SI23835A - Use of macrocipines as pesticidal agents - Google Patents

Use of macrocipines as pesticidal agents Download PDF

Info

Publication number
SI23835A
SI23835A SI201100304A SI201100304A SI23835A SI 23835 A SI23835 A SI 23835A SI 201100304 A SI201100304 A SI 201100304A SI 201100304 A SI201100304 A SI 201100304A SI 23835 A SI23835 A SI 23835A
Authority
SI
Slovenia
Prior art keywords
plants
polynucleotide sequence
macrocipin
proteins
plant
Prior art date
Application number
SI201100304A
Other languages
Slovenian (sl)
Inventor
Istinič Ida
Buh Gašparič Meti
Sabotič Jerica
Gruden Kristina
Brzin Jože
Žel Jana
Original Assignee
Nacionalni inštitut za bilologijo
Institut "Jožef Stefan"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nacionalni inštitut za bilologijo, Institut "Jožef Stefan" filed Critical Nacionalni inštitut za bilologijo
Priority to SI201100304A priority Critical patent/SI23835A/en
Priority to PCT/EP2012/065373 priority patent/WO2013020958A1/en
Publication of SI23835A publication Critical patent/SI23835A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/375Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Basidiomycetes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/8139Cysteine protease (E.C. 3.4.22) inhibitors, e.g. cystatin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

Predmet izuma je uporaba makrocipinov kot pesticidnih učinkovin za zaščito rastlin. Makrocipini so skupina proteinov, ki so naravno prisotni v glivi Macrolepiota procera. Uporaba teh proteinov za zaščito rastlin je možna na dva načina. Prvi je z uporabo gensko spremenjenih rastlin, katerim v genom stabilno vključimo polinukleotidno zaporedje, ki kodira vsaj enega izmed proteinov navedenih v tem izumu. Drugi način pa je neposredna aplikacija proteinov na rastline. V tem primeru je polinukleotidno zaporedje, ki kodira vsaj enega izmed proteinov navedenih v tem izumu, vstavljeno v vektor za heterologno izražanje za produkcijo rekombinantnega proteina v bioreaktorju. Te proteine po procesu čiščenja lahko nanesemo neposredno na rastline, ki jih želimo zaščititi. Polipeptidi tega izuma so še posebej uporabni za zaščito pred škodljivci kmetijskih rastlin, kot na primer skupin žuželk iz redov Lepidoptera, Hemiptera, Diptera in Coleoptera, prednostno pred koloradskim hroščem (Leptinotarsa decemlineata).The object of the invention is to use macrocipins as pesticidal active substances for plant protection. Macrocipins are a group of proteins that are naturally present in the Macrolepiota Procera fungus. The use of these proteins for plant protection is possible in two ways. The first is the use of genetically modified plants to which the polynucleotide sequence is stably included in the genome, which encodes at least one of the proteins mentioned in the present invention. The other way is direct application of proteins to plants. In this case, the polynucleotide sequence encoding at least one of the proteins mentioned in this invention is inserted into the heterologous expression vector for the production of the recombinant protein in the bioreactor. After the cleaning process, these proteins can be applied directly to the plants that we want to protect. The polypeptides of the present invention are particularly useful for protecting against pests of agricultural plants, such as Lepidopter, Hemipter, Dipter and Coleopter insects, preferably in front of the Lupinotarsa decemlineata.

Description

NAZIV IZUMA: UPORABA MAKROCIPINOV KOT PESTICIDNIH UČINKOVINSUMMARY OF THE INVENTION: USE OF MACROCIPINES AS PESTICIDAL SUBSTANCES

OPIS IZUMADESCRIPTION OF THE INVENTION

Predmet izuma je uporaba makrocipinov kot pesticidnih učinkovin za zaščito rastlin. Pesticidna učinkovitost je dokazana z zmanjšano rastjo in stopnjo preživetja organizmov, ki povzročajo škodo pri rasti in/ali pridelku rastlin.The subject of the invention is the use of macrocipins as pesticide active ingredients for plant protection. Pesticidal efficacy is demonstrated by the reduced growth and survival rate of organisms that cause damage to plant growth and / or crop production.

V prihajajočih desetletjih se bo človeška družba soočala z velikimi izzivi. Z večanjem števila prebivalcev in višanjem življenjskega standarda v državah v razvoju se potrebe po surovinah in konkurenca zanje že povečuje. Povečane potrebe po hrani so že povzročile zvišanje cen. Sočasno z večanjem števila prebivalstva pa se povečuje tudi ekološka ozaveščenost, posledica česar so povečane potrebe po organsko pridelanih živilih. Za pridelavo organske hrane je značilno, da prepoveduje uporabo sintetičnih insekticidov za zaščito rasti in pridelka rastlin. Kljub temu pa je za zadostno oskrbo z organsko pridelanimi živili rastline potrebno zaščititi pred škodljivci, na primer pred žuželkami, ki zmanjšujejo rast in pridelek rastlin. Eden od sprejemljivih načinov zaščite rastlin v organskem kmetijstvu je uporaba naravnih pesticidov.In the coming decades, human society will face great challenges. As the population grows and the standard of living in developing countries increases, raw material needs and competition are increasing. Increased food needs have already caused prices to rise. At the same time as the population is growing, ecological awareness is increasing, resulting in an increased need for organically grown foods. Organic food production is characterized by prohibiting the use of synthetic insecticides to protect the growth and yield of plants. However, for a sufficient supply of organically grown food, plants need to be protected from pests, for example, from insects that reduce growth and crop yield. One of the acceptable ways of protecting plants in organic farming is to use natural pesticides.

Eden izmed načinov, ki omogočajo zaščito rastlin pred škodljivci, je gensko spreminjanje rastlin. Metode genskega inženiringa omogočajo vnos specifičnih odsekov DNA, ki kodirajo faktorje za odpornost rastlin pred škodljivci, v genom rastlin. Ta način omogoča zaščito rastlin brez uporabe sintetičnih pesticidov. Prednost uporabe te tehnologije je, da zmanjša ceno pridelave rastlin in zmanjša izpostavljenost ljudi potencialno škodljivim učinkom pesticidov. Toda, še vedno ostaja potreba po iskanju primernih faktorjev za zaščito rastlin.One way of protecting plants from pests is to genetically modify plants. Genetic engineering methods allow the insertion of specific DNA sections that encode plant resistance factors against pests into the plant genome. This method allows the protection of plants without the use of synthetic pesticides. The advantage of using this technology is that it lowers the cost of crop production and reduces the human exposure to the potentially harmful effects of pesticides. However, there remains a need to find suitable plant protection factors.

Vendar pa v številnih delih sveta gensko spremenjeni organizmi niso sprejeti kot vir organske hrane. Dodatno, njihovo pojavljanje na tržišču omejujejo dolgi in zapleteni pravni postopki. Kljub temu so biotehnološke rešitve, ki omogočajo zaščito rastlin pred škodljivci, že široko uporabljane. Najuspešnejši in najpogosteje uporabljen način zaščite pred škodljivci uporablja skupino genov, ki kodirajo različne toksine bakterije Bacillus thuringiensis (Bt-toksini). Gensko spremenjene poljščine, na primer koruza in bombaž, v katere so bili vnešeni različni geni Cry, ki kodirajo Bt-toksine, gojijo na obsežnih območjih mnogih držav. Primeri patentov in patentnih prijav, ki ščitijo uporabo različnih Bttoksinov so: US006100456A, US005731194A, US 20030232757A1.However, in many parts of the world, GMOs are not accepted as a source of organic food. In addition, their appearance on the market is limited by lengthy and complex legal proceedings. Nonetheless, biotechnological solutions to protect plants from pests are already widely used. The most successful and commonly used method of pest control is the use of a group of genes encoding various Bacillus thuringiensis toxins (Bt-toxins). Genetically modified crops, such as maize and cotton, into which different Cry genes encoding Bt toxins have been introduced, are grown in vast areas of many countries. Examples of patents and patent applications protecting the use of various Bttoxins are: US006100456A, US005731194A, US 20030232757A1.

Zanimanje za iskanje novih insekticidnih učinkovin je kljub dosedanji uspešni zaščiti poljščin pred škodljivci z uporabo Bt-toksinov vedno večje. Bt-toksini namreč ne nudijo zaščite proti vsem rastlinskim škodljivcem, poleg tega pa se pojavlja tudi odpornost proti tem toksinom. Zato je potreba po iskanju novih, predvsem naravnih, pesticidnih učinkovin za zaščito rastlin vedno večja.The interest in finding new insecticidal agents, despite the successful protection of crops against pests by the use of Bt-toxins, has so far been increasing. Namely, Bt-toxins do not provide protection against all plant pests, and resistance to these toxins also occurs. Therefore, the need to find new, especially natural, pesticide-based plant protection products is increasing.

Glivni proteini predstavljajo bogat vir raznolikih naravnih snovi. Ena od njih je skupina glivnih proteinov poimenovana makrocipini. Gre za skupino cisteinskih proteaznih inhibitorjev, izoliranih iz užitne gobe Macrolepiota procera (Renko et al. 2010; Sabotic et al. 2007; Sabotic et al. 2009).Fungal proteins are a rich source of diverse natural substances. One of them is a group of fungal proteins called macrocipins. It is a group of cysteine protease inhibitors isolated from the edible fungus Macrolepiota procera (Renko et al. 2010; Sabotic et al. 2007; Sabotic et al. 2009).

Za makrocipine je bilo ugotovljeno, da in vitro inhibirajo delovanje mnogih ne-žuželčjih cisteinskih proteaz (Renko et al. 2010), iz česar smo sklepali, da lahko morda inhibirajo tudi delovanje žuželčjih cisteinskih proteaz in vivo in bi jih torej lahko uporabili za inhibicijo njihove rasti. Da bi ugotovili pravilnost te hipoteze, smo preverili ali imajo makrocipini inhibitorno delovanje na proteaze iz prebavnega trakta žuželk. Ugotovljeno je bilo, da je inhibitorna aktivnost makrocipinov zelo šibka, saj so inhibirali le eno izmed testiranih proteaz, s čimer smo zavrnili hipotezo o uporabi teh proteinov za zaščito rastlin. Pristop zaščite rastlin z makrocipini kot inhibitorji cisteinskih proteaz se je torej izkazal za neučinkovitega.Macrocipins have been found to inhibit in vitro the action of many non-insect cysteine proteases (Renko et al. 2010), suggesting that they may also inhibit the activity of insect cysteine proteases in vivo and could therefore be used to inhibit their to grow. To determine the correctness of this hypothesis, we examined whether macrocipins have an inhibitory effect on proteases from the insect digestive tract. The inhibitory activity of macrocipins was found to be very weak, since they inhibited only one of the proteases tested, thus refuting the hypothesis of the use of these proteins for plant protection. The approach of protecting plants with macrocipins as inhibitors of cysteine proteases has therefore proved ineffective.

Namen izuma je priskrbeti polipeptide uporabne kot pesticidne učinkovine za zaščito rastlin pred škodljivci. Poleg tega je namen izuma priskrbeti naravne sestavine za zaščito rastlin pred škodljivci. Nadalje je namen izuma priskrbeti gensko spremenjene rastline s povečano odpornostjo proti škodljivcem. Prav tako pa je namen izuma tudi zagotovitev sestavin z biocidno aktivnostjo za neposredno aplikacijo na gensko nespremenjene rastline.The purpose of the invention is to provide polypeptides useful as pesticidal agents for the protection of plants against pests. In addition, it is an object of the invention to provide natural ingredients for the protection of plants against pests. It is further the object of the invention to provide genetically modified plants with increased pest resistance. It is also an object of the invention to provide ingredients with biocidal activity for direct application to non-genetically modified plants.

Zgoraj opisani namen je bil dosežen z vnosom polinukleotidov, ki kodirajo polipeptide, navedene v patentnem zahtevku 1, in so definirana kot pesticidna sredstva, ki imajo inhibitorno delovanje na rast in preživetje škodljivcev. Presenetljiva je ugotovitev izumiteljev, da polipeptidi, ki jih kodirajo polinukleotidi omenjeni v tem izumu, povečajo odpornost rastlin proti škodljivcem. Na teh rastlinah so posledice napada škodljivcev manjše, pridelek pa je večji, kar je še posebej uporabno za zaščito kmetijskih rastlin in zaradi njihove narave manj škodljivo za okolje.The purpose described above was achieved by introducing polynucleotides encoding the polypeptides of claim 1, and are defined as pesticidal agents having an inhibitory effect on pest growth and survival. It is surprising that inventors have found that polypeptides encoded by the polynucleotides mentioned in this invention increase the resistance of plants to pests. The effects of pest infestation on these plants are smaller and the crop is larger, which is especially useful for the protection of agricultural plants and, due to their nature, less harmful to the environment.

Polipeptidi, navedeni v tem izumu, so lahko pridobljeni na dva načina. Prvi način je z izražanjem polipeptidov navedenih v patentnem zahtevku 1 neposredno v rastlini, drugi pa, da jih na rastline, oziroma na dele rastlin, ki jih želimo zaščititi, nanesemo v rekombinantni obliki.The polypeptides of the present invention can be obtained in two ways. The first is by expressing the polypeptides of claim 1 directly in the plant, and the second is to apply them to the plants or parts of the plants to be protected in a recombinant form.

V enem delu izuma je polinukleotidno zaporedje, ki kodira vsaj enega izmed proteinov navedenih v tem izumu, ki ima pesticidno delovanje, stabilno vključeno v genom rastline, ki jo želimo zaščititi pred škodljivci.In one part of the invention, a polynucleotide sequence encoding at least one of the proteins of the present invention having a pesticidal action is stably incorporated into the genome of the plant to be protected against pests.

V drugem delu izuma pa je polinukleotidno zaporedje, ki kodira vsaj enega izmed proteinov navedenih v tem izumu, ki ima pesticidno delovanje, vstavljeno v vektor za heterologno izražanje za produkcijo rekombinantnega proteina v bioreaktorju.In another part of the invention, a polynucleotide sequence encoding at least one of the proteins of the present invention having a pesticidal action is inserted into a vector for heterologous expression for the production of recombinant protein in the bioreactor.

Proteine pridobljene v bioreaktorju po procesu čiščenja lahko nanesemo neposredno na rastline, ki jih želimo zaščititi. Presenetljiva je ugotovitev izumiteljev, da ostanejo rekombinantni proteini po nanosu na rastlino še dalj časa aktivni.Proteins obtained in the bioreactor after the purification process can be applied directly to the plants we wish to protect. It is surprising that the inventors found that recombinant proteins remain active after application to the plant.

DefinicijeDefinitions

V kontekstu izuma imajo naslednji izrazi sledeče pomene:In the context of the invention, the following terms have the following meanings:

Makrocipini (Macrolepiota procera cjsteinski jaroteazni inhibitorji), kratko imenovani Mcp, so cisteinski proteazni inhibitorji izolirani iz gobe Macrolepiota procera. Termin makrocipin obsega naravne in rekombinantne makrocipine.Macrocipins (Macrolepiota procera cysteine jarotease inhibitors), briefly called Mcp, are cysteine protease inhibitors isolated from the Macrolepiota procera mushroom. The term macrocipin encompasses both natural and recombinant macrocipins.

Škodljivec je organizem, ki škodljivo vpliva na rast ali pridelek kmetijskih rastlin.A pest is an organism that adversely affects the growth or yield of agricultural plants.

Donos je definiran kot merljiva količina ekonomske vrednosti poljščine. Lahko je opredeljen v smislu količine in/ali kakovosti.Yield is defined as a measurable amount of the economic value of a crop. It can be defined in terms of quantity and / or quality.

Pesticidna učinkovina je v kontekstu izuma definirana kot učinkovina, zlasti kot polipeptid, ki z inhibicijo rasti in preživetja škodljivcev ščiti rastline pred škodo.In the context of the invention, a pesticidal active ingredient is defined as an active ingredient, especially a polypeptide, which protects plants from damage by inhibiting the growth and survival of pests.

Izraz heterologen se v kontekstu izuma nanaša na kakršenkoli genetski material, ki je vnesen v celico ali celice organizma, kjer ta genski material prej ni bil prisoten.The term heterologous in the context of the invention refers to any genetic material that is introduced into a cell or cells of an organism where that genetic material was not previously present.

V tej prijavi se izrazi različice, homologi in derivati lahko uporabljajo izmenično. Ti izrazi označujejo polipeptide s podobnimi zaporedji in podobnimi biološkimi in funkcionalnimi lastnostmi.In this application, the terms variants, homologs and derivatives may be used interchangeably. These terms refer to polypeptides with similar sequences and similar biological and functional properties.

