SI23622A - Device and method for measuring, capturing and transfering data from difficult accessible measuring points - Google Patents

Device and method for measuring, capturing and transfering data from difficult accessible measuring points Download PDF

Info

Publication number
SI23622A
SI23622A SI201100008A SI201100008A SI23622A SI 23622 A SI23622 A SI 23622A SI 201100008 A SI201100008 A SI 201100008A SI 201100008 A SI201100008 A SI 201100008A SI 23622 A SI23622 A SI 23622A
Authority
SI
Slovenia
Prior art keywords
measuring
data
antenna
cable
measuring module
Prior art date
Application number
SI201100008A
Other languages
Slovenian (sl)
Inventor
Belingar@Branko
Original Assignee
Belingar@Branko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Belingar@Branko filed Critical Belingar@Branko
Priority to SI201100008A priority Critical patent/SI23622A/en
Publication of SI23622A publication Critical patent/SI23622A/en

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Device and method for measuring, capturing and transferring data from monitoring boreholes and underwater monitoring points, where the point is that the measuring module (1), which is located at the place of measurement, includes subassemblies for the measurement and capturing of physical or chemical quantities, for data processing and the transmission of such data processed. The transmission performed via an antenna (2) in the form of electromagnetic waves. On land or water surface, after the invention, is located only the antenna (2), which is connected with the measuring module (1) by single wire coaxial cable (5).

Description

Naprava in postopek za merjenje, zajem in prenos podatkov iz težko dostopnih merilnih mestA device and process for measuring, capturing and transferring data from hard-to-reach measurement points

Izum se nanaša na prenos podatkov o merjenih fizikalnih in kemijskih količinah iz slabo dostopnih merilnih mest.The invention relates to the transfer of data on measured physical and chemical quantities from poorly accessible measurement sites.

V geologiji, geodeziji, hidrologiji in gradbeništvu se velikokrat pojavlja potreba po merjenju temperature, tlaka, pritiska in premika kamnin ali konstrukcijskih elementov, nivoja, električne prevodnosti, pH ali vsebnosti nekaterih elementov ali spojin v vodi. Merilna mesta so običajno na težje dostopnih mestih, kot so to jaški, vrtine, v globini vodnih sistemov in podobno. Na merilnem mestu se nahaja tipalo za meritev fizikalne ali kemijske količine, nakar je potrebno podatek o izmerjeni količini prenesti do mesta, kjer ga uporabnik lahko prebere. Vsekakor je potrebno prepeljati signal iz merilnega mesta do zemeljskega površja, kar je praviloma izvedeno z žično povezavo.In geology, geodesy, hydrology and construction, there is often a need to measure the temperature, pressure, pressure and displacement of rocks or structural elements, levels, electrical conductivity, pH or the content of certain elements or compounds in water. Measuring sites are usually located in difficult-to-reach locations such as shafts, wells, deep water systems and the like. At the measuring point there is a sensor for measuring physical or chemical quantity, after which the data on the measured quantity should be transferred to the place where the user can read it. In any case, it is necessary to transport the signal from the measuring point to the earth's surface, which is usually done with a wire connection.

• · · ·• · · ·

Cilj izuma je predlagati učinkovito, zanesljivo in energijsko varčno napravo za prenos podatkov od merilnega mesta do mesta odčitavanja.The object of the invention is to propose an efficient, reliable and energy-efficient device for transmitting data from the measuring point to the reading point.

