SI22911A - Preparation of tio2/sio2 sols and their use for application of self-cleaning and antifogging coatings - Google Patents

Preparation of tio2/sio2 sols and their use for application of self-cleaning and antifogging coatings Download PDF

Info

Publication number
SI22911A
SI22911A SI200800272A SI200800272A SI22911A SI 22911 A SI22911 A SI 22911A SI 200800272 A SI200800272 A SI 200800272A SI 200800272 A SI200800272 A SI 200800272A SI 22911 A SI22911 A SI 22911A
Authority
SI
Slovenia
Prior art keywords
tio
sio
salt
prepared
self
Prior art date
Application number
SI200800272A
Other languages
Slovenian (sl)
Inventor
ČERNIGOJ@Urh
LAVRENČIČ@ŠTANGAR@Urška
Original Assignee
Univerza@v@Novi@Gorici@Laboratorij@za@raziskave@vokolju
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univerza@v@Novi@Gorici@Laboratorij@za@raziskave@vokolju filed Critical Univerza@v@Novi@Gorici@Laboratorij@za@raziskave@vokolju
Priority to SI200800272A priority Critical patent/SI22911A/en
Priority to PCT/SI2009/000052 priority patent/WO2010053459A1/en
Publication of SI22911A publication Critical patent/SI22911A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D151/085Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/10Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

The subject of the invention refers to a procedure of low-temperature preparation of TiO2/SiO2 sols and their use for application of thin optically permeable coatings with self-cleaning and antifogging properties. The preparation according to the invention is characterised in that the procedure consists of preparation of an acid water sol which contains photochemically active TiO2 nanoparticles and of addition of an SiO2 precursor followed by hydrolysis/condensation of SiO2 and organically modified SiO2, addition of amorphous TiO2 hydrolysate, addition of colloid SiO2, dilution of the prepared sol with water and/or organic solvents, application of the prepared sol on a substrate, evaporation of solvents and condensation reactions at a room temperature, to create a thin uniform layer of TiO2/SiO2 with self-cleaning properties.

Description

Priprava TiO2/SiO2 solov in njihova uporaba za nanos samočistilnih in protizarositvenih prevlekPreparation of TiO 2 / SiO 2 salts and their use for the application of self-cleaning and anti-corrosion coatings

Predmet izuma se nanaša na postopek nizkotemperaturne priprave TiO2/SiO2 solov in njihovo uporaba za nanos tankih, optično prepustnih prevlek s samočistilnimi in protizarositvenimi lastnostmi. V okviru izuma je torej priprava optično prepustnih in obstojnih tankih prevlek s fotokatalitskimi in hidrofilnimi lastnostmi iz TiO2/SiO2 koloidnih raztopin, to je solov.The subject of the invention relates to the process of low-temperature preparation of TiO 2 / SiO 2 salts and their use for the application of thin, optically permeable coatings with self-cleaning and anti-corrosion properties. The invention therefore provides the preparation of optically permeable and persistent thin coatings with photocatalytic and hydrophilic properties from TiO 2 / SiO2 colloidal solutions, i.e. salts.

Na površinah, izpostavljenim atmosferskim vplivom in onesnaženosti ozračja zaradi človekove dejavnosti, sčasoma prihaja do adsorpcije raznoraznih makroskopskih delcev in pa posameznih molekul organskega in anorganskega izvora. Umazanija, ki se nabira na površinah, predstavlja tako estetski kot, v določenih primerih, tudi varnostni problem. Umazanija je najbolj moteča na podlagah, ki so prepustne za vidno svetlobo, to je na raznih steklih in pa transparentnih organskih polimerih. Čiščenje takih površin je velikokrat zamudno in nevarno opravilo, poleg tega pa so za čiščenje uporabljene kemikalije, kar predstavlja tako finančno kot okoljsko breme.On surfaces exposed to atmospheric influences and atmospheric pollution due to human activity, over time, various macroscopic particles and individual molecules of organic and inorganic origin are adsorbed. Dirt that accumulates on surfaces is both aesthetically pleasing and, in some cases, a safety issue. Dirt is most disturbing on substrates that are permeable to visible light, that is, on various glass and transparent organic polymers. Cleaning such surfaces is often a time-consuming and dangerous task, and chemicals are used for cleaning, which represents both a financial and environmental burden.

Ena od rešitev, kako ohraniti površine dalj časa čiste, je uporaba tankih zaščitnih prevlek, ki se nanesejo na podlago. Možnosti sta dve: hidrofobne in hidrofilne prevleke. Za hidrofobne površine je značilno, daje kontaktni kot med nanešeno vodno kapljico in podlago zelo velik (> 150 °) in okrogla vodna kapljica z umazanijo se posledično ne oprime podlage. Znanih je več metod priprave hidrofobnih površin z uporabo posebnih polimerov ali voskov, s katerimi je oplaščena površina s pomočjo fizikalnih metod, to je stiskanjem polimernih kapljic, ali ionsko jedkanje ali kemijskih metod, to je npr. nanos s pomočjo kemijskega parnega odlaganja - KPO. Čeprav imajo nastale površine dobre samočistilne lastnosti, slabe strani pri pripravi in stabilnosti nastalih površin, to je drago oplaščevanje podlag, prevleke so največkrat megličaste, obstojnost prevlek je časovno omejena, preprečujejo njihovo širšo uporabno vrednost.One way to keep surfaces clean for a long time is to use thin protective coatings applied to the substrate. There are two options: hydrophobic and hydrophilic coatings. Hydrophobic surfaces are characterized by the fact that the contact angle between the applied water droplet and the substrate is very large (> 150 °) and the circular water droplet with dirt consequently does not adhere to the substrate. Several methods are known for the preparation of hydrophobic surfaces using special polymers or waxes, which coat the surface by physical methods, i.e., by compression of polymer droplets, or by ion etching or chemical methods, e.g. chemical vapor deposition - KPO. Although the resulting surfaces have good self-cleaning properties, disadvantages in the preparation and stability of the resulting surfaces, this is a costly coating of the substrates, the coatings are often misty, the durability of the coatings is limited in time, preventing their wider applicability.

Drugo možno rešitev predstavljajo hidrofilne prevleke, kar so največkrat razni polprevodniški oksidi kovin prehoda, npr. ZnO, ZrO2, TiO2, WO2, itd. V prisotnosti UV sevanja in molekul vode prihaja do kemijskih sprememb na njihovi površini, ki posledično postane zelo hidrofilna; kontaktni kot med površino in vodno kapljico pod 5°. Velika hidrofilnost poveča oprijemljivostAnother possible solution is hydrophilic coatings, which are often various semiconductor oxides of transition metals, e.g. ZnO, ZrO 2 , TiO 2 , WO 2 , etc. In the presence of UV radiation and water molecules, chemical changes occur on their surface, which in turn become very hydrophilic; contact angle between the surface and the water droplet below 5 °. High hydrophilicity increases adhesion

-2vode in tako voda z lahkoto spere s površine slabše adsorbirane anorganske delce, kot je npr. pesek.-2 water, so that water easily flushes out poorly adsorbed inorganic particles, such as e.g. sand.

Hidrofilnost pa ni edini razlog samočistilnih lastnosti polprevodniških oksidov. Druga pomembna samočistilna lastnost je fotokatalitska učinkovitost. Ko delec polprevodnika absorbira foton elektromagnetnega valovanja primerne energije, največkrat fotoni UV dela spektra, pride do prehoda valenčnega elektrona v prevodni pas. Nastala pozitivna vrzel je močan oksidant, elektron pa odigra vlogo reducenta. Oba lahko reagirata z molekulami, adsorbiranimi na površini delca, pri čemer prihaja do oksidacije molekul s strani pozitivne vrzeli in redukcije molekul s strani elektrona. Tako postopoma pride do popolne mineralizacije organskih molekul do CO2, H2O in anorganskih kislin. Anatazni T1O2 se je od vseh doslej preučevanih oksidov izkazal kot najprimernejši fotokatalizator, ker je nestrupen, kemijsko in fizikalno stabilen, poceni itd. Samo nanokristalinični T1O2 je uporaben za oplaščenje oken, ker se le nanokristalinične prevleke lahko naredi dovolj optično prepustne za komercialno uporabo. Klasična priprava anataznega T1O2 zahteva žganje iz solov pripravljenih prahov ali tankih plasti nad 350 °C. Pri nižjih temperaturah ne prihaja do tvorbe anatazne kristalinične faze, ki je odločilnega pomena za fotokatalitsko učinkovitost. Ta potrebna visoka temperatura omejuje uporabnost navedene metode. Take metode se lahko uporabljajo le v specializiranih tovarnah, npr. v podjetjih, kjer steklo izdelujejo. Komercialni izdelek, kjer se poslužujejo termične obdelave pri visokih temperaturah, je Pilkington Activ(TM). Gre za steklo, prevlečeno z 20-30 nm debelo plastjo nanokristaliničnega anataznega TiO2. Plast je mehansko obstojna, fotokatalitsko aktivna z ekstremno visoko prepustnostjo v vidnem delu spektra. Pri oplaščenju se poslužujejo tehnike KPO na plavajoče steklo.However, hydrophilicity is not the only reason for the self-cleaning properties of semiconductor oxides. Another important self-cleaning property is photocatalytic efficiency. When a particle of a semiconductor absorbs a photon of electromagnetic wave of suitable energy, most often photons of the UV part of the spectrum, a transition of the valence electron into the conduction band occurs. The resulting positive gap is a strong oxidant, and the electron plays the role of a reducing agent. Both can react with molecules adsorbed on the surface of a particle, resulting in oxidation of the molecules by the positive gap and the reduction of the molecules by the electrons. Thus, the complete mineralization of organic molecules gradually leads to CO2, H2O and inorganic acids. Of all the oxides studied so far, anatase T1O2 has proven to be the most suitable photocatalyst because it is non-toxic, chemically and physically stable, inexpensive, etc. Only nanocrystalline T1O2 is useful for window cladding because only nanocrystalline coatings can be made sufficiently optically permeable for commercial use. The classic preparation of anatase T1O2 requires firing from salts of prepared powders or thin films above 350 ° C. At lower temperatures, the anatase crystalline phase is not formed, which is crucial for photocatalytic efficiency. This required high temperature limits the applicability of that method. Such methods can only be used in specialized factories, e.g. in glass manufacturing companies. A commercial product that uses heat treatment at high temperatures is Pilkington Activ (TM). It is a glass coated with a 20-30 nm thick layer of nanocrystalline anatase TiO2. The layer is mechanically stable, photocatalytically active with extremely high transmittance in the visible part of the spectrum. Floating glass KPO techniques are used in the coating.

