SI23021A - Method of treatment of biomedical polymeric prostheses for improvement of their antithrombogenous properties - Google Patents

Method of treatment of biomedical polymeric prostheses for improvement of their antithrombogenous properties Download PDF

Info

Publication number
SI23021A
SI23021A SI200900109A SI200900109A SI23021A SI 23021 A SI23021 A SI 23021A SI 200900109 A SI200900109 A SI 200900109A SI 200900109 A SI200900109 A SI 200900109A SI 23021 A SI23021 A SI 23021A
Authority
SI
Slovenia
Prior art keywords
oxygen atoms
prostheses
atoms
treatment
positively charged
Prior art date
Application number
SI200900109A
Other languages
Slovenian (sl)
Inventor
Ita Junkar
Miran MOZETIČ
Alenka Vesel
Uroš CVELBAR
Metka KRAŠNA
Dragoslav DOMANOVIČ
Original Assignee
Institut "Jožef Stefan"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut "Jožef Stefan" filed Critical Institut "Jožef Stefan"
Priority to SI200900109A priority Critical patent/SI23021A/en
Priority to ATA9111/2010A priority patent/AT513072B1/en
Priority to PCT/SI2010/000014 priority patent/WO2010123465A2/en
Publication of SI23021A publication Critical patent/SI23021A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/0094Physical treatment, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Plasma & Fusion (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

The subject of the invention is a method of treatment of biomedical prostheses for improvement of their antithrombogenous properties. The mentioned biomedical prostheses are the cardiovascular ones, particularly artificial veins and stents made of polyethyleneterephtalate (PET) polymer. The method is based on treatment of cardiovascular prosthesis surface with a suitable combination of dose of neutral oxygen atoms and positively charged molecular and atomic oxygen ions. After the dose of said atoms and ions has been received, the surface of cardiovascular prostheses becomes less susceptible to bonding of thrombocytes. The method is characterised in that the exposedness to the mixture of neutral oxygen atoms and positively charged molecular and atomic oxygen ions in pulses is such that in an individual pulse, the achieved dose of neutral oxygen atoms amounts to between 10exp20/m2 and 10exp26/m2 and the dose of charged molecular and atomic oxygen ions to between 10exp16/m2 and 10exp23/m2 with time intervals between individual pulses lasting between 10 s and 300 s, and that the stream of neutral oxygen atoms and positively charged molecular and atomic oxygen ions onto the surface of the prosthesis is approximately uniform.

Description

METODA OBDELAVE BIO-MEDICINSKIH POLIMERNIH PROTEZ ZA IZBOLJŠANJE NJIHOVIH ANTITROMBOGENIH LASTNOSTIMETHOD OF TREATMENT OF BIO-MEDICAL POLYMER PROSTHESES TO IMPROVE THEIR ANTITROMBOGEN PROPERTIES

Predmet izuma je metoda obdelave bio-medicinskih protez za izboljšanje njihovih antitrombogenih lastnosti. Navedene bio-medicinske proteze so kardiovaskularne proteze, posebej umetne žile in žilne opornice narejene iz polietilenteraftalatnega (PET) polimera. Metoda temelji na obdelavi površine kardiovaskularnih protez s primerno kombinacijo doze nevtralnih atomov kisika in pozitivno nabitih molekularnih in atomarnih ionov kisika. Po prejeti dozi navedenih atomov in ionov postane površina kardiovaskularnih protez manj dovzetna za vezavo trombocitov. Po izpostavitvi trombocitom se koncentracija vezanih trombocitov na površini kardiovaskularnih protez, obdelanih z metodo, ki je predmet tega izuma, zmanjša za 10 krat ali več v primerjavi z neobdelanimi kardiovaskularnimi protezami. S to metodo lahko neposredno vplivamo na vezavo trombocitov na površine iz PET polimerov ali njim podobnih polimerov.The subject of the invention is a method of treating bio-medical prostheses to improve their antithrombogenic properties. These bio-medical prostheses are cardiovascular prostheses, especially artificial veins and vascular supports made of polyethylene terephthalate (PET) polymer. The method is based on treating the surface of cardiovascular prostheses with a suitable combination of a dose of neutral oxygen atoms and positively charged molecular and atomic oxygen ions. Upon receiving the dose of the atoms and ions mentioned, the surface of the cardiovascular prostheses becomes less susceptible to platelet binding. After platelet exposure, the concentration of bound platelets on the surface of cardiovascular prostheses treated by the method of the present invention is reduced by 10-fold or more compared with untreated cardiovascular prostheses. This method can directly affect platelet binding to surfaces of PET polymers or similar polymers.

Prikaz problemaView the problem

Bolezni srca in ožilja so najpogostejši vzrok obolevnosti in umrljivosti prebivalstva ter predstavljajo enega največjih zdravstvenih problemov. Na prvem mestu so predvsem aterosklerozna obolenja, ki povzročajo zožitev notranjega premera žil, zaradi česar kri ne more več neovirano teči po žilah in se zato njen pretok upočasni.Cardiovascular diseases are the most common cause of morbidity and mortality in the population and represent one of the biggest health problems. First and foremost are atherosclerotic diseases that cause narrowing of the internal diameter of the veins, which makes the blood no longer able to flow freely through the veins and therefore slows its flow.

Zdravljenje tovrstnih obolenj je možno s pomočjo žilne opornice ali pa z zamenjavo obolele žile s sintetično. Obe možnosti se pogosto uporabljata, vendar pa je dolgoročno gledano okrevanje bolnikov z žilno opornico, predvsem pa z žilnimi protezami, še vedno slabo, saj jih je v večini primerov po 2. do 5. letih potrebno ponovno zamenjati.Treatment of these diseases is possible with the help of a vascular support or by replacement of the diseased vessel with a synthetic one. Both options are widely used, but in the long term, the recovery of patients with vascular support, and especially with vascular prostheses, is still poor as in most cases after 2 to 5 years they need to be replaced.

Žilna opornica se s pomočjo katetra vstavi na zožen predel žile, kar žilo razširi in ponovno omogoči pretok krvi skozi njo. Opornice so ponavadi narejene iz nerjavečega jekla, tantala ali platine, vendar pa v mnogih primerih ti materiali povzročajo trombozoWith the help of a catheter, the vascular support is inserted into the narrowed area of the vessel, which widens the blood vessel and allows blood to flow through it again. The supports are usually made of stainless steel, tantalum or platinum, but in many cases these materials cause thrombosis.

-2in restenozo. Prav zato se iščejo možni alternativni materiali, predvsem polimerni materiali kot so silikon, polietilen in poliuretan ter različni biorazgradljivi polimerni materiali. Vendar pa tudi ti niso primerni za neposredno izpostavitev krvi in jih je običajno potrebno prevleči z nanosi, ki preprečujejo ponovno nastajanje ateroskleroze in delujejo proti-trombogeno, npr. heparin.-2in restenosis. Therefore, alternative materials are sought, in particular polymeric materials such as silicone, polyethylene and polyurethane and various biodegradable polymeric materials. However, these are also not suitable for direct blood exposure and usually need to be coated with deposits that prevent atherosclerosis from occurring and are anti-thrombogenic, e.g. heparin.