V nekaterih znanih rešitvah je v merilni vrtini nameščeno le merilno tipalo in eventuelno ojačevalnik signala. V izvedbeni varianti je znotraj vrtine nameščen še analogno digitalni pretvornik. Zbiralnik podatkov je nameščen zunaj pokrova merilne vrtine. V tej rešitvi je predvidena žična povezava med tipalom, ki se nahaja na merilnem mestu v vrtini do pokrova na zemeljskem površju. Na pokrovu se nahaja vodotesno izveden konektor na katerega je priključen kabel iz merilnega tipala. Pri odčitavanju merilnih podatkov se na konektor na pokrovu vrtine, priklopi odčitovalna naprava ali zbiralnik podatkov. Pomanjkljivost rešitve je uporaba konektorja, ki je zaradi korozije, oksidacije in mehanskih lastnosti kontaktov, časovno nestabilen in s tem nezanesljiv element. Poleg tega je postopek odčitavanja zamuden, saj predvideva vsakokraten fizični dostop operaterja do pokrova vrtine merilnega mesta in priklop odčitovalne opreme na omenjeni konektor, kar nadalje pomeni, da ni mogoče on-line spremljanje meijenih količin.In some known solutions, only a measuring sensor and possibly a signal amplifier are installed in the measuring well. In the embodiment, an analog-to-digital converter is installed inside the well. The data collector is located outside the borehole cover. This solution provides a wire connection between the sensor located at the measuring point in the well to the cover on the ground. There is a watertight connector on the cover to which a cable from the measuring sensor is connected. When reading the measurement data, a readout device or data collector is connected to the connector on the hole cover. The disadvantage of this solution is the use of a connector, which is a time-unstable and therefore unreliable element due to its corrosion, oxidation and mechanical contact properties. In addition, the reading process is time-consuming, since it involves the physical access of the operator to the hole of the measuring point and the connection of the reading equipment to the said connector, which further implies that on-line monitoring of limit quantities is not possible.

Znana je tudi rešitev, kjer merilni modul, ki se nahaja na merilnem mestu v vrtini, vsebuje tipalo, podatkovni zbiralnik, baterijo in komunikacijsko enoto in je povezan preko komunikacijskega kabla z oddajnikom na pokrovu vrtine, na površju zemlje. Oddajnik oddaja signale v radiofrekvenčnem področju, katere sprejema uporabnikoperater s sprejemno enoto. V tem primeru, operaterju ni potreben dostop do merilne vrtine in lahko odčitavanje in prenos podatkov opravi s primerne razdalje, ali pa, ob večji gostoti merilnih mest, je lahko na površju zemlje nameščen centralni sprejemnik, ki sprejema signale s podatki iz več merilnih mest. Takšen centralni sprejemnik lahko posreduje shranjene podatke po žični ali brezžični povezavi naprej v javno ali privatno komunikacijsko omrežje. Merilni modul in oddajnik si izmenjujeta podatke in je zato potrebno, da oba imata komunikacijski enoti in bateriji. To je pomanjkljivost rešitve, saj je zaradi medsebojne komunikacije čas delovanja obeh enot daljši in je zato poraba energije večja, kar posledično pomeni tudi krajše obdobje avtonomnega delovanja. Poleg tega, je takšna zasnova dražja, saj • · · zahteva podvojeno baterijo, gonilnike, napajalno napravo in dražji, večžilni kabel med enotama.A solution is also known where the measuring module located at the measuring point in the borehole comprises a sensor, a data collector, a battery and a communication unit and is connected via a communication cable to the transmitter on the borehole cover on the ground surface. The transmitter emits signals in the radio frequency range that are received by the user operator with the receiver unit. In this case, the operator does not need access to the measuring well and can read and transmit data from a suitable distance, or, at higher density of measuring points, a central receiver can be installed on the surface of the earth to receive data signals from several measuring points. Such a central receiver may forward the stored data over a wired or wireless connection to the public or private communications network. The measuring module and the transmitter exchange information and it is therefore necessary that both have communication units and batteries. This is a disadvantage of the solution, because the communication between the two units makes the operation time of both units longer and therefore the energy consumption higher, which in turn means a shorter period of autonomous operation. In addition, this design is more expensive as it requires a dual battery, drivers, power supply and more expensive multi-core cable between the units.

Izum j e po mednarodni klasifikacij i uvrščen v razred GO 1V11 /00B.The invention is classified by GO 1V11 / 00B according to international classifications.

Izum rešuje tehnični problem cenovno ugodne, zanesljive in energijsko varčne naprave za prenos podatkov iz podzemnih merilnih vrtin ali podvodnih merilnih mest, na uporabniku dostopno zbiralno mesto na površju zemlje ali na vodni gladini.The invention solves the technical problem of an inexpensive, reliable and energy-efficient device for transmitting data from underground wells or underwater measuring sites, to a user-accessible collection point on the surface of the earth or at water surface.

Navedeni tehnični problem je rešen s predlagano napravo in postopkom za brezžični prenos podatkov, kar je opredeljeno v označujočem delu zahtevkov 1 in 9.Said technical problem is solved by the proposed device and process for wireless data transmission, which is defined in the labeling part of claims 1 and 9.