Za širšo uporabnost samočistilnega T1O2 je potrebno pripraviti T1O2 sol, ki ga lahko nanašamo na površine pod normalnimi atmosferskimi pogoji, ki ne potrebuje dodatne termične obdelave in ki rezultira v optično prosojnih in trdnih prevlekah. V članku Ichinose, H.; Terasaki, M.; Katsuki, H. J Sol-Gel Sci Technol 2001, 22, 33-40 je opisana priprava perokso modificiranega anataznega sola, kije uporaben za nizkotemperatumo pripravo fotokatalitske prevleke. S pripravljenim solom oplaščena stekla so fotokatalitsko aktivna, oprijemljivost prevlek na podlago je zadovoljiva. Ne poročajo pa o optični kvaliteti pripravljenih prevlek. Slaba Stranje tudi precej zahtevna priprava sola, pri čemer uporabljajo tudi precejšnje število kemikalij.For the wider applicability of self-cleaning T1O2, it is necessary to prepare a T1O2 salt, which can be applied to surfaces under normal atmospheric conditions, which does not require additional thermal treatment and which results in optically transparent and solid coatings. In an article by Ichinose, H.; Terasaki, M.; Katsuki, H. J Sol-Gel Sci Technol 2001, 22, 33-40 describes the preparation of a peroxo-modified anatase salt that is useful for low-temperature photocatalytic coating preparation. The prepared glass coated glasses are photocatalytically active and the adhesion of the coatings to the substrate is satisfactory. However, the optical quality of the prepared coatings is not reported. The downside is also the rather demanding preparation of salt, using a considerable number of chemicals.

-3V članku Matsuda, A.; Matoda, T.; Kotanim Y.; Kogure, T.; Tatsumisago, M.; Minami, T. J Sol-Gel Sci Technol 2003, 26, 517-521 je opisana priprava nanokristaliničnih prevlek na steklu in na organskih optično prepustnih polimerih, pri čemer doseže kristalizacijo TiO2 v anataz z obdelavo prevlek z vročo vodo. Zaradi večje trdnosti prevleke njegovi soli vsebujejo tudi prekurzorje SiO2. Prevleke so fotokatalitsko aktivne, adhezija na površino podlage in pa trdota prevleke sta zadovoljivi. Slaba stran priprave filmov je za komercialno uporabo nepraktična obdelava prevlek v vreli vodi.-3In an article by Matsuda, A.; Matoda, T.; Kotanim Y .; Kogure, T.; Tatsumisago, M.; Minami, T. J Sol-Gel Sci Technol 2003, 26, 517-521 describes the preparation of nanocrystalline coatings on glass and on organic optically permeable polymers, achieving crystallization of TiO 2 into anatases by treating hot water coatings. Due to the higher strength of the coating, its salts also contain SiO 2 precursors. The coatings are photocatalytically active, the adhesion to the surface of the substrate and the hardness of the coating are satisfactory. The downside of film making is the impractical treatment of boiling water coatings for commercial use.

V patentu US 5,149,519 je opisana priprava nizkotemperatumega sola, ki vsebuje kristalinični anatazni TiO2, pripravljenega sola pa ne uporablja za pripravo tankih plasti TiO2.U.S. Patent 5,149,519 discloses the preparation of a low-temperature salt containing crystalline anatase TiO 2 and does not use the prepared salt to prepare thin TiO 2 layers.

V članku Yun, Y. J.; Chung, J. S.; Kirn, S.; Hahn, S. H.; Kirn, E. J. Mater Lett 2004, 58, 37033706 je opisana priprava nanokristalinične TiO2 prevleke na običajno natrijevo steklo pri nizkih temperaturah, pri čemer je Yun s sod. pripravil sol iz titanovega tetraizopropoksida v kislih vodnih raztopinah, ki ga je več ur refluktiral, da je dosegel kristalizacijo amorfnega TiO2. Uporabljena metoda priprave sola s pomočjo običajnih kemikalij in tehnološko nezahtevnega procesa kot tudi enostavnost nanašanja pripravljenega sola na različne podlage so prednosti preučevanega sistema. Po zasnovi je tudi najbližje pričujočemu izumu, ki pa v našem primeru vsebuje še dodatno SiO2 komponento za doseganje boljših mehanskih in hidrofilnih lastnosti prevlek.In article Yun, YJ; Chung, JS; Kirn, S.; Hahn, SH; Kirn, EJ Mater Lett 2004, 58, 37033706 describes the preparation of a nanocrystalline TiO 2 coating on ordinary sodium glass at low temperatures, with Yun et al. prepared a titanium tetraisopropoxide salt in acidic aqueous solutions, which was refluxed for several hours to obtain crystallization of amorphous TiO 2 . The method of salt preparation using conventional chemicals and technologically simple process as well as the ease of applying the prepared salt to different substrates are advantages of the system under study. By design, it is also closest to the present invention, which in our case further comprises an additional SiO 2 component to achieve better mechanical and hydrophilic properties of the coatings.

V patentu EP 0 913 447 je opisana priprava samočistilnih tekočin za različne podlage, pri čemer uporabljata komercialno dostopne sole TiO2 in SiO2. Pri pripravi samočistlnih tekočin uporabljata tudi razne dodatke, kot so površinsko aktivne snovi, organska topila, silikoni. Prevleke so fotokatalitsko aktivne, adhezija na površino podlage in pa trdota prevlek sta v določenih primerih dobri. Šibka stran izuma je uporaba že komercialno dobavljivih TiO2 in SiO2 solov. V patentu EP 1 544 269 izum izhaja iz komercialnih TiO2 nanokristaliničnih delcev in SiO2 koloidnih raztopin, čemur dodaja vezivo, narejeno iz hidroliziranega titanovega alkoksida. Tako pridobljene prevleke imajo dobre mehanske in hidrofilne lastnosti tudi v temi.EP 0 913 447 discloses the preparation of self-cleaning liquids for various substrates using commercially available TiO 2 and SiO 2 salts. In the preparation of self-cleaning liquids, they also use various additives, such as surfactants, organic solvents, silicones. The coatings are photocatalytically active and the adhesion to the surface of the substrate and the hardness of the coatings are good in certain cases. A disadvantage of the invention is the use of commercially available TiO 2 and SiO 2 salts. In the patent EP 1 544 269, the invention is made of commercial TiO 2 nanocrystalline particles and SiO 2 colloidal solutions, thereby adding a binder made of hydrolyzed titanium alkoxide. The coatings thus obtained have good mechanical and hydrophilic properties even in the dark.

V patentu EP 0 826 633 je opisana priprava vodne disperzije in tanke transparentne prevleke TiO2 po nizkotemperatumi poti iz T1CI4, ki je precej cenejša surovina kot katerikoli titanov alkoksid, vendar je pri tem postopku potrebna odstranitev kloridnih ionov z elektrodializo. V patentnem dokumentu WO 2004/060555 je izum izhajal iz titanovih peroksidnih solov in nanoanataznih delcev z dodatki uretanskih akrilnih polimerov za boljšo omočljivost povšine nanosa in za zmanjšanje prispevka rumenega obarvanja v tankih plasteh, ki ga prinese peroksidni postopek. Vnešeni nehlapni organski dodatki imajo poleg dobrih strani tudi slabe zEP 0 826 633 discloses the preparation of aqueous dispersion and a thin transparent TiO 2 coating in the low temperature route of T1CI4, which is a much cheaper raw material than any titanium alkoxide, but the removal of chloride ions by electrodialysis is required in this process. In the patent document WO 2004/060555, the invention is based on titanium peroxide salts and nanoanatase particles with the addition of urethane acrylic polymers to improve the wettability of the coating surface and to reduce the contribution of the yellow coloration in thin layers by the peroxide process. The non-volatile organic additives introduced have the disadvantages of having good sides

-4vidika dodatne kemikalije v sintezi in s tem povezanega dodatnega stroška ter z vidika vprašljivosti dolgoročne integritete takšnih tankih plasti zaradi propadanja organske snovi v procesu fotokatalize. Več je še patentnih dokumentov, npr. WO 2004/108846 in WO 2004/005577, ki obravnavajo pripravo fotokatalitsko aktivnih hibridnih organsko-anorganskih tankih plasti na osnovi siloksanov in TiO2 disperzij ali solov.-4view of the additional chemical in the synthesis and the associated additional cost and in view of the questionability of the long-term integrity of such thin layers due to the degradation of organic matter in the photocatalysis process. There are more patent documents, e.g. WO 2004/108846 and WO 2004/005577 dealing with the preparation of photocatalytically active hybrid organic-inorganic thin films based on siloxanes and TiO 2 dispersions or salts.

Tehnični problem, ki doslej ni bil zadovoljivo rešen, so tanke optično prepustne prevleke s samočistilnimi in protizarositvenimi lastnostmi, ki bodo zasnovane na nezahtevnem postopku priprave solov iz dostopnih in ne predragih kemikalij, kjer bo enostaven način nanašanja sola na podlago brez dodatnega utrjevanja plasti s termično obdelavo, kjer bo dobro razmerje med mehansko trdnostjo in fotokatalitskim učinkom tanke prevleke, kjer bo visoka optična prepustnost prevleke v celotnem delu vidnega spektra in bo visoka hidrofilnost prevleke v prisotnosti UV sevanja.A technical problem that has not been satisfactorily solved so far is thin optically permeable coatings with self-cleaning and anti-scouring properties, which will be based on a simple process of preparing salts from accessible and not expensive chemicals, where it will be an easy way to apply salt to the substrate without further hardening the layers with thermal treatment where there will be a good relationship between the mechanical strength and the photocatalytic effect of the thin coating, where there will be high optical transmittance of the coating over the entire visible spectrum and high hydrophilicity of the coating in the presence of UV radiation.

Naloga izuma je takšen postopek nizkotemperatume priprave TiO2/SiO2 solov in njihova uporaba za nanos tankih, optično prepustnih prevlek s samočistilnimi in protizarositvenimi lastnostmi, ki bo zasnovan na nezahtevnem postopku priprave solov iz dostopnih in ne predragih kemikalij, kjer bo enostaven način nanašanja sola na podlago brez dodatnega utrjevanja plasti s termično obdelavo, kjer bo dobro razmerje med mehansko trdnostjo in fotokatalitskim učinkom tanke prevleke, kjer bo visoka optična prepustnost prevleke v celotnem delu vidnega spektra in bo visoka hidrofilnost prevleke v prisotnosti UV sevanja.The object of the invention is such a process of low-temperature preparation of TiO 2 / SiO 2 salts and their use for the application of thin, optically permeable coatings with self-cleaning and antifouling properties, which will be based on the simple process of preparing salts from accessible and not expensive chemicals, which will be an easy way of applying salt to the substrate without further hardening of the layers by thermal treatment, where there will be a good ratio of mechanical strength to the photocatalytic effect of the thin coating, where there will be high optical transmittance of the coating over the entire visible spectrum and high hydrophilicity of the coating in the presence of UV radiation.

Po izumu je naloga rešena s postopkom priprave TiO2/SiO2 solov in njihovo uporabo za nanos tankih prevlek po neodvisnem patentnem zahtevku.According to the invention, the problem is solved by the process of preparing TiO 2 / SiO 2 salts and their use for applying thin coatings according to an independent claim.

Izum bo opisan s pomočjo izvedbenih primerov in slik, ki prikazujejo:The invention will be described by way of embodiments and illustrations showing:

Slika 1: Rentgenski difraktogrami vzorca, pripravljenega iz tankih plasti TiO2/SiO2 po postopku v Primeru 7.Figure 1: X-ray diffractograms of a sample prepared from thin TiO 2 / SiO 2 layers according to the procedure in Example 7.

Slika 2: Dokaz fotokatalitske aktivnosti pripravljenih samočistilnih plasti.Figure 2: Demonstration of photocatalytic activity of prepared self-cleaning layers.

Slika 3: UV-Vis spekter TiCh/SiCh tanke plasti na steklu v primerjavi s samim steklom.Figure 3: UV-Vis spectrum of the TiCh / SiCh thin layer on the glass compared to the glass itself.