V primeru, ko imamo močno poapnjene žilne zapore, je za zdravljenje bolezni potrebno uporabiti sintetične žilne proteze, s katerimi naredimo obvod in ponovno vzpostavimo pretok krvi. Materiali, ki se uporabljajo za sintetične žilne proteze, morajo ustrezati zahtevam po biokompatibilnosti/hemokompatibilnosti prav tako pa morajo imeti primerne mehanske lastnosti, zlasti fleksibilnost in enostavnost kirurške namestitve. Danes se predvsem v te namene uporabljata polimera polietilen teraftalat (PET) ali Dacron in politetrafluoroetilen (ePTFE). Obe vrsti žil, tako iz PET kot tudi iz PTFE materiala, imata primerne mehanske lastnosti in se že vrsto let uporabljata za sintetične žilne proteze, vendar pa ne nudita zadostne hemokompatibilnosti, predvsem kadar jih uporabimo za nadomestke žil premerov, manjših od 6 mm. Razlog za to je predvsem v tem, da je na ožjih predelih žil pretok krvi manjši in je tu verjetnost za nastanek tromboze še večja. Na steni umetnih žil namreč pride do nespecifične adsorpcije plazemskih proteinov, kar vpliva tudi na vezavo trombocitov kar je eden glavnih povzročiteljev tromboze. Znano je, da so žilne proteze iz PET polimerov bolj dovzetne za adhezijo in aktivacijo trombocitov kot iz ePTFE polimerov. Vendar pa je tudi znano, da je ePTFE močnejši stimulator za fibrozno hiperplazijo.In the case of severely constricted vascular closures, synthetic vascular prostheses are needed to treat the disease, bypassing and restoring blood flow. The materials used for synthetic vascular dentures must meet the biocompatibility / haemocompatibility requirements and must have adequate mechanical properties, in particular the flexibility and ease of surgical placement. Today, polyethylene terephthalate (PET) or Dacron and polytetrafluoroethylene (ePTFE) polymers are used primarily for these purposes. Both types of veins, both PET and PTFE, have adequate mechanical properties and have been used for synthetic vascular prostheses for many years, but do not offer sufficient hemocompatibility, especially when used for vein replacements smaller than 6 mm in diameter. This is mainly due to the lower blood flow in the narrower vein regions and the likelihood of thrombosis occurring here. Namely, non-specific plasma protein adsorption occurs on the wall of artificial veins, which also affects platelet binding, which is one of the main causes of thrombosis. Vascular prostheses from PET polymers are known to be more susceptible to platelet adhesion and activation than from ePTFE polymers. However, ePTFE is also known to be a more potent stimulator for fibrotic hyperplasia.

Biološki odziv na biomateriale je zelo kompleksen in zato še vedno slabo poznan. Glede na to, da je površina biomaterialov tista, ki omogoča interakcijo s telesom, so prav lastnosti površine biomaterialov ključnega pomena za primeren biološki odziv, to je biokompatibilnost. Dolga leta so za najprimernejše materiale veljali inertni materiali, ki ne reagirajo s telesom in ne omogočajo integracije biomateriala s telesom. Danes pa je mnenje, da naj bi biokompatibilni materiali omogočali integracijo s telesom in preprečevali infekcije, vnetne reakcije, strjevanje krvi in druge s tem povezane reakcije. Za biokompatibilne materiale, ki so v stiku s krvjo, je predvsem pomembno, da ima njihova površina proti-trombogene lastnosti, kar preprečuje nastanek tromboze. V teh primerih se tromboza prične z adsorpcijo plazemskih proteinov na površino • ·The biological response to biomaterials is very complex and therefore still poorly understood. Given that the surface of biomaterials is the one that enables interaction with the body, the properties of the surface of biomaterials are crucial for an appropriate biological response, that is, biocompatibility. For many years, the most suitable materials have been considered inert materials that do not react with the body and do not allow the integration of biomaterials with the body. Today, however, it is believed that biocompatible materials are intended to integrate with the body and prevent infections, inflammatory reactions, blood clotting and other related reactions. For biocompatible materials that are in contact with blood, it is especially important that their surface has anti-thrombogenic properties, which prevents the formation of thrombosis. In these cases, thrombosis begins with the adsorption of plasma proteins to the surface • ·

-3biomateriala in je močno odvisna od fizikalnih in kemijskih lastnosti površine biomateriala. Za izboljšanje lastnosti materialov, ki so v stiku s krvjo, so v uporabi različne metode obdelave površine, ki omogočajo vezavo bioaktivnih komponent, kot sta heparin in albumin. Priprava površin z vezavo bioaktivnih komponent ima mnoge pomanjkljivosti, predvsem neenakomernost nanosov, nečistoče in težavnost priprave v ožjih predelih kot so notranji predeli cevi. Te in mnoge podobne tehnološke težave zmanjšujejo kakovost in povečujejo stroške izdelave kardiovaskularnih protez, zato želimo pripraviti antitrombogeno površino proteze neposredno z bolj enostavnim postopkom.-3biomaterial and is highly dependent on the physical and chemical properties of the biomaterial surface. To improve the properties of blood-contacting materials, various surface treatment methods have been used to allow the binding of bioactive components such as heparin and albumin. The preparation of surfaces by the binding of bioactive components has many disadvantages, in particular the unevenness of the coatings, impurities and the difficulty of preparation in narrower areas such as the inner compartments of the pipes. These and many similar technological problems reduce the quality and increase the cost of making cardiovascular dentures, so we want to prepare the antithrombogenic surface of the prosthesis directly by a simpler procedure.

Stanje tehnikeThe state of the art

Za izboljšanje biokompatibilnih/hemokompatibilnih lastnosti materialov je bilo uporabljenih že več različnih metod. Delimo jih na mehanske in kemijske. Mehanske metode niso najbolj primerne, saj povzročajo poškodbe materiala in spremembe v lastnostih materiala. Bolj pogosto se uporabljajo različne kemijske metode, ki jih delimo na mokre in suhe. Mokre kemijske metode vključujejo obdelave z različnimi kemijskimi reagenti v vodnih ali drugih tekočih medijih. Suhe metode pa vključujejo obdelavo s plini oziroma delci ter plazemske obdelave, obdelave z ionskimi curki, elektronskimi curki, fotonskimi curki - laserji, rentgenskimi in drugimi energetskimi žarki. Za izboljšanje biokompatibilnih lastnosti se pogosto uporablja vezava proti-trombogenih nanosov, kot sta heparin ali albumin.Several different methods have been used to improve the biocompatible / hemocompatible properties of materials. They are divided into mechanical and chemical. Mechanical methods are not the most suitable because they cause material damage and changes in material properties. More commonly, different chemical methods are used, which are divided into wet and dry ones. Wet chemical methods include treatments with various chemical reagents in aqueous or other liquid media. Dry methods, however, include gas or particle treatment as well as plasma treatments, treatments with ionic beams, electron beams, photon beams - lasers, X-rays and other energy beams. Binding of anti-thrombogenic coatings such as heparin or albumin is often used to improve biocompatible properties.