Različice, homologi in derivati polinukleotidov, ki kodirajo makrocipine, so tipično tisti, ki imajo enako funkcijo kot naravni polinukleotidi, ki kodirajo makrocipine.The variants, homologs, and derivatives of macronuclein-encoding polynucleotides are typically those having the same function as natural macronuclein-encoding polynucleotides.

Različice, homologi in derivati polipeptidov obsegajo peptide, oligopeptide, polipeptide, proteine in encime z aminokislinskimi zamenjavami, delecijami in/ali vključitvami v primerjavi z nespremenjenim proteinom ter imajo podobno biološko in funkcionalno aktivnost kot nespremenjeni proteini iz katerih izhajajo. Za pridobitev takšnih homologov je potrebno nekatere aminokislinske ostanke v proteinu zamenjati z drugimi aminokislinskimi ostanki, ki pa imajo podobne lastnosti (na primer hidrofobnost, hidrofilnost, antigenost, nagnjenost k oblikovanju ali preprečevanju tvorbe alfa vijačnic in beta ploskev). Tabele konservativnih zamenjav so dobro poznane in z njihovo pomočjo lahko izučene osebe poiščejo uporabne zamenjave. Prav tako so homologi lahko pridobljeni z rutinskimi eksperimetalnimi tehnikami.Variants, homologs and derivatives of polypeptides comprise peptides, oligopeptides, polypeptides, proteins and enzymes with amino acid substitutions, deletions and / or inclusions compared to unchanged protein and have similar biological and functional activity to unchanged proteins from which they are derived. In order to obtain such homologs, some amino acid residues in the protein need to be replaced with other amino acid residues, which have similar properties (for example, hydrophobicity, hydrophilicity, antigenicity, propensity to form or prevent the formation of alpha helices and beta surfaces). Conservative swap tables are well known and can be used by trained people to find useful swaps. Homologs can also be obtained by routine experimental techniques.

Primeri različic, homologov in derivatov so polipeptidi s podobnim zaporedjem kot ga ima makrocipin. Lahko imajo eno ali več konservativnih aminokislinskih zamenjav. Število aminokislinskih zamenjav, ki je še uporabno, je odvisno od mesta v polipeptidu, ki ga spreminjamo. Mesta primerna za zamenjavo lahko najdemo z rutinskimi eksperimenti. Za izboljšanje lastnosti polipeptidov so najprimernejše zamenjave do desetih aminokislin, prednostno tri do pet konservativne aminokislinske zamenjave.. Primeri konservativnih zamenjav so tisti, kjer se aminokislino ki je uvrščena v isto skupino, nadomesti z drugo aminokislino, kot na primer zamenjava aminokisline z drugo aminokislino, ki ima podobno stransko verigo, na primer podobne alifatske stranske verige, pozitivno ali negativno nabite stranske verige, aromatske skupine na stranskih verigah ali pa zamenjava za aminokislino, ki prav tako tvori vodikove vezi. Primer slednje zamenjave so zamenjave aminokislin, ki imajo stranske verige s hidroksilno skupino. Vstavitve, delecije in zamenjave so mogoče v kolikor bistveno ne spremenijo funkcije polipeptida kot pesticidnega dejavnika. Pesticidno aktivnost različic, homologov in derivatov lahko določimo s standardnimi tehnikami. Aktivnost le teh mora biti vsaj 95 %, prednostno pa 99%, v primerjavi z aktivnostjo naravnega makrocipina.Examples of variants, homologs and derivatives are polypeptides in a sequence similar to that of macrocipin. They may have one or more conservative amino acid substitutions. The number of amino acid substitutions still useful depends on the site of the polypeptide being modified. Replacement sites can be found through routine experiments. Up to ten amino acids, preferably three to five conservative amino acid substitutions, are preferred to improve the properties of the polypeptides. having a similar side chain, for example, similar aliphatic side chains, positive or negatively charged side chains, aromatic groups on the side chains, or substitution for an amino acid that also forms hydrogen bonds. An example of the latter substitution is amino acid substitutions having side chains with a hydroxyl group. Insertions, deletions, and substitutions may not significantly alter the function of the polypeptide as a pesticide factor. The pesticidal activity of variants, homologs and derivatives can be determined by standard techniques. The activity of these should be at least 95%, preferably 99%, compared to the activity of natural macrocipin.

Poleg tega so prednostne tiste aminokislinske zamenjave, delecije in vstavitve, ki ne povzročijo sprememb tridimenzionalne strukture ali zvitja proteina, ki je pomembno za aktivnost različic, homologov in derivatov. Spremembe tridimenzionalne strukture zaradi aminokislinskih zamenjav, delecij in vstavitev se lahko določi z dobro poznanimi tehnikami, kot so uporaba cirkularnega dikroizma (CD spektri), kristalografije z X žarki ali NMR (jedrska magnetna resonanca).In addition, amino acid substitutions, deletions and insertions that do not cause changes in the three-dimensional structure or protein folding that are important for the activity of variants, homologs and derivatives are preferred. Changes in the three-dimensional structure due to amino acid substitutions, deletions, and insertions can be determined by well-known techniques such as the use of circular dichroism (CD spectra), X-ray crystallography, or NMR (nuclear magnetic resonance).

Prednostno imajo različice, homologi in derivati, ki so definirani zgoraj, vsaj 63 %, še bolje vsaj 70% ali 80%, še bolje 90 % ali celo 95 %, ali pa v najboljšem primeru več kot 99 % identičnost z zaporedjem makrocipina, ki je definirano v tem dokumentu.Preferably, the variants, homologs and derivatives defined above have at least 63%, more preferably at least 70% or 80%, even better 90% or even 95%, or ideally more than 99% identity with the macrocipin sequence that is defined in this document.

Različice, homologi in derivati polipeptidov obsegajo peptide, oligopeptide, polipeptide, proteine in encime ki izhajajo iz naravnih polipeptidnih zaporedij, ki pa imajo nekatere izmed naslednjih sprememb: spremenjene naravne, glikozilirane, acilirane, prenilirane ali umetne aminokislinske ostanke, ki se ne pojavljajo v naravi. Obojim pa je skupna podobna ali identična funkcionalnost in/ali aktivnost. Funkcionalnost in/ali aktivnost lahko določimo s poznanimi metodami, kot na primer za encime obstaja metoda za določanje encimatske aktivnosti polipeptida z delovanjem na substrat. Derivati imajo lahko prisotno tudi eno ali več ne-aminokislinskih zamenjav ali prisotne dodatne skupine na aminokislinskem zaporedju. Primer dodatne skupine je reporterska molekula ali kak drug ligand, ki je kovalentno ali nekovalentno povezan z aminokislinskim zaporedjem. V delu tega izuma je lahko ligand ali reporterska molekula povezana z makrocipinom, kar omogoča enostavnejšo detekcijo. V drugem delu tega izuma pa so lahko nenaravni aminokislinski ostanki dodani ali pa nadomestijo aminokislinske ostanke prisotne v naravnem zaporedju.Variants, homologs and derivatives of polypeptides comprise peptides, oligopeptides, polypeptides, proteins and enzymes derived from natural polypeptide sequences, which, however, have some of the following changes: altered natural, glycosylated, acylated, prenylated or artificial amino acid residues that do not occur in nature . Both, however, share similar or identical functionality and / or activity. Functionality and / or activity can be determined by known methods, for example for enzymes there is a method for determining the enzymatic activity of a polypeptide by acting on a substrate. The derivatives may also have one or more non-amino acid substitutions present or additional groups present on the amino acid sequence. An example of an additional group is a reporter molecule or other ligand that is covalently or non-covalently linked to an amino acid sequence. In a part of the present invention, the ligand or reporter molecule may be linked to macrocipin, allowing for easier detection. In the second part of the present invention, unnatural amino acid residues may be added or may replace the amino acid residues present in the natural sequence.

Izraz rastlina se nanaša tudi na posamezne dele rastlin ali rastlinska tkiva.The term plant also refers to individual parts of plants or plant tissues.

Transgena rastlina” je rastlina, v katero je bil vnesen vsaj en heterologen polinukleotid, ki se je stabilno integriral v genom.Transgenic plant 'is a plant into which at least one heterologous polynucleotide has been introduced and stably integrated into the genome.

Izraz vektor se v tem dokumentu nanaša na polinukleotid, ki se ga uporablja za vnos gena v tarčno celico. V vektorju so ponavadi nukleotidna zaporedja, ki pomagajo pri izražanju želenega produkta ali pa so za izražanje celo nujna. Ko pride vektor v gostiteljsko celico, le ta začne proizvajati protein, ki ga kodira vneseni gen. Vektor tipično vsebuje tudi zaporedja pomembna za uravnavanje izražanja gena, kot so ojačevalna zaporedja in promotorji, ki vodijo v uspešno transkripcijo gena, ki ga nosi vektor.The term vector in this document refers to a polynucleotide used to insert a gene into a target cell. There are usually nucleotide sequences in the vector that help to express the desired product or are even necessary for expression. When a vector enters a host cell, it starts to produce a protein encoded by the inserted gene. The vector typically also contains sequences important for regulating gene expression, such as enhancer sequences and promoters that lead to successful transcription of the vector-borne gene.

Opis slikDescription of the pictures

Slika 1. Inhibicijska aktivnost makrocipinov proti glavnim prebavnim cisteinskim proteazam prisotnim v prebavilu ličink koloradskega hrošča. Neaktivnost makrocipinov do prevladujočih prebavnih cisteinskih proteaz kaže na to, da je način delovanja teh proteaznih inhibitorjev drugačen kot pri proteaznih inhibitorjih, ki so bili do sedaj uporabljeni za nadzor koloradskega hrošča. Gel filtration fraction - frakcija proteinov po gelski filtraciji.Figure 1. Inhibitory activity of macrocipins against major digestive cysteine proteases present in the digestion of Colorado beetle larvae. The inactivity of macrocipins to the dominant digestive cysteine proteases indicates that the mode of action of these protease inhibitors is different from that of the protease inhibitors previously used to control the Colorado beetle. Gel filtration fraction - Gel filtration fraction.

Slika 2a. Plazmidna mapa vektorja pMDC32, ki smo ga uporabili za izražanje makrocipina 4A v krompirju (Solanum tuberosum cv. Desiree).Figure 2a. Plasmid vector map of pMDC32 used to express macrocypin 4A in potato (Solanum tuberosum cv. Desiree).

Slika 2b. Shematski prikaz regije T-DNA iz vektorja pMDC32; RB/LB - desno/levo robno zaporedje, Hygr - gen, ki kodira odpornost proti higromicinu, 2x35S - dvojni promotor CaMV 35S; nosT terminator; regija med attRl in attR2 je z rekombinacijo zamenjana z genom, ki kodira Mcp4A.Figure 2b. Schematic representation of the T-DNA region from the pMDC32 vector; RB / LB - right / left boundary sequence, Hyg r - hygromycin resistance encoding gene, 2x35S - CaMV 35S double promoter; nosT terminator; the region between attR1 and attR2 is replaced by a Mcp4A encoding gene by recombination.

Slika 3. Izražanje makrocipina v različnih transgenih linijah krompirja (Solanum tuberosum cv. Desiree). Za nadaljne analize so bile izbrane linije Mcp32 Al, Mcp32 A2 in Mcp32 E2 (okrajšana imena linij so Al, A2 in E2).Figure 3. Expression of macrocipin in different transgenic lines of potato (Solanum tuberosum cv. Desiree). Mcp32 Al, Mcp32 A2 and Mcp32 E2 lines were selected for further analysis (abbreviated line names are Al, A2 and E2).

Slika 4. Rezultati prenosa po vvesternu. Uporabljen je bil grobi proteinski ekstrakt tansformiranih rastlin. Za prisotnost makrocipina so bile testirane linije Al, A2, E2, D3, E3 in E4. Al, A2 , E2, D3, E3 in E4, nanosi proteinskega izvlečka transgenih linij krompirja; -K, negativna kontrola (netransformirana rastlina); +K, pozitivna kontrola (rekombinanten makrocipin); M, lestvica standardnih molekulskih mas (velikost v kDa).Figure 4. Transmission results after evening. Coarse protein extract of tansformed plants was used. The lines Al, A2, E2, D3, E3 and E4 were tested for the presence of macrocipin. Al, A2, E2, D3, E3 and E4, coatings of protein transgenic potato lines; -K, negative control (untransformed plant); + K, positive control (recombinant macrocipin); M, scale of standard molecular weights (size in kDa).

* ·* ·

Slika 5. Rezultati prvega prehranjevalnega testa ličink koloradskega hrošča hranjenih s transgenim krompirjem, ki izraža Mcp4; pridobivanje teže ličink. Pridobivanje teže ličink koloradskih hroščev hranjenih z gensko nespremenjenim krompirjem (WT, ang. wild type) ter gensko spremenjenima linijama Al in A2, ki izražata makrocipin. Velikost začetnega vzorca je 20 ličink na posamezno linijo. Na sliki je z ročkami prikazana standardna napaka. DPI - dnevi po izleganju.Figure 5. Results of the first nutritional test of Colorado beetle larvae fed with transgenic potato expressing Mcp4; gaining weight of larvae. Weight gain of Colorado potato beetle larvae fed with genetically modified wild potato (WT) and genetically modified macroscopin-expressing Al and A2 lines. The initial sample size is 20 larvae per line. The figure shows a standard error with the handles. DPI - days after hatching.

Slika 6. Rezultati prvega prehranjevalnega testa ličink koloradskega hrošča hranjenih s transgenim krompirjem, ki izraža Mcp4; stopnja preživetja ličink. Stopnja preživetja ličink koloradskega hrošča po hranjenju z gensko nespremenjenim krompirjem (WT, ang. wild type) ter gensko spremenjenima linijama Al in A2, ki izražata makrocipin. Velikost začetnega vzorca je 20 ličink na posamezno linijo. DPI - dnevi po izleganju.Figure 6. Results of the first nutritional test of Colorado beetle larvae fed with transgenic potato expressing Mcp4; larval survival rate. Survival rate of Colorado potato beetle larvae after feeding with genetically modified wild potato (WT) and macro -cipin-expressing Al and A2 lines. The initial sample size is 20 larvae per line. DPI - days after hatching.

Slika 7. Rezultati drugega prehranjevalnega testa ličink koloradskega hrošča hranjenih s transgenim krompirjem, ki izraža Mcp4; pridobivanje teže ličink. Pridobivanje teže ličink koloradskih hroščev hranjenih z gensko nespremenjenim krompirjem (WT, ang. wild type) ter gensko spremenjenimi linijami Al, A2 in E2 ki izražajo makrocipin. Velikost začetnega vzorca je 20 ličink za liniji WT in A2 ter 17 za Al in 14 za E2. Na sliki je z ročkami prikazana standardna napaka. DPI - dnevi po izleganju.Figure 7. Results of the second nutritional test of Colorado beetle larvae fed with transgenic potato expressing Mcp4; gaining weight of larvae. Weight gain of Colorado potato beetle larvae fed with genetically modified wild potato (WT) and genetically modified macrocypin-expressing Al, A2 and E2 lines. The initial sample size is 20 larvae for WT and A2 lines and 17 for Al and 14 for E2. The figure shows a standard error with the handles. DPI - days after hatching.

Slika 8. Rezultati drugega prehranjevalnega testa ličink koloradskega hrošča hranjenih s transgenim krompirjem, ki izraža Mcp4; stopnja preživetja ličink. Stopnja preživetja ličink koloradskega hrošča po hranjenju z gensko nespremenjenim krompirjem (WT, ang. wild type) ter gensko spremenjenimi linijami Al, A2 in E2, ki izražajo makrocipin. Velikost začetnega vzorca je 20 ličink za liniji WT in A2 ter 17 za Al in 14 za E2. DPI - dnevi po izleganju.Figure 8. Results of a second nutritional test of Colorado beetle larvae fed with transgenic potato expressing Mcp4; larval survival rate. Survival rate of Colorado potato beetle larvae after feeding with genetically modified wild potatoes (WT) and genetically modified macrocypin-expressing Al, A2 and E2 lines. The initial sample size is 20 larvae for WT and A2 lines and 17 for Al and 14 for E2. DPI - days after hatching.

Slika 9. Rezultati prehranjevalnih testov ličink koloradskega hrošča hranjenih z listi krompirja prevlečenimi z rekombinantnimi proteini (pridobljenimi v bakteriji E. coli). Ličinke so bile hranjene z listi namočenimi v rekombinantne proteine (Mcpl, Mcp3, Mcp4) pri kontrolnem poskusu pa v BSA (ang. bovine serum albumin). Vsi poskusi so bili ponovljeni dvakrat. Začetno število ličink v obeh poskusih skupaj je bilo 16.Figure 9. Results of nutritional tests of Colorado beetle larvae fed on potato leaves coated with recombinant proteins (obtained in E. coli). The larvae were fed with leaves soaked in recombinant proteins (Mcpl, Mcp3, Mcp4) and, in the control experiment, BSA (serum bovine albumin). All experiments were repeated twice. The initial number of larvae in the two experiments together was 16.