Po izumu je najprej izveden postopek priprave anataznega TiO2 sola, temu sledi priprava fotokatalitsko aktivne tekočine in njeno nanašanje na različne površine.According to the invention, the preparation of the anatase TiO 2 salt is first carried out, followed by the preparation of the photocatalytically active liquid and its application to different surfaces.

-5Prvi del izuma je modifikacija postopka priprave anataznega TiO2 sola, narejenega v kislih vodnih medijih pri temperaturah do 100 °C. Kot osnovo smo uporabili postopek priprave nizkotemperatumega TiO2 sola, ki ga je leta 2004 objavil Yun s sodelavci. Z modifikacijo njihovega postopka nam je uspelo pripraviti stabilen sol s šibko agregiranimi delci TiO2, pri katerih smo z rentgensko difrakcijo dokazali anatazno kristalinično fazo. Pripravljeni TiO2 zelo enostavno dispergiramo v vodi in zmesi vode in določenih organskih topil, pri čemer dobimo stabilne sole.The first part of the invention is a modification of the process for preparing an anatase TiO 2 salt made in acidic aqueous media at temperatures up to 100 ° C. As a basis, we used the process of preparation of low-temperature TiO 2 sol, published in 2004 by Yun et al. By modifying their process, we were able to prepare a stable salt with weakly aggregated TiO 2 particles, in which anatase crystalline phase was demonstrated by X-ray diffraction. The prepared TiO 2 is very easily dispersed in water and a mixture of water and certain organic solvents to give stable salts.

(i) Kot vir TiO2 lahko uporabimo titanov tetraklorid (T1CI4), titanov oksisulfat (TiOSCL) ali različne titanove alkokside. Preferenčno uporabljamo titanov tetraizopropoksid TTIP. TTIP (od 5 do 45 mL) dodamo med mešanjem pri sobni temperaturi v absolutni etanol (med 1 in 10 mL). Takoj nato nastali tekoči zmesi med mešanjem pri sobni temperaturi dodajamo po kapljicah vodno raztopino kisline. V prisotnosti kisline poteče reakcija hidrolize titanovih spojin, pri čemer iz reakcijske zmesi izpade slabotopni, amorfni titanov oksid. Uporabljene anorganske kisline so konc. HNO3, konc. HCIO4, konc. HCl in konc. H2SO4, uporabljene organske kisline so mravljinčna, etanojska, propanojska. Vodno raztopino kisline pripravimo z mešanjem vode (med 30 in 100 mL) in koncentrirane kisline (med 0.1 in 10 mL). Najprimernejša koncentracija kisline je med 1 in 3 mL kisline v 90 mL vode. Prenizka in previsoka koncentracija kisline vodita do agregacije delcev TiO2, kar je nezaželjen proces, če želimo proizvajati čim bolj transparentne prevleke. Kot najprimernejša kislina se je pokazala HCIO4.(i) Titanium tetrachloride (T1CI4), titanium oxysulphate (TiOSCL) or various titanium alkoxides may be used as the source of TiO 2 . Preferably titanium tetraisopropoxide TTIP is used. TTIP (5 to 45 mL) was added while stirring at room temperature to absolute ethanol (between 1 and 10 mL). Immediately thereafter, the resulting liquid mixture was added dropwise with an aqueous acid solution while stirring at room temperature. In the presence of acid, the hydrolysis reaction of the titanium compounds takes place, leaving a weakly soluble, amorphous titanium oxide from the reaction mixture. The inorganic acids used are conc. HNO3, conc. HCIO4, conc. HCl and conc. H 2 SO4, the organic acids used are formic, ethanoic, propanoic. Aqueous acid solution was prepared by mixing water (between 30 and 100 mL) and concentrated acid (between 0.1 and 10 mL). The preferred acid concentration is between 1 and 3 mL of acid in 90 mL of water. Too low and high acid concentrations lead to the aggregation of TiO 2 particles, which is an undesirable process if we want to produce as transparent a coating as possible. HCIO4 has been shown to be the preferred acid.

(ii) TiO2 je fotokatalitsko aktiven v kristalinični obliki, naj bo to anataz ali rutil. Anatazna kristalinična oblika je bolj fotokatalitsko aktivna kot rutilna. Kristalizacijo amorfnega TiO2 v kristalinično obliko dosežemo s segrevanjem sola. Prednosti predlaganega izuma sta: a) kristalizacijo dosežemo že s segrevanjem na temperaturo pod 100 °C; b) kristalizacijo in disperzijo TiO2 delcev dosežemo neposredno v vodnem solu, torej brez dodatnih faz ločevanja in resuspendiranja TiO2. Nastalo suspenzijo iz točke (i) refluktiramo od 2 do 100 ur. Optimalen čas refluksa je med 30 in 60 urami. Krajši čas refluksa se odraža na nedokončani kristalizaciji TiO2, daljši čas pa ne prinaša bistvenega povečanja aktivnosti sola oz. rezultirajočih prevlek. Po končanem refluktiranju dobimo osnovno koloidno raztopino kristaliničnega TiO2 (osnovni TiO2 sol). Osnovni TiO2 sol je stabilen pri sobni temperaturi najmanj 1 leto. Masni delež TiO2 v solu je med 2 in 10%. Velikost TiO2 delcev v solu, dobljena s pomočjo meritev dinamičnega sipanja svetlobe (aparatura 3D DLS SLS), je med 15 in 80 nm.(ii) TiO 2 is photocatalytically active in crystalline form, be it anatase or rutile. The anatase crystalline form is more photocatalytically active than rutile. Crystallization of amorphous TiO 2 into crystalline form is achieved by heating the salt. The advantages of the present invention are: a) crystallization is already achieved by heating to a temperature below 100 ° C; b) crystallization and dispersion of TiO 2 particles is achieved directly in the aqueous salt, ie without additional stages of separation and resuspension of TiO 2 . The resulting suspension from (i) is refluxed for 2 to 100 hours. The optimum reflux time is between 30 and 60 hours. The shorter reflux time is reflected in the unfinished crystallization of TiO 2 , but the longer time does not lead to a significant increase in the activity of sol or. the resulting coatings. After refluxing, a basic colloidal solution of crystalline TiO 2 (basic TiO 2 salt) is obtained. The basic TiO 2 salt is stable at room temperature for at least 1 year. The weight fraction of TiO 2 in the salt is between 2 and 10%. The size of TiO 2 particles in the sol obtained from dynamic light scattering measurements (3D DLS SLS apparatus) is between 15 and 80 nm.

-6Drugi del izuma se nanaša na pripravo fotokatalitsko aktivne tekočine, ki je sestavljena iz (i) anataznih delcev TiO2; (ii) veziva, ki je narejen z mešanjem koloidnega SiO2 in pa hidroliziranih in kondenziranih molekul silicijevih alkoksidov in organosilanov; (iii) veziva, ki je narejen s hidrolizo in kondenzacijo titanovega alkoksida; (iv) organskega topila in (v) vode. Postopek priprave fotokatalitsko aktivne tekočine je naslednji.The second part of the invention relates to the preparation of a photocatalytically active liquid consisting of (i) anatase TiO 2 particles; (ii) a binder made by mixing colloidal SiO 2 and hydrolyzed and condensed molecules of silicon alkoxides and organosilanes; (iii) a binder made by hydrolysis and condensation of titanium alkoxide; (iv) an organic solvent and (v) water. The process for preparing a photocatalytically active liquid is as follows.

Posebej pripravimo raztopino ali sol, ki vsebuje SiO2 , to je vezivo. Ustrezen silicijev alkoksid ali zmes silicijevih alkoksidov ali silicijev alkoksid in ustrezen organosilan zmešamo skupaj s komericalno dostopno koloidno raztopino SiO2. Med konstantnim mešanjem dodamo ustrezno prostornino anorganske kisline. Po desetih minutah dodamo v sol določeno prostornino katerega izmed nižjih primarnih alkoholov. Tako pripravljen sol lahko uporabimo po 24 urah mešanja in ga je potem potrebno uporabiti za nadaljnje delo najkasneje v 3 tednih. Vse faze izvajamo med 15 in 30 °C.In particular, a solution or salt containing SiO 2 , i.e. a binder, is prepared. The appropriate silicon alkoxide or mixture of silicon alkoxides or silicon alkoxide and the corresponding organosilane are mixed together with a commercially available colloidal solution of SiO 2 . A constant volume of inorganic acid is added during constant stirring. After ten minutes, add a certain volume of any of the lower primary alcohols to the salt. The salt thus prepared can be used after 24 hours of mixing and should then be used for further work within 3 weeks. All phases are carried out between 15 and 30 ° C.

V odmerjeno prostornino TiO2 vodnega sola, katerega priprava je opisana v prvem delu izuma, dodamo predtem pripravljeno vezivo. Nato dodamo v pripravljen sol vodo in pa organsko topilo in premešamo. Vse faze izvajamo med 15 in 30 °C.A pre-prepared binder is added to the metered volume of TiO 2 aqueous salt, the preparation of which is described in the first part of the invention. Then water is added to the prepared salt and the organic solvent is stirred. All phases are carried out between 15 and 30 ° C.

(i) Kot vir anataznih TiO2 delcev uporabimo vodni TiO2 sol, opisan v prvem predmetu izuma. TiO2 je obvezna komponenta fotokatalitsko aktivne tekočine. Brez tega ne moremo pripraviti samočistilnega premaza ali prevleke, ker je TiO2 tista komponenta, ki ima samočistilne lastnosti (tako superhidrofilnost kot tudi fotokatalitsko aktivnost). Prostominski delež vodnega TiO2 sola v končni tekočini je med 0.5 in 50%. Prenizka koncentracija TiO2 vodi sicer do nastanka optično zelo kvalitetnih in popolnoma prepustnih prevlek, ki pa imajo zaradi nizke koncentracije TiO2 prenizko fotokatalitsko aktivnost. Previsoka koncentracija TiO2 v končni tekočini vodi sicer do fotokatalitsko zelo aktivnih prevlek, ki pa ne ustrezajo optičnim standardom.(i) The aqueous TiO 2 salt described in the first object of the invention is used as the source of the anatase TiO 2 particles. TiO 2 is a mandatory component of the photocatalytically active liquid. Without this, no self-cleaning coating or coating can be prepared because TiO 2 is the component that has self-cleaning properties (both superhydrophilicity and photocatalytic activity). The water content of the aqueous TiO 2 salt in the final liquid is between 0.5 and 50%. Too low TiO 2 concentration leads to the formation of optically high quality and completely permeable coatings, which, due to the low TiO 2 concentration, have a low photocatalytic activity. Too high concentration of TiO 2 in the final fluid leads to photocatalytically very active coatings, which do not meet optical standards.