Poleg tovrstnih nanosov se za izboljšanje lastnosti umetnih žil uporablja tudi obdelava površine z endoteljiskimi celicami, ki je razkrita v patentu CA 02472031, ali pa obdelava trombocitov z adhezijskimi receptorji s specifičnimi monoklonskimi protitelesi. Z namenom izboljšanja hemokompatibilnih lastnosti biomedicinskih materialov, ki so v stiku s krvjo, so v uporabi tudi postopki sinteze novih materialov, ki imajo primerne lastnosti. Pomankljivost teh postopkov je predvsem v še neraziskanih vplivih teh materialov na človeka po implantaciji. Vsi navedeni postopki imajo omejeno stopnjo uspešnosti.In addition to such coatings, surface treatment with endothelial cells disclosed in CA 02472031 or platelet treatment with adhesion receptors with specific monoclonal antibodies is used to improve the properties of artificial veins. In order to improve the hemocompatible properties of blood-contacted biomedical materials, procedures for the synthesis of novel materials having suitable properties are also used. The disadvantage of these procedures lies in the unexplored effects of these materials on humans after implantation. All of these processes have a limited success rate.

V literaturi lahko zasledimo mnogo različnih postopkov za izboljšanje površinskih lastnosti umetnih žit. Večinoma se za modifikacijo površine polimernih materialov • ·Many different methods for improving the surface properties of artificial cereals can be found in the literature. Mostly for surface modification of polymeric materials • ·

-4uporabljajo mokri kemijski postopki, ki omogočajo nadaljnjo vezavo različnih bioaktivnih snovi, nekateri od teh postopkov so tudi patentno zaščiteni. Z mokrimi kemijskimi postopki tvorimo funkcionalne skupine na relativno inertnih površinah polimerov, kot sta PET ali PTFE, prek teh funkcionalnih skupin pa nadalje omogočimo vezavo bio-aktivnih snovi.-4 Wet chemical processes are used to allow the further binding of various bioactive substances, some of which are also patent protected. With wet chemical processes, functional groups are formed on relatively inert surfaces of polymers such as PET or PTFE, and further enable the binding of bio-active substances through these functional groups.

Kljub razširjenosti uporabe mokrih kemijskih postopkov, imajo le ti vsaj tri pomanjkljivosti: prva je, da ne omogočajo najboljše kontrole kemijskih reakcij, ki stečejo na notranjih stenah umetnih žil; druga je neenakomernost obdelave notranjih sten; tretja pa, da na stenah ostanejo nekateri reaktanti, kot tudi nečistoče, ki so nastale pred, med ali po reakcijah, ki lahko v telesu povzročajo neželene reakcije. Poleg tega je, kljub nanosom, hemokompatibilnost površine še vedno nezadostna in je v večini primerov na te nanose potrebno nanesti še eno plast materiala, ki ima protitrombogene lastnosti. Problem nanosov je predvsem v njihovi slabi vezavi in neenakomerni porazdelitvi, kot tudi nestabilnosti, saj se s časom le ti lahko iz notranje stene umetne žile pod pretočnimi pogoji znotraj žile kaj hitro sperejo, npr. heparin že po 4 tednih po implementaciji.Despite the widespread use of wet chemical processes, these have at least three disadvantages: the first is that they do not allow the best control of the chemical reactions that flow on the inner walls of artificial veins; the second is the uneven processing of the interior walls; third, that some of the reactants remain on the walls, as well as impurities that have formed before, during, or after the reactions that can cause adverse reactions in the body. In addition, despite the application, the surface chemocompatibility is still insufficient and in most cases, another layer of material having antithrombogenic properties must be applied to these applications. The problem of deposits is mainly due to their poor bonding and uneven distribution, as well as instability, since over time they can be washed out quickly from the inner wall of the artificial vessel under flowing conditions inside the vessel, e.g. heparin as early as 4 weeks after implementation.

Poleg mokre kemijske metode z reagenti lahko površino pred nanosom pripravimo tudi s tako imenovanimi suhimi metodami, kjer kot reagente uporabimo pline oziroma različne delce. Te metode omogočajo kovalentno vezavo bio-aktivnih snovi in jih lahko na površino substrata vežemo direktno ali prek vmesne molekule.In addition to the wet chemical method with reagents, the surface can be prepared before application by so-called dry methods, where gases or different particles are used as reagents. These methods allow for the covalent binding of bio-active substances and can be bound directly to the substrate surface or via an intermediate molecule.

Nekateri patenti razkrivajo uporabo plazme za pripravo površine bio-materialov brez nadaljnje vezave različnih bionanosov. Tako ameriški patent US2005163816 opisuje plazemsko obdelavo materialov za biomedicinske aplikacije. V patentu je razkrita obdelava keramičnih, kovinskih in polimernih materialov z radiofrekvenčno plazmo. Tako pripravljene površine naj bi izboljšale vezavo živih celic in njihovo delovanje. Tudi v evropskemu patentu EP0348969 je razkrita metoda, s katero je mogoča vezava endotelijskih celic na polimerne površine, ki so bile obdelane s plazmo, predvsem z amonijevo plazmo.Some patents disclose the use of plasma to prepare the surface of bio-materials without further binding different bionanos. Thus, US patent US2005163816 describes plasma treatment of materials for biomedical applications. The patent discloses the treatment of ceramic, metallic and polymeric materials with radio frequency plasma. The surfaces thus prepared are intended to improve the binding and functioning of living cells. Also disclosed in European patent EP0348969 is a method by which endothelial cells can be bound to plasma-treated polymer surfaces, in particular ammonium plasma.