Bistvo izuma je, daje celotno elektronsko vezje, ki vsebuje tudi funkcionalnost zajema, shranjevanja in prenosa podatkov, nameščeno v merilnem modulu, ki se nahaja na mestu meritve.The essence of the invention is that the entire electronic circuit, which also includes the functionality of data acquisition, storage and transmission, is installed in the measuring module located at the measurement site.

Izum bo v nadaljevanju podrobno opisan s pomočjo slik, ki prikazujejo:The invention will now be described in detail with the help of pictures showing:

Slika 1: Shematski prikaz namestitve merilne naprave po izumuFigure 1: Schematic illustration of the installation of the measuring device according to the invention

Slika 2: Shematski prikaz merilnega modulaFigure 2: Schematic representation of the measurement module

Predlagana naprava za merjenje, zajem in prenos merilnih podatkov iz podzemnih vrtin ali podvodnih merilnih mest po izumu, sestoji iz merilnega modula 1 in antene 2 tako, daje merilni modul 1 nameščen na merilnem mestu v vrtini 3 in vsebuje tipalo 11, baterijo 12, napajalnik 13, procesor 14, zapisovalnik/shranjevalnik podatkov 15 in oddajnik/sprejemnik 16. Merilni modul 1 je zaprt v vodotesno in nepredušno ohišje iz katerega izhaja kabel 5. Na zunanji strani pokrova 4 vrtine 3 se nahaja le antena 2, kije z enožilnim koaksialnim kablom 5 povezana z merilnim modulom 1 v vrtini 3.The proposed device for measuring, capturing and transmitting measurement data from underground wells or underwater measuring sites according to the invention consists of a measuring module 1 and an antenna 2 such that the measuring module 1 is located at the measuring location in the well 3 and contains a sensor 11, a battery 12, a power supply 13, processor 14, recorder / data storage 15, and transmitter / receiver 16. The measuring module 1 is enclosed in a watertight and airtight housing from which the cable 5. The outside of the cover 4 of the well 3 is located only an antenna 2 which has a single-core coaxial cable. 5 connected to the measurement module 1 in the well 3.

V posebnem izvedbenem primeru je pokrov 4 narejen iz električno neprevodnega in neferomagnetnega materiala, prednostno polimernega materiala, in je antena 2 vgrajena oziroma zalita v ohišje pokrova 4. Prednost takšne rešitve je, daje antena 2 mehansko zaščitena pred vplivi okolice hkrati pa material ohišja pokrova 4 ne moti prehoda elektromagnetnega valovanja do antene 2 in od nje. Povezava med oddajnikom 16, ki je sestavni del merilnega modula 1, in anteno 2, je po izumu izvedena preko enožilnega, nosilnega koaksialnega kabla 5.In a particular embodiment, the cover 4 is made of electrically non-conductive and non-ferromagnetic material, preferably a polymeric material, and the antenna 2 is embedded or embedded in the cover housing 4. The advantage of such a solution is that the antenna 2 is mechanically protected from environmental influences while the cover housing material 4 does not interfere with the passage of electromagnetic waves to and from antenna 2. The connection between the transmitter 16, which is an integral part of the measuring module 1, and the antenna 2, is made according to the invention via a single-core coaxial cable 5.

V posebnem izvedbenem primeru je kabel 5 sestavljen iz navadnega, enožilnega, nenosilnega koaksialnega kabla in nosilne pletenice.In a particular embodiment, the cable 5 consists of a plain, single-core, non-load-bearing coaxial cable and a carrier braid.

V drugem izvedbenem primeru je možna namestitev merilnega modula 1 pod gladino vode pri vodnih zajetjih, jezerih, vodotokih, moiju in podobno. V tem primeru je antena 2 nameščena na plavajočem objektu, ki je lahko boja, pontonska platforma, vodno plovilo ali podobno in sicer tako, da oddaja in sprejema elektromagnetno valovanje v zraku. Velika prednost rešitve po izumu v tem izvedbenem primeru je možnost izdelave sistema z visoko stopnjo IP zaščite, ob nižji ceni izdelave in nižjih stroških obratovanja, kot pri dosedanjih rešitvah.In another embodiment, it is possible to install the measurement module 1 below the water surface at water intakes, lakes, watercourses, wetlands and the like. In this case, antenna 2 is mounted on a floating object, which may be a buoy, a pontoon platform, a water craft or the like, by transmitting and receiving electromagnetic waves in the air. The great advantage of the solution according to the invention in this embodiment is the possibility of producing a system with a high degree of IP protection, at a lower cost of production and lower operating costs, than in the previous solutions.