(ii) Glavni komponenti SiO2 veziva sta ustrezni silicijev alkoksid in pa koloidni SiO2. Alkoksi skupine v silicijevem alkoksidu vsebujejo od 1 do 4 ogljikove atome. Primeri tetrealkoksisialnov so tetrametoksisilan, tetraetoksisilan, tetrapropoksisilan, tetraizopropoksisilan... Najprimernejši tetraalkoksisilan je tetraetoksisilan (TEOS). Hidrolizat SiO2 povečuje 1) trdnost in abrazivno odpornost končne prevleke, 2) povečuje in podaljšuje superhidrofilni efekt končne prevleke. Kot dodatek tetraalkoksisilanom uporabimo lahko tudi(ii) The main components of the SiO 2 binder are the corresponding silicon alkoxide and the colloidal SiO 2 . Alkoxy groups in silicon alkoxide contain from 1 to 4 carbon atoms. Examples of tetraalkoxysilanes are tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane ... The most preferred tetraalkoxysilane is tetraethoxysilane (TEOS). SiO 2 hydrolyzate increases 1) the strength and abrasion resistance of the final coating, 2) increases and prolongs the superhydrophilic effect of the final coating. It can also be used in addition to tetraalkoxysilanes

-7razne organosilane, ki imajo namesto ene alkoksidne skupine vezano organsko skupino. Taka skupina je lahko nasičena, npr. metilna, etilna, oktilna, fenilna, pripadajoči organosilani pa metil trietoksisilan, etil trietoksisilan, oktil trietoksisilan in fenil trietoksisilan. Bis(trietoksisilil)oktan tudi spada v to skupino organskih silanov, njegova posebnost pa je možnost zamreženja preko Si-0 vezi na obeh koncih organske verige. Namen uporabe takih organosilanov je zmanjšanje krhkosti TiO2 tanke plast, predvsem bis(trietoksisilil)oktan pa deluje tudi kot zamreževalec, kar poveča trdnost končne plasti.-7different organosilanes having an attached organic group instead of one alkoxide group. Such a group may be saturated, e.g. methyl, ethyl, octyl, phenyl, and the corresponding organosilanes are methyl triethoxysilane, ethyl triethoxysilane, octyl triethoxysilane and phenyl triethoxysilane. Bis (triethoxysilyl) octane also belongs to this group of organic silanes, and its special feature is the possibility of cross-linking via Si-0 bonds at both ends of the organic chain. The use of such organosilanes is intended to reduce the brittleness of the TiO 2 thin layer, and in particular bis (triethoxysilyl) octane also acts as a crosslinker, which increases the strength of the final layer.

Druga možna izbira pa so organosilani, ki imajo namesto ene alkoksi skupine nenasičeno vez ogljik-ogljik, pri čemer se največkrat poslužujemo epoksidov ali akrilatov. Najprimernejši organski silan je 3-glicidoksipropil-trimetoksisilan (GPMS). Funkcija organsko modificiranih silanov je povečanje trdnosti pripravljene tanke plasti kot posledica polimerizacijskih reakcij med organskimi skupinami. Za iniciacijo take polimerizacije niso potrebni radikalni pogoji, ampak jo lahko izvedemo že pri rahlo povišani sobni temperaturi ob pomoči katalizatorjev ali pa reakcijo iniciramo z UV sevanjem. Z navedenimi organosilani tako še dodatno utrdimo tanko plast fotokatalizatorja pri nizkih temperaturah. Previsoka koncentracija hidrolizata v končni fotokatalitsko aktivni tekočini zmanjšuje fotokatalitsko aktivnost pripravljene samočistilne prevleke, ker zmanjšuje gostoto fotokatalitsko aktivnih TiO2 delcev v končni samočistilni prevleki. Prenizka koncentracija hidrolizata SiO2 zmanjšuje trdnost samočistilnih prevlek. Molsko razmerje med Ti iz anataznega TiO2 sola in Si iz hidrolizata SiO2 je med 3:1 do 0.5:1, preferenčno razmerje se giblje med 2:1 do 1:1.Alternatively, organosilanes have an unsaturated carbon-carbon bond instead of one alkoxy group, most often using epoxies or acrylates. The most preferred organic silane is 3-glycidoxypropyl trimethoxysilane (GPMS). The function of organically modified silanes is to increase the strength of the prepared thin film as a result of polymerization reactions between organic groups. The initiation of such polymerization does not require radical conditions, but can be carried out at slightly elevated room temperature with the aid of catalysts or the reaction can be initiated by UV radiation. These organosilanes thus further solidify the thin layer of the photocatalyst at low temperatures. Too high a hydrolyzate concentration in the final photocatalytically active liquid reduces the photocatalytic activity of the prepared self-cleaning coating because it reduces the density of the photocatalytically active TiO 2 particles in the final self-cleaning coating. Too low a concentration of SiO 2 hydrolyzate reduces the strength of self-cleaning coatings. The molar ratio of Ti from the anatase TiO 2 sol to Si from the SiO 2 hydrolyzate is between 3: 1 to 0.5: 1, the preferred ratio being between 2: 1 to 1: 1.

Koloidni SiO2 je koloid, pripravljen s pomočjo disperzije zelo čistega SiO2 v vodnem mediju. Povprečna velikost SiO2 delcev mora biti med 1 in 200 nm, da ne prihaja do sipanja vidne svetlobe na delcih. Prednost koloidnih SiO2 pred hidrolizati SiO2 je njihova večja obstojnost v vodi. Hidrolizat SiO2 se namreč v vodi lahko počasi odtaplja, ker so reakcije hidrolize in kondenzacije še ne popolnoma zaključene. V nasprotnem primeru sestavljajo koloidno siliko nanodelci, ki so popolnoma kondenzirani, torej imajo tudi posledično večjo obstojnost v vodi. Glavni funkciji koloidne silike v končni fotokatalitski tekočini sta 1) povečanje abrazivne odpornosti samočistilne prevleke; 2) povečanje superhidrofilnosti samočistilne prevleke. V opisanem patentu uporabljamo komercialno dobavljivo koloidno siliko, in sicer Levasil 200/30% ali 300/30% ali 200/30%A (proizvajalec H.C. Starck GmbH) in pa Snowtex IPA-ST (proizvajalec Nissan Chemical Industries, Ltd.). Molsko razmerje med Ti iz anataznega TiO2 sola (i) in Si iz koloidne silike (iv) je med 3:1 do 0.1:1.Colloidal SiO 2 is a colloid prepared by dispersion of very pure SiO 2 in aqueous medium. The average size of SiO 2 particles must be between 1 and 200 nm in order to avoid visible light scattering on the particles. The advantage of colloidal SiO 2 SiO 2 hydrolysates from their greater stability in water. Namely, the SiO 2 hydrolyzate can be slowly dissolved in water because the hydrolysis and condensation reactions are not yet complete. Otherwise, the colloidal silica nanoparticles are completely condensed and therefore have a higher water resistance. The main functions of colloidal silica in the final photocatalytic fluid are 1) to increase the abrasive resistance of the self-cleaning coating; 2) increase in the superhydrophilicity of the self-cleaning coating. The patent described uses commercially available colloidal silica, namely Levasil 200/30% or 300/30% or 200/30% A (manufactured by HC Starck GmbH) and Snowtex IPA-ST (manufactured by Nissan Chemical Industries, Ltd.). The molar ratio of Ti of the anatase TiO 2 sol (i) to Si of colloidal silica (iv) is between 3: 1 to 0.1: 1.

-8Klasična priprava veziva poteka tako, da ustrezen silicijev alkoksid ali zmes silicijevih alkoksidov ali silicijev alkoksid in ustrezen organosilan zmešamo skupaj s komericalno dostopno koloidno raztopino SiO2, npr. z Levasil 200/30%. Molsko razmerje med Si iz ustreznega silicijevega alkoksida (in/ali organosilana) in pa med Si iz koloidnega SiO2 je med 2:1 do 1:2. Levasil 200/30% vsebuje tudi dovolj vode, ki je potrebna v nadaljnji fazi pri hidrolizi silicijevih spojin. Med konstantnim mešanjem pripravljene zmesi dodamo ustrezno prostornino močne anorganske kisline, ki je lahko dušikova(V) kislina, klorovodikova kislina, žveplova(VI) kislina, klorova(VII) kislina. Molsko razmerje med protoni kisline in med Si iz ustreznega alkoksida (ali organosilana) je med 1:10 in 1:20. Po desetih minutah dodamo v sol določeno prostornino katerega izmed nižjih primarnih alkoholov, npr. 1-propanol, etanol, 1butanol. Prostominsko razmerje med vezivom in dodanim alkoholom je med 1:1 do 1:3. Tako pripravljen sol lahko uporabimo po 24 urah mešanja in ga je potem potrebno uporabiti za nadaljnje delo najkasneje v 3 tednih. Vse faze izvajamo med 15 in 30 °C.-8The classic preparation of a binder is carried out by mixing the appropriate silicon alkoxide or mixture of silicon alkoxides or silicon alkoxide and the corresponding organosilane together with a commercially available colloidal solution of SiO 2 , e.g. with Levasil 200/30%. The molar ratio between Si from the corresponding silicon alkoxide (and / or organosilane) and between Si from colloidal SiO 2 is between 2: 1 to 1: 2. Levasil 200/30% also contains sufficient water, which is necessary for the further phase in the hydrolysis of silicon compounds. During constant stirring of the prepared mixture, an appropriate volume of strong inorganic acid is added, which may be nitric (V) acid, hydrochloric acid, sulfuric (VI) acid, chlorine (VII) acid. The molar ratio between the protons of acid and Si of the corresponding alkoxide (or organosilane) is between 1:10 and 1:20. After ten minutes, a certain volume of any of the lower primary alcohols, e.g. 1-propanol, ethanol, 1 butanol. The binder to alcohol ratio is between 1: 1 and 1: 3. The salt thus prepared can be used after 24 hours of mixing and should then be used for further work within 3 weeks. All phases are carried out between 15 and 30 ° C.

V določenih primerih smo ustrezen silicijev alkoksid vmešali neposredno v nanokristalinični TiO2 sol. Postopek je bil v takem primeru naslednji. V odmerjeno prostornino TiO2 vodnega sola dodamo ustrezen silicijev alkoksid. Mešamo pri sobni temperaturi med 1 in 24 urami, s tem dosežemo hidrolizo in kondenzacijo prekurzorja SiO2. Nato dodamo v pripravljen sol še druge komponente.In certain cases, the corresponding silicon alkoxide was mixed directly into the nanocrystalline TiO 2 salt. In such a case, the procedure was as follows. Appropriate silica alkoxide was added to the metered volume of TiO 2 aqueous salt. It is stirred at room temperature for 1 to 24 hours, thereby achieving hydrolysis and condensation of the SiO 2 precursor. Then add other components to the prepared salt.

