4のいずれかに記載した方法により製造した多孔質半導体微粒子層に増感色素を担持した色素増感型光電変換素子に用いる光電極。
A photoelectrode for use in a dye-sensitized photoelectric conversion element in which a sensitizing dye is supported on a porous semiconductor fine particle layer produced by the method according to claim 1 on a conductive substrate.
JP2011263721A 2011-05-11 2011-12-01 Photoelectrode for dye-sensitized photoelectric conversion element and method for producing the same Expired - Fee Related JP5358790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011263721A JP5358790B2 (en) 2011-05-11 2011-12-01 Photoelectrode for dye-sensitized photoelectric conversion element and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011106357 2011-05-11
JP2011106357 2011-05-11
JP2011263721A JP5358790B2 (en) 2011-05-11 2011-12-01 Photoelectrode for dye-sensitized photoelectric conversion element and method for producing the same

Publications (3)

Publication Number Publication Date
JP2012253004A JP2012253004A (en) 2012-12-20
JP2012253004A5 true JP2012253004A5 (en) 2013-06-27
JP5358790B2 JP5358790B2 (en) 2013-12-04

Family

ID=47525616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011263721A Expired - Fee Related JP5358790B2 (en) 2011-05-11 2011-12-01 Photoelectrode for dye-sensitized photoelectric conversion element and method for producing the same

Country Status (1)

Country Link
JP (1) JP5358790B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128105A (en) * 2013-12-27 2015-07-09 ソニー株式会社 Semiconductor nanoparticle dispersion, photoelectric conversion element, and imaging apparatus
JP6344759B2 (en) * 2014-04-01 2018-06-20 学校法人東京理科大学 Oxide nanoparticle-containing paste, dye-sensitized solar cell photoelectrode, and dye-sensitized solar cell
KR101543530B1 (en) 2014-04-30 2015-08-12 상명대학교 천안산학협력단 Electrolyte compositions for dye-sensitized solar cells
KR101519786B1 (en) * 2014-04-30 2015-05-12 상명대학교 천안산학협력단 Gel electrolyte compositions for printing at room temperature and dye-sensitized solar cells using the same
US20170140880A1 (en) 2014-07-08 2017-05-18 Zeon Corporation Viscous dispersion liquid and method for producing same, porous semiconductor electrode substrate, and dye-sensitized solar cell
EP3919443A4 (en) * 2019-01-31 2022-11-02 Zeon Corporation Titanium dioxide paste, porous semiconductor electrode substrate, photoelectrode, and dye-sensitized photovoltaic cell
CN112520819B (en) * 2020-12-02 2023-08-22 西安建筑科技大学 Bismuth-system three-dimensional microsphere heterojunction photoelectrode and preparation and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008740A (en) * 2000-06-22 2002-01-11 Yamaha Corp Dye sensitized photocell and its manufacturing method
JP4291542B2 (en) * 2002-03-29 2009-07-08 Tdk株式会社 Oxide semiconductor electrode for photoelectric conversion and dye-sensitized solar cell
JP4562467B2 (en) * 2004-09-10 2010-10-13 ペクセル・テクノロジーズ株式会社 Viscous dispersion containing semiconductor nanoparticles
JP4801899B2 (en) * 2004-12-10 2011-10-26 学校法人桐蔭学園 Film-forming composition, electrode obtained using the same, and photoelectric conversion element
WO2007100095A1 (en) * 2006-03-02 2007-09-07 Tokyo University Of Science Educational Foundation Administrative Organization Method for producing photoelectrode for dye-sensitized solar cell, photoelectrode for dye-sensitized solar cell, and dye-sensitized solar cell
EP2276103A4 (en) * 2008-05-02 2013-04-17 Peccell Technologies Inc Dye-sensitized photoelectric conversion element
JP5630745B2 (en) * 2010-01-07 2014-11-26 日新製鋼株式会社 Method for producing photoelectrode for dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
Miyasaka et al. Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania
Shang et al. Enhancement of photovoltaic performance of dye-sensitized solar cells by modifying tin oxide nanorods with titanium oxide layer
Sun et al. High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability
JP2012253004A5 (en)
Seidalilir et al. High-performance and stable gel-state dye-sensitized solar cells using anodic TiO2 nanotube arrays and polymer-based gel electrolytes
JP5075913B2 (en) Electrolyte composition and photoelectric conversion element using the same
Xu et al. Effects of ethanol on optimizing porous films of dye-sensitized solar cells
US9299504B2 (en) Preparation method of low temperature sintering active electrode paste for dye sensitized solar cell
JP5358790B2 (en) Photoelectrode for dye-sensitized photoelectric conversion element and method for producing the same
Lue et al. Functional titanium oxide nano-particles as electron lifetime, electrical conductance enhancer, and long-term performance booster in quasi-solid-state electrolyte for dye-sensitized solar cells
Giannouli et al. Effects of using multi‐component electrolytes on the stability and properties of solar cells sensitized with simple organic dyes
EP3168193B1 (en) Viscous dispersion liquid and method for producing same and porous semiconductor electrode substrate
Shin et al. Observation of positive effects of freestanding scattering film in dye-sensitized solar cells
Gnanasekar et al. V2O5 Nanosheets as an Efficient, Low‐cost Pt‐free Alternate Counter Electrode for Dye‐Sensitized Solar Cells
Kesavan et al. Performance of dye-sensitized solar cells employing polymer gel as an electrolyte and the influence of nano-porous materials as fillers
Kiran et al. Preparation and thickness optimization of TiO2/Nb2O5 photoanode for dye sensitized solar cells
JP2005093075A (en) Electrolyte composition, and photoelectric conversion element and dye-sensitized solar cell using the same
JP4801899B2 (en) Film-forming composition, electrode obtained using the same, and photoelectric conversion element
JP4562467B2 (en) Viscous dispersion containing semiconductor nanoparticles
JP2006073488A (en) Dye-sensitized solar cell and manufacturing method thereof
Chen et al. Electron transport dynamics in TiO2 films deposited on Ti foils for back-illuminated dye-sensitized solar cells
JP5713853B2 (en) Electrolytic solution and photoelectric conversion element
Gao et al. Submicrometer@ nano bimodal TiO2 particles as easily sintered, crack-free, and current-contributed scattering layers for dye-sensitized solar cells
Jon et al. TCO-free dye solar cells based on Ti back contact electrode by facile printing method
KR101042949B1 (en) Dye coating method of a metal oxide layer, dye-sensitized sollar cell and its fabrication method using the same