• ·• ·

-5Pričujoči izum temelji na metodi za obdelavo površine PET polimerov s kombinacijo nevtralnih atomov kisika in pozitivno nabitih molekularnih in atomarnih kisikovih ionov, s čimer neposredno na površini dosežemo anti-trombogene lastnosti. Metoda omogoča enakomerno modifikacijo zgornje atomarne plasti PET polimera brez globinskih poškodb materiala. Da preprečimo vplive segrevanja površine med plazemsko obdelavo, in s tem povezane neželene spremembe termomehanskih lastnosti, lahko plazemsko obdelavo izvajamo pulzno. Pri dozah nevtralnih kisikovih atomov med 102°m'2 in 1028 m'2, prioritetno med 1022 m'2 in 1026 m'2, ter dozami ionov med 1016m'2 in 1023 m'2, prioritetno pa med 1017m'2 in 1021 m'2, na površini tvorimo primerne vrste ter primerno razmerje med vrstami kisikovih funkcionalnih skupin, s čimer zmanjšujemo vezavo trombocitov. Zato predvidevamo, da tako pripravljene površine PET polimerov zmanjšujejo verjetnost za nastanek tromboze in jih lahko uporabimo za kardiovaskularne proteze in tudi za druge biomedicinske materiale iz PET polimerov, kjer je hemokompatibilnost površine velikega pomena.The present invention is based on a method for treating the surface of PET polymers with a combination of neutral oxygen atoms and positively charged molecular and atomic oxygen ions, thereby achieving anti-thrombogenic properties directly on the surface. The method allows uniform modification of the upper atomic layer of the PET polymer without deep damage to the material. To prevent the effects of surface heating during plasma treatment and the related undesirable changes in thermomechanical properties, plasma treatment can be performed pulsed. At doses of neutral oxygen atoms between 10 2 ° m ' 2 and 10 28 m' 2 , preferably between 10 22 m ' 2 and 10 26 m' 2 , and ion doses between 10 16 m ' 2 and 10 23 m' 2 , preferably between 10 17 m ' 2 and 10 21 m' 2 , on the surface we form suitable species and a suitable relationship between the types of oxygen functional groups, thereby reducing platelet binding. Therefore, we assume that the prepared surfaces of PET polymers reduce the likelihood of thrombosis and can be used for cardiovascular prostheses as well as for other biomedical materials from PET polymers, where the surface chemocompatibility is of great importance.

Opis slikDescription of the pictures

Metoda za obdelavo površine protez, narejenih iz PET polimera ali njemu podobnih bio-medicinskih polimerov, je opisana s pomočjo slik, ki prikazujejo:A method for treating the surface of dentures made from PET polymer or bio-medical polymer-like polymers is described by means of figures showing:

Sl 1. Število adheriranih trombocitov na 10000 pm2 površine PET polimera v odvisnosti od prejete doze atomov kisikaFig. 1. Number of adhered platelets per 10,000 pm 2 of PET polymer surface depending on received dose of oxygen atoms

Sl 2. Slika dobljena z vrstičnim elektronskim mikroskopom, ki prikazuje adherirane trombocite na neobdelani površin PET polimeraFig 2. Image obtained by scanning electron microscope showing adhered platelets on untreated PET polymer surfaces

Sl 3. Slika dobljena z vrstičnim elektronskim mikroskopom, ki prikazuje adherirane trombocite na obdelani površini PET polimera z dozo 1.8 Ί O25 m'2 kisikovih atomov.Fig. 3. Image obtained with a scanning electron microscope showing the adhered platelets on the treated surface of a PET polymer with a dose of 1.8 Ί O 25 m ′ 2 oxygen atoms.

Sl 4. Slika dobljena z vrstičnim elektronskim mikroskopom, ki prikazuje adherirane trombocite na neobdelani površini spletene umetne žile iz PET polimernih vlaken.Fig. 4. Image obtained with a scanning electron microscope showing the adhered platelets on the untreated surface of a PET polymer fiber web.

Sl 5. Slika dobljena z vrstičnim elektronskim mikroskopom, ki prikazuje adherirane trombocite na površini obdelane spletene umetne žile iz PET polimernih vlaken z dozo 1.8 -1025 m2 kisikovih atomov.Fig. 5. Image obtained with a scanning electron microscope showing the adhered platelets on the surface of a machined artificial polymer wire of PET polymer fibers with a dose of 1.8 -10 25 m 2 oxygen atoms.

Sl 6. Shema naprave za obdelavo notranje površine umetne žile • · • ·Fig. 6. Schematic of a device for treating the inner surface of an artificial vessel.

-6Opis rešitve problema in izvedbeni primer-6Description of problem solution and implementation example

Metoda po izumu obsega izpostavitev proteze mešanici nevtralnih atomov kisika in pozitivno nabitih molekularnih in atomarnih kisikovih ionov, ki jih lahko generiramo s pomočjo naprave, ki je opisana v izvedbenem primeru. Tok nevtralnih atomov kisika in pozitivno nabitih molekularnih in atomarnih kisikovih ionov na površino izdelka je približno enakomeren, kar dosežemo z enakomernim premikanjem proteze med obdelavo in je tako morebitna nehomogenost obdelave manjša od faktorja 100. Proteza je izpostavljena mešanici nevtralnih atomov kisika in pozitivno nabitih molekularnih in atomarnih kisikovih ionov v pulzih tako, da v posameznem pulzu dosežemo dozo nevtralnih kisikovih atomov med 102° m'2 in 1028 m'2, prioritetno pa med 1022 m’2 in 1026 m2, ter dozo nabitih molekularnih in atomarnih kisikovih ionov med 1016 m'2 in 1023 m2, prioritetno pa med 1017 m’2 in 1021 m'2, premor med posameznimi pulzi pa traja med 10 s in 300 s, prioritetno pa med 60 s in 150 s. Temperatura kardiovaskularnih protez je med obdelavo nižja od 170°C, prioritetno nižja od 75°C. Skupna prejeta doza nevtralnih kisikovih atomov med 1O20 m'2 in 1028 m'2, prioritetno pa med 1023 m'2 in 1026 m2. Prejeta doza pozitivno nabitih molekularnih in atomarnih kisikovih ionov med 1016m'2 in 1025 m'2, prioritetno pa med 1017 m'2 in 1022 m'2. Kinetična energija pozitivno nabitih molekularnih in atomarnih kisikovih ionov ob površini protez med 1 eV in 1000 eV, prioritetno pa med 5 eV in 100 eV.The method of the invention comprises exposing the prosthesis to a mixture of neutral oxygen atoms and positively charged molecular and atomic oxygen ions, which can be generated using the apparatus described in the embodiment. The flow of neutral oxygen atoms and positively charged molecular and atomic oxygen ions to the surface of the product is approximately uniform, which is achieved by uniformly moving the prosthesis during machining and thus the possible inhomogeneity of treatment is less than a factor of 100. The prosthesis is exposed to a mixture of neutral oxygen atoms and positively charged molecular and of atomic oxygen ions in pulses so that in a single pulse a dose of neutral oxygen atoms between 10 2 ° m ' 2 and 10 28 m' 2 is reached, and preferably between 10 22 m ' 2 and 10 26 m 2 , and a charge of molecular and atomic charges oxygen ions between 10 16 m ' 2 and 10 23 m 2 , and preferably between 10 17 m' 2 and 10 21 m ' 2 , and the interval between individual pulses lasts between 10 s and 300 s, and preferably between 60 s and 150 s . The temperature of the cardiovascular prostheses is lower than 170 ° C during treatment, preferably lower than 75 ° C. Total received dose of neutral oxygen atoms between 1O 20 m ' 2 and 10 28 m' 2 , and preferably between 10 23 m ' 2 and 10 26 m 2 . Received dose of positively charged molecular and atomic oxygen ions between 10 16 m ' 2 and 10 25 m' 2 , and preferably between 10 17 m ' 2 and 10 22 m' 2 . Kinetic energy of positively charged molecular and atomic oxygen ions along the surface of dentures between 1 eV and 1000 eV, and preferably between 5 eV and 100 eV.