(iii) Hidrolizat TiO2 ima funkcijo veziva koloidnega SiO2 in koloidnih TiO2 delcev in pa funkcijo katalizatorja polimerizacije epoksidnih organskih silanov. Ni pogojeno, da sta v samočistilni tekočini hkrati prisotna tako hidrolizat SiO2 in hidrolizat TiO2. Kot prekurzor TiO2 uporabimo titanove alkokside, katerih alkoksi skupine vsebujejo od 1 do 4 ogljikove atome. Primeri uporabljenih titanovih tetraalkoksidov so titanov tetrametoksid, titanov tetraetoksid, titanov tetrapropoksid, titanov tetraizopropoksid, titanov tetrabutoksid. Zaradi cenovne ugodnosti in dovolj visoke stabilnosti je najprimernejši kandidat titanov tetraizopropoksid (TTIP).Hidrolizat TiO2 pripravimo posebej. In sicer ga pripravimo tako, da v zmesi vode (med 0.5 in 2 mL), konc. HNO3 (med 0.5 in 2 mL) in organskega topila (med 4 in 10 mL) po kapljicah dodajamo zmes titanovega alkoksida (med 10 in 30 mL) in organskega topila (med 5 in 15 mL). Optimalno molsko razmerje med vodo in titanovim alkoksidom mora biti med 1:1 in 3:1, vsekakor pa manjše od 4:1. Večje molsko razmerje med vodo in titanovim alkoksidom vodi do popolne hidrolize in kondenzacije titanovega alkoksida. Popolnoma kondenziran titanov alkoksid pa zgublja funkcijo veziva. Dobljeno zmes mešamo pri sobni temperaturi med 2 in 10(iii) TiO 2 hydrolyzate has the function of a binder of colloidal SiO 2 and colloidal TiO 2 particles and has the function of a catalyst for the polymerization of epoxy organic silanes. It is not a condition that both the SiO 2 hydrolyzate and the TiO 2 hydrolyzate are present simultaneously in the self-cleaning fluid. Titanium alkoxides whose alkoxy groups contain from 1 to 4 carbon atoms are used as the precursor of TiO 2 . Examples of titanium tetraalkoxides used are titanium tetramethoxide, titanium tetraethoxide, titanium tetrapropoxide, titanium tetraisopropoxide, titanium tetrabutoxide. For the sake of affordability and sufficiently high stability, the most suitable candidate is titanium tetraisopropoxide (TTIP). TiO 2 hydrolyzate is prepared separately. It is prepared so that in a mixture of water (between 0.5 and 2 mL), the conc. HNO3 (between 0.5 and 2 mL) and an organic solvent (between 4 and 10 mL) were added dropwise a mixture of titanium alkoxide (between 10 and 30 mL) and an organic solvent (between 5 and 15 mL). The optimum molar ratio of water to titanium alkoxide must be between 1: 1 and 3: 1, and in any case less than 4: 1. A higher molar ratio of water to titanium alkoxide leads to complete hydrolysis and condensation of titanium alkoxide. Fully condensed titanium alkoxide loses the function of the binder. The resulting mixture was stirred at room temperature between 2 and 10

-9urami, da dosežemo hidrolizo in kondenzacijo titanovega alkoksida. Pripravljen hidrolizat ne vsebuje kristaliničnega TiO2, po tem se razlikuje od TiO2 sola (i). Na koncu razredčimo pripravljen hidrolizat z organskim topilom, tako da je končni masni delež TiO2 med 1 in 5 %. Kot organsko topilo uporabimo monoalkil etre raznih glikolov, ki imajo dobro omočljivost delno hidrofobnih površin, kot je npr. steklo. Kot primemo organsko topilo so se pokazali 2metoksietanol, propilen glikol butil eter, 2-propoksietanol. Pripravljen hidrolizat TiO2 dodamo v TiO2 sol (i), tako daje molsko razmerje med Ti v anataznih TiO2 zrnih (i) in Ti v hidrolizatu TiO2 (iii) med 5:1 in 1:1.-9hours to achieve hydrolysis and condensation of titanium alkoxide. The prepared hydrolyzate does not contain crystalline TiO 2 , in that it differs from TiO 2 sol (i). Finally, dilute the prepared hydrolyzate with an organic solvent so that the final weight fraction of TiO 2 is between 1 and 5%. Monoalkyl ethers of various glycols having good wettability of partially hydrophobic surfaces such as e.g. glass. The organic solvent exemplified was 2methoxyethanol, propylene glycol butyl ether, 2-propoxyethanol. The prepared TiO 2 hydrolyzate was added to TiO 2 salt (s), giving a molar ratio of Ti in the anatase TiO 2 grains (i) to Ti in the TiO 2 (iii) hydrolyzate between 5: 1 and 1: 1.

(iv) Če ne dodamo organskega topila v samočistilno tekočino (ki drugače temelji na vodni osnovi), ne moremo enakomerno nanesti pripravljenega sola na podlago, po odhlapitvi topila namreč ostane lisasta tanka plast TiO2. Glavna funkcija organskega topila je tako povečanje omočljivosti samočistilne tekočine na različnih podlagah, predvsem hidrofobnih (steklo in pa polimerne podlage, kot so poliakrilati, polikarbonati, polietileni, polipropileni, polistireni...). Ker je omočljivost podlage z uporabo organskih topil večja, lahko s pravilno izbiro bolj viskoznih topil zelo enostavno nanesemo na podlago tudi debelejšo plast samočistilne tekočine, kar se odraža v večji fotokatalitski aktivnosti. Uporabljena organska topila ne smejo imeti premajhne hlapnosti, da lahko pri sobni temperaturi v dovolj kratkem času odhlapijo, hkrati pa ne smejo imeti temperature vrelišča pod 100°C, da ne odhlapijo s površine pred vodo. Uporabljena organska topila morajo biti vsaj delno topna v vodi, ker samočistilna tekočina vsebuje visok delež vode. Nadalje uporabljena topila ne smejo povzročiti agregacije anataznih zrn TiO2. Nadaljnji pogoj je tudi nestrupenost uporabljenih spojin in nizka vnetljivost. Kot primerna izbira so se pokazali monoalkoksi etri raznih glikolov in pa zmesi monoalkoksi etrov glikolov in primarnih alkoholov z manj kot 4-imi ogljikovimi atomi. Kot najboljša kombinacija so se izkazali 2-propoksietanol v kombinaciji z 1-propanolom, 2-metoksietanol v kombinaciji z 1-butanolom. Prostominski delež vsote organskih topil mora biti v končni fotokatalitski tekočini nižji od 0.8. Če je višji, pride do agregacije TiO2. Če je delež organskih topil prenizek, nastane težava, kako enakomerno nanesti na površino dovolj debelo plast TiO2/SiO2. Optimalni prostominski delež vsote organskih topil je med 0.5 in 0.8.(iv) Unless an organic solvent is added to a self-cleaning liquid (otherwise based on water), the prepared salt cannot be uniformly applied to the substrate, since after the solvent has evaporated, a thin, thin TiO 2 layer remains. The main function of the organic solvent is thus to increase the wettability of the self-cleaning liquid on various substrates, especially hydrophobic ones (glass and polymeric substrates such as polyacrylates, polycarbonates, polyethylene, polypropylene, polystyrene ...). As the wettability of the substrate is increased with the use of organic solvents, the proper selection of more viscous solvents makes it very easy to apply a thicker layer of self-cleaning fluid to the substrate, which is reflected in the higher photocatalytic activity. The organic solvents used must not be too volatile to allow them to evaporate at room temperature for a short period of time at the same time as they must not have a boiling point below 100 ° C to prevent them from evaporating from the surface before water. The organic solvents used must be at least partially soluble in water because the self-cleaning liquid contains a high proportion of water. Furthermore, the solvents used must not cause the aggregation of TiO 2 anatase grains. A further condition is the non-toxicity of the compounds used and the low flammability. Monoalkoxy ethers of various glycols and mixtures of monoalkoxy ethers of glycols and primary alcohols with less than 4 carbon atoms have proved to be an appropriate choice. The best combination was 2-propoxyethanol in combination with 1-propanol, 2-methoxyethanol in combination with 1-butanol. The percentage by volume of organic solvent sum must be less than 0.8 in the final photocatalytic fluid. If higher, TiO 2 aggregation occurs. If the content of organic solvents is too low, it becomes difficult to evenly coat a sufficiently thick TiO 2 / SiO 2 layer on the surface. The optimum percentage by volume of organic solvent sum is between 0.5 and 0.8.

(v) Vodo dodajamo v končno fotokatalitsko tekočino, da pocenimo produkt in pa, da ohranjamo stabilnost pripravljene fotokatalitsko aktivne tekočine. Prevelik delež organskih topil vodi do destabilizacije sola, pri čemer pride do agregacije in posedanja TiO2. Tak produkt ni več(v) Water is added to the final photocatalytic fluid to cheapen the product and to maintain the stability of the prepared photocatalytically active liquid. Too much organic solvents lead to salt destabilization, resulting in the aggregation and deposition of TiO 2 . Such a product is gone

-10uporaben. Volumski delež vode v končni fotokatalitsko aktivni tekočini mora biti med 0.7 in 0.2.-10usable. The water content of the final photocatalytically active liquid must be between 0.7 and 0.2.

Tretji del izuma je nanašanje fotokatalitsko aktivnih tekočin na različne površine. Površine so lahko transparentne za vidno svetlobo, kot so npr. steklo, polipropilen, polietilen, polistiren, razni poliakrilati, polikarbonat... Samočistilno tekočino pa lahko nanašamo tudi na za svetlobo nepropustne površine: beton, strešniki, keramične ploščice, les, opeka... Površina, na katero nanašamo samočistilno tekočino, mora biti očiščena in suha. Uporabimo različne metode nanašanja: (i) pršenje tekočine s pomočjo pršilk; (ii) nanašanje tekočine s pomočjo valjčka; (iii) nanašanje tekočine s pomočjo čopiča; (iv) nanašanje tekočine s pomočjo krpice; (v) potapljanje predmeta v samočistilno tekočino.A third part of the invention is the deposition of photocatalytically active fluids on various surfaces. Surfaces can be transparent to visible light, such as. glass, polypropylene, polyethylene, polystyrene, various polyacrylates, polycarbonate ... The self-cleaning fluid can also be applied to light-tight surfaces: concrete, tiles, ceramic tiles, wood, brick ... The surface to which the self-cleaning fluid should be applied must be clean and dry. Different application methods are used: (i) spraying the liquid with the help of sprays; (ii) application of the fluid by means of a roller; (iii) application of a liquid by brush; (iv) application of a liquid by means of a cloth; (v) immersion of the object in self-cleaning fluid.

(i) Nastalo samočistilno tekočino prelijemo v pršilko, ki je lahko ročna ali električna, in pršimo po željeni površini, dokler na površini ne nastane homogena plast tekočine.(i) Pour the resulting self-cleaning fluid into a sprayer, which can be manual or electric, and spray on the desired surface until a homogeneous layer of liquid is formed on the surface.

(ii) Valjček pomočimo v samočistilno tekočino, potem pa nanesemo tekočino na površino, pri čemer ostane za valjčkom tekoča homogena plast tekočine, ki se pri sobni temperaturi posuši.(ii) The roller is immersed in a self-cleaning fluid and then applied to the surface, leaving a homogeneous layer of liquid behind the roller which dries at room temperature.

(iii) Čopič namočimo v samočistilni tekočini in potem z njim premažemo površino, pri čemer ostane za čopičem tekoča homogena plast tekočine, ki se pri sobni temperaturi posuši.(iii) Soak the brush in self-cleaning fluid and then coat the surface, leaving a homogeneous layer of liquid behind the brush that dries at room temperature.

(iv) Z vlečenjem krpice po površini ostaja za krpico zelo tanka sled sola, ki se hitro posuši in zatrdi. Nastala plast je zelo tenka.(iv) Removing the cloth over the surface leaves a very thin trace of salt behind the cloth, which dries quickly and hardens. The resulting layer is very thin.

(v) Predmet, ki ga želimo oplaščiti s samočistilno plastjo, potopimo v samočistilno tekočino. Predmet potem enakomerno povlečemo iz tekočine, pri čemer višek tekočine odteče, preostala samočistilna tekočina na predmetu se posuši pri sobni temperaturi in otrdi.(v) Immerse the object to be coated with the self-cleaning layer in the self-cleaning liquid. The object is then uniformly withdrawn from the liquid, with the excess fluid draining off, and the remaining self-cleaning fluid on the object is dried at room temperature and cured.