Slika 10. Rezultati prehranjevalnih testov ličink koloradskega hrošča hranjenih z listi krompirja prevlečenimi z rekombinantnim proteinom Mcpl (pridobljenimi v bakteriji E. coli). Prikazani so isti rezultati kot na sliki 9, le da zajemajo le podatke za protein Mcpl. V tabelo je vključena tudi statistična obdelava s Študentovim T-testom(*** p<0,001, **p<0,01, *p<0,05).Figure 10. Nutrition testing results of Colorado beetle larvae fed on potato leaves coated with recombinant Mcpl protein (obtained from E. coli). The same results as in Figure 9 are shown, except that they only cover data for the Mcpl protein. The table also includes statistical processing with Student's T-test (*** p <0.001, ** p <0.01, * p <0.05).

Podroben opis izumaDETAILED DESCRIPTION OF THE INVENTION

Izum obravnava pesticidna sredstva, ki so zelo učinkovita proti škodljivcem, predvsem proti škodljivcem poljščin. Presenetljivo je bilo ugotovljeno, da so nekateri izmed proteinov makrocipinske družine učinkoviti kot pesticidne učinkovine za zaščito rastlin. Pričujoči izumitelji so z in vivo prehranjevalnimi testi ugotovili, da imata inhibitoren učinek na rast in preživetje ličink koloradskega hrošča predvsem predstavnika Mcpl in Mcp4 (glej slike 5-10).The invention relates to pesticide agents that are highly effective against pests, especially against crop pests. Surprisingly, some of the proteins of the macrocipin family have been found to be effective as pesticide-protecting agents. The present inventors have found, by in vivo nutritional testing, that they have an inhibitory effect on the growth and survival of Colorado beetle larvae, in particular by representatives of Mcpl and Mcp4 (see Figures 5-10).

Takšen učinek makrocipinov je bil presenetljiv in nepričakovan in njegovo delovanje nepoznano. Na podlagi do sedaj objavljenih podatkov in začetnih poskusov prikazanih na sliki 1 je bilo ugotovljeno, da makrocipini ne inhibirajo delovanja glavnih cisteinskih proteaz iz prebavila koloradskega hrošča v tolikšni meri, da bi lahko inhibirali rast in zmanjšali preživetje ličink.Such an effect of macrocipins was surprising and unexpected and its action unknown. Based on the data published so far and the initial experiments shown in Figure 1, it was found that macrocypins do not inhibit the action of major cysteine proteases from the Colorado beetle digestive tract to the extent that they can inhibit growth and reduce larval survival.

Izumitelji so ugotovili, da je pesticidna aktivnost makrocipinov posledica tega, da imajo makrocipini inhibitorno delovanje na nekatere proteaze, na primer prebavne cisteinske proteaze »intestaine, ki jih najdemo v prebavilu ličink koloradskega hrošča.. Z inhibicijo teh encimov po do sedaj znanih podatkih razlagamo delovanje makrocipinov, predvsem makrocipinov navedenih v tej prijavi. Domneva se, ne da bi se vezali na teorijo, da imajo makrocipini, kot definirani v tej prijavi, ki so specifično aktivni proti glikozid hidrolazam, na primer celulazam (glikozid hidrolazne družine 48), še posebno pesticidno aktivnost. Zdi se torej, da imajo ti makrocipini vsaj dvojno inhibitorno delovanje proti izbranim proteazam in proti glikozid hidrolazam. Poleg nekaterih prebavnih proteaz so tarče makrocipina (glej tabelo 3 pri primeru 2) tudi glikozid hidrolaze, kar je bilo pokazano z afinitetno kromatografijo z vezanim makrocipinom, in je podrobneje razloženo v primeru 2. Na podlagi teh rezultatov lahko s premislekom ugotovimo, da imajo makrocipini zaradi svojega dvojnega delovanja z inhibicijo celulaz in proteaz pri prebavi močnejši celokupni efekt. Domnevamo, da prav ta multitarčna inhibicija omogoča presenetljivo povečanje učinkovitosti pesticidnega delovanja polinukleotidov in polipeptidov razkritih v tej prijavi.The inventors have found that the pesticidal activity of macrocipins is due to the fact that macrocipins have an inhibitory effect on some proteases, such as the digestive cysteine proteases “intestines found in the digestion of Colorado beetle larvae. of macrocipins, in particular the macrocipins referred to in this application. Without being bound by the theory that macrocypins, as defined in this application, are specifically active against glycoside hydrolases, such as cellulases (glycoside of the hydrolasic family 48), have particular pesticidal activity. Thus, these macrocipins appear to have at least a dual inhibitory action against selected proteases and against glycoside hydrolases. In addition to some digestive proteases, macrozycin targets (see Table 3 in Example 2) also target glycoside hydrolase, as demonstrated by affinity chromatography with bound macrocipin, and explained in more detail in Example 2. Based on these results, it can be concluded with consideration that macrocipins have due to its dual action by inhibiting cellulases and proteases in digestion, a stronger overall effect. It is hypothesized that this multitarget inhibition allows for the surprising increase in the pesticide action efficiency of polynucleotides and polypeptides disclosed in this application.

Zgoraj omenjena teorija, ne da bi bili vezani nanjo, je torej za enkrat najbolj verjetna razlaga za superiorni učinek polipeptidov navedenih v tem izumu kljub temu, da so eksperimentalni podatki prikazani v primeru 1 nakazovali ne inhibitorno neaktivnost makrocipinov in vivo. Proteini iz družine makrocipinov so kljub temu, da tega nismo pričakovali, vseeno pokazali aktivnost proti škodljivcem in so bili nepričakovano stabilni, kar omogoča njihovo uporabo na ali v rastlinah. Superiorni učinek je bil še posebej pokazan za Mcpl in Mcp4, ki sta se izkazala kot učinkovita pri inhibiciji rasti in preživetju ličink koloradskega hrošča (glej slike 5-10) v in vivo prehranjevalnih testih.The aforementioned theory, without being bound by it, is therefore the single most likely explanation for the superior effect of the polypeptides of the present invention, despite the fact that the experimental data shown in Example 1 indicated the non-inhibitory inactivity of macrocipins in vivo. Although not expected, proteins from the macrocipin family still showed activity against pests and were unexpectedly stable, allowing their use on or in plants. A superior effect has been shown in particular for Mcpl and Mcp4, which have been shown to be effective in inhibiting the growth and survival of Colorado beetle larvae (see Figures 5-10) in in vivo nutrition assays.

Makrocipini (Macrolepiota procera cisteinski proteazni inhibitorji) so cisteinski proteazni inhibitorji izolirani iz gobe Macrolepiota procera. Te makrocipine kodira družina genov, ki jo na podlagi • · zaporedij razdelimo v pet skupin. Znotraj posamezne skupine je podobnost zaporedja aminokislinskih ostankov večja kot 90 %, med skupinami pa je podobnost med 75 in 86 %. Na aminokislinsko zaporedje makrocipinov lahko sklepamo iz podatkov genomskih zaporedij ali pa iz zaporedij cDNA. Podatki o razlikah v promotorskih in nekodirajočih zaporedjih predlagajo, da je uravnavanje izražanja makrocipinov uravnano na različnih stopnjah (glej Sabotič et al, 2009). Makrocipini so učinkoviti inhibitorji proteaz iz papainske družine (družina Cl po Merops klasifikaciji), kot so na primer papain in cisteinske katepsinske endopeptidaze, prav tako pa inhibirajo katepsine B in H, ki imajo tako endopeptidazno kot eksopeptidazno aktivnost. Raznolikost v zaporedjih vpliva na inhibicijsko aktivnost makrocipinov ter vpliva na različnost inhibicijskih profilov. Vsi makrocipini imajo podobne osnovne biokemijske lastnosti in so stabilni pri visokih temperaturah in ekstremnih pH-ji.Macrocipins (Macrolepiota procera cysteine protease inhibitors) are cysteine protease inhibitors isolated from the Macrolepiota procera mushroom. These macrocipins are encoded by a gene family that is divided into five groups on the basis of sequences. Within each group, the sequence similarity of the amino acid residues is greater than 90%, and between the groups the similarity is between 75 and 86%. The amino acid sequence of macrocipins can be inferred from genomic sequence data or from cDNA sequences. Data on differences in promoter and non-coding sequences suggest that the regulation of macrocipin expression is regulated at different stages (see Sabotič et al, 2009). Macrocipins are effective protease inhibitors of the papain family (Cl family according to the Merops classification), such as papain and cysteine cathepsin endopeptidases, and also inhibit cathepsins B and H, which have both endopeptidase and exopeptidase activity. Diversity in sequences affects the inhibitory activity of macrocipins and affects the diversity of inhibitory profiles. All macrocipins have similar basic biochemical properties and are stable at high temperatures and extreme pHs.

Makrocipini niso podobni drugimim družinam proteaznih inhibitorjev, zato domnevamo, da je mehanizem inhibicije tarčnih cisteinskih proteaz pri makrocipinih edinstven. Kristalna struktura makrocipina je razkrila motiv vezave na papainu podobne cisteinske proteaze, ki na zaenkrat še nepoznan način ovira dostop do katalitičnih aminokislinskih preostankov proteaze (glej Renko et al, 2010). Makrocipini imajo β-triperesno zvitje, ki je v obliki drevesaste strukture z dvema zankama v koreninski regiji, deblom sestavljenim iz 6-verižnega beta sodčka in dvema plastema zank (6+3) v regiji krošnje. Z usmerjenimi mutacijami je bilo pokazano, da dve zanki, ki vežeta cisteinske katepsine spadata v spodnjo plast krošnje, medtem ko je en sama zanka iz regije krošnje odgovorna za inhibicijo tripsina ali asparagrnske endopeptidaze. Te zanke predstavljajo mnogostransko površino, ki bi potencialno lahko vezala tudi druge razrede proteaz.Macrocypins are not similar to other families of protease inhibitors, so we suppose that the mechanism of inhibition of target cysteine proteases by macrocipins is unique. The crystalline structure of macrocipin revealed a motif of binding to the papain-like cysteine protease, which in a hitherto unknown way impedes access to the catalytic amino acid residues of the protease (see Renko et al, 2010). Macrocipins have a β-triperous twist, which is in the form of a tree structure with two loops in the root region, a trunk composed of a 6-stranded beta barrel and two layers of loops (6 + 3) in the canopy region. Directed mutations have shown that two cysteine cathepsin-binding loops belong to the lower layer of the canopy, while a single loop from the canopy region is responsible for the inhibition of trypsin or asparagrine endopeptidase. These loops represent a multifaceted surface that could potentially bind other classes of proteases.

Ugotovljeno je bilo, da imajo nekateri člani makrocipinske družine izrazito visoko aktivnost in je njihova uporaba še posebej prednostna. To so Mcpl, Mcp3 in Mcp4, ki so v nadaljevanju natančneje opisani.It has been found that some members of the macroscopic family have extremely high activity and their use is particularly preferred. These are Mcpl, Mcp3 and Mcp4, which are described in more detail below.

Prednostno so inhibirane cisteinske proteaze papainske družine. Endopeptidaze iz te družine močno inhibirajo vsi testirani makrocipini. Katepsin B, ki je ekso- in endopeptidaza, je šibko inhibiran z Mcpl in Mcp4. Mcp3 in Mcp4 učinkovito inhibirata tudi katepsin H, ki ima prav tako ekso- in endopeptidazno aktivnost. Poleg cisteinskih proteaz iz družine Cl pa Mcpl in Mcp3 prav tako inhibirata tudi cisteinske proteaze iz družine C13, to je asparaginske endopeptidaze. Cisteinsko proteazo legumain inhibirajo vsi makrocipini razen enega predstavnika (Mcp4), ki namesto tega šibko inhibira serinsko proteazo tripsin.Preferably, the cysteine proteases of the papain family are inhibited. Endopeptidases from this family are strongly inhibited by all the macrocipins tested. Cathepsin B, which is an exo- and endopeptidase, is weakly inhibited by Mcpl and Mcp4. Mcp3 and Mcp4 also effectively inhibit cathepsin H, which also has exo- and endopeptidase activity. In addition to cysteine proteases of the Cl family, Mcpl and Mcp3 also inhibit cysteine proteases of the C13 family, i.e., asparagine endopeptidases. The cysteine protease legumain is inhibited by all macrocipins except one representative (Mcp4), which instead weakly inhibits the serine protease trypsin.

Primeri makrocipinskih polinukleotidov, ki so se izkazali za uporabne v skladu s tem izumom, vključujejo, a niso omejeni na polinukleotide ID. ŠT. ZAP. 1-13 (glej tabelo 1 spodaj). Makrocipinski polinukleotidi in njihove različice so primerni za uporabo v skladu s tem izumom. Različice makrocipinskih polinukleotidov so tipično tiste, ki imajo isto funkcijo kot v naravi pojavljajoči se makrocipinski polinukleotidi.Examples of macrocyclic polynucleotides that have proven useful in the present invention include, but are not limited to, polynucleotides ID. NO. ZAP. 1-13 (see Table 1 below). Macrocycine polynucleotides and variants thereof are suitable for use in accordance with the present invention. Variants of macrocyclic polynucleotides are typically those that have the same function as naturally occurring macrocipin polynucleotides.

Različice makrocipinskih polinukleotidov lahko pripravimo z metodami, ki so na področju dodobra poznane. Na primer z usmerjeno mutagenezo pridobimo različne makrocipinske polinukleinske kisline. Za usmerjeno mutagenezo je poznanih precej metod in so na voljo izkušenemu strokovnjaku, najobičajnejše so na osnovi metode pomnoževanja z verižno reakcijo s polimerazo.Macrocycine polynucleotide variants can be prepared by methods well known in the art. For example, through directed mutagenesis, various macrocyclic polynucleic acids are obtained. A number of methods are known for targeted mutagenesis and are available to one of skill in the art, most commonly based on polymerase chain reaction amplification.

Zaporedja, ki jih zaobjema definicija besed makrocipin ali homologi makrocipina niso omejena zgolj na zaporedja razkrita v tej prijavi (ID. ŠT. ZAP. 14-22, glej tabelo 1 spodaj), temveč vključujejo tudi vsa njim podobna polipeptidna zaporedja s podobnim zvitjem in podobno funkcionalnostjo ter aktivnostjo in se lahko uporabljajo v skladu s tem izumom. Metode za določanje tridimenzionalne strukture proteinov in določanje zvitja proteina so dobro poznane strokovnjakom iz tega področja in vključujejo kristalografijo z X žarki in NMR (ang. nuclear magnetic resonance, jedrska magnetna resonanca).The sequences covered by the definition of the word macrocipin or macrocipin homologs are not limited to the sequences disclosed in this application (ID NO. 14-22, see Table 1 below), but also include all polypeptide-like sequences thereof with a similar twist and the like. functionality and activity and can be used in accordance with the present invention. Methods for determining the three-dimensional structure of proteins and for determining protein folding are well known to those skilled in the art and include X-ray crystallography and NMR (nuclear magnetic resonance).

Kjer so navedene pristopne številke GenBank-a (GenBank Accession Numbers) se le te nanašajo na GenBank verzijo 183.0 (dostopen: 14. april, 2011), ki ga lahko najdemo na http://www.ncbi.nlm.nih.ROv/sites/gquerv.Where GenBank Accession Numbers are listed, they refer to GenBank version 183.0 (accessed: 14 April 2011), which can be found at http: //www.ncbi.nlm.nih.ROv/ sites / gquerv.