Modifikacijo površine PET polimera dosežemo z nevtralnimi atomi kisika ter s kombinacijo pozitivno nabitih molekularnih in atomarnih kisikovih ionov. Na površini tako tvorimo nove funkcionalne skupine, kot so C-O, C=O, C-O-O, O=C-O, obenem pa spremenimo tudi topografske značilnosti površine in s tem povečamo hrapavost. Optimizirani pogoji tovrstne obdelave omogočajo, da ima površina primerno število novih funkcionalnih skupin ter primerno topografijo. Posledica obdelave je tudi, da površina postane bolj hidrofilna, kar promovira razraščanje endotelijskih celic. Poleg tega pa s tovrstno obdelavo dosežemo tudi anti-trombogene lastnosti površine in s tem za 10 krat ali več zmanjšamo vezavo trombocitov. Tako ta tehnika, glede na do sedaj znane rešitve, omogoča hitro in učinkovito modifikacijo površin, kar vodi do antitrombogenih lastnosti površin.Modification of the PET polymer surface is achieved by neutral oxygen atoms and by a combination of positively charged molecular and atomic oxygen ions. Thus, new functional groups are formed on the surface, such as C-O, C = O, C-O-O, O = C-O, while also changing the topographic characteristics of the surface, thereby increasing the roughness. Optimized conditions of this type of treatment allow the surface to have an adequate number of new functional groups and a suitable topography. The treatment also results in the surface becoming more hydrophilic, which promotes endothelial cell growth. In addition, this treatment also achieves anti-thrombogenic properties of the surface, thereby reducing platelet binding by 10 times or more. Thus, according to the known solutions so far, this technique enables rapid and efficient surface modification, which leads to antithrombogenic properties of the surfaces.

-7Modifikacijo površin bio-medicinskih polimerov, kot so poliestri, poliamidi, polisaharidi, poliuretani, poliesteramidi ali njihove kombinacije, lahko glede na potrebno dozo atomov in ionov, izvedemo tudi v času krajšem od ene minute, kar je glede na do sedaj uporabljene tehnike velika prednost, saj so postopki za nanašanje različnih antitrombogenih nanosov izredno zamudni in lahko trajajo tudi po več ur ali celo dni. Poleg tega, površine obdelane z metodo, ki je razkrita v tem patentu, ne potrebujejo nobene nadaljnje obdelave s celicami, kot na primer nanašanje endotelijskih celic, katere je potrebno nanesti na površino bio-medicinskega materiala pred implantacijo.-7Modification of surfaces of bio-medical polymers such as polyesters, polyamides, polysaccharides, polyurethanes, polyesteramides or combinations thereof, depending on the required dose of atoms and ions, can also be carried out for a period of less than one minute, which according to the techniques used so far The advantage is that the application of various antithrombogenic coatings is extremely time consuming and may take several hours or even days. In addition, the surfaces treated by the method disclosed in this patent do not require any further treatment with the cells, such as the deposition of endothelial cells, which must be applied to the surface of the biomedical material prior to implantation.

Prednost metode, ki je razkrita v tem patentu, je tudi v tem, da je modifikacija specifična za trombocite, saj z obdelavo zmanjšamo vezavo trombocitov, ob tem pa ne vplivamo na proliferacijske lastnosti endotelijskih celic.An advantage of the method disclosed in this patent is that the modification is platelet-specific, since treatment reduces platelet binding without affecting the proliferative properties of endothelial cells.

Da s to metodo obdelave dosežemo anti-trombogene lastnosti površine PET polimerov, je razvidno tudi iz slik, ki so del tega razkritja. Prvi stolpec na sliki 1 prikazuje število adheriranih trombocitov na površino neobdelanega PET polimera, vsi naslednji pa prikazujejo število trombocitov na površini polimera, ki je bil predhodno izpostavljen različni dozi nevtralnih kisikovih atomov. Na neobdelani površini PET polimera opazimo veliko število adheriranih trombocitov, približno 100 trombocitov/10000pm2. Zmanjšanje števila adheriranih trombocitov, opazimo na površini PET polimera, ki je prejel dozo nevtralnih kisikovih atomov med 1.8 Ί 024 m'2 in 5.4Ί 025 m'2.That the treatment method achieves the anti-thrombogenic properties of the surface of PET polymers is also evident from the images forming part of this disclosure. The first column in Figure 1 shows the number of adhered platelets per surface of the untreated PET polymer, and all the following shows the number of platelets on the surface of the polymer previously exposed to different doses of neutral oxygen atoms. A large number of adhered platelets, approximately 100 platelets / 10000pm 2, is observed on the untreated surface of the PET polymer. A decrease in the number of adhered platelets was observed on the surface of a PET polymer that received a dose of neutral oxygen atoms between 1.8 Ί 0 24 m ′ 2 and 5.4 Ί 0 25 m ′ 2 .

Slika 2 je narejena z vrstičnim elektronskim mikroskopom in prikazuje površino neobdelanega PET polimera po enourni inkubaciji s trombociti, ki so bili pridobljeni s postopkom afereze. Iz slike vidimo, da je površina dovzetna za vezavo trombocitov. Če pa smo površino PET polimera, pred inkubacijo s trombociti, izpostavili dozi 1.8 Ί025 m'2 nevtralnih kisikovih atomov, opazimo mnogo manjše število adheriranih trombocitov, kar je razvidno iz slike 3. Podoben vpliv smo opazili tudi na umetnih žilah, ki so stkane iz vlaken PET polimera. Na sliki 4 vidimo veliko število trombocitov v aktivni razširjeni obliki, z dobro vidnimi psevdopodiji. Če smo umetne žile, pred inkubacijo s trombociti, izpostavili nevtralnim kisikovim atomom, pa opazimo znatno zmanjšanje števila trombocitov na površini, kar je razvidno iz slike 5.Figure 2 is taken with a scanning electron microscope and shows the surface of the untreated PET polymer after one hour incubation with platelets obtained by apheresis procedure. From the picture we can see that the surface is susceptible to platelet binding. However, if the surface of the PET polymer was exposed to a dose of 1.8 Ί0 25 m ′ 2 neutral oxygen atoms before incubation with platelets, a much smaller number of adhered platelets was observed, as can be seen in Figure 3. A similar effect was observed on artificial woven vessels made of PET polymer fibers. In Figure 4, we see a large number of platelets in the active expanded form, with well-visible pseudopodia. However, if artificial veins were exposed to neutral oxygen atoms prior to incubation with platelets, a significant decrease in platelet counts was observed on the surface, as can be seen in Figure 5.

