SI23002A - Procedure for sol-gel preparation of corrosion protection coatings for solar collectors - Google Patents

Procedure for sol-gel preparation of corrosion protection coatings for solar collectors Download PDF

Info

Publication number
SI23002A
SI23002A SI200900085A SI200900085A SI23002A SI 23002 A SI23002 A SI 23002A SI 200900085 A SI200900085 A SI 200900085A SI 200900085 A SI200900085 A SI 200900085A SI 23002 A SI23002 A SI 23002A
Authority
SI
Slovenia
Prior art keywords
substrate
integer
alkyl
cycloalkyl
sol
Prior art date
Application number
SI200900085A
Other languages
Slovenian (sl)
Inventor
KOŽELJ@Matjaž
OREL@Boris
URCA@VUK@Angela Ĺ
JERMAN@Ivan
Original Assignee
Kemijski@inštitut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemijski@inštitut filed Critical Kemijski@inštitut
Priority to SI200900085A priority Critical patent/SI23002A/en
Priority to DE112010001451.5T priority patent/DE112010001451B4/en
Priority to PCT/EP2010/054150 priority patent/WO2010112481A1/en
Publication of SI23002A publication Critical patent/SI23002A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The subject of this invention is a procedure for a sol-gel preparation of corrosion protection coatings for solar collectors. It is a sol-gel procedure for the preparation of corrosion protection of solar collector surfaces made of thin layers of cermet materials applied onto metal substrates, which includes mixing of at least one mercapto silane with, but not necessarily with, another silane in an organic solvent with water and an acid catalyst, immersion of the substrate into the solution for a certain time required to create a self-ordered layer on the immersed substrate, retrieval, drying and thermal treatment of the said substrate. The method comprises soaking of substrate in the mixture of at least one mercapto silane, a solvent, an acid catalyst, water and, but not necessarily, another hydrolysable silane for a certain time during which a quasi self-composable monolayer of sol molecules is formed on the surface of the substrate, removal of the substrate from the solution, drying of the coated substrate and finally thermal treatment of the coated substrate.

Description

Postopek za sol-gel pripravo korozijsko zaščitnih prevlek za sončne zbiralnikeSol-gel process for preparing corrosion protection coatings for solar panels

Predmet tega izuma je postopek za sol-gel pripravo korozijsko zaščitnih prevlek za sončne zbiralnike. To je sol-gel postopek za pripravo korozijske zaščite površin sončnih zbiralnikov, narejenih iz tankih plasti kermetnih materialov, nanešenih na kovinske substrate, ki vključuje: mešanje vsaj enega merkapto silana z, toda ne nujno, drugim silanom v organskem topilu z vodo in kislinskim katalizatorjem, potapljanje substrata v raztopino za določen čas, ki je potreben, da se ustvari samourejen plast na potopljenem substratu, izvlekanje, sušenje in toplotno obdelavo omenjenega substrata.It is an object of the present invention to provide a process for sol-gel preparation of corrosion protection coatings for solar panels. It is a sol-gel process for the preparation of corrosion protection of the surfaces of solar panels made of thin layers of cermet materials applied to metal substrates, which includes: mixing at least one mercapto silane with, but not necessarily, another silane in an organic solvent with water and an acid catalyst , immersing the substrate in a solution for a limited time, which is necessary to create a self-assembled layer on the immersed substrate, extracting, drying and heat treating said substrate.

OZADJE IZUMABACKGROUND OF THE INVENTION

Velike stroške, ki jih na materialih, še posebej na kovinah in s kovinami prevlečenih materialih, povzročajo okoljske razdiralne sile, lahko znižamo z uporabo primernih zaščitnih prevlek, nanešenih z različnimi tehnologijami.The high costs of environmental disruptive forces on materials, especially metals and metal-coated materials, can be reduced by the use of suitable protective coatings applied by various technologies.

Vedno večje potrebe po zamenjavi fosilnih goriv, ki jih porabimo za ogrevanje stavb, kar predstavlja 50% celotne porabe energije, so privedle do razvoja sončnih fasadnih zbiralniških sistemov. Čeprav imajo mnoge komercialno dostopne kermetne prevleke temno modro barvo in predstavljajo dober kompromis med barvitostjo in spektralno selektivnostjo, je treba pred njihovo uporabo v nepokritih fasadnih sistemih izboljšati njihovo korozijsko obstojnost. Študije korozijske stabilnosti so v bistvu posledica dolgoročne stabilnosti sončnih absorberjev v povezavi z učinkovitostjo pretvorbe sončnega sevanja v toplotno energijo (S. Brunold; U. Frei; B. Carlsson; K. Moller; M. Kohl, Solar Energy Materials and Solar Celiš 2000, 61, (3), 239253). Problem ni enostaven, saj zahteva poleg podrobnega poznavanja in uporabe preprečevanja korozije tudi znanje o izdelavi zapornih prevlek, ki lahko preprečijo propad absorberja, brez spremembe njihovih optičnih lastnosti.The increasing need to replace fossil fuels used to heat buildings, which accounts for 50% of total energy consumption, has led to the development of solar façade collection systems. Although many commercially available kermet coatings are dark blue in color and represent a good trade-off between color and spectral selectivity, their corrosion resistance must be improved before being used in uncovered facade systems. Corrosion stability studies are essentially due to the long-term stability of solar absorbers in relation to the efficiency of the conversion of solar radiation into thermal energy (S. Brunold; U. Frei; B. Carlsson; K. Moller; M. Kohl, Solar Energy Materials and Solar Celiš 2000, 61, (3), 239253). The problem is not easy, since it requires, in addition to a detailed knowledge and application of corrosion prevention, knowledge of the manufacture of barrier coatings that can prevent the absorber from collapsing without altering their optical properties.