V vseh naštetih primerih ostane po nanosu na površini podlage tanka tekoča plast, ki se posuši pri sobni temperaturi in nastane trdna delno kristalinična samočistilna prevleka, ki je prepustna za vidno svetlobo. Njena debelina je manjša od 100 nm, pri večini metod nanašanja tudi manjša od 20 nm, kar pa ob visoki optični kvaliteti zadostuje tudi za dober samočistilni učinek. Prevleke ni potrebno (lahko pa jo) dodatno utrjevati s segrevanjem. Prevleka je temperaturno obstojna (iz rentgenskih difraktogramov je razvidna obstojnost anatazne faze do 1000°C in šele pri tej temperaturi potem začne prehajati v rutilno), ima dokazane samočistilne lastnosti, njena hidrofilnost je izražena že v temi, se pa še dodatno poveča pod vplivom UV sevanja.In all the above cases, after application, a thin liquid layer is left on the surface of the substrate, which dries at room temperature to form a solid, semi-crystalline self-cleaning coating which is transparent to visible light. Its thickness is less than 100 nm, and in most deposition methods it is less than 20 nm, which, given its high optical quality, is also sufficient for a good self-cleaning effect. The coating does not need to be (but can be) further cured by heating. The coating is temperature resistant (X-ray diffractograms show the persistence of the anatase phase up to 1000 ° C and only then begins to transition to rutile), has proven self-cleaning properties, its hydrophilicity is expressed in the dark, and further increases under the influence of UV radiation.

-11Tovrstne prevleke so uporabne tudi na površinah, kjer imamo probleme z zamegljevanjem. Tako preprečujejo zamegljevanje raznoraznih ogledal (npr. avtomobilska vzvratna ogledala, ogledala v kopalnicah, savnah) in stekel (npr. dioptrijska očala).-11This coating is also useful on surfaces where we have blurring problems. This prevents various mirrors (such as car rearview mirrors, bathroom mirrors, saunas) and lenses (such as prescription glasses) from blurring.

Izum pojasnjujemo, vendar nikakor ne omejujemo, z naslednjimi izvedbenimi primeri.The invention is explained, but by no means limited, by the following embodiments.

Primer 1Example 1

TTIP (15 mL) raztopimo v absolutnem etanolu (2.5 mL). Posebej zmešamo 70 % perklomo kislino (1 mL) in vodo (90 mL). To raztopino po kapljicah med mešanjem dodajamo raztopini TTIP. Poteče eksotermna reakcija nekontrolirane hidrolize in kondenzacije TTIP, pri čemer dobimo belo oborino hidratiranega, amorfnega T1O2. Dobljeno zmes refluktiramo 48 ur, pri čemer poteka kristalizacija in deagregacija T1O2. Po končanem segrevanju dobimo stabilen osnovni sol.TTIP (15 mL) was dissolved in absolute ethanol (2.5 mL). Particularly, 70% perchloric acid (1 mL) and water (90 mL) were mixed. This solution was added dropwise to TTIP solution while stirring. An exothermic reaction of uncontrolled hydrolysis and condensation of TTIP takes place, resulting in a white precipitate of hydrated, amorphous T1O2. The resulting mixture was refluxed for 48 hours, crystallizing and deaggregating T1O2. After heating, a stable basic salt is obtained.

Primer 2Example 2

TTIP (15 mL) raztopimo v absolutnem etanolu (2.5 mL). Posebej zmešamo 65 % dušikovo(V) kislino (1 mL) in vodo (90 mL). To raztopino po kapljicah med mešanjem dodajamo raztopini TTIP. Poteče eksotermna reakcija nekontrolirane hidrolize in kondenzacije TTIP, pri čemer dobimo belo oborino hidratiranega, amorfnega T1O2. Dobljeno zmes refluktiramo 48 ur, pri čemer poteka kristalizacija in deagregacija TiO2. Po končanem refluktiranju sol ohladimo in prefiltriramo preko filter papirja. Netopni preostanek na filter papirju zavržemo.TTIP (15 mL) was dissolved in absolute ethanol (2.5 mL). 65% nitric acid (1) and water (90 mL) were mixed separately. This solution was added dropwise to TTIP solution while stirring. An exothermic reaction of uncontrolled hydrolysis and condensation of TTIP takes place, resulting in a white precipitate of hydrated, amorphous T1O2. The resulting mixture was refluxed for 48 hours, crystallizing and deaggregating TiO 2 . After refluxing, the salt was cooled and filtered through filter paper. Discard the insoluble residue on the filter paper.

Primer 3Example 3

Osnovni anatazni T1O2 sol smo pripravili po enakem postopku, kot je opisano v Primeru 1, le da spremenimo razmerje med TTIP, HCIO4 in vodo. V tem primeru smo uporabili 15 mL TTIP, 45 mL vode in 3 mL HCIO4.The basic anatase T1O2 salt was prepared by the same procedure as described in Example 1, except to change the ratio of TTIP, HCIO4 to water. In this case, 15 mL TTIP, 45 mL water, and 3 mL HCIO4 were used.

Primer 4Example 4

Osnovni anatazni T1O2 sol smo pripravili po enakem postopku, kot je opisano v Primeru 1, le da spremenimo razmerje med TTIP, HCIO4 in vodo. V tem primeru smo uporabili 15 mL TTIP, 45 mL vode in 1 mL HCIO4.The basic anatase T1O2 salt was prepared by the same procedure as described in Example 1, except to change the ratio of TTIP, HCIO4 to water. In this case, 15 mL TTIP, 45 mL water, and 1 mL HCIO4 were used.

Primer 5Example 5

-12Osnovni anatazni TiO2 sol smo pripravili po enakem postopku, kot je opisano v Primeru 1, le da spremenimo čas refluksa. V tem primeru smo refluktirali sol 24 ur.-12The basic anatase TiO 2 salt was prepared by the same procedure as described in Example 1, except to change the reflux time. In this case, the salt was refluxed for 24 hours.

Primer 6Example 6

Zmesi TEOS-a (1.11 mL) in koloidnega SiO2 Levasil 200/30% (0.42 mL) med mešanjem dodamo 30 pL 32 % HC1. Po desetih minutah mešanja pri sobni temperaturi dodamo 1propanol (5 mL) in pustimo mešati 24 ur, da poteče dokončna hidroliza TEOS-a. Masni delež hidroliziranega in koloidnega SiO2 v pripravljenem hidrolizatu je 8.1 %.A mixture of TEOS (1.11 mL) and colloidal SiO 2 Levasil 200/30% (0.42 mL) was added 30 pL of 32% HCl while stirring. After stirring at room temperature for 10 minutes, 1propanol (5 mL) was added and allowed to stir for 24 hours to complete the hydrolysis of TEOS. The content of hydrolyzed and colloidal SiO 2 in the prepared hydrolyzate is 8.1%.

Primer 7Example 7

Zmesi TEOS-a (1.11 mL) in koloidnega SiO2 Levasil 200/30% (1.7 mL) med mešanjem dodamo 30 pL 32 % HC1. Po desetih minutah mešanja pri sobni temperaturi dodamo 1propanol (5 mL) in pustimo mešati 24 ur, da poteče dokončna hidroliza TEOS-a. Masni delež hidroliziranega in koloidnega SiO2 v pripravljenem hidrolizatu je 11.5 %.A mixture of TEOS (1.11 mL) and colloidal SiO 2 Levasil 200/30% (1.7 mL) was added 30 pL of 32% HCl while stirring. After stirring at room temperature for 10 minutes, 1propanol (5 mL) was added and allowed to stir for 24 hours to complete the hydrolysis of TEOS. The content of hydrolyzed and colloidal SiO 2 in the prepared hydrolyzate is 11.5%.

Primer 8Example 8

Odvzamemo osnovni sol iz Primera 1 (6 mL) in dodamo SiO2 sol iz Primera 6 (6 mL). Mešamo pri sobni temperaturi in dodamo 8 mL vode, nato 12 mL 1-propanola, nazadnje še 39 mL 2propoksietanola. V tako pripravljenem solu je molsko razmerje med Ti in Si je 1:2.3, koncentracija TiO2 v solu pa je približno 3.3 g/L. Pripravljen sol je stabilen najmanj pol leta.The basic salt of Example 1 (6 mL) was removed and the SiO 2 salt of Example 6 (6 mL) was added. The mixture was stirred at room temperature and 8 mL of water was added followed by 12 mL of 1-propanol, finally 39 mL of 2-propoxyethanol. In the salt thus prepared, the molar ratio of Ti to Si is 1: 2.3, and the concentration of TiO 2 in the salt is approximately 3.3 g / L. The prepared salt is stable for at least half a year.

Za pripravo tanke plasti vzamemo očiščeno stekleno površino v navpičnem položajo. Sol nalijemo v pršilko, potem pa razpršimo sol preko navpično postavljene površine, tako da se prelije čez celoto. Pustimo, da višek tekočine odteče s površine stekla, ostalo pa se na površini posuši. Pustimo dobljeno plast najmanj en teden pri temperaturah nad 20 °C, da poteče dokončna kondenzacija SiO2 in utrditev tanke plasti.To prepare the thin layer, take the cleaned glass surface in a vertical position. Pour the salt into the sprayer, then spray the salt over a vertically positioned surface so that it is poured over the whole. Allow the excess liquid to drain from the glass surface and the rest to dry on the surface. Allow the resulting layer for at least one week at temperatures above 20 ° C to allow the final condensation of SiO 2 and the hardening of the thin layer.

Primer 9Example 9

Odvzamemo osnovni sol iz Primera 1 (6 mL) in dodamo SiO2 sol iz Primera 7 (6 mL). Mešamo pri sobni temperaturi in dodamo 8 mL vode, nato 12 mL 1-propanola, nazadnje še 39 mL 2propoksietanola. V tako pripravljenem solu je molsko razmerje med Ti in Si je 1:3.75, koncentracija TiO2 v solu pa je približno 3.3 g/L. Pripravljen sol je stabilen najmanj pol leta.Remove the base salt of Example 1 (6 mL) and add the SiO 2 salt of Example 7 (6 mL). The mixture was stirred at room temperature and 8 mL of water was added followed by 12 mL of 1-propanol, finally 39 mL of 2-propoxyethanol. In the salt thus prepared, the molar ratio of Ti to Si is 1: 3.75, and the concentration of TiO 2 in the salt is approximately 3.3 g / L. The prepared salt is stable for at least half a year.

Za pripravo tanke plasti vzamemo očiščeno stekleno površino v navpičnem položajo. Sol nalijemo v pršilko, potem pa razpršimo sol preko navpično postavljene površine, tako da seTo prepare the thin layer, take the cleaned glass surface in a vertical position. Pour the salt into the sprayer, then spray the salt over a vertically positioned surface so that

-13prelije čez celoto. Pustimo, da višek tekočine odteče s površine stekla, ostalo pa se na površini posuši. Pustimo dobljeno plast najmanj en teden pri temperaturah nad 20 °C, da poteče dokončna kondenzacija S1O2 in utrditev tanke plasti.-13 pours over the whole. Allow the excess liquid to drain from the glass surface and the rest to dry on the surface. Leave the resulting layer for at least one week at temperatures above 20 ° C to allow the final condensation of S1O2 and the thin layer to solidify.