Rešitev po izumu zato nima nobenih konektorjev, ki so sicer podvrženi vplivu umazanije in korozije, kar dolgočasovno vpliva na stabilnost in kakovost električnega stika in posledično delovanja sistema.The solution according to the invention therefore does not have any connectors that are otherwise subject to the effects of dirt and corrosion, which has a long-lasting effect on the stability and quality of electrical contact and, consequently, the operation of the system.

Postopek merjenja in prenosa podatkov po izumu predvideva meritev fizikalne ali kemijske količine v merilni vrtini 3 ali na podvodnem merilnem mestu s pomočjo tipala 11, katero merjeno količino pretvori v električni signal. V procesorju 14 se nato opravi analogno digitalna pretvorba signala in obdelava podatkov, katera zajema filtriranje, vzorčenje, matematične operacije, povprečenje, korelacije in podobne procese. Podatki se nato shranijo v zapisovalnik/shranjevalnik podatkov 15 (angleško: logger) in so na voljo za prenos in odčitavanje na zahtevo ali v vnaprej določenih intervalih. Prenos podatkov poteka tako, da procesor 14 pripravi zahtevane podatke in jih posreduje oddajniku/sprejemniku 16, v katerem se podatki modulirajo in tako moduliran signal ojači ter pošlje preko kabla 5 na anteno 2, ki oddaja elektromagnetne valove v radiofrekvenčnem ali katerem drugem ustreznem pasu.The method of measuring and transmitting data according to the invention provides for the measurement of a physical or chemical quantity in a measuring well 3 or at an underwater measuring location by means of a sensor 11, which converts the measured quantity into an electrical signal. Processor 14 then performs analog digital signal conversion and data processing, which includes filtering, sampling, mathematical operations, averaging, correlations and similar processes. The data is then stored in a logger / data store 15 (English: logger) and is available for download and reading on request or at predetermined intervals. The data transmission is effected by the processor 14 preparing the required data and transmitting it to the transmitter / receiver 16, in which the data is modulated and the modulated signal amplified and sent via cable 5 to the antenna 2, which transmits electromagnetic waves in the radio frequency or any other relevant band.

• · · ·• · · ·

Sprejemnik tega valovanja je nameščen pri operaterju v mobilni enoti, ali na stacionarnem mestu, s katerega sprejema signale iz več bližnjih merilnih mest.The receiver of this wave is located with the operator in the mobile unit, or at a fixed location from which it receives signals from several nearby measuring points.

Naprava po izumu 1 deluje tudi, kot sprejemnik ukazov za dinamiko prenosa podatkov. Postopek poteka tako, da zunaj nameščena naprava pošlje zahtevo v obliki moduliranega elektromagnetnega valovanja, ki ga naprava po izumu 1 sprejme z anteno 2. Signal se nato pelje preko kabla 5 v oddajnik/sprejemnik 16, kjer se signal sprejme, demodulira, ojači in filtrira. Tako pripravljen signal se dalje vodi na enega od vhodov procesorja 14, ki na osnovi sprejetega ukaza izvede ustrezno nalogo.The apparatus of the invention 1 also acts as a receiver of commands for the dynamics of data transmission. The process is carried out by sending a request in the form of a modulated electromagnetic wave, which is received by the device according to the invention 1 with the antenna 2. The signal is then transmitted via cable 5 to the transmitter / receiver 16, where the signal is received, demodulated, amplified and filtered . The signal thus prepared is then guided to one of the inputs of the processor 14, which performs an appropriate task based on the received command.

V primerjavi z dosedanjimi rešitvami, kjer je oddajnik ločen od merilnega modula, je rešitev po izumu cenejša zaradi odsotnosti dvojne komunikacijske enote, dvojne baterije za napajanje, vmesnega ojačevalnika in ker ni potreben dražji, večžilni komunikacijski kabel med obema sklopoma. Zaradi tega, ker ni potrebe po komunikaciji med merilnim in oddajnim sklopom, je tudi prenos podatkov hitrejši in manjša je poraba energije, kar posledično pomeni daljše obratovalno obdobje naprave po izumu.Compared to the present solutions, where the transmitter is separated from the measuring module, the solution according to the invention is cheaper due to the absence of a dual communication unit, a dual power battery, an intermediate amplifier and the need for a more expensive, multi-core communication cable between the two sets. Because there is no need for communication between the measuring and transmitter assemblies, the data transmission is also faster and the power consumption is lower, which in turn means a longer operating period of the device according to the invention.