Ena od možnosti, s katero se lahko izognemo nezadostni korozijski stabilnosti, je lahko bila proizvodnja absorberskih površin sestavljenih iz več plasti, kot predvideva EP 1867934. Večplastna struktura je lahko izdelana edinole z več zaporednimi PVD ali CVD procesi, kar pa občutno poveča ceno takšnih absorberjev. Prav tako je lahko zadovoljiva korozijska zaščita dosežena z nanosom tanke prevleke (do 1000 nm) s kemijskim nalaganjem par (CVD), dosežena z nanosom tanke prevleke (do 1000 nm) s kemijskim nalaganjem par (CVD), fizikalnim nalaganjem par (PVD), napraševanjem in plazemsko ojačanim kemijskim nalaganjem par (PECVD), a njihova priprava prav tako zahteva drage vakuumske tehnike, kot je opisano v ES 2 061 399.One option to avoid insufficient corrosion stability may be the production of absorber surfaces composed of multiple layers, as envisaged by EP 1867934. A multilayer structure can only be made with multiple sequential PVD or CVD processes, which significantly increases the cost of such absorbers . Also, satisfactory corrosion protection can be achieved by applying a thin coating (up to 1000 nm) by chemical vapor loading (CVD), achieved by applying a thin coating (up to 1000 nm) by chemical loading vapor (CVD), physical vapor loading (PVD), Dust and Plasma Reinforced Chemical Pair Loading (PECVD), but their preparation also requires expensive vacuum techniques as described in EC 2 061 399.

Nasprotno pa se lahko uporabi sol-gel tehnologijo z relativno enostavno opremo, enostavnim procesom in pri sobnih pogojih.By contrast, sol-gel technology can be used with relatively simple equipment, a simple process and room conditions.

Za pripravo tankih filmov za korozijsko zaščito kovin se največ uporabljajo enostavni silani (RSi-(OR’)3, R = aminoalkil, akriloksipropil, glicidoksipropil, izocianatopropil, alkil, aril...; OR1 = etoksi, metoksi, acetoksi...) in dvostransko funkcionalizirani (OR’- polimer-OR’) silani. Te prevleke delujejo največkrat kot zaporne prevleke, saj izolirajo korozijski medij od kovine, korozijski reakciji (katosna in anodna) sta difuzijsko kontrolirani. Na žalost je učinkovitost take prevleke za korozijsko zaščito odvisna od njene debeline in za odlično zaščito morajo biti nanešene debele prevleke kot je opisano v US 3935349, US 4754012, US 5814137, US 6261638, US 7141306, WO 2007/085339; M. Fir; B. Orel; A. Surca Vuk; A. Vilčnik; R. Jese; V. Francetic, Langmuir 2007, 23, (10), 5505-5514.Simple silanes (RS- (OR ') 3, R = aminoalkyl, acryloxypropyl, glycidoxypropyl, isocyanatopropyl, alkyl, aryl ...; OR 1 = ethoxy, methoxy, acetoxy ... are mostly used for the preparation of thin films for corrosion protection of metals. ) and bilaterally functionalized (OR'-polymer-OR ') silanes. These coatings act most often as barrier coatings, as they isolate the corrosion medium from the metal, and the corrosion reactions (cathode and anode) are diffusion controlled. Unfortunately, the effectiveness of such a corrosion protection coating depends on its thickness and thick coatings as described in US 3935349, US 4754012, US 5814137, US 6261638, US 7141306, WO 2007/085339 must be applied for excellent protection; M. Fir; B. Orel; A. Surca Wolf; A. Vilčnik; R. Jese; V. Francetic, Langmuir 2007, 23, (10), 5505-5514.

Tudi merkapto silane so uporabili za pripravo zaščitnih filmov, največ na aluminijevih zlitinah kot je opisano v WO 02/072283 in US 5750197, toda niso bili prepoznani kot učinkoviti inhibitorji korozije spektralno selektivnih površin.Mercapto silanes have also been used for the preparation of protective films, mostly on aluminum alloys as described in WO 02/072283 and US 5750197, but have not been recognized as effective corrosion inhibitors of spectrally selective surfaces.

V preteklosti so pripravljali tudi izredno tanke sol-gel filme, ki so bili nevidni človeškim očem. Toda njihova zaščitnost je izrazito padala s staranjem sola, ta proces je obremenjen z zelo kratkim odprtim časom od priprave do nanosa kot je opisano v US 5175027. Za zaščito sončnih reflektorjev, ki se uporabljajo za zgoščevanje sončne svetlobe v visokotemperatumih zbiralnikih, so uporabili precej debele filme kot je opisano v WO 2007/059883, vendar tam zahteve po nizki termični emitanci ni. Tak pristop pa ni dovolj za uporabo na sončnih zbiralnikih, ker debelina prevleke in nezadostna korozijska obstojnost močno vplivata na termično emitanco in sončno absorptanco.In the past, extremely thin sol-gel films were also produced that were invisible to human eyes. But their protection declined sharply with the aging of the salt, this process being burdened with a very short open time from preparation to application as described in US 5175027. They used rather thick sunscreens used to concentrate sunlight in high-temperature reservoirs. films as described in WO 2007/059883, but there is no requirement for low thermal emission. However, such an approach is not sufficient for use on solar panels, since the thickness of the coating and the insufficient corrosion resistance greatly affect thermal emissivity and solar absorption.

Cilj pričujočega izuma je razvoj procesov za pripravo ultra tankih prevlek, to je od 1 do 500 nm, prevlek, ki ne bodo poslabšale optičnih lastnosti sončno selektivnih površin, kar pomeni,It is an object of the present invention to provide processes for the preparation of ultra-thin coatings, i.e. from 1 to 500 nm, coatings that will not impair the optical properties of sun-selective surfaces,

-3da se sončna absorptanca as ne zmanjša, termična emitanca ετ pa ostane pod 0,20; po drugi strani pa morajo omenjene prevleke zagotavljati zadostno korozijsko stabilnost.-3 that the solar absorptance as does not decrease and the thermal emission ε τ remains below 0.20; on the other hand, these coatings must provide sufficient corrosion stability.

POVZETEK IZUMASUMMARY OF THE INVENTION

Pričujoči izum se nanaša na metodo za pripravo na merkaptosilanu temelječih sol-gel korozijsko zaščitnih nano tankih filmov z debelino med 0,5 in 500 nm, nanesenih na različne kovinske substrate vključujoč kovinske pločevine, prevlečene z visoko selektivnimi kermetnimi absorberskimi plastmi, ki se uporabljajo v toplotnih sončnih zbiralnikih. Najbolj je pomembna uporaba prevlek na površinah sončnih absorberjev, saj omenjene prevleke omogočajo zelo dobro korozijsko zaščito, po drugi strani pa ne pokvarijo nizke termične emitance teh površin, le-ta se poveča samo za nekaj % ; sončna absorptanca pa se celo poveča, kar je zelo ugodno.The present invention relates to a method for the preparation of mercaptosilane-based sol-gel corrosion-protection nano-thin films with a thickness between 0.5 and 500 nm deposited on various metal substrates including metal sheets coated with highly selective kermet absorber layers used in solar thermal collectors. Most important is the use of coatings on the surfaces of solar absorbers, since these coatings provide very good corrosion protection and, on the other hand, do not spoil the low thermal emissivity of these surfaces, which increases by only a few%; solar absorption even increases, which is very advantageous.