• ·• ·

Tabela 1: Zaporedja razkrita v tej prijaviTable 1: Sequences disclosed in this application

ID. ŠT. ZAP./ Identifikacijska številka zaporedja ID. NO. ZAP./ Identification number sequences opis description pristopne številke GenBank-a accession numbers Of GenBank DNA/ protein DNA / protein 1 1 Mcp4a (optimizirano zaporedje za izražanje v krompirju) Mcp4a (optimized sequence for expression in potatoes) DNA DNA 2 2 makrocipin la gen, celotno kodirajoče zaporedje macrocipin la gen, the entire coding sequence FJ495240.1 FJ495240.1 DNA DNA 3 3 makrocipin la mRNA, celotno kodirajoče zaporedje macrocipin la mRNA, the entire coding sequence FJ495239.1 FJ495239.1 DNA DNA 4 4 makrocipin lb gen, celotno kodirajoče zaporedje macrocipin lb gene, complete coding sequence FJ495241.1 FJ495241.1 DNA DNA 5 5 makrocipin lc mRNA, celotno kodirajoče zaporedje macrocipin lc mRNA, complete coding sequence FJ495242.1 FJ495242.1 DNA DNA 6 6 makrocipin 2a gen, celotno kodirajoče zaporedje macrocipin 2a gene, complete coding sequence FJ495243.1 FJ495243.1 DNA DNA 7 7 makrocipin 2b gen, celotno kodirajoče zaporedje macrocipin 2b gene, complete coding sequence FJ495244.1 FJ495244.1 DNA DNA 8 8 makrocipin 3a mRNA, celotno kodirajoče zaporedje macrocipin 3a mRNA, complete coding sequence FJ495245.1 FJ495245.1 DNA DNA 9 9 makrocipin 3b gen, promoter in celotno kodirajoče zaporedje macrocipin 3b gene, promoter and full coding sequence FJ495246.1 FJ495246.1 DNA DNA 10 10 makrocipin 3c mRNA, celotno kodirajoče zaporedje macrocypin 3c mRNA, complete coding sequence FJ49 5247.1 FJ49 5247.1 DNA DNA 11 11 makrocipin 4a mRNA, celotno kodirajoče zaporedje macrocypin 4a mRNA, complete coding sequence FJ495248.1 FJ495248.1 DNA DNA 12 12 makrocipin 4b gen, celotno kodirajoče zaporedje macrocipin 4b gene, complete coding sequence FJ495249.1 FJ495249.1 DNA DNA 13 13 makrocipin 5a gen, celotno kodirajoče zaporedje macrocipin 5a gene, complete coding sequence FJ495250.1 FJ495250.1 DNA DNA 14 14 makrocipin 1 macroccipine 1 ACL99724 ACL99724 protein protein 15 15 makrocipin 1 macroccipine 1 ACL99725 ACL99725 protein protein 16 16 makrocipin 1 macroccipine 1 ACL99726 ACL99726 protein protein 17 17 makrocipin 3 macrocypin 3 ACL99729 ACL99729 protein protein 18 18 makrocipin 3 macrocypin 3 ACL99731 ACL99731 protein protein 19 19 makrocipin 4 macrocypin 4 ACL99727 ACL99727 protein protein 20 20 makrocipin 4 macrocypin 4 ACL99732 ACL99732 protein protein 21 21 makrocipin 4 macrocypin 4 ACL99733 ACL99733 protein protein 22 22 makrocipin 4 macrocypin 4 ACL99734 ACL99734 protein protein

Zaporedja, ki se uporabijo v skladu s tem izumom, so vsa zaporedja, ki imajo vsaj 63 % identičnost z razkritimi zaporedji pridobljenimi iz glive Macrolepiota procera. Manj kot 63 % podobnost z geni oziroma zaporedjem cDNAje prenizka, da bi lahko bila uporabna. Prednostno je identičnost vsaj 68 % ali celo vsaj 73 %.The sequences used in accordance with the present invention are all sequences having at least 63% identity to the disclosed sequences obtained from Macrolepiota procera fungus. Less than 63% similarity to genes or cDNA sequences is too low to be useful. Preferably, the identity is at least 68% or even at least 73%.

Makrocipine ali njihove homologe lahko brez težav identificiramo z rutinskimi metodami, ki so dobro poznane strokovnjakom s področja. Primer identifikacije homologov je s poravnavo zaporedij. Poravnave zaporedij in njihovo primerjavo so dobro poznane strokovnjakom in jih omogočajo metode kot so GAP, BESTFIT, BLAST, FASTA, TFASTA in tblastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=tblastn&BLAST PROGRAMS=tblastn&PAGE ΤΥΡΕ =BlastSearch&SHOW DEFAULTS=on&LINK LOC=blasthome).Macrocipins or their homologs can be readily identified by routine methods well known to those skilled in the art. An example of homolog identification is by sequence alignment. Sequence alignment and comparison are well known to those skilled in the art and made possible by methods such as GAP, BESTFIT, BLAST, FASTA, TFASTA and tblastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=tblastn&BLAST PROGRAMS = tblastn & PAGE ΤΥΡΕ = BlastSearch & SHOW DEFAULTS = on & LINK LOC = blasthome).

Dobro poznan je algoritem tblastn 2.2.25+, ki je na voljo na spletni strani NCBI. Ta algoritem omogoča primerjavo proteinskega zaporedja z nukleotidnim zaporedjem, v katerem preverja 6 bralnih okvirjev. Uporaben je za iskanje regij, ki kodirajo homologne proteine v neobdelanih nukleotidnih zaporedjih. Prav tako je algoritem uporaben za preverjanje ali je neko proteinsko zaporedje homologno makrocipinom, kakršni so opisani v tej prijavi. Prav tako je uporaben za preverjanje ali je zaporedje gena ali cDNA homologno zaporedju gena ali cDNA, kakršno je opisano v tej prijavi, in sicer s primerjavo omenjenag predvidenega aminokislinskega zaporedja gena ali cDNA s tblastn.The tblastn 2.2.25+ algorithm available on the NCBI website is well known. This algorithm makes it possible to compare a protein sequence with a nucleotide sequence in which it checks 6 reading frames. It is useful for finding regions that encode homologous proteins in untreated nucleotide sequences. The algorithm is also useful for verifying that a protein sequence is homologous to macrocypins as described in this application. It is also useful for verifying that a gene or cDNA sequence is homologous to a gene or cDNA sequence as described in this application by comparing said predicted amino acid sequence of a gene or cDNA with a tblastn.

Kadar primerjamo potencialni homolog makrocipina z uporabo algoritma tblastn, se proteinsko zaporedje lahko primerja z nukleotidno bazo podatkov imenovano nukleotidna zbirka (nr/nt) (ang. Nucleotide collection (nr/nt)). To je največja baza podatkov, ki je dostopna preko NCBI BLAST in vključuje vsa zaporedja iz zbirk zaporedij GenBank, RefSeq Nucleotides, EMBL (evropska nukleotidna baza podatkov), DDBJ (japonska nukleotidna baza podatkov) in proteinsko bazo podatkov PDB (ang. Protein Data Bank). Mejna vrednost (cut off) za pričakovano vrednost E (ang. expect value) mora biti nastavljena na 0,1. E je vrednost, ki opisuje verjetnost, da je podobnost zaporedij naključna.When comparing a potential macrocipin homologue using the tblastn algorithm, the protein sequence can be compared to a nucleotide database called a nucleotide collection (nr / nt). It is the largest database available through NCBI BLAST and includes all sequences from GenBank, RefSeq Nucleotides, EMBL (Japanese nucleotide database), DDBJ (Japanese nucleotide database) and PDB protein databases (Protein Data Bank) ). The cut off limit for the expected value of E must be set to 0.1. E is a value that describes the likelihood that sequence similarity is random.

V tabeli 2 je prikazan primer poravnave s proteinskim zaporedja Mcp4 (ID. ŠT. ZAP. 20; ACL99732.1). Prikazani so le rezultati primerjave z že objavljenimi polinukleotidi (ID. ŠT. ZAP. 2-13), ki kodirajo makrocipine z vsaj 73% podobnostjo z Mcp4.Table 2 shows an example of alignment with the Mcp4 protein sequence (ID NO. CLOSE 20; ACL99732.1). Only the results of the comparison with previously published polynucleotides (ID no. Zap. 2-13) encoding macrocipins with at least 73% similarity to Mcp4 are shown.

Tabela 2: Primerjava zaporedja ACL99732.1 (Mcp4) z nukleotidno zbirko (nr/nt) (mejna vrednost E < 0.1) s pomočjo algoritma tblastn.Table 2: Comparison of sequence ACL99732.1 (Mcp4) with nucleotide collection (nr / nt) (threshold E <0.1) using the tblastn algorithm.

pristopne številke GenBank-a ID. ŠT. ZAP. accession numbers Of GenBank ID. NO. ZAP. Opis Description Maksimalna identičnost Maximum identity vrednost E value E FJ495248.1 SEQID NO 11 FJ495248.1 SEQID NO 11 Macrolepiota procera makrocipin 4a mRNA, celotno kodirajoče zaporedje Macrolepiota procera macrocipin 4a mRNA, total the coding sequence 100 % 100% 3e-92 3e-92 FJ495249.1 SEQIDNO 12 FJ495249.1 SEQUE 12 Macrolepiota procera makrocipin 4a gen, promotor in celotno kodirajoče zaporedje Macrolepiota procera macrocipin 4a gene, promoter in the entire coding sequence 89% 89% le-80 le-80 FJ495247.1 SEQ ID NO 10 FJ495247.1 SEQ ID NO 10 Macrolepiota procera makrocipin 3c mRNA, celotno kodirajoče zaporedje Macrolepiota procera macrocipin 3c mRNA, total the coding sequence 82% 82% 3e-75 3e-75 FJ495245.1 SEOIDNO8 FJ495245.1 SEOIDNO8 Macrolepiota procera makrocipin 3a mRNA, celotno kodirajoče zaporedje Macrolepiota procera macrocipin 3a mRNA, total the coding sequence 81% 81% le-73 le-73 FJ495242.1 SEOIDNO5 FJ495242.1 SEOIDNO5 Macrolepiota procera makrocipin lc mRNA, celotno kodirajoče zaporedje Macrolepiota procera macrocipin lc mRNA, whole the coding sequence 80% 80% 4e-72 4e-72 FJ495239.1 SEQIDNO3 FJ495239.1 SEQIDNO3 Macrolepiota procera makrocipin la mRNA, celotno kodirajoče zaporedje Macrolepiota procera macrocipin la mRNA, total the coding sequence 79% 79% 9e-72 9e-72 FJ495241.1 SEQIDNO4 FJ495241.1 SEQIDNO4 Macrolepiota procera makrocipin lb mRNA, celotno kodirajoče zaporedje Macrolepiota procera macrocipin lb mRNA, whole the coding sequence 79% 79% 8e-71 8e-71 FJ495244.1 SEQIDNO7 FJ495244.1 SEQIDNO7 Macrolepiota procera makrocipin 2b gen, celotno kodirajoče zaporedje Macrolepiota procera macrocipin 2b gene, full coding sequence 78% 78% 6e-66 6e-66 FJ495243.1 SEOIDNO6 FJ495243.1 SEOIDNO6 Macrolepiota procera makrocipin 2a gen, celotno kodirajoče zaporedje Macrolepiota procera macrocipin 2a gene, full coding sequence 74% 74% 4e-65 4e-65 FJ495246.1 SEQIDNO9 FJ495246.1 SEQIDNO9 Mocrolepiota procera makrocipin 3b gen, celotno kodirajoče zaporedje Mocrolepiota procera macrocipin 3b gene, full coding sequence 78% 78% 9e-51 9e-51

« ·«·

FJ495250.1 SEQIDNO 13 FJ495250.1 SEQUE 13 Macrolepiota procera makrocipin zaporedje Macrolepiota procera macrocipin sequence 5a gen, celotno kodirajoče 5a gene, whole coding 81% 81% 3e-47 3e-47 FJ495240.1 SEQIDNO2 FJ495240.1 SEQIDNO2 Macrolepiota procera makrocipin zaporedje Macrolepiota procera macrocipin sequence la gen, celotno kodirajoče la gen, the whole coding 73% 73% 2e-41 2e-41

Makrocipinski polipeptidi in njihovi homologi, ki se lahko uporabljajo v skladu s tem izumom, so lahko tudi derivati le teh, kakor je prikazano zgoraj. Z izrazom derivati označujemo peptide, oligopeptide, polipeptide, proteine in encime, ki lahko v primerjavi z naravnimi proteini (nekateri navedeni v tabeli 1 kot ID. ŠT. ZAP. 14-22) obsegajo zamenjave, delecije ali vključitve naravnih ali sintetičnih aminokislinskih ostankov. Prednostno pa so s tem izumom zaščiteni še zlasti tisti homologi, različice in derivati kateregakoli izmed naravnih makrocipinov, ki imajo dvo-glavo inhibicijo.Macrocypin polypeptides and their homologs that can be used in accordance with the present invention may also be derivatives thereof, as shown above. The term derivatives refers to peptides, oligopeptides, polypeptides, proteins, and enzymes which, when compared to natural proteins (some listed in Table 1 as ID NO. CLOSE 14-22), may involve substitutions, deletions or inclusions of natural or synthetic amino acid residues. Preferably, however, the present invention particularly protects those homologs, variants and derivatives of any of the two-head inhibitory naturally occurring macrocipins.

Makrocipinske polipeptide in njihove homologe prav tako lahko kodirajo alternativne spojitvene variante makrocipinskih nukleinskih kislin ali genov. Izraz alternativne spojitvene variante v tem tekstu obsega različice zaporedij nukleinskih kislin v katerih so bili določeni introni in/ali eksoni izrezani, zamenjani, dodani, skrajšani ali podaljšani. Izmed takšnih različic so uporabne tiste, pri katerih bo ohranjena biološka aktivnost kodiranega proteina. Takšne različice lahko pridobimo s pomočjo selektivnega izbora funkcionalnih segmentov proteina. Različice makrocipinov pridobljene kot alternativne spojitvene variante lahko najdemo v naravi ali pa jih sintetiziramo. Metode sinteze alternativnih spojitvenih variant so dobro poznane strokovnjakom področja.Macrocipin polypeptides and their homologs may also encode alternative splicing variants of macrocipin nucleic acids or genes. The term alternative splicing variant herein includes variants of nucleic acid sequences in which particular introns and / or exons have been excised, replaced, added, truncated or extended. Among such variants are those which will preserve the biological activity of the encoded protein. Such variants can be obtained by selectively selecting functional segments of the protein. Macrocipin variants obtained as alternative splicing variants can be found in nature or synthesized. Methods for the synthesis of alternative coupling variants are well known in the art.

Polipeptidi navedeni v tem izumu so uporabni za zaščito rastlin, predvsem poljščin. Primeri rastlin, katere bi lahko z uporabo teh proteinov zaščitili pred škodljivci so lahko tako enokaličnice kot dvokaličnice, prednostno tiste iz družin Solanaceae, Poaceae, Fabaceae, Brassicaceae, Musaceae, Cucurbitaceae, Apiaceae, Rosaceae in Salicaceae, prednostno iz rodu Solanum, prednostno S. tuberosum, S. Iycopersicum in 5. melongena, ali iz rodu Nicotiana, prednostno N. tabacum ali N. benthamiana.The polypeptides of the present invention are useful for protecting plants, especially crops. Examples of plants that could be protected from pests by using these proteins are monocotyledons and dicotyledons, preferably those of the families Solanaceae, Poaceae, Fabaceae, Brassicaceae, Musaceae, Cucurbitaceae, Apiaceae, Rosaceae and Salicaceae, preferably S. tuberosum, S. Iycopersicum and 5. melongena, or from the genus Nicotiana, preferably N. tabacum or N. benthamiana.

Najbolj prednostno so uporabljene rastline iz rodu Solanum in Nicotiana, na primer N. tabacum, N. benthamiana in S. tuberosum, saj so te vrste med najbolje raziskanimi in najpogosteje uporabljenimi za pridobivanje proteinov v rastlinah.The plants of the genus Solanum and Nicotiana, for example, N. tabacum, N. benthamiana and S. tuberosum, are the most preferred ones, as these species are among the best researched and most commonly used for protein production in plants.

Polipeptidi tega izuma so uporabni za zaščito pred škodljivci kmetijskih rastlin. Škodljivci, proti katerim se lahko borimo s pomočjo teh proteinov so lahko, ni pa nujno, izbrani izmed skupin žuželk iz redov Lepidoptera, Hemiptera, Diptera in Coleoptera, prednostno pred škodljivcem vrste koloradski hrošč (Leptinotarsa decemlineata).The polypeptides of the present invention are useful for protection against pests of agricultural plants. The pests that can be combated with these proteins may, but need not be, selected from the insect groups of Lepidoptera, Hemiptera, Diptera and Coleoptera, preferably over the pest of the species Leptinotarsa decemlineata.