-8Na sliki 6 je shematično prikazana naprava, ki omogoča obdelavo notranje površine umetnih žil z nevtralnimi atomi kisika ter z mešanico pozitivno nabitih molekularnih in atomarnih kisikovih ionov.-8Figure 6 is a schematic representation of a device that enables the treatment of the inner surface of artificial veins with neutral oxygen atoms and with a mixture of positively charged molecular and atomic oxygen ions.

Opisana metoda obdelave površine PET polimerov z nevtralnimi atomi kisika ter z mešanico pozitivno nabitih molekularnih in atomarnih kisikovih ionov znatno zmanjša adhezijo trombocitov. Ker so trombociti eden od glavnih povzročiteljev trombogenih reakcij in s tem povezanih zapletov po implementaciji umetnih žil ali drugih medicinskih vsadkov, ki so v stiku s krvjo, je tovrstna metoda obdelave primerna alternativa za modifikacijo površine na kateri želimo doseči anti-trombogene lastnosti.The described method of treating the surface of PET polymers with neutral oxygen atoms and with a mixture of positively charged molecular and atomic oxygen ions significantly reduces platelet adhesion. Since platelets are one of the main agents for thrombogenic reactions and related complications after the implementation of artificial blood vessels or other implantable implants, this treatment method is an appropriate alternative to modify the surface on which anti-thrombogenic properties are desired.

Izvedbeni primerAn implementation example

Za zagotavljanje primerne doze nevtralnih atomov kisika in pozitivno nabitih kisikovih molekularnih in atomarnih kisikovih ionov se uporabi naprava, ki je shematično prikazana na sliki 6. Naprava sestoji iz izvira nevtralnih kisikovih atomov 1, povezovalne cevi 2, enote za spreminjanje pretoka nevtralnih kisikovih atomov 3, cevi za delno ionizacijo plinskih molekul in atomov 4, visokofrekvenčnega generatorja 5, vakuumske posode 6 in naprave za pomikanje umetne žile 7. Na cevi 4 je nameščena umetna žila 8. Vakuumski sistem se črpa z vakuumsko črpalko 9, tako da je zagotovljen pretok plina iz izvira atomov 1 skozi enoto za spreminjanje pretoka 3, po cevi 6 in umetni žili 8 do črpalke 9.To provide a suitable dose of neutral oxygen atoms and positively charged oxygen molecular and atomic oxygen ions, a device is shown schematically in Figure 6. The device consists of a source of neutral oxygen atoms 1, a connecting tube 2, a unit for changing the flow of neutral oxygen atoms 3, tubes for partial ionization of gas molecules and atoms 4, high-frequency generator 5, vacuum vessels 6 and artificial vessel displacement devices 7. An artificial vessel is installed on tube 4. The vacuum system is pumped with a vacuum pump 9 to ensure gas flow from springs the atoms 1 through the flow modifier 3, down the tube 6 and the artificial vessel 8 to the pump 9.

Izvir kisikovih atomov 1 je lahko kakršnakoli naprava, ki zagotavlja produkcijo vsaj 1O20 atomov v sekundi. Izvir kisikovih atomov je lahko narejen iz kateregakoli materiala, ki segret preko 1000°C, na primer zlato, platina ali katerakoli druga kovina, ki ne tvori oksida, lahko pa je keramika, ki je obstojna pri visoki temperaturi v kisik vsebujoči atmosferi. Izvir kisikovih atomov 1 je lahko tudi plinska razelektritev, ki zagotavlja produkcijo vsaj 1O20 atomov v sekundi, na primer visokotlačni oblok ali nizkotlačna plinska razelektritev.The source of oxygen atoms 1 can be any device that guarantees the production of at least 1O 20 atoms per second. The source of the oxygen atoms may be made of any material heated above 1000 ° C, such as gold, platinum or any other metal that does not form an oxide, but may be ceramics that are resistant to high temperatures in an oxygen-containing atmosphere. The source of oxygen atoms 1 may also be a gas discharge that provides the production of at least 1O 20 atoms per second, such as a high pressure arc or low pressure gas discharge.

Povezovalna cev 2 med izvorom kisikovih atomov 1 in enoto za spreminjanje pretoka nevtralnih kisikovih atomov 3 je izdelana iz materiala, ki prepušča vsaj 1% kisikovih atomov, kar pomeni, da je gostota atomov na ustju cevi 2 proti enoti za spreminjanjeThe connecting tube 2 between the source of oxygen atoms 1 and the unit for changing the flow of neutral oxygen atoms 3 is made of a material that transmits at least 1% oxygen atoms, which means that the density of atoms at the mouth of tube 2 against the changing unit

-9pretoka atomov 3 kvečjemu 100 krat nižja kot v izvoru 1. Prednostno je povezovalna cev 2 takšna, da prepusti več kot 10% atomov iz izvora 1 v enoto za spreminjanje pretoka nevtralnih kisikovih atomov 3. V izvedbenem primeru je povezovalna cev 2 kvarčna cev dolžine 30 mm in notranjega premera 6 mm.-9 flux of atoms 3 at most 100 times lower than in origin 1. Preferably, the connecting tube 2 is such that it allows more than 10% of the atoms from source 1 to change the flow of neutral oxygen atoms 3. In the embodiment, the connecting tube 2 is a quartz tube of length 30 mm and inner diameter 6 mm.

Enota za spreminjanje pretoka nevtralnih kisikovih atomov 3 je izdelana iz kateregakoli materiala z visokim koeficientom za površinsko asociacijo kisikovih atomov v molekule. V izvedbenem primeru je enota za spreminjanje pretoka nevtralnih kisikovih atomov 3 izdelana iz OFHC bakra. Enota za spreminjanje pretoka nevtralnih kisikovih atomov 3 ima v izvedbenem primeru dolžino 50 mm in premer 20 mm.The unit for changing the flow of neutral oxygen atoms 3 is made of any material with a high coefficient for the surface association of oxygen atoms in molecules. In the embodiment, the unit for changing the flow of neutral oxygen atoms 3 is made of OFHC copper. The unit for changing the flow of neutral oxygen atoms 3, in the embodiment, has a length of 50 mm and a diameter of 20 mm.

Pritok atomov kisika v cev za delno ionizacijo plinskih molekul in atomov 4 je nastavljiv tako, da se spreminja razdalja med ustjem povezovalne cevi 2 in vhodom v cev za delno ionizacijo plinskih molekul in atomov 4. V primeru, ko cev za delno ionizacijo plinskih molekul in atomov 4 tesno nalega v povezovalno cev 2, enota za spreminjanje pretoka nevtralnih kisikovih atomov 3 omogoča prepuščanje vseh kisikovih atomov. V obratnem skrajnem primeru, ko je cev za delno ionizacijo plinskih molekul in atomov 4 najbolj oddaljena od povezovalne cevi 2, pa enota za spreminjanje pretoka nevtralnih kisikovih atomov 3 prepusti le zanemarljivi del kisikovih atomov, ki vstopajo v enoto za spreminjanje pretoka nevtralnih kisikovih atomov 3 skozi povezovalno cev 2.The inflow of oxygen atoms into the tube for partial ionization of gas molecules and atoms 4 is adjustable by varying the distance between the mouth of the connecting tube 2 and the inlet to the tube for partial ionization of gas molecules and atoms 4. In the case where the tube for partial ionization of gas molecules and of atoms 4 fits tightly into the connecting tube 2, the unit for changing the flow of neutral oxygen atoms 3 allows the permeation of all oxygen atoms. In the extreme extreme case, where the tube for partial ionization of gas molecules and atoms 4 is farthest from the connecting tube 2, the unit for changing the flow of neutral oxygen atoms 3 leaves only a negligible part of the oxygen atoms entering the unit for changing the flow of neutral oxygen atoms 3 through the connecting tube 2.