PODROBEN OPIS IZUMADETAILED DESCRIPTION OF THE INVENTION

Kratek opis slik:Short description of the pictures:

Slika 1 predstavlja fotografije vzorcev izpostavljenih v slani komori.Figure 1 presents photographs of samples exposed in a salt chamber.

Slika 2 predstavlja potenciodinamične krivulje za zaščiten in nezaščiten kermet.Figure 2 presents the potentiodynamic curves for protected and unprotected kermet.

Slika 3 predstavlja hemisferične reflektančne spektre neprevlečenega in z MPTMS prevlečenega kermeta.Figure 3 represents the hemispherical reflectance spectra of uncoated and MPTMS coated kermet.

Slika 4 predstavlja rezultate slane komore, to je fotografije izpostavljenih aluminijastih vzorcev.Figure 4 presents the results of the salt chamber, i.e. photographs of exposed aluminum samples.

Postopek za pripravo nano tankih antikorozijskih filmov, debeline od 0.5 do 500 nm, na sončno spektralno selektivnih površinah - sončnih absorberjih, izdelanih iz aluminijskih, bakrenih, jeklenih in legumih pločevin prekritih s kermetnimi absorpcijskimi prevlekami, kot so komercialno dosegljivi Sunselect, TiNOX, Eta plus, katere izdelujejo iz kromovega in titanovega oksinitrida. Dobre antikorozijske lastnosti teh prevlek na komercialnem Sunselectu so predstavljene na sliki 1, kjer lahko vidimo 3 različno zaščitene vzorce, ki so bili po zaščiti izpostavljeni v slani komori. Levi vzorec je nezaščiten kermet po 24 urah izpostave, na sredini je enak kermet, zaščiten z neprimerno prevleko po 120 urah slane komore, desni vzorec pa je kermet zaščiten z mercaptopropiltrimetoksisilanskim (MPTMS) solom po 480 urah slaneProcess for the preparation of nano-thin anti-corrosion films, 0.5 to 500 nm thick, on solar spectral selective surfaces - solar absorbers made of aluminum, copper, steel and alloy sheets coated with kermet absorption coatings such as commercially available Sunselect, TiNOX, Eta plus made from chromium and titanium oxynitride. The good corrosion properties of these coatings on commercial Sunselect are presented in Figure 1, where we can see 3 differently protected specimens that were exposed in the salt chamber after protection. The left sample is unprotected cermet after 24 hours of exposure, the middle is identical to cermet protected by inappropriate coating after 120 hours of saline chamber, and the right sample is protected by mercaptopropyltrimethoxysilane (MPTMS) salt after 480 hours of saline

-4komore. Zaščita z MPTMS solom občutno izboljša korozijsko obstojnost v slani komori. Na sliki 2 vidimo potenciodinamične krivulje z MPTMS zaščitenega Sunselecta. Jasno se vidi padec korozijskega toka in premik korozijskega potenciala proti bolj negativnim vrednostim, kar kaže, da deluje MPTMS kot inhibitor mešanega tipa z bolj izrazito katodno inhibicijo. Slika 3 prikazuje hemisferične reflektančne spektre zaščitenega in nezaščitenega Sunselecta z izračunanimi vrednostmi sončne absorptance as in termične emitance ετ· Iz podatkov se lahko razbere, da prevleka nima bistvenega vpliva na selektivnost. Povečanje termične emitance zaščitenih vzorcev je bilo pod 0.35, tipično pod 0.10. Povečanje za manj kot 0.05 lahko dosežemo, če posvetimo posebno pozornost pripravi filmov. Najpomembnejša dela izuma sta istočasna korozijska stabilnost in ohranitev selektivnosti.-4 chamber. Protection with MPTMS salt significantly improves corrosion resistance in the salt chamber. Figure 2 shows the potentiodynamic curves of MPTMS-protected Sunselect. The drop in corrosion current and the shift of corrosion potential towards more negative values are clearly seen, indicating that MPTMS acts as a mixed-type inhibitor with more pronounced cathodic inhibition. Figure 3 shows the hemispherical reflectance spectra of protected and unprotected Sunselect with calculated values of solar absorption as and thermal emissivity ετ · From the data it can be seen that the coating has no significant effect on selectivity. The increase in thermal emissivity of the protected samples was below 0.35, typically below 0.10. An increase of less than 0.05 can be achieved by paying special attention to film making. The most important parts of the invention are simultaneous corrosion stability and maintaining selectivity.

Postopek za korozijsko zaščito je primeren tudi za kovinske substrate kot so baker, aluminij, železo in njihove zlitine. To je pokazano z rezulati na sliki 4, kjer so predstavljene fotografije Al 2204-T3 vzorcev izpostavljenih za določene časovne intervale v slani komori. Zgornja vrsta fotografij predstavlja slabo zaščito brez MPTMS, v spodnji vrsti pa so vzorci, zaščiteni s prevleko, ki vsebuje MPTMS in izkazujejo odlično korozijsko stabilnost v slani komori -po 13 dneh le začetki korozije - v primerjavi z vzorci brez MPTMS, ki popolnoma korodirajo že po enem dnevu.The corrosion protection process is also suitable for metal substrates such as copper, aluminum, iron and their alloys. This is shown by the results in Figure 4, where photographs of Al 2204-T3 specimens exposed for certain time intervals in the salt chamber are presented. The top row of photos represents poor protection without MPTMS, and the bottom row contains specimens protected with a coating containing MPTMS and exhibiting excellent corrosion stability in the salt chamber - after 13 days only corrosion onset - compared to samples without MPTMS that completely corrode after one day.