Ugotovljeno je bilo da so polipeptidi tega izuma še posebej uporabni za zaščito pred naslednjimi škodljivci: predstavniki reda Hemiptera vključujejo škodljivce iz družin Aphididae, Aleyrodidae, Delphacidae, Psyllidae, Jassidae in Coccidae. Iz družine Aphididae so predstavniki Aphis gossypii, Myzus persicae, Hyalopterus pruni, Lipaphis erysimi, Brevicoryne brassicae; iz družine Delphacidae so lahko škodljivci Nilaparvata lugens; iz družine Aleyrodidae vrste Bemisia tabaci gennadius; iz družine Jassidae vrsta Nephotettix bipunctatus; in iz družine Coccidae vrsta Unaspis yanonensis. Škodljivci iz reda Lepidoptera vključujejo škodljivce iz družin Noctuidae in Plutellidae. Škodljivci iz družine Noctuidae so iz rodu Asparagus, Spodoptera litura Fab ali Helicoverpa armigera; škodljivec iz družine Plutellidae pa vrsta Plutella xylostella.The polypeptides of the present invention have been found to be particularly useful for protection against the following pests: representatives of the Hemiptera order include pests from the families Aphididae, Aleyrodidae, Delphacidae, Psyllidae, Jassidae and Coccidae. From the family Aphididae are representatives of Aphis gossypii, Myzus persicae, Hyalopterus pruni, Lipaphis erysimi, Brevicoryne brassicae; the Delphacidae family may be pests of Nilaparvata lugens; from the family Aleyrodidae of the species Bemisia tabaci gennadius; from the Jassidae family Nephotettix bipunctatus; and from the family Coccidae species Unaspis yanonensis. Pests from the Lepidoptera order include pests from the families Noctuidae and Plutellidae. The pests of the Noctuidae family are of the genus Asparagus, Spodoptera litura Fab or Helicoverpa armigera; a pest of the family Plutellidae, but a species of Plutella xylostella.

Polipeptidi, navedeni v tem izumu, so lahko uporabljeni za zaščito rastlin na različne načine, ki so podrobneje opisani spodaj.The polypeptides of the present invention can be used to protect plants in various ways, which are described in more detail below.

V vseh pristopih je za zaščito lahko uporabljen eden izmed makrocipinov in/ali njegova različica, homolog ali derivat, ali pa kombinacija enega ali več različnih makrocipinov in/ali njegovih različic, homologov ali derivatov prav tako pa se za zaščito lahko uporabi tudi dve ali več različic, homologov ali derivatov, ki izhajajo iz istega makrocipina. Kadarkoli se v tem dokumentu uporabi izraz polipeptid ali makrocipin, se le ta nanaša na makrocipin in/ali njegovo različico, homolog ali derivat ali pa na kombinacijo različnih makrocipinov in/ali enega ali več njegovih različic, homologov ali derivatov ali na dve ali več različic, derivatov in homologov, ki izhajajo iz istega makrocipina ali katerekoli kombinacije, razen v kontekstu, ki ne omogoča te interpretacije.In all approaches, one of the macrocycins and / or a variant, homolog or derivative thereof may be used for protection, or a combination of one or more different macrocipins and / or its variants, homologs or derivatives may also be used for protection, variants, homologs or derivatives derived from the same macrocipin. Whenever the term polypeptide or macrocipin is used throughout this document, it refers to macrocipin and / or its variant, homolog or derivative, or to a combination of different macrocipins and / or one or more of its variants, homologs or derivatives, or to two or more variants , derivatives and homologs derived from the same macrocipin or any combination, except in a context that does not permit this interpretation.

V delu tega izuma je uporabljena intrinzična učinkovina, to je vsaj en polipeptid, ki je aktiven kot pesticidno sredstvo, ki pa ni dodan kot polipeptid, temveč je kot tak proizveden v rastlini, kot sledi: v rastlinski genom rastline, ki jo želimo zaščititi, stabilno vstavimo polinukleotidno zaporedje, ki kodira vsaj en polipeptid ali pa kakršnokoli kombinacijo naravnih ali modificiranih makrocipinov, ki so navedeni v tem izumu. Za zaščito te rastline se mora vstavljen polinukleotid ali kombinacija polinukleotidov po stabilni integraciji v genom izražati, to izražanje je lahko, ni pa nujno, tudi inducirano (v primeru nadzora izražanja z inducibilnim promotorjem). Ali povedano drugače, rastlina sama proizvaja sredstvo za zaščito pred škodljivcem. V tem delu izuma je v rastlino ali rastlinski genom vstavljeno polinukleotidno zaporedje, ki kodira vsaj en polipeptid naveden v tem izumu. Na ta način je omogočeno, da rastlina sama proizvaja pesticidno sredstvo. Uporabljeno je lahko eno ali več polinukleotidnih zaporedij, ki lahko kodirajo enega ali več polipeptidov navedenih v tem izumu. Tako lahko en polinukleotid vsebuje informacijo za enega ali več polipeptidov istega ali različnih tipov ali pa sta uporabljena dva ali več polinukleotida, ki kodirata različne polipeptide ali različne kombinacije polipeptidov.In the present invention, an intrinsic agent is used, that is, at least one polypeptide that is active as a pesticide but not added as a polypeptide but produced as such in the plant as follows: into the plant genome of the plant to be protected, a stable insert of a polynucleotide sequence encoding at least one polypeptide or any combination of the natural or modified macrocipins of the present invention. To protect this plant, an inserted polynucleotide or combination of polynucleotides, after stable integration into the genome, must be expressed, but this expression may or may not be induced (in the case of expression control by an inducible promoter). In other words, the plant itself produces a pest control agent. In this part of the invention, a polynucleotide sequence encoding at least one polypeptide of the present invention is inserted into the plant or plant genome. This allows the plant to produce the pesticide agent itself. One or more polynucleotide sequences may be used that can encode one or more polypeptides of the present invention. Thus, one polynucleotide may contain information for one or more polypeptides of the same or different types, or two or more polynucleotides encoding different polypeptides or different combinations of polypeptides may be used.

Metode za pridobivanje stabilno gensko spremenjenih rastlin so poznane strokovnjakom s področja. Gensko spremenjene rastline so tiste rastline, ki imajo v genom vneseno in stabilno vstavljeno vsaj eno heterologno polinukleotidno zaporedje.Methods for obtaining stable genetically modified plants are known to those skilled in the art. Genetically modified plants are those plants which have at least one heterologous polynucleotide sequence inserted and stably inserted into the genome.

Metode za vnos velikih heterolognih nukleotidnih zaporedij v rastlinske celice so dobro poznane. Strokovnjaki s področja lahko izberejo metodo vnosa, ki je primerna za rastlino, ki jo spreminjamo in vektor, ki ga uporabljamo za pomoč pri prenosu gena. Optimalne kombinacije rastline in vektorjev so torej poznane, ali pa jih določimo s pomočjo rutinskih poskusov.Methods for introducing large heterologous nucleotide sequences into plant cells are well known. Those of skill in the art can choose an intake method that is appropriate for the plant we are modifying and the vector we use to aid in gene transfer. The optimal combinations of plant and vector are therefore known, or can be determined by routine experiments.

Metoda vnosa genov v rastline so lahko kemične, kot sta transfekcija s kalcijevim fosfatom, ciklodekstrinom, liposomi (lipofekcija) ali pa transformacija plastidov s polietilenglikolom (PEG); ali nekemične metode kot je biolistično obstreljevanje z gensko puško, elektroporacija, magnifekcija in sonoporacija ali pa transdukcija s pomočjo virusov.The method of gene entry into plants may be chemical, such as transfection with calcium phosphate, cyclodextrin, liposomes (lipofection), or transformation of plastids with polyethylene glycol (PEG); or non-chemical methods such as biolistically firing a gene rifle, electroporation, magnifying, and sonoporation, or virus transduction.

Za vnos polinukleotidov navedenih v tem izumu v rastline so primerne vse te metode ali kombinacije teh metod.All of these methods or combinations of these methods are suitable for introducing the polynucleotides of the present invention into plants.

Ena metoda, ki omogoča vnos polinkleotidov v rastline je transformacija s pomočjo agrobakterije. Bakterije z virusnim ekspresijskim sistemom so lahko iz različnih skupin, nekateri primeri so Agrobacterium tumefaciens, A. rhizogenes, Sinorhizobium meliloti, Rhizobium sp. in Mesorhizobium loti, uporabi pa se lahko tudi druge bakterije.One method that allows the introduction of polinkleotides into plants is transformation by agrobacteria. Bacteria with viral expression systems may be from different groups, some examples being Agrobacterium tumefaciens, A. rhizogenes, Sinorhizobium meliloti, Rhizobium sp. and Mesorhizobium lots, and other bacteria can be used.

Rastline lahko transformiramo s pomočjo vektorjev, ki vsebujejo ustrezno polinukleotidno zaporedje, ki kodira vsaj enega izmed makrocipinov, njegovo različico, homolog ali derivat. Polinukleotidno zaporedje, ki kodira vsaj enega izmed makrocipinov, je ustrezno povezan z enim ali več kontrolnimi zaporedji, vsaj s promotorjem. Izrazi regulatorni element, kontrolno zaporedje in promotor so v tem dokumentu med seboj zamenljivi in jih je potrebno razumeti kot regulatoma polinukleotidna zaporedja, ki lahko vplivajo na izražanje zaporedij s katerimi so ligirana. Zgoraj navedeni izrazi zaobjemajo tudi transkripcijska regulatoma zaporedja, ki so pridobljena iz klasičnih evkariontskih genomskih zaporedij in iz dodatnih regulatornih elementov kot so zgornja aktivacijska zaporedja, ojačevalna zaporedja, utiševalna zaporedja, ki spremenijo izražanje genov kot odgovor na razvojni ali zunanji dražljaj ali pa spremenijo izražanje glede na tkivno specifičnost. Izraz ustrezno povezan v tem besedilu se nanaša na funkcionalno povezavo med promotorskim zaporedjem in polinukleotidnim zaporedjem, ki kodira makrocipin, kar pomeni, da to promotorsko zaporedje lahko sproži transkripcijo tega polinukleotida. Za izražanje polinukleotidnega zaporedja je lahko uporabljen katerikoli promotor primeren za izražanje v rastlini in je primeren za izražanje vnesenega zaporedja. Izbor promotorja ni odločilen. Izbira optimalnega promotorja je za strokovnjaka s področja rutinsko opravilo, metode za izbor ustreznih promotorjev so objavljene. Primera ustreznih promotorjev sta p35s in Act2. Uporabljen promotor je lahko inducibilen, kar pomeni da se prepisovanje sproži ali poveča kot odgovor na razvojni, kemični, okoljski ali fizikalni dražljaj. Promotor je lahko tudi kemijsko uravnan, takšni so promotorji pri katerih je prepisovanje sproženo s prisotnostjo ali ob odsotnosti molekul kot so na primer alkohol, tetraciklin, steroidi ali kovine. Prav tako pa so lahko promotorji uravnani fizikalno. Primeri takšnih promotorjev so prepisovanje uravnano z prisotnostjo ali odsotnostjo svetlobe, oziroma z nizko ali visoko temperaturo. Primer inducibilnega promotorja je tudi stresno-inducibilen promotor, to je promotor, pri katerem je prepisovanje inducirano s pomočjo stresnih dejavnikov. Dodatno ali alternativno pa je lahko promotor tudi tkivno specifičen, kar pomeni da je sposoben prednostno sprožiti začetek prepisovanja v določenih tkivih, kot so na primer listi, korenine, semena, itd. Promotorji, ki so sposobni sprožiti prepisovanje pretežno v določenih tkivih, so v tem tekstu imenovani tkivno specifični. Za sprožitev prepisovanja makrocipina so lahko uporabljeni inducibilni promotorji. Z uporabo le teh je namreč mogoče izražanje makrocipina vključiti in izključiti, odvisno od prisotnosti ali odsotnosti zunanjih dražljajev in konfiguracije ekspresijskega sistema. Z uporabo inducibilnega promotorja je mogoče na ukaz vključiti izražanje pesticidne aktivnosti. Ob hkratni uporabi več kot enega polinukleotida, ki kodira makrocipin, je mogoče z uporabo inducibilnih promotorjev regulirati izražanje vsakega posebej, na primer v izražanje ob različnih časih ali pa postopno izražanje.Plants can be transformed by vectors containing the corresponding polynucleotide sequence encoding at least one of the macrocipins, a variant thereof, a homolog or a derivative. A polynucleotide sequence encoding at least one of the macrocipins is properly coupled to one or more control sequences, at least to the promoter. The terms regulatory element, control sequence, and promoter are interchangeable throughout this document and should be understood as regulatory polynucleotide sequences that may affect the expression of the sequences with which they are ligated. The above terms also encompass transcriptional regulators of sequences derived from classic eukaryotic genomic sequences and from additional regulatory elements such as the above activation sequences, amplification sequences, silencing sequences that alter gene expression in response to a developmental or external stimulus or alter expression to tissue specificity. The term appropriately related herein refers to a functional link between a promoter sequence and a macronuclein-encoding polynucleotide sequence, meaning that this promoter sequence can initiate transcription of this polynucleotide. For the expression of a polynucleotide sequence, any promoter suitable for expression in the plant and suitable for expression of the introduced sequence may be used. The choice of promoter is not decisive. Selection of the optimal promoter is a routine task for the specialist, methods for selecting the appropriate promoters are published. Examples of suitable promoters are p35s and Act2. The promoter used can be inducible, which means that transcription is triggered or augmented in response to a developmental, chemical, environmental, or physical stimulus. The promoter may also be chemically regulated, such as promoters in which transcription is triggered by the presence or absence of molecules such as alcohol, tetracycline, steroids or metals. Also, promoters can be physically regulated. Examples of such promoters are transcription regulated by the presence or absence of light, or by low or high temperature. An example of an inducible promoter is also a stress-inducible promoter, that is, a promoter in which transcription is induced by stress factors. In addition or alternatively, the promoter may also be tissue specific, which means that it is able to preferentially initiate transcription in certain tissues, such as leaves, roots, seeds, etc. Promoters that are capable of initiating transcription predominantly in specific tissues are referred to herein as tissue-specific. Inducible promoters may be used to trigger macrocipin transcription. Using these, macropecin expression can be switched on and off depending on the presence or absence of external stimuli and the configuration of the expression system. Using an inducible promoter, expression of pesticidal activity can be included at the command. With the use of more than one macronuclein-encoding polynucleotide, the expression of each can be regulated by inducible promoters, for example, at different times or gradually.

Z uporabo različnih inducibilnih promotorjev je torej mogoče nadzorovano izražanje enega ali več makrocipinov. Ob odsotnosti zunanjega dražljaja je izražanje nizko ali pa ga sploh ni, ob časovno nadzorovanem zunanjem dražljaju, to je ob približevanju ali prisotnosti škodljivca, pa se sproži ali poveča izražanje makrocipina. Izražanje se lahko vključi tudi na zgodnji stopnji razvoja gensko spremenjenih rastlin, to je v obdobju ko so rastline najbolj občutljive za napad škodljivcev. Z uporabo različnih promotorjev za različne polinukleotide, ki kodirajo makrocipine, lahko nadziramo moč pesticidne aktivnosti. Izražanje makrocipina v odrasli rastlini je nato lahko zmanjšano ali ustavljeno, s čimer je rastlini omogočeno da intenzivneje proizvaja rastlinsko biomaso ali pridelek.Thus, the expression of one or more macrocipins can be controlled by the use of different inducible promoters. In the absence of an external stimulus, expression is low or nonexistent, and with a temporally controlled external stimulus, that is, when a pest is approached or present, macrospecin expression is triggered or increased. Expression can also be included at an early stage in the development of genetically modified plants, that is, at a time when the plants are most susceptible to pest attack. By using different promoters for different macronuclei encoding polynucleotides, we can control the potency of pesticidal activity. The expression of macrocipin in an adult plant can then be reduced or stopped, allowing the plant to produce more intensively plant biomass or crop production.

Prednostno je polinukleotid, ki kodira makrocipin ali njegovo različico, ustrezno povezan s konstitutivnim promotorjem. Konstitutivni promotor je transkripcijsko aktiven med večino, ne pa tudi nujno med vsemi, stopnjami rasti in razvoja in je izražen v vseh tkivih.Preferably, the polynucleotide encoding macrocypin or a variant thereof is appropriately linked to a constitutive promoter. The constitutive promoter is transcriptionally active among most, but not necessarily all, stages of growth and development and is expressed in all tissues.

V konstruktu, ki ga vstavljamo v rastlino je možna tudi uporaba enega ali več terminatorskih zaporedij. Izraz terminator obsega kontrolno zaporedje DNA na koncu transkripcijske enote, ki signalizira procesiranje 3' konca in poliadenilacijo primarnega transkripta ter konec prepisovanja. Dodatni regulatorni elementi lahko vključujejo tudi transkripcijske in translacijske pospeševalce. Strokovnjaki s področja vedo, katera pospeševalna zaporedja so primerna za uporabo tega izuma. Ta zaporedja so objavljena in jih strokovnjaki s področja lahko redno pridobijo.One or more terminator sequences may also be used in a construct to be inserted into a plant. The term terminator encompasses a DNA control sequence at the end of a transcription unit that signals the processing of the 3 'end and polyadenylation of the primary transcript and the end of transcription. Additional regulatory elements may also include transcriptional and translational accelerators. Those of skill in the art will know which promotional sequences are suitable for use in the present invention. These sequences are published and can be retrieved regularly by experts in the field.