Claims (10)

1. Naprava za merjenje, zajem in prenos merilnih podatkov iz podzemnih vrtin ali podvodnih merilnih mest, katera je namenjena merjenju, zajemu in prenosu merilnih podatkov označena s tem, dajo sestavljajo merilni modul (1) in antena (2), da se merilni modul (1) nahaja na merilnem mestu v merilni vrtini ali pod vodno gladino, da merilni modul (1) sestavljajo tipalo (11), baterija (12), napajalnik (13), procesor (14), zapisovalnik/shranjevalnik podatkov (15) in oddajnik/sprejemnik (16).A device for measuring, capturing and transmitting measurement data from underground wells or underwater metering points, which is intended to measure, capture and transmit measurement data, characterized in that it consists of a measuring module (1) and an antenna (2) for the measuring module (1) located at the measuring point in the borehole or below the water surface, that the measuring module (1) consists of a sensor (11), a battery (12), a power supply (13), a processor (14), a recorder / data store (15), and transmitter / receiver (16). 2. Naprava po zahtevku 1 označena s tem, daje merilni modul (1) zaprt v vodotesno in nepredušno ohišje.Apparatus according to claim 1, characterized in that the measuring module (1) is enclosed in a watertight and airtight housing. 3. Naprava po zahtevku 1 ali 2 označena s tem, daje merilni modul (1) povezan z anteno (2) preko kabla (5).Device according to claim 1 or 2, characterized in that the measuring module (1) is connected to the antenna (2) via a cable (5). 4. Naprava po zahtevku 3 označena s tem, daje kabel (5) nosilni, enožilni, koaksialni kabel.Device according to claim 3, characterized in that the cable (5) is a carrier, single-core, coaxial cable. 5. Naprava po zahtevku 3 označena s tem, da kabel (5) sestavljata nosilna pletenica in nenosilni, enožilni, koaksialni kabel.Device according to claim 3, characterized in that the cable (5) consists of a carrier braid and a non-supporting, single-core, coaxial cable. 6. Naprava po kateremkoli od prejšnjih zahtevkov označena s tem, daje antena (2) nameščena na pokrovu (4) merilne vrtine (3).Device according to any one of the preceding claims, characterized in that the antenna (2) is mounted on the lid (4) of the measuring well (3). 7. Naprava po kateremkoli od zahtevkov 1 do 6 označena s tem, daje pokrov (4) merilne vrtine (3) izdelan iz električno neprevodnega in neferomagnetnega materiala, prednostno polimernega materiala in daje antena (2) vgrajena v steno pokrova (4).Device according to any one of claims 1 to 6, characterized in that the lid (4) of the measuring hole (3) is made of an electrically non-conductive and non-magnetic material, preferably a polymeric material, and that the antenna (2) is integrated into the wall of the lid (4). 8. Naprava po kateremkoli od zahtevkov 1 do 5 označena s tem, daje antena (2) nameščena na plavajočem objektu, kije prednostno boja, pontonska platforma ali vodno plovilo, in da antena (2) ima sevalni del v zraku.Device according to any one of claims 1 to 5, characterized in that the antenna (2) is mounted on a floating object, preferably a buoy, pontoon platform or water craft, and that the antenna (2) has a radiating part in the air. 9. Postopek za meijenje, zajem in prenos merilnih podatkov iz podzemnih vrtin ali podvodnih merilnih mest, kateri je namenjen merjenju, zajemu in prenosu merilnih podatkov označen s tem, da se fizikalna ali kemijska količina pomeri s tipalom (11), da se električni signal iz tipala (11) vodi v procesor (14), kjer se opravi analogno digitalna pretvorba in obdelava podatkov, da se obdelani in pripravljeni podatki shranijo v zapisovalniku/shranjevalniku podatkov (15) da se podatki iz zapisovalnika/shranjevalnika podatkov (15), na zunanjo zahtevo ali po vnaprej določenem razporedu, v procesorju (14) pripravijo in posredujejo oddajniku/sprejemniku (16), kjer se opravi modulacija in ojačanje oddajnega signala, ki se nato vodi po koaksialnem kablu (5) do antene (2).9. A method for modifying, capturing and transmitting measurement data from underground wells or underwater metering points intended to measure, capture and transmit measurement data, characterized in that the physical or chemical quantity is displaced by a sensor (11) in order to move the electrical signal from the sensor (11) leads to a processor (14), where analogous digital conversion and data processing is performed in order to store the processed and prepared data in a data logger / data storage device (15) to store data from a data logger / data storage device (15) at an external request, or according to a predetermined schedule, in the processor (14) is prepared and transmitted to the transmitter / receiver (16), where the transmitting signal is amplified and amplified, which is then guided through the coaxial cable (5) to the antenna (2). 10. Postopek po zahtevku 9 označen s tem, da se ukaz za dinamiko prenosa merilnih podatkov pošlje v obliki elektromagnetnega signala, ki ga sprejme antena (2), ki se dalje vodi preko kabla (5) do oddajnika/sprejemnika (16), kateri opravi demodulacijo, filtriranje in ojačanje signala in da se tako pripravljen ukaz vodi na enega od vhodov procesorja (14), kateri na osnovi prejetega ukaza opravi predvideno nalogo.A method according to claim 9, characterized in that the command for the dynamics of the transmission of the measurement data is sent in the form of an electromagnetic signal received by the antenna (2), which is further guided through the cable (5) to the transmitter / receiver (16), which perform the demodulation, filtering and amplification of the signal and thus the command thus prepared is directed to one of the inputs of the processor (14), which, on the basis of the received command, performs the intended task.
SI201100008A 2011-01-05 2011-01-05 Device and method for measuring, capturing and transfering data from difficult accessible measuring points SI23622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201100008A SI23622A (en) 2011-01-05 2011-01-05 Device and method for measuring, capturing and transfering data from difficult accessible measuring points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201100008A SI23622A (en) 2011-01-05 2011-01-05 Device and method for measuring, capturing and transfering data from difficult accessible measuring points