Substrate se zaščiti s potapljanjem v zmes sestavljeno iz:Substrate is protected by immersion in a mixture consisting of:

i) 30 % do 98 % m/m, po možnosti več kot 60 % m/m organskega topila, po možnosti alifatskega alkohola, najbolje pa etanola;i) 30% to 98% w / w, preferably more than 60% w / w of an organic solvent, preferably an aliphatic alcohol, preferably ethanol;

ii) 0.01 % do 70 % m/m, po možnosti 0.02 % do 60 % m/m vsaj enega merkaptosilana, ki ga lahko opišemo z naslednjo formulo:ii) 0.01% to 70% w / w, preferably 0.02% to 60% w / w of at least one mercaptosilane, which can be described by the following formula:

(R1)m(R 1 ) m

HS-(CH2)n-Si-(OR2)r kjer sta R in R neodvisno izbrana izmed alkil (1-14C), cikloalkil in aril skupin in je n celo število od 0 do 20, m celo število od 0 do 2 in r celo število od 1 do 3, tako da velja: m + r = 3, iii) kislinski katalizator (to je vsaka spojina, katere vodna raztopina ima pH med 0-6.9), ki je izbran iz skupine kislin, ki vsebuje vsaj: HF, HCI, HBr, HI, HNO3, H2SO4, H3PO4, mravljično, • ·HS- (CH 2 ) n -Si- (OR 2 ) r wherein R and R are independently selected from alkyl (1-14C), cycloalkyl and aryl groups and n is an integer from 0 to 20, m is an integer from 0 to 2 and r are an integer from 1 to 3 such that: m + r = 3, iii) an acid catalyst (that is, any compound whose aqueous solution has a pH between 0-6.9) selected from the acid group containing at least: HF, HCI, HBr, HI, HNO3, H2SO4, H3PO4, ant, • ·

-5ocetno, propanojsko, butanojsko, salicilno, trifluoroocetno, trikloroocetno, triflično, metansulfonsko kislino; tako daje končna koncentracija ΙμΜ do lmM;-5 acetic, propanoic, butanoic, salicylic, trifluoroacetic, trichloroacetic, triflic, methanesulfonic acid; thus giving a final concentration of ΙμΜ to lmM;

iv) 0.001 % do 50 % m/m, po možnosti med 0.01 % do 45 % m/m vode;iv) 0.001% to 50% w / w, preferably between 0.01% and 45% w / w of water;

v) 0 % do 50 % m/m, po možnosti med 0 % in 40 % m/m drugega »single end-capped« hidrolizabilnega silana, kije predstavljen z naslednjo splošno formulo:(v) 0% to 50% w / w, preferably between 0% and 40% w / w, of another single end-capped hydrolysable silane represented by the following general formula:

(R1)m (R3)n-Si-(OR2)r(R 1 ) m (R 3 ) n-Si- (OR 2 ) r

2 kjer sta R in R neodvisno izbrana izmed alkil (1-14C atomov), cikloalkil (1-10 C atomov) in aril skupin in je n celo število od 0 do 3, m celo število od 0 do 2 in r celo število od 1 do 4, tako da velja: m + n + r = 4inR je neodvisno izbran iz skupine, ki vsebuje vsaj: alkilne, cikloalkilne, substituirane alkilne, substituirane cikloalkilne, arilne, substituirane arilne, fluorirane alkilne, fluorirane arilne in fluorirane cikloalkilne skupine:2 where R and R are independently selected from alkyl (1-14C atoms), cycloalkyl (1-10C atoms) and aryl groups and n is an integer from 0 to 3, m is an integer from 0 to 2 and r is an integer from 1 to 4, so that: m + n + r = 4 and R is independently selected from the group consisting of at least: alkyl, cycloalkyl, substituted alkyl, substituted cycloalkyl, aryl, substituted aryl, fluorinated alkyl, fluorinated aryl and fluorinated cycloalkyl groups:

ali/in »bis end-capped« silana, predstavljenega z naslednjo formulo:or / and bis end-capped silane represented by the following formula:

(R1)m (OR2)r-Si-R(R1)m(R 1 ) m (OR 2 ) r -Si-R (R 1 ) m

-Si-(OR2)r -Si- (OR 2 ) r

2 kjer sta R in R neodvisno izbrana izmed alkil (1-14C atomov), cikloalkil (1-10 C atomov) in aril skupin in je m celo število od 0 do 2 in r celo število od 1 do 3, tako da velja: m + r = 3 in R4 je neodvisno izbran iz skupine, ki vsebuje vsaj različno terminirane alkilne, substituirane alkilne, fluoroalkilirane, polidialkilsiloksanske in polieterske verige.2 wherein R and R are independently selected from alkyl (1-14C atoms), cycloalkyl (1-10C atoms) and aryl groups and m is an integer from 0 to 2 and r is an integer from 1 to 3, such that: m + r = 3 and R 4 is independently selected from the group consisting of at least different terminated alkyl, substituted alkyl, fluoroalkylated, polydialkylsiloxane and polyether chains.

Zmes je pripravljena tako, da se v sol-gel procesu tvorijo samo monomerne in oligomerne zvrsti; najbolje je, če je sol sestavljen samo iz popolnoma hidroliziranih monomerov in dimerov z zelo majhno količino popolnoma hidroliziranih trimerov. Razmerje med hidrolizo/kondenzacijo je možno uravnavati s primerno količino vode. Še posebej se izkaže za dobro, če se uporabi več kot en ekvivalent vode za vsako hidrolizabilno alkoksi skupino.The mixture is prepared in such a way that only monomeric and oligomeric species are formed in the sol-gel process; it is best if the salt consists only of fully hydrolyzed monomers and dimers with a very small amount of fully hydrolyzed trimers. The hydrolysis / condensation ratio can be adjusted with an appropriate amount of water. In particular, more than one water equivalent is used for each hydrolysable alkoxy group.

• ·• ·

-6Vzorec se namaka v tej raztopini dovolj dolgo, da se tvori kvazi samosestavljiva monoplast molekul sola na površini pomočenega substrata. Komercialam sončni absorberji so porozni, zato je ta korak še posebej pomemben, saj lahko molekule sola prodrejo globoko v porozno strukturo in s tem omogočijo boljšo korozijsko zaščito. Samoorganizacija/prodor zvrsti je zaključen med 1 s do 5 ur, po možnosti je čas namakanja več kot 5 s in manj kot 4 ure.-6The sample is soaked in this solution long enough to form a quasi-self-assembling monoplast salt molecule on the surface of the assisted substrate. Commercially available solar absorbers are porous, so this step is especially important as salt molecules can penetrate deep into the porous structure and thus provide better corrosion protection. The self-organization / breakthrough of the genre is completed within 1 s to 5 hours, preferably with a soaking time of more than 5 s and less than 4 hours.