Prav tako lahko genski konstrukti prisotni v tem izumu vključujejo tudi zaporedja mest za začetek podvojevanja (ang. origin of replication, ORI), ki so potrebna za vzdrževanje in/ali podvojevanje v specifičnih celičnih linijah. Primer je, ko mora biti genetski konstrukt najprej vnesen in ohranjen v bakterijski celici kot episomalni genetski element (to je plazmid ali kozmid). Prednostno so mesta za začetek podvojevanja fl-ori in colEl, vendar pa se lahko uporabi tudi druga zaporedja.Likewise, the gene constructs present in the present invention may include sequences of origin of replication (ORI) sites that are required for maintenance and / or duplication in specific cell lines. An example is where a genetic construct must first be introduced and preserved in a bacterial cell as an episomal genetic element (i.e. a plasmid or cosmid). Preferably, the start sites are fl-ori and colEl, but other sequences may be used.

Genetski konstrukt lahko, ni pa nujno, obsega tudi vsaj en gen za selekcijski marker. V tem besedilu se izraz selekcijski marker nanaša na katerikoli gen, ki doprinese k spremenjenemu fenotipu celice, v kateri je izražen. Na ta način je pospešena identifikacija in/ali selekcija celic, ki so s transfekcijo ali transformacijo prejele konstrukt z nukleotidnim zapisom opisanim v tem izumu. Primerni markerski geni so na področju dobro poznani. Izbiramo lahko med takimi, ki omogočajo odpornost proti antibiotikom ali herbicidom ali pa takimi, ki omogočijo sintezo novih metabolitov ali pa selekcijo s pomočjo vizualizacije. Primeri selekcijskih markerjev so geni, ki omogočijo odpornost proti antibiotikom, kot sta neomicin in kanamicin.A genetic construct may, but need not be, comprise at least one gene for a selection marker. In this text, the term selection marker refers to any gene that contributes to the altered phenotype of the cell in which it is expressed. In this way, the identification and / or selection of cells that, by transfection or transformation, have received the construct with the nucleotide record described in this invention is accelerated. Suitable marker genes are well known in the art. We can choose from those that allow antibiotic or herbicide resistance, or those that allow the synthesis of new metabolites or selection through visualization. Examples of selection markers are genes that confer antibiotic resistance such as neomycin and kanamycin.

Prednostno je za pripravo gensko spremenjenih rastlin uporabljen vektor pMDC32 (glej Sliko 2a), ki vsebuje polinukleotid, ki kodira makrocipin. Zaporedje vektorja pMDC32 je leta 2003 v reviji Plant Physiol. (Oct;133(2):462-9) objavil Curtis. Ena izmed različic tega vektorja je objavljena v GenBank pod pristopno številko FJ172534.Preferably, the pMDC32 vector (see Figure 2a) is used for the preparation of the genetically modified plants, containing a macronuclein encoding a polynucleotide. The vector sequence pMDC32 was published in 2003 in Plant Physiol. (Oct; 133 (2): 462-9) published by Curtis. One version of this vector is published in GenBank under accession number FJ172534.

Prednostno je za vnos v rastline polinukleotidno zaporedje prilagojeno glede na rastlinsko uporabo kodonov, saj se na ta način povečata nivo in učinkovitost izražanja. Optimizacijo lahko izvedemo z uporabo na spletu dostopnih programskih orodij, kot je na primer GenScript, ali pa z uporabo molekularno genetskih metod, ki jih poznajo strokovnjaki s področja.Preferably, the polynucleotide sequence is adapted for plant uptake according to the codon's plant use, as this increases the level and efficiency of expression. Optimization can be accomplished by using software tools available online such as GenScript, or by using molecular genetic methods known to those of skill in the art.

Heterologne sekvence so lahko vstavljene v rastlinske celice tudi s pomočjo brizganja bakterijske kulture pod visokim pritiskom. Predhodno je v tem primeru potrebno pripraviti rastlinsko tkivo, na primer z mehanskimi abrazivnimi sredstvi (silicijev karbid ali karburund), da povečamo učinkovitost transfekcije.Heterologous sequences can also be inserted into plant cells by high-pressure bacterial culture injection. In this case, it is necessary to prepare the plant tissue, for example with mechanical abrasives (silicon carbide or carburund), to increase transfection efficiency.

Poleg zgoraj naštetih metod so lahko heterologna zaporedja vnesena v rastlinska tkiva z magnifekcijo (ang. magnifection).In addition to the methods listed above, heterologous sequences can be introduced into plant tissues by magnifection.

Vnos genov za pridobitev gensko spremenjenih rastlin je lahko stabilen ali pa prehoden.Gene entry for the production of genetically modified plants may be stable or transient.

Rastlinske celice so lahko del cele rastline ali pa le del rastlinskega tkiva.The plant cells may be part of the whole plant or only part of the plant tissue.

Tako pridobljene transformirane rastline lahko razmnožujemo na mnogo načinov, kot so na primer klonsko razmnoževanje ali pa klasične metode gojenja. Primer so rastline prve generacije (Tl), ki po samooprašitvi tvorijo rastline druge generacije (T2), ki so homozigotne. Te rastline lahko nadalje gojimo s klasičnimi metodami razmnoževanja.Transformed plants thus obtained can be propagated in many ways, such as clonal propagation or classical methods of cultivation. An example is first-generation (Tl) plants that, after self-pollination, form second-generation (T2) plants that are homozygous. These plants can be further grown using conventional methods of propagation.

Prednostna je vzgoja gensko spremenjenih rastlin, ki vsebujejo vsaj en polinukleotidni zapis, ki kodira Mcp4 (ID. ŠT. ZAP. 19-22) ali njegove različice, homologe ali derivate, saj ima Mcp4 sposobnost inhibicije cisteinskih in serinskih skupin proteaz ter glikozid hidrolaz, posledica česar je učinkovita zaščita gensko spremenjenih rastlin pred škodljivci.The cultivation of genetically modified plants containing at least one polynucleotide encoding Mcp4 (ID NO. 19-22) or variants, homologs or derivatives thereof is preferred, as Mcp4 has the ability to inhibit cysteine and serine protease groups and glycoside hydrolase, resulting in effective protection of genetically modified plants from pests.

V drugem delu tega izuma pa je polinukleotid opisan v tem izumu uporabljen za pridobivanje polipeptida s pesticidno učinkovitostjo. V tem delu izuma je polinukleotidno zaporedje, ki kodira vsaj en polipeptid s pesticidno učinkovitostjo, kot je to opredeljeno v patentnih zahtevkih, uporabljen za proizvodnjo polipeptidov v bioreaktorju. Polipeptid pridobljen v bioreaktorju je lahko po postopku čiščenja uporabljen kot pesticidno sredstvo. Prednostno je polinukleotidno zaporedje del vektorja in ta vektor je nato uporabljen za heterologno izražanje rekombinantnega proteina v bioreaktorju. V reaktorju je ta polipeptid izražen in procesiran, tako da pridobimo aktiven in hkrati stabilen protein, ki ga lahko uporabimo za zaščito pred škodljivci, predvsem škodljivci kmetijskih rastlin. Prav tako pa je mogoča uporaba drugih ekspresijskih sistemov za pridobivanje polipeptida opisanega v tem izumu. Te metode so strokovnjakom s področja poznane in jih lahko uporabijo na način, da je polipeptid opisan v tem izumu pridobljen v dostopni in stabilni obliki.In another embodiment of the present invention, the polynucleotide described in the present invention is used to produce a polypeptide with pesticidal efficacy. In this part of the invention, a polynucleotide sequence encoding at least one polypeptide with pesticidal efficiency, as defined in the claims, is used to produce polypeptides in a bioreactor. The polypeptide obtained in the bioreactor can be used as a pesticide agent after the purification process. Preferably, the polynucleotide sequence is part of a vector and this vector is then used for heterologous expression of the recombinant protein in the bioreactor. In the reactor, this polypeptide is expressed and processed to produce an active and at the same time stable protein that can be used to protect against pests, especially crop pests. However, it is also possible to use other expression systems to produce the polypeptide described in the present invention. These methods are known to those skilled in the art and can be used in such a way that the polypeptide described in the present invention is obtained in an accessible and stable form.

Če je za pridobivanje polipeptida uporabljen vektor, lahko le ta vsebuje polinukleotid, ki kodira vsaj en makrocipin ali njegovo različico, homolog ali derivat. Lahko pa vsebuje tudi kombinacijo različnih makrocipinov in/ali kombinacijo različnih različic, homologov ali derivatov makrocipina ali pa njihovo mešanico. Vektor ima lahko iste splošnih značilnosti, kot je opisano pri vektorjih uporabljenih za pridobivanje gensko spremenjenih rastlin. Te splošne značilnosti so na primer kontrolna in regulatorna zaporedja, markerski geni, multiplo mesto za kloniranje, promotor, ojačevalno zaporedje ali mesto za začetek podvojevanja.If a vector is used to obtain the polypeptide, the vector may comprise a polynucleotide encoding at least one macrocipin or variant, homolog or derivative thereof. However, it may also contain a combination of different macrocipins and / or a combination of different variants, homologs or derivatives of macrocipin or a mixture thereof. The vector may have the same general characteristics as described for the vectors used for the production of genetically modified plants. These general features are, for example, control and regulatory sequences, marker genes, multiple cloning sites, promoters, amplification sequences or sites for initiation of duplication.

• · · · ·· ..• · · · ·· ..

• ····· · _ • · ·· · · · · · ·• · · · · · · · · · · · · · · ·

Prednostno je za pridobivanje heterolognih rekombinantnih proteinov uporabljen gostiteljski organizem Escherichia coli, saj je le ta eden izmed najbolj uporabnih gostiteljskih organizmov za pridobivanje rekombinantnih proteinov hkrati pa je iz genetskega stališča eden najbolj poznanih mikroorganizmov.Preferably, the host organism Escherichia coli is used for the production of heterologous recombinant proteins, since it is one of the most useful host organisms for the production of recombinant proteins and is one of the most known microorganisms from a genetic point of view.

»pET system« (Novagen, Madison, Wl, USA) je primeren vektorski sistem za heterologno izražanje v bakteriji E. coli.The "pET system" (Novagen, Madison, Wl, USA) is a suitable vector system for heterologous expression in E. coli.

Strokovnjak s področja lahko izbere najbolj učinkovito kombinacijo promotorja in polinukleotida za pridobivanje visokega donosa rekombinantnega proteina.One of ordinary skill in the art can select the most effective combination of promoter and polynucleotide to obtain a high yield of recombinant protein.

Makrocipini so lahko pridobljeni kot en polipeptid ali v kombinaciji različnih polipeptidov. Na primer z uporabo kombinacij pETlla:Mcpl, pET3a:Mcp3 in pET14b:Mcp4 so bili v bakterijskem ekspresijskem sistemu pridobljeni visoki donosi treh različnih rekombinantnih makrocipinov (glej Sabotič et al., 2009).Macrocipins can be obtained as a single polypeptide or in combination of different polypeptides. For example, using combinations of pETlla: Mcpl, pET3a: Mcp3 and pET14b: Mcp4, high yields of three different recombinant macrocipins were obtained in the bacterial expression system (see Sabotic et al., 2009).

Uporabljena je lahko kakršnakoli modifikacija procesa čiščenja proteina, ki izboljša donos, procesiranje, očiščenje ali aktivnost proteinov. Primer modifikacije je uporaba dodatka lokalizacijskih signalnih zaporedij ali označevalcev, kot je na primer His-označevalec (ang. His-tag).Any modification of the protein purification process that improves the yield, processing, purification or activity of the protein may be used. An example of modification is the use of the addition of localization signal sequences or markers, such as His-tag.

Končna faza čiščenja proteina je lahko narejena na načine opisane v literaturi. Metode čiščenja proteinov so dobro poznane strokovnjakom s področja, njihova uporaba pa je rutinska. Makrocipini ali njihove različice, homologi ali derivati so lahko uporabljeni za zaščito kot posamezen protein ali pa v kakršni koli mešanici proteinov.The final phase of protein purification can be done in the manner described in the literature. Protein purification methods are well known to those skilled in the art and their use is routine. Macrocipins or variants, homologs or derivatives thereof may be used for protection as a single protein or in any protein blend.

Makrocipini ali njihove različice, homologi ali derivati so lahko pridobljeni v obliki netopnih inkluzijskih telesc, v topni obliki ali pa kot njuna mešanica. Če so pridobljeni v netopni obliki jih je priporočljivo pred nanosom na rastline spremeniti v topno obliko.Macrocipins or variants, homologs or derivatives thereof may be obtained in the form of insoluble inclusion bodies, in soluble form or as a mixture thereof. If obtained in insoluble form, it is advisable to convert them to soluble form before application to the plants.

Za pridobivanje želenih proteinov je na voljo več načinov. Nekateri izmed načinov so ponavljajoče se zamrzovanje in odtajevanje, sonikacija, homogenizacija z visokim pritiskom, filtracija ali permeabilizacija z organskimi topili. Metoda, ki jo izberemo, je odvisna od občutljivosti proteina in čvrstosti celic iz katerih protein izoliramo. Makrocipini ostanejo stabilni ob kratkotrajni izpostavitvi ekstremnim pH, ki zavzema vrednosti med pH 2 in pH 12. Prav tako so makrocipini izjemno temperaturno stabilni, saj več mesecev ohranijo inhibicijsko aktivnost pri 4°C, nekaj tednov pri sobni temperaturi in celo po 15 minutah pri 100°C. Makrocipini imajo torej idealne lastnosti za procese izolacije, saj le ta ne vpliva na zmanjšanje njihove funkcionalnosti in donosa.There are several ways to get the proteins you want. Some of the methods are repeated freezing and thawing, sonication, high pressure homogenization, filtration or permeabilization with organic solvents. The method we choose depends on the sensitivity of the protein and the strength of the cells from which the protein is isolated. Macrocipins remain stable with short-term exposure to extreme pH, which takes values between pH 2 and pH 12. They are also extremely temperature-stable, maintaining their inhibitory activity at 4 ° C for several months, at room temperature for several weeks, and even at 100 for a few minutes. ° C. Macrocypins therefore have ideal properties for insulation processes, since they do not affect the reduction of their functionality and yield.

Ker so makrocipini zelo stabilni, je njihovo raztapljanje mogoče z dodatkom 3M uree. Nadaljnji procesi čiščenja pa so potem lahko taki kot je to poznano strokovnjakom s področja.Because macrocipins are very stable, their dissolution is possible with the addition of 3M urea. Further cleaning processes may then be such as is known to those skilled in the art.

Metode za čiščenje makrocipinov lahko vključujejo obarjanje, diferencialno raztapljanje, ultracentrifugiranje in kromatografske metode, kot so kromatografija z ločevanjem po velikosti, (imuno)afinitetna kromatografija, ionsko-izmenjevalna kromatografija, vezava kovin preko Hisoznačevalcev ali HPLC. Primer je izolacija rekombinantnih Mcpl in Mcp4 s pomočjo kromatografije z ločevanjem po velikosti.Macrocycine purification methods may include precipitation, differential dissolution, ultracentrifugation, and chromatographic methods such as size separation chromatography, (immuno) affinity chromatography, ion exchange chromatography, metal bonding by His tagging or HPLC. An example is the isolation of recombinant Mcpl and Mcp4 by size separation chromatography.

Očiščen makrocipin, njegova različica, homolog, derivat ali kakršnakoli kombinacija le teh je lahko skoncentrirana z uporabo liofilizacije ali ultrafiltracije.Purified macrocipin, a variant, homolog, derivative or any combination thereof, may be concentrated using lyophilization or ultrafiltration.

Očiščen in koncentriran makrocipin ali njegovi homologi so lahko dostopni v obliki kakršno se običajno uporablja za nanos na rastline. Eden ali več makrocipinov, navedenih v tem izumu, je lahko zmešan s pomožnimi snovmi ali pa raztopljen in dostopen v obliki primerni za nanos na rastline. Prav tako pa je za nanos pesticidne učinkovine mogoča tudi oblika, ki omogoča prilagojeno dostavo.Purified and concentrated macrocipin or homologs thereof are readily available in the form generally used for application to plants. One or more of the macrocipins of the present invention may be mixed with excipients or dissolved and accessible in a form suitable for application to plants. Also, for the application of the pesticide active ingredient, a form that allows for custom delivery is also possible.

Prednostna je sestava pesticidnega sredstva, ki vsebuje makrocipin, v raztopljeni obliki s pH vrednostjo med 6 in 9, saj so makrocipini v tem območju pH najbolj stabilni.Preferably, the composition of the pesticidal agent containing macroccipin in dissolved form with a pH between 6 and 9 is preferred, as macrocipins are the most stable in this pH range.