Cev za delno ionizacijo plinskih molekul in atomov 4 je izdelana iz dielektrika, ki dobro prepušča nevtralne kisikove atome. V izvedbenem primeru je cev za delno ionizacijo plinskih molekul in atomov 4 kvarčna cev dolžine 30 cm in zunanjega premera 5 mm. Del cevi se nahaja v visokofrekvenčnem elektromagnetnem polju, ki ga ustvarjamo s visokofrekvenčnim generatorjem 5. Visokofrekvenčni generator 5 značilno deluje v pulzih. Uporabimo lahko katerikoli generator s frekvenco preko 10 kHz. V izvedbenem primeru uporabimo radiofrekvenčni generator s frekvenco 13.56 MHz. Visokofrekvenčni generator 5 omogoča nastanek pulzirajoče razelektritve v cevi za delno ionizacijo plinskih molekul in atomov 4, s čimer se zagotovi primerna koncentracija ionov s katerimi obdelujemo umetno žilo 8.The tube for partial ionization of gas molecules and atoms 4 is made of a dielectric that transmits neutral oxygen atoms well. In the embodiment, the tube for partial ionization of gas molecules and atoms is 4 quartz tubes with a length of 30 cm and an outer diameter of 5 mm. Part of the tube is located in a high-frequency electromagnetic field, which is generated by a high-frequency generator 5. The high-frequency generator 5 typically operates in pulses. Any generator with a frequency exceeding 10 kHz can be used. In the embodiment, a radio frequency generator with a frequency of 13.56 MHz is used. The high-frequency generator 5 allows the generation of pulsatile discharge in the tube for partial ionization of gas molecules and atoms 4, thereby ensuring a suitable concentration of ions used to process the artificial vessel 8.

• · ·• · ·

-10Na ustju cevi za delno ionizacijo plinskih molekul in atomov 4, na katerem je nameščena umetna žila 8 zagotavljamo primeren pretok nevtralnih kisikovih atomov in molekularnih in atomarnih kisikovih ionov. Primeren pretok nevtralnih kisikovih atomov na ustju cevi za delno ionizacijo plinskih molekul in atomov 4 se doseže s primernim izvorom kisikovih atomov 1 in primerno nastavitvijo enote za spreminjanje pretoka nevtralnih kisikovih atomov 3, primeren pretok molekularnih in atomarnih kisikovih ionov na ustju cevi za delno ionizacijo plinskih molekul in atomov 4 pa se doseže s primerno močjo visokofrekvenčnega generatorja in dolžino ter periodo pulzov.-10At the mouth of the tube for partial ionization of gas molecules and atoms 4, on which the artificial vessel 8 is mounted, a suitable flow of neutral oxygen atoms and molecular and atomic oxygen ions is provided. Suitable flow of neutral oxygen atoms at the mouth of a tube for partial ionization of gas molecules and atoms 4 is achieved by a suitable source of oxygen atoms 1 and a suitable tuning unit for changing the flow of neutral oxygen atoms 3, a suitable flow of molecular and atomic oxygen ions at the mouth of a tube for partial ionization of gas of molecules and atoms 4, however, is achieved by a suitable high frequency generator power and pulse length and period.

Umetno žilo 8 pomikamo vzdolž cevi za delno ionizacijo plinskih molekul in atomov 4 s pomočjo vodila 7 tako, da pri izbranem pretoku nevtralnih kisikovih atomov in molekularnih in atomarnih kisikovih ionov dosežemo zahtevano dozo nevtralnih kisikovih atomov in molekularnih in atomarnih kisikovih ionov za optimalno obdelavo notranje površine umetne žile 8.The artificial wire 8 is moved along the tube for partial ionization of gas molecules and atoms 4 by means of a guide 7 so that at the selected flow of neutral oxygen atoms and molecular and atomic oxygen ions, the required dose of neutral oxygen atoms and molecular and atomic oxygen ions is achieved for optimum surface treatment artificial veins 8.

Primeren pretok vseh plinskih atomov in molekul dosežemo z vakuumsko črpalko 9. Končni tlak vakuumske črpalke mora biti nižji od 100 mbar, prednostno pa nižji od 0.01 mbar, s čimer se zagotavlja zanemarljiv vpliv rezidualne atmosfere. Črpalna hitrost črpalke mora biti večja od 3 m3/h, prednostno pa večja od 16 m3 /h.Suitable flow of all gas atoms and molecules is achieved by vacuum pump 9. The final pressure of the vacuum pump must be less than 100 mbar and preferably lower than 0.01 mbar, thus ensuring a negligible influence of the residual atmosphere. The pumping speed of the pump must be greater than 3 m 3 / h and preferably greater than 16 m 3 / h.

Claims (5)