Vzorec se iz raztopine lahko odstrani na različne načine, toda potrebno je opozoriti, da hitrost izvlečevanja iz sola pomembno vpliva na debelino in antikorozijske lastnosti filma, toda predebeli filmi pokvarijo sončno spektralno selektivnost vzorca. Hitrost izvlečevanja naj bi bila med 0.1 in 100 cm/s ali pa je vzorec enostavno vzamemo iz raztopine ročno pri šaržnih postopkih.The sample can be removed from the solution in various ways, but it should be noted that the rate of extraction from the salt has a significant effect on the thickness and corrosion properties of the film, but the thick films impair the spectral selectivity of the sample. The extraction rate should be between 0.1 and 100 cm / s or the sample can be easily removed from the solution by hand in batch operations.

Vzorcu se po odstranitvi iz sola odstrani topilo s sušenjem na zraku v časovnem obdobju med 1 s in 2 dnevoma, po možnosti med 1 s in 36 urami.After removal from the sample, the sample is removed by air-drying solvent for a period of between 1 s and 2 days, preferably between 1 s and 36 hours.

Vzorec je po sušenju toplotno obdelan, da se zaključi kondenzacija in doseže popolno premreženje. Pri tem koraku se zračno suhi gel sesede v gost enakomeren film, ki je nepropusten za vodo. Vzorce se lahko toplotno obdela na različnih temperaturah, kar pomeni zmanjševanje trajanja toplotne obdelave z naraščajočo temperaturo. Zaščitene vzorce se toplotno obdela pritemperaturah 70 - 300 °C med 1 s in 5 urami, po možnosti pri 80 - 250 °C med 1 s in 4 urami.After drying, the sample is heat treated to complete condensation and complete crosslinking. In this step, the air-dry gel collapses into a thick, even, watertight film. Samples can be heat treated at different temperatures, which means reducing the duration of heat treatment with increasing temperature. Protected samples are heat treated at 70 - 300 ° C for 1 s to 5 hours, preferably at 80 - 250 ° C for 1 s to 4 hours.

Vzorce se lahko zaščiti na najmanj dva različna načina, glede nanašanja prevleke. Če imajo predmeti obliko plošč, se jih lahko zaščiti z zgoraj opisano tehniko šaržnega potapljanja; seveda pa je zaželeno, da bi se moglo zaščititi tudi vzorce, ki imajo obliko dolgega traku, ki je zvit v svitek. Nepretrgan proces za take vrste vzorcev se lahko naredi po naslednjem neomejujočem postopku. Iz zvitka nezaščitenega substrata je preko valjev speljan trak vzorca v posodo, ki vsebuje sol - mešanico za pripravo prevleke, kjer je trak potopljen v mešanico in se v njej zadržuje določen čas, ki je zelo podoben času zadrževanja v omenjenem šaržnem procesu. Trak je nato speljan iz raztopine, osušen s pihanjem zraka in zatem speljan v peč, kjer je segret, da se zaključi kondenzacija. Potem je ohlajen na sobno temperaturo in zvit v zvitek zaščitenega substrata. Za določitev hitrosti gibanja traku, temperatur posameznih odsekov, še posebej peči, in celotne konstrukcije strojev je potrebno upoštevati pogoje, ki se jih določi za šaržne procese; po možnosti naj bi si bili ti procesni parametri čimbolj podobni.Samples can be protected in at least two different ways with respect to coating. If the objects are in the form of panels, they can be protected by the batch diving technique described above; of course, it is desirable that specimens having the form of a long strip rolled up in a roll may also be protected. A continuous process for these types of samples can be done by the following non-limiting procedure. From the roll of the unprotected substrate, a strip of sample is passed through the cylinders to a container containing a salt - mixture for preparation of the coating, where the strip is immersed in the mixture and therein is retained for a certain time, which is very similar to the residence time in said batch process. The strip is then released from the solution, dried by blowing air and then brought to a furnace where it is heated to complete the condensation. It is then cooled to room temperature and rolled into a roll of protected substrate. In order to determine the speed of movement of the strip, the temperatures of the individual sections, in particular the furnace, and the overall construction of the machinery, the conditions laid down for the batch processes must be observed; preferably, these process parameters should be as similar as possible.

-ΊDa bi ponazorili pripravo prevlek, navajamo naslednje primere:-ΊTo illustrate the preparation of coatings, we give the following examples:

Primer I:Example I:

Tanka MPTMS prevleka g 3-merkaptopropiltrimetoksisilana je bilo raztopljenih v 25 g etanola. Raztopina je bila nakisana z 0.1 ml 0.1 M HC1, nato se je mešala 4 ure. V tem času nastanejo samo hidrolizirani monomeri in dimeri. Med hidrolizo se sol dodatno razredči s 75 ml etanola. Ta sol smo nanesli na komercialni Sunselect na naslednji način: vzorec je bil potopljen v sol, 240 s je sol nato prodiral v porozno strukturo Sunselecta potem je bil vzorec izvlečen s hitrostjo 10 cm/s. Vzorci so bili nato sušeni na zraku 60 min in nato toplotno obdelani pri 140 °C eno uro. Tako zaščiten Sunselect kaže odlične antikorozijske lastnosti (v slani komori je stabilen nad 20 dni) in ne kaže bistvenih poslabšanj optičnih lastnosti. Povečanje sončne absorptivnosti je bilo v intervalu 0.00-0,05 in povečanje termične emitance 0,00 - 0,10, največkrat pod 0,05. Na podlagi teh lastnosti lahko trdimo, da je ta prevleka boljša od drugih. Nenazadnje je Sunselect po zaščiti odporen tudi na prstne odtise.A thin MPTMS coating of g 3-mercaptopropyltrimethoxysilane was dissolved in 25 g ethanol. The solution was acidified with 0.1 ml of 0.1 M HCl, then stirred for 4 hours. During this time, only hydrolyzed monomers and dimers are formed. During hydrolysis, the salt is further diluted with 75 ml of ethanol. This salt was applied to commercial Sunselect as follows: the sample was immersed in salt, 240 s the salt was then penetrated into the porous structure of Sunselect then the sample was extracted at a rate of 10 cm / s. The samples were then air-dried for 60 min and then heat-treated at 140 ° C for one hour. Sunselect thus protected exhibits excellent anti-corrosion properties (stable over 20 days in the salt chamber) and shows no significant deterioration in optical properties. The increase in solar absorptivity was in the interval 0.00-0.05 and the increase in thermal emissivity 0.00 - 0.10, mostly below 0.05. Based on these properties, it can be argued that this coating is superior to others. Last but not least, Sunselect is also fingerprint proof.