V nadaljevanju je izum pojasnjen z nekaterimi primeri. Ti primeri ne omejujejo uporabe izuma temveč ga le razlagajo.The invention will now be illustrated with some examples. These examples do not limit the use of the invention but merely interpret it.

PrimeriExamples

Primer 1Example 1

S testom inhibicije prebavnih proteaz izoliranih iz prebavila ličink koloradskega hrošča je bilo proučeno delovanje makrocipina. Na ta način smo želeli izvedeti kakšen je način delovanja makrocipina, ki omogoča pesticidno aktivnost. Gruden in sod. (1998) so pokazali, da predstavljajo cisteinske proteaze prevladujoč delež prebavne proteolitične aktivnosti v prebavilu ličink koloradskega hrošča. Najprej je bil z uporabo različnih substratov in različnimi koncentracijami inhibitorja narejen test inhibicije na grobem izvlečku prebavila ličink koloradskega hrošča. V tem testu ni bilo zaznati inhibicije. Nato so bili pred testom inhibicije proteini izvlečka prebavila ličink koloradskega hrošča delno očiščeni z obarjanjem z acetonom. Tudi v tem primeru ni bilo zaznati inhibitornega delovanje makrocipina na prebavne proteaze. V tretjem testu pa je bil proteinski ekstrakt iz prebavila ličink koloradskega hrošča po obarjanju z acetonom frakcioniran z gelsko filtracijo. Po frakcioniranju je bila v posamezni frakciji merjena proteolitična aktivnost na substrate Z21Macrocipin action was studied by digestive protease inhibition isolates isolated from the gastrointestinal larvae of the Colorado beetle. In this way we wanted to find out what is the mode of action of macrocipin that allows pesticidal activity. Gruden et al. (1998) have shown that cysteine proteases represent a dominant proportion of digestive proteolytic activity in the digestion of Colorado beetle larvae. First, using a different substrate and different concentrations of the inhibitor, an inhibition test was performed on a coarse digestion of Colorado beetle larvae. No inhibition was detected in this test. Then, prior to the inhibition test, the digestive proteins of the Colorado potato beetle larvae were partially purified by acetone precipitation. In this case, too, the inhibitory action of macrocypin on the digestive proteases was not detected. In the third assay, however, protein extract from the digestive system of Colorado beetle larvae was fractionated by gel filtration after acetone precipitation. After fractionation, proteolytic activity on Z21 substrates was measured in each fraction

Phe-Arg-pNa, Z-Arg-Arg-pNA in pGlu-Phe-Leu-pNA z in brez dodatka posameznih rekombinantnih makrocipinov (Mcpl, Mcp3, Mcp4).Phe-Arg-pNa, Z-Arg-Arg-pNA, and pGlu-Phe-Leu-pNA with and without the addition of single recombinant macrocipins (Mcpl, Mcp3, Mcp4).

Rezultati tega poskusa so prikazani na sliki 1. Nobeden izmed makrocipinov ni inhibiral aktivnosti prebavnih proteaz na substrata Z-Phe-Arg-pNa in Z-Arg-Arg-pNA. Vsi makrocipini so imeli le šibko inhibitorno delovanje za razgradnjo substrata pGlu-Phe-Leu-pNA, pa še to le pri najvišjih koncentracijah inhibitorja.The results of this experiment are shown in Figure 1. None of the macrocipins inhibited the activity of digestive proteases on Z-Phe-Arg-pNa and Z-Arg-Arg-pNA substrates. All macrocipins had only weak inhibitory activity for degradation of the pGlu-Phe-Leu-pNA substrate, and only at the highest inhibitor concentrations.

Primer 2Example 2

Z namenom da bi v prebavilu ličink koloradskega hrošča poiskali tarče na katere deluje makrocipin, je bila narejena afinitetna kromatografija, kjer je bil na monolitni nosilec vezan Mcpl. S homogenizacijo je bil pripravljen grob izvleček celotnih prebavil koloradskega hrošča, izoliranih iz ličink četrte stopnje, ki so bile nabrane na polju. Ekstrakt je bil nato očiščen s centrifugiranjem pri 4 °C, 15 min pri 16.000 g in ločen v frakcije s pomočjo kromatografije z ločevanjem po velikosti. Frakcije, ki so vsebovale protein (to je bilo določeno z merjenjem absorbance frakcije pri valovni dolžini 280 nm) so bile združene in nanešene na afinitetno kromatografijo z makrocipinom. Po spiranju kolone so bili vezani proteini izprani z znižanjem pH. Izprani proteini so bili nato analizirani z SDS-PAGE gelsko elektroforezo, posamezne proteinske lise pa nato izrezane iz gela. Posamezne lise so bile nato v gelu razgrajene s tripsinom in analizirane z masno spektrometrijo (ESI-MS-MS). Uporabljen je bil masni spektrometer MSDTrap XCT Ultra (Agilent, ZDA).In order to locate the macrospecin target in the digestion of Colorado potato beetle larvae, affinity chromatography was performed, where Mcpl was bound to the monolithic support. Homogenization produced a coarse extract of entire Colorado beetle digesters isolated from fourth-stage larvae that had been harvested in the field. The extract was then purified by centrifugation at 4 ° C for 15 min at 16,000 g and separated into fractions by size separation chromatography. Fractions containing the protein (this was determined by measuring the absorbance of the fraction at a wavelength of 280 nm) were combined and applied to affinity chromatography with macrocipin. After column washing, the bound proteins were washed with pH lowering. The washed proteins were then analyzed by SDS-PAGE gel electrophoresis, and individual protein spots were then excised from the gel. The individual spots were then digested with trypsin gel and analyzed by mass spectrometry (ESI-MS-MS). The MSDTrap XCT Ultra mass spectrometer (Agilent, USA) was used.

RezultatiResults

Z uporabo makrocipinske afinitetne kromatografije je bilo razkritih več potencialnih tarčnih molekul iz prebavil ličink koloradskega hrošča, na katere se veže makrocipin. Te molekule so intestaini, glikozid hidrolaze iz družine 48 in diapavzni protein 1 (glej tabelo 3 spodaj).Using macroscopic affinity chromatography, several potential target molecules from the gastrointestinal larvae of the Colorado beetle larvae to which macroscopin binds were revealed. These molecules are intestines, glycoside hydrolase from family 48, and diapause protein 1 (see Table 3 below).

• ·• ·

Tabela 3. Potencialne tarče makrocipina v prebavilu ličink koloradskega hrošča. Tarčne molekule so bile določene z uporabo masne spektrometrije posameznih lis, analiziranih po gelski elektroforezi proteinov pridobljenih z afinitetno kromatografijo z Mcpl.Table 3. Potential targets of macrocipin in the digestion of Colorado beetle larvae. The target molecules were determined using single spot mass spectrometry analyzed by gel electrophoresis of proteins obtained by affinity chromatography with Mcpl.

Identificiran protein Protein identified Pristopne številke GenBank-a Accession numbers Of GenBank Molekulska masa Molecular mass glikozid hidrolaze iz družine 48 glycoside hydrolase from family 48 ADU33353 ADU33353 73 kDa 73 kDa diapavzni protein 1 (Leptinotarsa decemlineata) diapause protein 1 (Leptinotarsa decemlineata) CAA53691 CAA53691 80 kDa 80 kDa glikozid hidrolaze iz družine 48 glycoside hydrolase from family 48 ADU33352 ADU33352 73 kDa 73 kDa prebavna cisteinska proteaza intestain (Leptinotarsa decemlineata} digestive cysteine protease intestain (Leptinotarsa decemlineata} AAS20589 AAS20589 36 kDa 36 kDa prebavna cisteinska proteaza intestain digestive cysteine protease intestain AAS20591 AAS20591 36 kDa 36 kDa

Primer 3Example 3

Priprava binarnega vektorjaBinary vector preparation

Ker je uporaba kodonov pri krompirju drugačna kot pri glivah, je bilo zaporedje gena, ki kodira Mcp4A (GenBank pristopna številka FJ495248.1, ID. ŠT. ZAP. 11) prilagojena s pomočjo programske opreme na spletni strani GenScript. Nato je bilo prilagojeno zaporedje (ID. ŠT. ZAP.l v tabeli 1), ki kodira zapis za Mcp4A, naročeno v GeneScript-u. Ta sintetičen gen je bil že vstavljen v vektor pDONR.Because the use of codons in potatoes is different from that of fungi, the sequence of the gene encoding Mcp4A (GenBank accession number FJ495248.1, ID no. ZAP. 11) was adapted using software on the GenScript website. A sequence (ID no. ZAP.l in Table 1) was then adapted to encode the record for Mcp4A ordered in GeneScript. This synthetic gene has already been inserted into the pDONR vector.

V rekombinacijski reakciji z uporabo klonaze LR je bil nato po navodilih proizvajalca (Invitrogen) DNA fragment iz vektorja pDONR prenesen v destinacijski vektor pMDC32 (Curtis and Grossniklaus 2003). Plazmidna mapa destinacijskega vektorja pMDC32 je prikazana na sliki 2. Produkt rekombinacije je bil uporabljen za transformacijo kompetentnih celic bakterije E. coli seva OmniMAX™ s temperaturnim šokom. Plazmidi so bili preneseni v bakterijo ElectroMAX™ Agrobacterium tumefaciens sev LBA4404 z elektroporacijo (Invitrogen, ZDA).In a recombination reaction using the LR clonase, a DNA fragment from the pDONR vector was then transferred to the pMDC32 destination vector (Curtis and Grossniklaus 2003) according to the manufacturer's (Invitrogen) instructions. The plasmid map of the destination vector pMDC32 is shown in Figure 2. The recombination product was used to transform competent cells of E. coli bacterium with the OmniMAX ™ strain with temperature shock. Plasmids were transferred to ElectroMAX ™ Agrobacterium tumefaciens strain LBA4404 by electroporation (Invitrogen, USA).

Primer 4Example 4

Rastlinski material, pogoji rasti in transformacijaPlant material, growth conditions and transformation

Krompir (Solanum tuberosum L. cv. Desiree) je bil vegetativno namnožen iz stebelnih izsečkov in gojen v modificiranem Murashige-Skoog gojišču s 3 % saharozo. Rastline so bile gojene pri 24°C in svetlobi 5000 luxov z dnevno nočnim ciklom 16 ur/8ur.The potatoes (Solanum tuberosum L. cv. Desiree) were vegetatively multiplied from the stem cuttings and grown in modified Murashige-Skoog medium with 3% sucrose. The plants were grown at 24 ° C and light 5000 lux with a daily night cycle of 16 hours / 8 hours.

Za pridobitev gensko spremenjenega krompirja je bil uporabljen binarni vektor pMDC32. Vektor je bil vnesen v krompir s pomočjo transformacije z bakterijo Agrobacterium tumefaciens seva LBA4404. Transformacija je potekala z uporabo izsečkov krompirja, ki so bili okuženi z A. tumefaciens po že opisani metodi (Visser, Jacobsen, Hesselingmeinders, Schans, Witholt, and Feenstra 1989). Transformirane rastline so bile zbrane in regenerirane na selekcijskih gojiščih, ki so vsebovala higromicin.The pMDC32 binary vector was used to obtain genetically modified potatoes. The vector was introduced into the potato by transformation with Agrobacterium tumefaciens strain LBA4404. Transformation was performed using potato slices infected with A. tumefaciens according to the method described previously (Visser, Jacobsen, Hesselingmeinders, Schans, Witholt, and Feenstra 1989). Transformed plants were collected and regenerated on selection media containing hygromycin.

Izbor gensko spremenjenih linij krompirja (qPCR)Selection of genetically modified potato lines (qPCR)

Pri linijah, ki so zrastle na selekcijskih gojiščih je bila z metodo PCR v realnem času s predhodno reverzno transkripcijo analizirana stopnja izražanje transgena. Rezultati izražanja transgena so prikazani na sliki 3. Pri linijah krompirja, ki so najbolj izražale gen, kodirajoč Mcp4A, je bila nadalje s pomočjo prenosa po vvesternu določena prisotnost rekombinantnega proteina.In lineages grown on selection media, transgene expression was analyzed in real-time using pre-reverse transcription PCR. The results of transgene expression are shown in Figure 3. In the potato lines most expressing the gene encoding Mcp4A, the presence of the recombinant protein was further determined by Western transduction.

Prenos po vvesternuTransmission after evening

Za detekcijo rekombinantnega Mcp v gensko spremenjenih rastlinah je bil uporabljena metoda prenosa po vvesternu. Za izolacijo proteinov je bilo uporabljenega 200 mg rastlinskega materiala posamezne linije. Rastlinski material je bil homogeniziran z uporabo homogenizatorja Qiagen Tissuelyser in resuspendiran v 500 μΙ pufra (50 mM Tris-HCI, pH 6.8, 15 mM DTT). Po 30 minutah inkubacije pri 0°C so bili vzorci centrifugiranj in po 30 μΙ supernatanta nanesenega v posamezno jamico poliakrilamidnega gela. Proteini so bili ločeni z gelsko elektroforezo v prisotnosti NaDS (NaDSPAGE, 12 % ločevalni gel). Po elektroforezi so bili proteini preneseni na PVDF membrano (Imobillon transfer membrane). Membrana je bila nato blokirana s pufrom TBS (10 mM Tris-HCI pH 7.4,150 mM NaCI) z dodanim 5 % mlekom v prahu brez maščob. Inkubacija s primarnimi protitelesi redčenimi 1:10.000 je potekala preko noči pri 4°C, nato je sledilo 7 spiranj s pufrom TBST pri 25°C in inkubacija s sekundarnimi protitelesi redčenimi 1:20.000. Kot primarna protitelesa je bil uporabljen zajčji antiserum proti makrocipinu, kot sekundarna protitelesa pa kozji imunoglobulin proti zajčjim protitelesom konjugiran s hrenovo peroksidazo. Detekcija je potekala s kemiluminiscentnim detekcijskim testom (Lumilight, Roche). Rezultati prenosa po westernu so prikazani na sliki 4.The Western blot method was used to detect recombinant Mcp in genetically modified plants. 200 mg of plant material per line was used for protein isolation. The plant material was homogenized using a Qiagen Tissuelyser homogenizer and resuspended in 500 μΙ buffer (50 mM Tris-HCI, pH 6.8, 15 mM DTT). After 30 minutes of incubation at 0 ° C, the samples were centrifuged and 30 μΙ of the supernatant was applied to each well of the polyacrylamide gel. Proteins were separated by gel electrophoresis in the presence of NaDS (NaDSPAGE, 12% separation gel). After electrophoresis, the proteins were transferred to the PVDF membrane (Imobillon transfer membrane). The membrane was then blocked with TBS buffer (10 mM Tris-HCI pH 7.4,150 mM NaCI) with 5% fat-free milk powder added. Incubation with primary antibodies diluted 1: 10,000 was performed overnight at 4 ° C, followed by 7 washes with TBST buffer at 25 ° C and incubation with secondary antibodies diluted 1: 20,000. The rabbit antiserum against macrocypin was used as primary antibodies, and horseradish peroxidase conjugated goat immunoglobulin as secondary antibodies. Detection was performed with a chemiluminescent detection test (Lumilight, Roche). The results of the western transfer are shown in Figure 4.

Priprava vektorjev za produkcijo rekombinantnih proteinov v bakteriji E.coliPreparation of vectors for the production of recombinant proteins in E.coli

Za produkcijo rekombinantnih makrocipinov so bili uporabljeni vektorji serije pET (Novagen). cDNA, ki kodira Mcpl je bila klonirana z ligacijo po restrikciji vektorja pETlla z encimoma Ndel in BamHI, Mcp3 po restrikciji vektorja pET3a z Ndel in BamHI in Mcp4 po restrikciji vektorja pET14b z encimoma Ncol in Ndel, tako da se izbrani proteini izražajo brez označevalcev.The pET series vectors (Novagen) were used to produce recombinant macrocipins. Mcpl cDNA was cloned by ligation after restriction of the pET11 vector with Ndel and BamHI enzymes, Mcp3 after restriction of the pET3a vector with Ndel and BamHI and Mcp4 after restriction of the pET14b vector with Ncol and Ndel enzymes, so that the selected proteins were expressed without markers.