Primer 10Example 10

Odvzamemo osnovni sol iz Primera 1 (6 mL) in dodamo SiO2 sol iz Primera 7 (6 mL). Mešamo pri sobni temperaturi in dodamo 7.5 mL 1-propanola, nazadnje pa še 27 mL 2-propoksietanola. V tako pripravljenem solu je molsko razmerje med Ti in Sije 1:3.75, koncentracija T1O2 v solu pa je približno 5 g/L. Pripravljen sol je stabilen najmanj pol leta.Remove the base salt from Example 1 (6 mL) and add the SiO2 salt from Example 7 (6 mL). Stirred at room temperature and added 7.5 mL of 1-propanol and finally 27 mL of 2-propoxyethanol. In the salt thus prepared, the molar ratio of Ti to Si is 1: 3.75, and the concentration of T1O2 in the salt is approximately 5 g / L. The prepared salt is stable for at least half a year.

Za pripravo tanke plasti vzamemo očiščeno stekleno površino v navpičnem položajo. Sol nalijemo v pršilko, potem pa razpršimo sol preko navpično postavljene površine, tako da se prelije čez celoto. Pustimo, da višek tekočine odteče s površine stekla, ostalo pa se na površini posuši. Pustimo dobljeno plast najmanj en teden pri temperaturah nad 20 °C, da poteče dokončna kondenzacija S1O2 in utrditev tanke plasti.To prepare the thin layer, take the cleaned glass surface in a vertical position. Pour the salt into the sprayer, then spray the salt over a vertically positioned surface so that it is poured over the whole. Allow the excess liquid to drain from the glass surface and the rest to dry on the surface. Leave the resulting layer for at least one week at temperatures above 20 ° C to allow the final condensation of S1O2 and the thin layer to solidify.

Primer 11Example 11

Odvzamemo osnovni sol iz Primera 1 (5 mL) in dodamo TEOS (450 pL). Nastane dvofazni sistem, ker je TEOS slabo topen v vodnem mediju. Mešamo pri sobni temperaturi, pri čemer prihaja do postopne hidrolize in kondenzacije TEOS-a. Po 12 urah TEOS kot osnovni prekurzor ni več prisoten, sol pa še vedno ohranja svojo stabilnost. Pripravljenemu mešanemu solu dodamo 40 mL vode, 85 mL 2-metoksietanola in 85 mL 1-butanola in dobro premešamo. V tako pripravljenem solu je molsko razmerje med Ti in Si 1:1, koncentracija T1O2 v solu pa je približno 0.9 g/L. Sol je pri sobni temperaturi stabilen najmanj 6 mesecev.The basic salt of Example 1 (5 mL) was removed and TEOS (450 pL) was added. A two-phase system is formed because TEOS is poorly soluble in aqueous medium. It is stirred at room temperature, resulting in the gradual hydrolysis and condensation of TEOS. After 12 hours, TEOS as the basic precursor is no longer present, and the salt still retains its stability. To the prepared mixed salt was added 40 mL of water, 85 mL of 2-methoxyethanol and 85 mL of 1-butanol and stirred well. In the salt thus prepared, the molar ratio of Ti to Si is 1: 1, and the concentration of T1O2 in the salt is approximately 0.9 g / L. The salt is stable at room temperature for at least 6 months.

Za pripravo tankih plasti vzamemo očiščeno stekleno površino. Pripravljeni sol nanesemo na površino kateregakoli materiala s pomočjo enega izmed opisanih postopkov (krpica, pršenje, čopič, potapljanje...).To prepare the thin layers, we take the cleaned glass surface. The prepared salt is applied to the surface of any material using one of the described procedures (cloth, spray, brush, dipping ...).

Primer 12Example 12

Odvzamemo osnovni sol iz Primera 1 (5 mL) in dodamo TEOS (400 pL). Nastane dvofazni sistem, ker je TEOS slabo topen v vodnem mediju. Mešamo pri sobni temperaturi, pri čemer prihaja do postopne hidrolize in kondenzacije TEOS-a. Po 12 urah TEOS kot osnovni prekurzor ni več prisoten, sol pa še vedno ohranja svojo stabilnost. Pripravljenemu mešanemu solu dodamo 40 mL vode in dobro premešamo. V tako pripravljenem solu je molsko razmerje medRemove the base salt from Example 1 (5 mL) and add TEOS (400 pL). A two-phase system is formed because TEOS is poorly soluble in aqueous medium. It is stirred at room temperature, resulting in the gradual hydrolysis and condensation of TEOS. After 12 hours, TEOS as the basic precursor is no longer present, and the salt still retains its stability. To the prepared mixed salt, 40 mL of water was added and stirred well. In the salt thus prepared, the molar ratio of

-14Ti in Si 1.3:1, koncentracija TiO2 v solu pa je približno 4.2 g/L. Sol je pri sobni temperaturi stabilen najmanj 6 mesecev.-14Ti and Si 1.3: 1, and the concentration of TiO 2 in the salt is approximately 4.2 g / L. The salt is stable at room temperature for at least 6 months.

Za pripravo tankih plasti vzamemo očiščeno stekleno površino. Bombažno krpico namočimo v razredčenem solu, potem pa s to krpico zelo na tanko premažemo steklo. Ko topilo odhlapi iz nanesenega sola, ostane na steklu zelo tanka plast fotokatalitsko aktivne prevleke.To prepare the thin layers, we take the cleaned glass surface. Soak the cotton cloth in dilute salt, then very thinly coat the glass with this cloth. When the solvent evaporates from the applied salt, a very thin layer of photocatalytically active coating remains on the glass.

Primer 13Example 13

Zmesi vode (0.30 mL), konc. HNO3 (0.84 mL) in 2-propoksietanola (4.1 mL) po kapljicah dodajamo zmes TTIP (4.7 mL) in 2-propoksietanola (9.5 mL). Dobljeno zmes mešamo pri sobni temperaturi 4 ure, da dosežemo hidrolizo in kondenzacijo titanovega alkoksida. Na koncu razredčimo pripravljen hidrolizat z 2-propoksietanolom (35 mL). Masni delež TiO2 v pripravljenem hidrolizatu je 2.5 %.Mixtures of water (0.30 mL), conc. HNO3 (0.84 mL) and 2-propoxyethanol (4.1 mL) were added dropwise to a mixture of TTIP (4.7 mL) and 2-propoxyethanol (9.5 mL). The resulting mixture was stirred at room temperature for 4 hours to achieve hydrolysis and condensation of titanium alkoxide. Finally, dilute the prepared hydrolyzate with 2-propoxyethanol (35 mL). The percentage by weight of TiO 2 in the prepared hydrolyzate is 2.5%.

Primer 14Example 14

Odvzamemo osnovni sol (5 mL) iz Primera 1 in dodamo koloidni SiO2 sol Levasil 200/30% (0.47 g), katerega smo predhodno zmešali s 415 pL GPMS in 10 ml 2-metoksietanola. Mešamo 2 uri. Temu dodamo delno hidroliziran TTIP (TiO2 hidrolizat) (4.1 mL), pripravljen po postopku, opisanem v Primeru 9. Sol ohranja svojo stabilnost. Pripravljenemu mešanemu solu dodamo 40 mL vode, 75 mL 2-metoksietanola in 85 mL 1-butanola in dobro premešamo. Tako pripravljen sol vsebuje 1.3 g/L TiO2 na liter sola, molsko razmerje med anataznim Ti, nekristaliničnem Ti iz hidrolizata, Si iz GPMS in Si iz koloida je 1:0.5:1:1.Remove the base salt (5 mL) from Example 1 and add the colloidal SiO 2 salt Levasil 200/30% (0.47 g), which was previously mixed with 415 pL GPMS and 10 ml 2-methoxyethanol. Mix for 2 hours. To this was added partially hydrolyzed TTIP (TiO 2 hydrolyzate) (4.1 mL) prepared according to the procedure described in Example 9. The salt maintained its stability. To the prepared mixed salt was added 40 mL of water, 75 mL of 2-methoxyethanol and 85 mL of 1-butanol and stirred well. The salt thus prepared contains 1.3 g / L TiO 2 per liter of salt, the molar ratio of anatase Ti, non-crystalline Ti from hydrolyzate, Si from GPMS and Si from colloid is 1: 0.5: 1: 1.

Pripravljeni sol nanesemo na površino kateregakoli materiala s pomočjo enega izmed opisanih postopkov (krpica, pršenje, čopič, potapljanje...). Pripravljeno tanko plast grejemo pol ure pri 90 °C.The prepared salt is applied to the surface of any material using one of the described procedures (cloth, spray, brush, dipping ...). The prepared thin layer is heated at 90 ° C for half an hour.

KarakterizacijaCharacterization

Nastanek anatazne kristalinične faze smo potrdili z rentgensko difrakcijo (Slika 1). Anatazna kristalinična faza je v praškastem vzorcu, dobljenem iz debelejših prevlek s pomočjo ostrega strgala, prisotna že po sušenju pri sobni temperaturi in tudi po termični obdelavi vzorca pri 1000 °C še vedno močno prevladuje nad rutilno. Šele pri višjih temperaturah potem anatazna faza popolnoma preide v rutilno. Velja poudariti, da je to glede na znanstveno literaturo eno izmed najširših, če ne celo najširše temperaturno okno termične obstojnosti fotokatalitsko aktivne anatazne faze (od sobne temperature do 1000°C). Fotokatalitska funkcija prevleke jeThe formation of the anatase crystalline phase was confirmed by X-ray diffraction (Figure 1). The anatase crystalline phase, which is present in the powder sample obtained from thicker coatings by means of a sharp scraper, still prevails over rutile after drying at room temperature and even after thermal treatment of the sample at 1000 ° C. It is only at higher temperatures that the anatase phase becomes fully rutile. It should be emphasized that, according to scientific literature, this is one of the widest, if not the widest, thermal window of thermal stability of the photocatalytically active anatase phase (from room temperature to 1000 ° C). The photocatalytic function of the coating is

-15tako zagotovljena tudi pri izjemno visokih temperaturah. To bi lahko prišlo prav v primeru, če bi izvedli nanos prevleke na predmet (npr. opeko ali keramično ploščico), ki ga je v postopku do končnega izdelka potrebno še termično obdelati pri visoki temperaturi.-15Also guaranteed at extremely high temperatures. This could be the case if a coating is applied to an object (eg a brick or a ceramic tile), which still needs to be heat treated at high temperature in the process to the finished product.

Slika 1 prikazuje rentgenske difraktograme vzorca, pripravljenega iz tankih plasti TiCh/SiCh, ki so bile narejene po postopku, opisanem v Primeru 11, in sicer termično neobdelan vzorec in termično obdelan vzorec pri različnih temperaturah.Figure 1 shows X-ray diffractograms of a sample prepared from thin TiCh / SiCh layers, which were made according to the procedure described in Example 11, namely a thermally untreated sample and a thermally treated sample at different temperatures.