Primer II:Example II:

Tanka mešana MPTMS prevleka g 3-merkaptopropiltrimetoksisilana se zmeša z 1 g IH,\H,2H,277-perfluorooktiltrietoksisilana in raztopi v 25 g etanola. Raztopina je bila nakisana z 0.1 ml 0.1 M HC1, nato se je mešala 4 ure. V tem času nastanejo samo hidrolizirani monomeri in dimeri. Med hidrolizo se sol dodatno razdredči s 75 ml etanola. Ta sol smo nanesli na komercialni Sunselect na naslednji način: vzorec je bil potopljen v sol, 240 s je sol nato prodiral v porozno strukturo Sunselecta, potem je bil vzorec izvlečen s hitrostjo 10 cm/s. Vzorci so bili nato sušeni na zraku 60 min in nato toplotno obdelani pri 140 °C eno uro. Tako zaščiten Sunselect kaže odlične antikorozijske lastnosti (v slani komori je stabilen nad 20 dni) in ne kaže bistvenih poslabšanj optičnih lastnosti. Povečanje sončne absorptivnosti je bilo v intervalu 0,00 - 0,05 in povečanje termične emitance 0,00 - 0,10, največkrat pod 0,05. Na podlagi teh lastnosti lahko trdimo, da je ta prevleka boljša od drugih. Nenazadnje je Sunselect po zaščiti odporen tudi na prstne odtise. Kontaktni koti za vodo za to prevleko so bistveno višji (100°) kot pri prevleki iz Zgleda I (75°).A thin mixed MPTMS coating of g 3-mercaptopropyltrimethoxysilane was mixed with 1 g of 1H, 1H, 2H, 277-perfluorooctyltriethoxysilane and dissolved in 25 g of ethanol. The solution was acidified with 0.1 ml of 0.1 M HCl, then stirred for 4 hours. During this time, only hydrolyzed monomers and dimers are formed. During hydrolysis, the salt is further diluted with 75 ml of ethanol. This salt was applied to commercial Sunselect as follows: the sample was immersed in the salt, 240 s then the salt penetrated into the porous structure of Sunselect, then the sample was extracted at a rate of 10 cm / s. The samples were then air-dried for 60 min and then heat-treated at 140 ° C for one hour. Sunselect thus protected exhibits excellent anti-corrosion properties (stable over 20 days in the salt chamber) and shows no significant deterioration in optical properties. The increase in solar absorptivity was in the range of 0.00 - 0.05 and the increase in thermal emissivity was 0.00 - 0.10, mostly below 0.05. Based on these properties, it can be argued that this coating is superior to others. Last but not least, Sunselect is also fingerprint proof. The contact angles for water for this coating are significantly higher (100 °) than for the example I coating (75 °).

-8Primer III:-8Example III:

g 3-merkaptopropiltrimetoksisilana se zmeša z 1 g trimetoksisililpropilureido terminiranim polidimetilsiloksanom 1000 (PDMSU 1000) in raztopi v 25 g etanola. Raztopina je bila nakisana z 0.1 ml 0.1 M HCI, nato se je mešala 4 ure. V tem času nastanejo samo hidrolizirani monomeri in dimeri. Med hidrolizo se sol dodatno razdredči s 75 ml etanola. Ta sol smo nanesli na vzorce AA 2024 -T3 zlitino na naslednji način: vzorec je bil potopljen v sol, 240 s je bil vzorec namočen v sol potem je bil vzorec izvlečen s hitrostjo 10 cm/s. Vzorci so bili nato sušeni na zraku 60 min in nato toplotno obdelani pri 140 °C eno uro. Tako zaščitena aluminijeva zlitina kaže odlične antikorozijske lastnosti (v slani komori je stabilna nad 13 dni). Kontaktni koti za vodo za to prevleko so bistveno višji (100°) kot pri prevleki iz Zgleda I (75°).g of 3-mercaptopropyltrimethoxysilane is mixed with 1 g of trimethoxysilylpropylureido terminated polydimethylsiloxane 1000 (PDMSU 1000) and dissolved in 25 g of ethanol. The solution was acidified with 0.1 ml of 0.1 M HCl then stirred for 4 hours. During this time, only hydrolyzed monomers and dimers are formed. During hydrolysis, the salt is further diluted with 75 ml of ethanol. This salt was applied to AA 2024 -T3 alloy samples as follows: the sample was immersed in salt, 240 s was soaked in salt then the sample was extracted at a rate of 10 cm / s. The samples were then air-dried for 60 min and then heat-treated at 140 ° C for one hour. The aluminum alloy thus protected exhibits excellent anti-corrosion properties (stable over 13 days in the salt chamber). The contact angles for water for this coating are significantly higher (100 °) than for the example I coating (75 °).

Claims (13)