Izražanje makrocipinov v obliki netopnih inkluzijskih telesc v bakteriji E.coli in njihova izolacijaExpression of macrocypins in the form of insoluble inclusion bodies in E. coli and their isolation

Ekspresijski vektorji z vstavljenimi inserti so bili vneseni v bakterijo E. coli seva BL21(DE3). Bakterije so bile gojene v tekočem gojišču LB (Luria-Bertani) z dodatkom ampicilina v koncentraciji 100 pg/ml pri 37°C in 220 obratih na minuto. Ko je atenuacija (D) pri 600 nm dosegla vrednosti med 1 in 1,2 je bil sevom transformiranim z vektorjema pET3a in pET14b dodan induktor izopropil tio^-d-galaktozid v končni koncentraciji 0,4 mM, sevom transformiranim z vektorjem pETlla pa v končni koncentraciji 1 mM . Bakterije so nato rastle še 6 ur. Potem so bile celice izolirane s centrifugiranjem pri 6000 g 15 minut in resuspendirane v pufru A (50 mm Tris-HCI, pH 7.5, 0.1 % Triton Χ-100, 2 mM EDTA), nato pa enkrat zamrznejene in odtajane ter sonicirane pri 4°C. Netopna frakcija je bila ločena s 15 minutnim centrifugiranjem pri 10.000 g, ponovno raztopljena v istem pufru z dodano 3 M ureo in solubilizirana s štiri-urnim mešanjem pri 4°C. Preostali neraztopljen material je bil odstranjen s centrifugiranjem, supernatant pa je bil nanesen na kolono Sepharose S200 uravnoteženo s pufrom Tris-HCI, pH 7.5, z dodanim 0.3 M NaCI. Frakcije z inhibitornim delovanjem so bile združene in koncentrirane z ultrafiltracijo (Amicon UM-3).Inserted expression vectors were inserted into E. coli bacterium strain BL21 (DE3). The bacteria were cultured in LB liquid medium (Luria-Bertani) supplemented with ampicillin at a concentration of 100 pg / ml at 37 ° C and 220 rpm. When attenuation (D) at 600 nm reached values between 1 and 1.2, an isopropyl thio-d-galactoside inducer at a final concentration of 0.4 mM was added to the strain transformed with the pET3a and pET14b vectors, and the strain transformed with the pETlla vector into final concentration of 1 mM. The bacteria were then grown for 6 hours. Cells were then isolated by centrifugation at 6000 g for 15 minutes and resuspended in buffer A (50 mm Tris-HCl, pH 7.5, 0.1% Triton Χ-100, 2 mM EDTA), then frozen and thawed once and sonicated at 4 ° C. The insoluble fraction was separated by centrifugation at 10,000 g for 15 minutes, redissolved in the same buffer with 3 M urea added and solubilized by stirring at 4 ° C for four hours. The remaining undissolved material was removed by centrifugation, and the supernatant was applied to a Sepharose S200 column equilibrated with Tris-HCl buffer, pH 7.5, with 0.3 M NaCl added. The fractions with inhibitory activity were combined and concentrated by ultrafiltration (Amicon UM-3).

Izražanje makrocipinov v topni oblikiExpression of macrocypins in soluble form

Ekspresijski vektorji z inserti so bili vneseni v bakterijo E. coli BL21(DE3). Bakterije so bile gojene pri 37°C v tekočem gojišču LB (Luria-Bertani) z dodatkom ampicilina v koncentraciji 100 pg/ml. Ko je atenuacija (D) pri 600 nm dosegla vrednosti med 1 in 1,2 je bil sevom dodan induktor izopropil tio-βd-galaktozid v končni koncentraciji 1 mM. Izražanje rekombinantnih makrocipinov v topni obliki je bilo doseženo po 12 do 24 urni inkubaciji pri 23°C in 220 obratih na minuto.Insert expression vectors were introduced into E. coli BL21 (DE3). The bacteria were cultured at 37 ° C in liquid medium LB (Luria-Bertani) supplemented with ampicillin at a concentration of 100 pg / ml. When attenuation (D) at 600 nm reached values between 1 and 1.2, an isopropyl thio-βd-galactoside inducer at a final concentration of 1 mM was added to the strain. Expression of recombinant macrocypins in soluble form was achieved after 12 to 24 h incubation at 23 ° C and 220 rpm.

Prehranjevalni testiNutritional tests

Prehranjevalni testi z gensko spremenjenimi rastlinami so bili izvedeni s celim nadzemnim delom rastline krompirja. Za ohranjanje vlage so bila stebla odrezanih rastlin potisnjena v mikrocentrifugirke, ki so vsebovale redek agar (0,5 %). Petrijevke v katerih so bile gojene ličinke so bile tekom poskusa hranjene v temi pri 28°C. Za vsak test je bilo uporabljenih 14 do 20 ličink. Ličinke so se že izlegle na testiranih linijah krompirja, ki smo jih vsakodnevno zamenjali s sveže pripravljeno rastlino. Za kontrolo smo uporabili netransformiran krompir (ang. wild type, WT). Vsak dan smo spremljali stopnjo preživetja in maso ličink. Rezultati so bili analizirani s študentovim T-testom.Nutritional tests with genetically modified plants were performed with the whole above-ground part of the potato plant. To maintain moisture, the stems of the cut plants were thrust into microcentrifuges containing rare agar (0.5%). Petri dishes in which the larvae were reared were kept in the dark at 28 ° C during the experiment. 14 to 20 larvae were used for each test. The larvae have already hatched on the tested potato lines, which have been replaced daily with freshly prepared plants. Wild type (WT) potatoes were used as controls. Each day, we monitored survival rates and larval mass. The results were analyzed using the Student's T-test.

Prehranjevalni testi z rekombinantnimi proteini so bili izvedeni z listi netransformiranega krompirja, ki so bili prevlečeni z rekombinantnimi proteini, listi s katerimi je bila hranjena kontrolna skupina pa so bili prevlečeni z govejim serumskim albuminom (ang. bovine serum albumin, BSA). Liste smo pripravili tako, da smo jih za nekaj časa iz vseh strani namočili v raztopine proteinov. Posode v katerih smo gojili ličinke smo imeli shranjene v temi pri 28°C. Za vsak test smo uporabili 16 ličink. Liste smo vsak dan nadomestili s svežimi. Vsak dan smo spremljali stopnjo preživetja in maso ličink. Rezultati so bili analizirani s študentovim T-testom.Nutritional assays with recombinant proteins were performed with non-transformed potato leaves coated with recombinant proteins, and the feeds fed to the control group were coated with bovine serum albumin (BSA). The leaves were prepared by soaking them in protein solutions for a while from all sides. The larvae were kept in the dark at 28 ° C. 16 larvae were used for each test. The leaves were replaced daily with fresh ones. Each day, we monitored survival rates and larval mass. The results were analyzed using the Student's T-test.

Rezultati prehranjevalnih testov so prikazani na slikah 5-10.The results of the dietary tests are shown in Figures 5-10.

Claims (14)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Uporaba vsaj enega polinukleotidnega zaporedja, označena s tem, da kodira vsaj en makrocipin ali njegovo različico, za pridobivanje pesticidnega sredstva učinkovitega proti organizmom, ki škodljivo vplivajo na rast rastlin, katere želimo zaščititi pred tem organizmom.Use of at least one polynucleotide sequence, characterized in that it encodes at least one macrocipin or a variant thereof, for the production of a pesticide agent effective against organisms that adversely affect the growth of the plants that we wish to protect against that organism. 2. Uporaba v skladu z zahtevkom 1, označena s tem, daje polinukleotidno zaporedje stabilno vstavljeno v genom gensko spremenjene rastline.Use according to claim 1, characterized in that the polynucleotide sequence is stably inserted into the genome of the genetically modified plant. 3. Uporaba v skladu z zahtevkom 1, označena s tem, da je polinukleotidno zaporedje del polinukleinske kisline za heterologno izražanje proteina v bioreaktorju.Use according to claim 1, characterized in that the polynucleotide sequence is part of a polynucleic acid for heterologous expression of the protein in the bioreactor. 4. Uporaba v skladu z zahtevkoma 1 in 2, označena s tem, da je rastlinska vrsta izbrana med enokaličnicami ali dvokaličnicami, prednostno iz rastlinskih družin Solanaceae, Poaceae, Fabaceae, Brassi caceae, Musaceae, Cucurbitac eae, Apiaceae , R osaceae in Salicaceae, prednostno iz rodu Solanum, najbolje S. tuberosum, Solanum lycopersicum in Solanum melongena ali iz rodu Nicotiana, najbolje N. tabacum or N. benthamiana.Use according to claims 1 and 2, characterized in that the plant species is selected from monocotyledons or dicotyledons, preferably from the plant families Solanaceae, Poaceae, Fabaceae, Brassi caceae, Musaceae, Cucurbitac eae, Apiaceae, R osaceae and Salicaceae, preferably of the genus Solanum, preferably S. tuberosum, Solanum lycopersicum and Solanum melongena, or of the genus Nicotiana, preferably N. tabacum or N. benthamiana. 5. Uporaba v skladu s katerimkoli od predhodnih zahtevkov,označena s tem, da pesticidno sredstvo zavira rast in/ali preživetje organizmov iz redov Lepidoptera, Hemiptera, Diptera in Coleoptera, prednostno kjer je ta organizem koloradski hrošč (Leptinotarsa decemlineata).Use according to any one of the preceding claims, characterized in that the pesticidal agent inhibits the growth and / or survival of organisms from the species Lepidoptera, Hemiptera, Diptera and Coleoptera, preferably where the organism is a Colorado beetle (Leptinotarsa decemlineata). 6. Uporaba v skladu s katerimkoli od predhodnih zahtevkov, označena s tem, da polinukleotidno zaporedje kodira vsaj en makrocipin naveden z identifikacijsko številko (ID. ŠT. ZAP.) 1-13 ali pa njegovo različico, homolog ali derivat.Use according to any one of the preceding claims, characterized in that the polynucleotide sequence encodes at least one macrocipin indicated by identification number (ID NO. ZAP.) 1-13 or a variant, homolog or derivative thereof. 7. Uporaba v skladu z zahtevkom 2, označena s tem, da polinukleotidno zaporedje kodira Mcp4 in prednostno obsega vsaj enega izmed zaporedij navedenih z identifikacijskimi številkami 1, 11 ali 12 ali njihove različice, ali pa kjer je polipeptid Mcp4, ki je izražen z uporabo polinukleotida, eden izmed polipeptidov navedenih z identifikacijskimi številkami 19, 20, 21 in/ali 22 ali pa je homolog le teh.Use according to claim 2, characterized in that the polynucleotide sequence encodes Mcp4 and preferably comprises at least one of the sequences indicated by identification numbers 1, 11 or 12, or variants thereof, or wherein the Mcp4 polypeptide is expressed using a polynucleotide, one of the polypeptides indicated by the identification numbers 19, 20, 21 and / or 22, or homologous thereof. 8. Uporaba v skladu z zahtevkom 3, označena s tem, da polinukleotidno zaporedje kodira Mcpl in prednostno obsega vsaj enega izmed zaporedij navedenih z identifikacijskimi številkami 2, 3, 4 ali 5 ali njihove različice, ali pa kjer je polipeptid Mcpl, ki je izražen z uporabo polinukleotida, eden izmed polipeptidov navedenih z identifikacijskimi številkami 14, 15 ali 16 ali pa je homolog le teh.Use according to claim 3, characterized in that the polynucleotide sequence encodes Mcpl and preferably comprises at least one of the sequences indicated by identification numbers 2, 3, 4 or 5 or variants thereof, or where the Mcpl polypeptide is expressed using a polynucleotide, one of the polypeptides indicated by, or having a homolog of, numbers 14, 15 or 16. 9. Uporaba v skladu z zahtevkom 3, označena s tem, da je polipeptid pridobljen v bioreaktorju očiščen in pipravljen v obliki primerni za nanos na rastline, kakršne so na primer kmetijske rastline, prednostno rastline navedene v zahtevku 4.Use according to claim 3, characterized in that the polypeptide obtained in the bioreactor is purified and repurposed in a form suitable for application to plants such as agricultural plants, preferably the plants mentioned in claim 4. 10. Metoda za pripravo rastlin odpornih proti škodljivim organizmom, označena s tem, da obsega uporabo vsaj enega polinukleotidnega zaporedja v skladu z zahtevkom 1 ali njegovo različico, homolog ali derivat ali pa mešanico le teh za vnos v genom teh rastlin.A method for the preparation of a pest resistant plant comprising the use of at least one polynucleotide sequence according to claim 1 or a variant, homolog or derivative thereof or a mixture thereof for introduction into the genome of these plants. 11. Metoda, označena s tem, da za pripravo rastlin odpornih proti škodljivim organizmom nanesemo vsaj enega izmed polipeptidov v skladu z zahtevkom 1 ali njegovo različico, homolog ali derivat ali pa mešanico le teh na to rastlino.Method for the preparation of at least one of the polypeptides according to claim 1 or a variant, homolog or derivative thereof, or a mixture thereof, for the preparation of plants resistant to pests. 12. Vektor, označen s tem, da je sestavljen iz vsaj enega polinukleotidnega zaporedja, ki je določeno v zahtevku 1.A vector comprising at least one polynucleotide sequence as defined in claim 1. 13. Bakterija, označena s tem, da vključuje vektor iz zahtevka 12.A bacterium comprising the vector of claim 12. 14. Gensko spremenjena rastlina, označena s tem, da vsebuje vsaj eno v genom stabilno vstavljeno polinukleotidno zaporedje, ki je določeno v zahtevku 1.A genetically modified plant, characterized in that it contains at least one stable polynucleotide sequence set forth in claim 1 in the genome.
SI201100304A 2011-08-10 2011-08-10 Use of macrocipines as pesticidal agents SI23835A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201100304A SI23835A (en) 2011-08-10 2011-08-10 Use of macrocipines as pesticidal agents
PCT/EP2012/065373 WO2013020958A1 (en) 2011-08-10 2012-08-06 Use of macrocypins as pesticidal agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201100304A SI23835A (en) 2011-08-10 2011-08-10 Use of macrocipines as pesticidal agents

Publications (1)

Publication Number Publication Date
SI23835A true SI23835A (en) 2013-02-28

Family

ID=46650535

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201100304A SI23835A (en) 2011-08-10 2011-08-10 Use of macrocipines as pesticidal agents

Country Status (2)

Country Link
SI (1) SI23835A (en)
WO (1) WO2013020958A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712248A (en) 1992-02-27 1998-01-27 Sandoz Ltd. Method of controlling insect with novel insecticidal protein
US6100456A (en) 1992-03-16 2000-08-08 Board Of Trustees Operating Michigan State University Lepidopteran insect resistant transgenic potato plants
PL353437A1 (en) 1999-05-04 2003-11-17 Monsanto Technology Llc Coleopteran-toxic polypeptide compositions and insect-resistant transgenic plants

Also Published As

Publication number Publication date
WO2013020958A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
Atkinson et al. Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors.
Hua et al. Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes
Shimada et al. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis
Sohlenkamp et al. Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants
ES2371872T3 (en) PLANTS THAT HAVE MODIFIED GROWTH CHARACTERISTICS AND A METHOD FOR THEIR DEVELOPMENT.
Saucedo et al. Insights on structure and function of a late embryogenesis abundant protein from Amaranthus cruentus: an intrinsically disordered protein involved in protection against desiccation, oxidant conditions, and osmotic stress
Kenward et al. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance
CZ20013859A3 (en) Plants resistant to herbicides
JP5158639B2 (en) Genes specifically expressed in the endosperm of plants, promoters of the genes, and use thereof
Xoconostle‐Cázares et al. Proteolytic processing of CmPP36, a protein from the cytochrome b5 reductase family, is required for entry into the phloem translocation pathway
Ning et al. A rice CPYC-type glutaredoxin OsGRX20 in protection against bacterial blight, methyl viologen and salt stresses
Gupta et al. Biochemical and molecular characterisations of salt tolerance components in rice varieties tolerant and sensitive to NaCl: the relevance of Na+ exclusion in salt tolerance in the species
Majoul et al. Analysis by two‐dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt‐tolerant and a salt‐sensitive cultivar of wheat
Wang et al. Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]
CN113105534B (en) Application of WRKY55 transcription factor in plant salt resistance
US7214766B2 (en) Peptides with enhanced stability to protease degradation
JP2008500808A (en) Plant with improved yield and method for producing the plant
KR20160108516A (en) Parthenocarpy regulation gene and use thereof
US7951992B2 (en) Metal resistant plants, and methods of manufacture thereof
US20110131683A1 (en) Polypeptide Inducing Dwarfism of Plants, Polynucleotide Coding the Polypeptide, and Those Use
US7816579B2 (en) Metal resistant plants, methods of manufacture, and methods of use thereof
SI23835A (en) Use of macrocipines as pesticidal agents
Chang et al. Rice SIAH E3 ligases interact with RMD formin and affect plant morphology
US20130067616A1 (en) Plant Defensive Peptides
KR101256277B1 (en) The pepper cytochrome P450 gene CaCYP450A in resistance responses against microbial pathogens and transgenic disease resistant plants using the same

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20130318

KO00 Lapse of patent

Effective date: 20150409