Publications (1)

Publication Number Publication Date
SI23622A true SI23622A (en) 2012-07-31

Family

ID=46578777

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201100008A SI23622A (en) 2011-01-05 2011-01-05 Device and method for measuring, capturing and transfering data from difficult accessible measuring points

Country Status (1)

Country Link
SI (1) SI23622A (en)

Similar Documents

Publication Publication Date Title
CN102457296B (en) Contactless underwater communication device
CN103770911B (en) A kind of deep-sea observation buoyage based on induction coupling and communication technology of satellite
Sharma et al. Magnetic induction-based non-conventional media communications: A review
EP2883445A1 (en) Extendable wireless soil measurement apparatus
CN105783887A (en) Marine hydrologic monitoring system based on Beidou satellite system
CN101339200B (en) Acoustic flow measurement method and apparatus
US7982679B2 (en) Transmission of underwater electromagnetic radiation through the seabed
US7382687B2 (en) Underwater station
US20210021913A1 (en) Underwater data capture and transmission system
US20180337737A1 (en) Communication system network
US20220341295A1 (en) Systems and methods for wireless transmission of power in deep subsurface monitoring
WO2011084524A3 (en) Seismic telemetry and communications system
CN205537834U (en) Rivers and lakes water -level fluctuation intelligent recognition system
GB2509256A (en) Survey apparatus and methods for collecting sensor data in a body of water
Loni et al. Floating monopole antenna on a tethered subsurface sensor at 433 MHz for ocean monitoring applications
US8660595B2 (en) Communication arrangement for transmission of communication signals along a pipe line
WO2020208582A1 (en) System and device for monitoring marine animals
US11621789B2 (en) Under-liquid communication using magneto-quasistatic signals
CN111551998B (en) Submarine electromagnetic acquisition station communication device and method
CN106894813B (en) Electromagnetic measurement while drilling system and method based on adjacent well receiving antenna
SI23622A (en) Device and method for measuring, capturing and transfering data from difficult accessible measuring points
CN218772101U (en) Underwater sensor data remote transmission system for ocean scene
CN204990658U (en) Pressure sensing device and data monitoring system
CN205664823U (en) Ocean hydrological data collection device based on big dipper satellite system
US10697814B1 (en) Water meter pit using a buoy to assist in RF communication

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20120828

KO00 Lapse of patent

Effective date: 20160906