1. Metoda za pripravo sol-gel korozijsko zaščitnih prevlek za sončne absorberje na osnovi nano tankih antikorozijskih filmov, ki vključuje namakanje substrata v zmesi vsaj enega merkaptosilana, topila, kislega katalizatorja, vode, in, toda ne nujno, drugega hidrolizabilnega silana, za določen čas, v katerem se tvori kvazi samosestavljiva monoplast iz molekul sola na površini substrata, odstranjevanje substrata iz raztropine, sušenje prevlečenega substrata in končno toplotno obdelavo prevelečenega substrata.A method for the preparation of sol-gel corrosion protection coatings for solar absorbers based on nano-thin corrosion films, which involves soaking the substrate in a mixture of at least one mercaptosilane, solvent, acid catalyst, water, and, but not necessarily, another hydrolysable silane, for a particular the time during which a quasi-self-assembling monoplast is formed from salt molecules on the substrate surface, removal of the substrate from the solution, drying of the coated substrate, and final heat treatment of the coated substrate. 2. Metoda v skladu z zahtevkom 1, kjer je merkaptosilan spojina z naslednjo kemijsko strukturo:2. The method of claim 1, wherein the mercaptosilane is a compound having the following chemical structure: (R1)m(R 1 ) m HS-(CH2)n-Si-(OR2)r kjer sta R in R neodvisno izbrana izmed alkil (1-14C), cikloalkil in aril skupin in je n celo število od 0 do 20, m celo število od 0 do 2 in r celo število od 1 do 3, tako da velja: m + r = 3 in je končna koncentracija merkaptosilana v raztopini prevleke 0,01 % do 50 % m/m.HS- (CH 2 ) n -Si- (OR 2 ) r wherein R and R are independently selected from alkyl (1-14C), cycloalkyl and aryl groups and n is an integer from 0 to 20, m is an integer from 0 to 2 and r are an integer from 1 to 3 such that m + r = 3 and the final concentration of mercaptosilane in the coating solution is 0.01% to 50% w / w. 3. Metoda v skladu z zahtevkoma 1-2, kjer je količina drugega hidrolizabilnega silana od 0 % do 50 % m/m v končni zmesi in kjer je drugi hidrolizabilni silan predstavljen z naslednjima splošnima formulama:The method according to claims 1-2, wherein the amount of the second hydrolysable silane is from 0% to 50% w / w in the final mixture and wherein the second hydrolysable silane is represented by the following general formulas: <R1)m (r\-Si-(OR2)r kjer sta R in R neodvisno izbrana izmed alkil (1-14 C atomov), cikloalkil (1-10 C atomov) in aril skupin in je n celo število od 0 do 3, m celo število od 0 do 2 in r celo število od 1 do 4, tako da velja: m + n + r = 4 in R3 je neodvisno izbran iz skupine, ki vsebuje vsaj: alkilne, cikloalkilne, substituirane alkilne, substituirane cikloalkilne, arilne, substituirane arilne, fluorirane alkilne, fluorirane arilne in fluorirane cikloalkilne skupine, in:<R 1 ) m (r \ -Si- (OR 2 ) r wherein R and R are independently selected from alkyl (1-14 C atoms), cycloalkyl (1-10 C atoms) and aryl groups and n is an integer of 0 to 3, m is an integer from 0 to 2 and r is an integer from 1 to 4 such that m + n + r = 4 and R 3 is independently selected from the group consisting of at least: alkyl, cycloalkyl, substituted alkyl , substituted cycloalkyl, aryl, substituted aryl, fluorinated alkyl, fluorinated aryl and fluorinated cycloalkyl groups, and: -10<R (R1)m (OR2)r-Si-R--Si-(OR2)r-10 < R (R 1 ) m (OR 2 ) r-Si-R - Si- (OR 2 ) r 1 2 kjer sta R in R neodvisno izbrana izmed alkil (1-14C atomov), cikloalkil (1-10 C atomov) in aril skupin in je m celo število od 0 do 2 in r celo število od 1 do 3, tako da velja: m + r = 3 in R4 je neodvisno izbran iz skupine, ki vsebuje vsaj različno terminirane alkilne, substituirane alkilne, fluoroalkilirane, polidialkilsiloksanske in polieterske verige.1 2 wherein R and R are independently selected from alkyl (1-14C atoms), cycloalkyl (1-10C atoms) and aryl groups and m is an integer from 0 to 2 and r is an integer from 1 to 3, such that : m + r = 3 and R 4 is independently selected from the group consisting of at least different terminated alkyl, substituted alkyl, fluoroalkylated, polydialkylsiloxane and polyether chains. 4. Metoda v skladu z zahtevki 1-3, kjer je topilo, toda ne omejeno na, alifatski alkohol.The method according to claims 1-3, wherein the solvent is, but is not limited to, aliphatic alcohol. 5. Metoda v skladu z zahtevki 1-4, kjer je kislinski katalizator izbran iz skupine, ki vsebuje vsaj: HF, HC1, HBr, HI, HNO3, H2SO4, H3PO4, mravljično, ocetno, propanojsko, butanojsko, salicilno, trifluoroocetno, trikloroocetno, triflično, metansulfonsko kislino in je količina dodanega katalizatorja od ΙμΜ do lmM v celotni mešanici.The method according to claims 1-4, wherein the acid catalyst is selected from the group consisting of at least: HF, HC1, HBr, HI, HNO3, H2SO4, H3PO4, formic, acetic, propanoic, butanoic, salicylic, trifluoroacetic, trichloroacetic , triflic, methanesulfonic acid and the amount of catalyst added is from ΙμΜ to lmM throughout the mixture. 6. Metoda v skladu z zahtevki 1-5, kjer je količina uporabljene vode med 0.001 % do 50 % m/m celotne zmesi.The method according to claims 1-5, wherein the amount of water used is between 0.001% to 50% w / w of the total mixture. 7. Metoda v skladu z zahtevki 1-6, kjer je potapljam substrat sepktralno selektivni sončni absorber, izdelan iz kermeta, ki je prednostno kromov oksinitrid ali titanov oksinitrid, nanesenega na baker, aluminij, železo in njihove zlitine.The method according to claims 1-6, wherein the immersion substrate is a septerally selective solar absorber made from cermet, preferably chromium oxynitride or titanium oxynitride, applied to copper, aluminum, iron and their alloys. 8. Metoda v skladu z zahtevki 1-7, kjer je potapljam substrat gola kovinska površina iz, toda ne omejeno na, baker, aluminij, železo in njihove zlitine.The method according to claims 1-7, wherein the submerged substrate is a bare metal surface of, but not limited to, copper, aluminum, iron and their alloys. 9. Metoda v skladu z zahtevki 1-8, kjer je odstranjevanje vzorca izvedeno z določeno hitrostjo med 0,1 do 100 cm/s ali pa je vzorec odstranjem ročno.The method according to claims 1-8, wherein the removal of the sample is carried out at a specified speed between 0.1 and 100 cm / s or the sample is removed manually. 10. Metoda v skladu z zahtevki 1-9, kjer sušenje prej omenjenih prevlečenih vzorcev na sobni temperaturi traja 1 s do 2 dni.The method according to claims 1-9, wherein the drying of the aforementioned coated samples at room temperature takes 1 s to 2 days. 11. Metoda v skladu z zahtevki 1-10, kjer je toplotna obdelava prej omenjenih vzorcev narejena na temperaturi med 70 - 300 °C med 1 s in 5 urami.The method according to claims 1-10, wherein the heat treatment of the aforementioned samples is carried out at a temperature of from 70 to 300 ° C for 1 s to 5 hours. 12. Metoda v skladu z zahtevki 1-11, kjer je povečanje termične emitance do največ 0,35.The method of claims 1-11, wherein the increase in thermal emissivity is up to a maximum of 0.35. 13. Metoda v skladu z zahtevki 1-12, kjer je pokritje substrata narejeno s kontinuirnim ali šaržnim postopkom.The method according to claims 1-12, wherein the substrate coverage is made by a continuous or batch process.
SI200900085A 2009-03-30 2009-03-30 Procedure for sol-gel preparation of corrosion protection coatings for solar collectors SI23002A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI200900085A SI23002A (en) 2009-03-30 2009-03-30 Procedure for sol-gel preparation of corrosion protection coatings for solar collectors
DE112010001451.5T DE112010001451B4 (en) 2009-03-30 2010-03-30 Process for the preparation of sol-gel corrosion protection coatings for solar absorbers
PCT/EP2010/054150 WO2010112481A1 (en) 2009-03-30 2010-03-30 Method for producing sol-gel anti-corrosion coatings for solar absorbers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200900085A SI23002A (en) 2009-03-30 2009-03-30 Procedure for sol-gel preparation of corrosion protection coatings for solar collectors