1. Metoda obdelave bio-medicinskih protez za izboljšanje njihovih antitrombogenih lastnosti, pri čemer so navedene proteze izdelane iz PET polimerov ali njim podobnih polimerov, označena s tem, da je proteza izpostavljena mešanici nevtralnih atomov kisika in pozitivno nabitih molekularnih in atomarnih kisikovih ionov, pri čemer je izpostavljenost mešanici nevtralnih atomov kisika in pozitivno nabitih molekularnih in atomarnih kisikovih ionov v pulzih takšna, da je v posameznem pulzu dosežena doza nevtralnih kisikovih atomov med 1O20 m'2 in 1028 m‘2, prioritetno pa med 1022 m2 in 1026 m'2, ter doza nabitih molekularnih in atomarnih kisikovih ionov med 1016m'2 in 1023 m'2, prioritetno pa med 1017 m’2 in 1021 m'2, premor med posameznimi pulzi pa traja med 10 s in 300 s, prioritetno pa med 60 s in 150 s in da je tok nevtralnih atomov kisika in pozitivno nabitih molekularnih in atomarnih kisikovih ionov na površino proteze približno enakomeren.A method of treating bio-medical prostheses for improving their antithrombogenic properties, wherein said prostheses are made of PET polymers or similar polymers, characterized in that the prosthesis is exposed to a mixture of neutral oxygen atoms and positively charged molecular and atomic oxygen ions, wherein the exposure to a mixture of neutral oxygen atoms and positively charged molecular and atomic oxygen ions in pulses is such that in a single pulse a dose of neutral oxygen atoms is obtained between 1O 20 m ' 2 and 10 28 m' 2 , and preferably between 10 22 m 2 and 10 26 m ' 2 , and a charge of charged molecular and atomic oxygen ions between 10 16 m' 2 and 10 23 m ' 2 , and preferably between 10 17 m' 2 and 10 21 m ' 2 , and the interval between individual pulses lasts between 10 s and 300 s, preferably between 60 s and 150 s, and that the flow of neutral oxygen atoms and positively charged molecular and atomic oxygen ions is approximately uniform to the surface of the prosthesis. 2. Metoda po zahtevku 1, označena s tem, da je približno enakomeren tok nevtralnih atomov kisika in pozitivno nabitih molekularnih in atomarnih kisikovih ionov na površino proteze dosežen z enakomernim premikanjem proteze med obdelavo in je tako morebitna nehomogenost obdelave manjša od faktorja 100.Method according to claim 1, characterized in that the approximately uniform flow of neutral oxygen atoms and positively charged molecular and atomic oxygen ions onto the surface of the prosthesis is achieved by uniformly moving the prosthesis during the treatment and thus the possible inhomogeneity of treatment is less than a factor of 100. 3. Metoda po zahtevku 1, označena s tem, da je temperatura kardiovaskularnih protez med obdelavo nižja od 170°C, prioritetno nižja od 75°C.Method according to claim 1, characterized in that the temperature of the cardiovascular prostheses during treatment is lower than 170 ° C, preferably lower than 75 ° C. 4. Metoda po zahtevku 1, označena s tem, da je kinetična energija pozitivno nabitih molekularnih in atomarnih kisikovih ionov ob površini protez med 1 eV in 1000 eV, prioritetno pa med 5 eV in 100 eV.Method according to claim 1, characterized in that the kinetic energy of the positively charged molecular and atomic oxygen ions at the surface of the prosthesis is between 1 eV and 1000 eV, and preferably between 5 eV and 100 eV. 5. Bio-medicinske proteze z izboljšanimi antitrombogenimi lastnostmi, pri čemer so navedene proteze izdelane iz PET polimerov ali njim podobnih polimerov, označene s tem, da so obdelane po metodi po zahtevkih od 1 do 4.Biomedical prostheses with improved antithrombogenic properties, said prostheses being made of PET polymers or similar polymers, characterized in that they are treated by the method of claims 1 to 4.
SI200900109A 2009-04-20 2009-04-20 Method of treatment of biomedical polymeric prostheses for improvement of their antithrombogenous properties SI23021A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI200900109A SI23021A (en) 2009-04-20 2009-04-20 Method of treatment of biomedical polymeric prostheses for improvement of their antithrombogenous properties
ATA9111/2010A AT513072B1 (en) 2009-04-20 2010-03-18 METHOD FOR THE TREATMENT OF BIOMEDICAL IMPLANTS FOR IMPROVING THEIR ANTITHROMBOGENIC PROPERTIES
PCT/SI2010/000014 WO2010123465A2 (en) 2009-04-20 2010-03-18 Method for the treatment of biomedical polymeric implants for the improvement of antithrombogenic properties thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200900109A SI23021A (en) 2009-04-20 2009-04-20 Method of treatment of biomedical polymeric prostheses for improvement of their antithrombogenous properties

Publications (1)

Publication Number Publication Date
SI23021A true SI23021A (en) 2010-10-29

Family

ID=42246151

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200900109A SI23021A (en) 2009-04-20 2009-04-20 Method of treatment of biomedical polymeric prostheses for improvement of their antithrombogenous properties

Country Status (3)

Country Link
AT (1) AT513072B1 (en)
SI (1) SI23021A (en)
WO (1) WO2010123465A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112956A1 (en) * 2013-01-17 2014-07-24 Center Odličnosti Polimerni Marteriali In Tehnologije Method for treatment of a vascular graft

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016735A1 (en) * 1993-12-17 1995-06-22 E.I. Du Pont De Nemours And Company Polyethylene therephthalate articles having desirable adhesion and non-blocking characteristics, and a preparative process therefor
MXPA03007747A (en) * 2001-03-02 2003-12-08 Univ Laval Plasma surface graft process for reducing thrombogenicity.
US20030113478A1 (en) * 2001-12-12 2003-06-19 Dang Mai Huong Surface coating method and coated device
US7597924B2 (en) * 2005-08-18 2009-10-06 Boston Scientific Scimed, Inc. Surface modification of ePTFE and implants using the same

Also Published As

Publication number Publication date
WO2010123465A3 (en) 2011-03-24
AT513072B1 (en) 2014-02-15
WO2010123465A2 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
AU737469B2 (en) Surface modification of medical implants
US4656083A (en) Plasma gas discharge treatment for improving the biocompatibility of biomaterials
US8999364B2 (en) Implantable article, method of forming same and method for reducing thrombogenicity
EP1368075B1 (en) Plasma surface graft process for reducing thrombogenicity
KR100826574B1 (en) Medical devices having porous layers and methods for making same
US5133845A (en) Method for making prosthesis of polymeric material coated with biocompatible carbon
US20030050691A1 (en) Non-thrombogenic implantable devices
JP2013500058A (en) Medical device having an inorganic coating layer formed by atomic layer deposition
US20090169714A1 (en) Biocompatible coatings for medical devices
KR101701264B1 (en) Metal for transplantation, manufacturing method for metal, implant and stent using the same
JP2004500918A (en) Poly-tri-fluoro-ethoxy polyphosphazene covering and film
Reynamartínez et al. Use of cold plasma technology in biomaterials and their potential utilization in controlled administration of active substances
SI23021A (en) Method of treatment of biomedical polymeric prostheses for improvement of their antithrombogenous properties
Mantovani et al. Ammonia RF-plasma treatment of tubular ePTFE vascular prostheses
US20020022137A1 (en) Object, particularly implant
CN109069695B (en) Anti-contamination and/or anti-thrombosis medical device
US11208720B2 (en) Method for treatment medical devices made from nickel-titanium (NiTi) alloys
KR102131101B1 (en) Method for preparation of ePTFE-based artificial vessels with enhanced hemocompatibility via selective plasma etching
JP5659362B2 (en) Endothelial cell proliferating material
US20090105804A1 (en) Medical implanting devices provided with anti-trombogenic coating and method for obtaining of such coating
Mathur et al. Plasma-assisted surface treatments and modifications for biomedical applications
US20070154511A1 (en) Retention of endothelial cells on vascular grafts
SI22608A (en) Method and device for modification of implants and artificial veins made of pet polymer
RU2354409C2 (en) Method of manufacturing medication-releasing medical devices and device obtained with its application
WO2016008687A1 (en) A method and a device forcoating a base body

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20101124

KO00 Lapse of patent

Effective date: 20190424