Publications (1)

Publication Number Publication Date
SI23002A true SI23002A (en) 2010-09-30

Family

ID=42237792

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200900085A SI23002A (en) 2009-03-30 2009-03-30 Procedure for sol-gel preparation of corrosion protection coatings for solar collectors

Country Status (3)

Country Link
DE (1) DE112010001451B4 (en)
SI (1) SI23002A (en)
WO (1) WO2010112481A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020557B2 (en) * 2012-04-27 2016-11-02 旭硝子株式会社 Negative photosensitive resin composition, cured film, partition wall and optical element
ES2740954T3 (en) 2012-05-16 2020-02-07 Univ Haute Alsace Radically and cationically curable radiation composition and method for preparing a hybrid sol-gel layer on a surface of a substrate using said composition
IT202200001106A1 (en) * 2022-01-24 2023-07-24 Argochem S R L Anticorrosive coating for metals

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124292B2 (en) 1972-10-06 1976-07-23
US4754012A (en) 1986-10-03 1988-06-28 Ppg Industries, Inc. Multi-component sol-gel protective coating composition
US5175027A (en) 1990-02-23 1992-12-29 Lord Corporation Ultra-thin, uniform sol-gel coatings
ES2061399B1 (en) 1993-03-31 1995-06-16 Consejo Superior Investigacion PROCEDURE FOR OBTAINING THIN LAYERS OF OXIDES THROUGH IONIC BOMBARDING AND THE USE OF VOLATILE METAL PRECURSORS
US5814137A (en) 1996-11-04 1998-09-29 The Boeing Company Sol for coating metals
US5750197A (en) 1997-01-09 1998-05-12 The University Of Cincinnati Method of preventing corrosion of metals using silanes
US6461682B1 (en) * 2001-03-08 2002-10-08 David Crotty Composition and method for inhibiting corrosion of aluminum and aluminum alloys using mercapto substituted silanes
US7141306B1 (en) 2004-05-13 2006-11-28 Cessna Aircraft Company Sol-gel composition and process for coating aerospace alloys
EP1791001A1 (en) 2005-11-25 2007-05-30 Alcan Technology &amp; Management Ltd. Reflector
DE102006003956A1 (en) 2006-01-26 2007-08-02 Degussa Gmbh Production of a corrosion protection layer on a metal surface e.g. vehicle structure comprises applying a sol-gel composition to the metal surface, drying and/or hardening and applying a further layer and drying and/or hardening
DE202006009369U1 (en) 2006-06-13 2007-10-18 Alanod Aluminium-Veredlung Gmbh & Co. Kg Weatherproof composite material

Also Published As

Publication number Publication date
WO2010112481A1 (en) 2010-10-07
DE112010001451B4 (en) 2018-05-09
DE112010001451A5 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
Nair et al. PbS solar control coatings: safety, cost and optimisation
Nair et al. Optimization of chemically deposited CuxS solar control coatings
JP4397434B2 (en) Manufacturing method of sol-gel based absorber coating for solar heating
US20070134501A1 (en) Self-cleaning coatings applied to solar thermal devices
JP4837682B2 (en) Method for preparing a sol-gel solution for forming a coating protecting a material having a metal surface and use of this solution
CN107302055A (en) A kind of preparation method of perovskite thin film
JPS6366904B2 (en)
Nair et al. SnS-CuxS thin film combination: a desirable solar control coating for architectural and automobile glazings
JP4034185B2 (en) Corrosion prevention of aluminum using mercapto-substituted silane
SI23002A (en) Procedure for sol-gel preparation of corrosion protection coatings for solar collectors
JP2011100965A (en) Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell
CN103374718A (en) Corrosion-proof aluminum material and method for producing the same
Karuppuchamy et al. Cathodic electrodeposition of nanoporous ZnO thin films from new electrochemical bath and their photoinduced hydrophilic properties
CN104118995A (en) Preparation method of self-cleaning antireflection film for heat collector tube
Ezenwa et al. Characterization of chemically synthesized copper zinc sulphide (CuZnS2) thin films
Ohya et al. Preparation and characterization of titania thin films from aqueous solutions
CN102503163A (en) Preparation method for titanium dioxide films with super-hydrophilic property under visible light
WO2015001461A1 (en) Hybrid sol-gel compositions and corrosion-resistant coatings based upon same
US20120305071A1 (en) Substrate having a metal film for producing photovoltaic cells
Owczarek Methods of Modifying Anticorrosive Protective Properties of Silane Films.
US8859093B2 (en) Low-emissivity coatings
CN109402693A (en) Load the Preparation method and use of the mesoporous silicon oxide based superhydrophobic thin films of corrosion inhibiter
WO2015105460A2 (en) Method for forming low emissivity doped zinc oxide films on a substrate
Ezenwa et al. Synthesis and characterization of chemically deposited iron copper sulphide (FeCuS) thin films
EP3500540B1 (en) Transparent hydrophobic mixed oxide coatings and methods

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20101012

KO00 Lapse of patent

Effective date: 20181105