Fotokatalitsko aktivnost pripravljenih prevlek smo dokazali s poskusom razbarvanja barvila resazurina. Postopek je opisan v članku Evans, P.; Mantke, S.; Mills, A.; Robinson, A.; Sheel, D. W. J Photochem Photobiol A Chem 2007, 188, 387-391. Na sliki 2 leva fotografija prikazuje stanje ob času 0 min, desna fotografija pa ob času 45 min obsevanja z UVA sevanjem s fluksom 4 mW/cm2. Lev vzorec v vsaki fotografiji prikazuje steklo, oplaščeno s tanko plastjo TiCh/SiCh, pripravljeno po postopku, opisanem v Primeru 11, desen vzorec v vsaki fotografiji prikazuje steklo brez TiCE- Sprememba iz modre v roza barvo je znak fotokatalitske aktivnosti površine pod barvilom.The photocatalytic activity of the prepared coatings was demonstrated by attempting to discolour the resazurin dye. The procedure is described in an article by Evans, P.; Mantke, S.; Mills, A.; Robinson, A.; Sheel, DW J Photochem Photobiol A Chem 2007, 188, 387–391. In Figure 2, the left photo shows the state at 0 min and the right photo at 45 min with UVA radiation with a flux of 4 mW / cm 2 . The left sample in each photo shows glass coated with a thin layer of TiCh / SiCh prepared according to the procedure described in Example 11, the right sample in each photo shows glass without TiCE- The change from blue to pink is a sign of the photocatalytic activity of the surface under the dye.

Hidrofilnost nastalih prevlek smo potrdili z merjenjem kontaktnih kotov. Meritev kota med kapljico vode in površino prevleke iz Primera 9 na običajnem okenskem steklu ob času 0 min je med 30 in 40°, ob času 20 min obsevanja z UVA svetlobo s fluksom 0.004 W/cm2 pa kontaktni kot pade od začetne vrednosti na 8 do 9°, kar dokazuje visoko hidrofilnost prevleke v prisotnosti UV sevanja.The hydrophilicity of the resulting coatings was confirmed by measuring contact angles. The measurement of the angle between the water droplet and the surface of the coating of Example 9 on a conventional window glass at a time of 0 min is between 30 and 40 °, while at 20 min irradiation with UVA flux 0.004 W / cm 2 the contact angle drops from the initial value to 8 to 9 °, as evidenced by the high hydrophilicity of the coating in the presence of UV radiation.

Visoko prepustnost samočistilne prevleke iz Primera 11 v celotnem področju vidne svetlobe dokazuje UV-VIS spekter prevleke, nanešene na natrijevo steklo (Slika 3). Vse vrste prevlek, ki so pripravljene po različnih zgoraj opisanih postopkih, prepuščajo več kot 95 % vidne svetlobe. Slika 3 prikazuje UV-Vis spekter vzorca v primerjavi s samo stekleno podlago.The high transmittance of the self-cleaning coating of Example 11 in the entire field of visible light is evidenced by the UV-VIS spectrum of the coating applied to sodium glass (Figure 3). All types of coatings, prepared according to the various procedures described above, allow more than 95% of visible light. Figure 3 shows the UV-Vis spectrum of the sample compared to the glass substrate alone.

Obstojnost tankih samočistilnih prevlek je bila preizkušana v komori za pospešene vremenske izpostave s kontinuimo kondenzacijo (vlažna komora proizvajalca Erichsen), in sicer so bili vzorci v ekstremnih pogojih pogojih 5 tednov. V vlažni komori smo preverjali vzorce iz Primerov 9 in 10, nanesenih na očiščeni stekleni površini. Z analizo kontaktnih kotov in pa fotokatalitske aktivnosti z uporabo resazurina pred tretiranjem in po tretiranju smo dokazali, da so plasti sicer zgubile nekaj aktivnosti, ampak so še vedno prisotne na površini stekla.The durability of thin self-cleaning coatings was tested in a continuous condensation chamber with continuous condensation (Erichsen wet chamber), and the samples were kept under extreme conditions for 5 weeks. In the humid chamber, samples from Examples 9 and 10 deposited on the cleaned glass surface were checked. By analyzing the contact angles and photocatalytic activities using resazurin before and after treatment, it was shown that the layers had lost some activity but were still present on the glass surface.

Claims (11)

1. Priprava TiO2/SiO2 solov in njihova uporaba za nanos tankih, optično prepustnih prevlek s samočistilnimi in protizarositvenimi lastnostmi, označena s tem, da je postopek je sestavljen iz:1. Preparation of TiO 2 / SiO 2 salts and their use for the application of thin, optically permeable coatings with self-cleaning and anti-rust properties, characterized in that the process consists of: - priprave kislega vodnega sola, ki vsebuje fotokemijsko aktivne nanodelce TiO2,- preparation of an acidic aqueous salt containing photochemically active TiO 2 nanoparticles, - dodajanja prekurzorja SiO2 s sledečo hidrolizo/kondenzacijo SiO2,- adding a SiO 2 precursor with the following hydrolysis / condensation of SiO 2 , - dodajanja epoksisilanov s sledečo polimerizacijo v polietre- addition of epoxysilanes by subsequent polymerization to polyethers - dodajanja amorfnega hidrolizata TiO2, ki deluje kot vezivo,- the addition of an amorphous TiO 2 hydrolyzate acting as a binder, - dodajanja koloidnega SiO2,- addition of colloidal SiO 2 , - redčenja pripravljenega sola z vodo in/ali z organskimi topili,- dilution of the prepared salt with water and / or with organic solvents, - nanašanja pripravljenega sola na podlago,- application of prepared salt to the substrate, - odhlapitve topila in kondenzacijskih reakcij pri temperaturah pod 100 °C,- solvent evaporation and condensation reactions at temperatures below 100 ° C, - nastanek tanke, enakomerne plasti TiO2/SiO2, ki ima samočistilne lastnosti.- the formation of a thin, uniform TiO 2 / SiO 2 layer having self-cleaning properties. 2. Priprava po zahtevku 1, označena s tem, daje za pripravo kislega vodnega sola uporabljena kislina HCIO4.Device according to claim 1, characterized in that HCI 4 acid is used to prepare the acidic aqueous salt. 3. Priprava po zahtevku 1, označena s tem, daje kot prekurzor SiO2 uporabljen TEOS.Device according to claim 1, characterized in that TEOS is used as the precursor of SiO 2 . 4. Priprava po zahtevku 1, označena s tem, daje TEOS dodan v ohlajeni, nerazredčeni osnovni sol.Device according to claim 1, characterized in that TEOS is added to the cooled, undiluted base salt. 5. Priprava po zahtevku 1, označena s tem, de je SiO2 vezivo pripravljeno predhodno iz TEOS-a in koloidnega SiO2, pri čemer izvedemo hidrolizo TEOS-a.Device according to claim 1, characterized in that the SiO 2 binder is prepared previously from TEOS and colloidal SiO 2 , by hydrolysis of TEOS. 6. Priprava po zahtevku 1, označena s tem, daje kot epoksisilan uporabljen GPMS.Device according to claim 1, characterized in that GPMS is used as epoxysilane. 7. Priprava po zahtevku 1, označena s tem, da se mešani TiO2/SiO2 sol redči z vodo ali z različnimi zmesmi naštetih organskih topil.Device according to claim 1, characterized in that the mixed TiO 2 / SiO 2 salt is diluted with water or with various mixtures of the listed organic solvents. 8. TiO2/SiO2 soli, označeni s tem, da so pripravljeni po prejšnjih zahtevkih.8. TiO 2 / SiO 2 salts, prepared according to the preceding claims. 9. Uporaba TiO2/SiO2 solov po zahtevku 7, označena s tem, da se pripravljeni sol nanaša na površino podlage s pomočjo krpice, čopiča, pršilke, potapljanja vzorca v sol.Use of TiO 2 / SiO 2 salts according to claim 7, characterized in that the prepared salt refers to the surface of the substrate by means of a cloth, brush, sprayer, immersion of the sample in the salt. 10. Uporaba TiO2/SiO2 solov po zahtevku 7, označena s tem, da se kot podlago uporabi steklo, beton, keramiko ali različne polimerne materiale.Use of TiO 2 / SiO 2 salts according to claim 7, characterized in that glass, concrete, ceramics or various polymeric materials are used as a base. 11. Uporaba TiO2/SiO2 solov po zahtevku 7, označena s tem, da ni potrebna dodatna termična ali kemijska obdelava nastale prevleke.Use of TiO 2 / SiO 2 salts according to claim 7, characterized in that no additional thermal or chemical treatment of the resulting coating is required. /<L/ <L
SI200800272A 2008-11-07 2008-11-07 Preparation of tio2/sio2 sols and their use for application of self-cleaning and antifogging coatings SI22911A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200800272A SI22911A (en) 2008-11-07 2008-11-07 Preparation of tio2/sio2 sols and their use for application of self-cleaning and antifogging coatings
PCT/SI2009/000052 WO2010053459A1 (en) 2008-11-07 2009-10-15 Preparation of tio2/sio2 sols and use thereof for deposition of self-cleaning anti- fogging coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200800272A SI22911A (en) 2008-11-07 2008-11-07 Preparation of tio2/sio2 sols and their use for application of self-cleaning and antifogging coatings

Publications (1)

Publication Number Publication Date
SI22911A true SI22911A (en) 2010-05-31

Family

ID=41785607

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200800272A SI22911A (en) 2008-11-07 2008-11-07 Preparation of tio2/sio2 sols and their use for application of self-cleaning and antifogging coatings

Country Status (2)

Country Link
SI (1) SI22911A (en)
WO (1) WO2010053459A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2872816C (en) 2012-09-26 2015-08-04 Ledtech International Inc. Multilayer optical interference filter
EP4039366A1 (en) * 2012-12-28 2022-08-10 Univation Technologies, LLC Supported catalyst with improved flowability
JP6105998B2 (en) * 2013-03-26 2017-03-29 パナホーム株式会社 Method for producing photocatalyst composition and method for producing photocatalyst
CN104194626A (en) * 2014-08-29 2014-12-10 张家港彩蝶新材料有限公司 Nano antireflection coating for solar energy glass as well as preparation method and application thereof
US20190054454A1 (en) * 2015-10-26 2019-02-21 Shell Oil Company Mechanically strong catalyst and catalyst carrier, its preparation, and its use
CN107383940B (en) * 2017-07-14 2019-03-26 西藏亚吐克工贸有限公司 The dedicated titanium dioxide process of traffic paint
CN108821779A (en) * 2018-05-18 2018-11-16 陶玲 A kind of preparation method of super hydrophilic functional membrane
MX2021004550A (en) 2018-11-02 2021-06-15 Shell Int Research Separation of ethane oxidative dehydrogenation effluent.
CN110255613B (en) * 2019-03-04 2022-02-15 厦门威亮光学涂层技术有限公司 Metal oxide sol and preparation method thereof
CN110182843A (en) * 2019-05-06 2019-08-30 超彩环保新材料科技有限公司 The preparation method of anti-aging type nano-titanium dioxide
CN111229194A (en) * 2020-03-10 2020-06-05 陕西科技大学 (TiO)2-ZrO2-SiO2) @ inverse opal structure SiO2Preparation and use of catalysts
CN111620716B (en) * 2020-04-28 2022-10-11 江苏新视界先进功能纤维创新中心有限公司 Preparation method and protection method of ancient building outer wall protection coating
CN111822306B (en) * 2020-07-16 2021-10-12 深圳市尤佳环境科技有限公司 Stainless steel nano self-cleaning coating and preparation method thereof
CN113637345B (en) * 2021-07-19 2022-07-26 武汉中科先进材料科技有限公司 Water-based environment-friendly wear-resistant organic-inorganic hybrid antifogging coating and preparation thereof
CN113831017B (en) * 2021-07-28 2022-12-30 景德镇陶瓷大学 Application to improving anatase TiO 2 Super-hydrophilic self-cleaning ceramic glaze coating and application method thereof
CN113897114B (en) * 2021-10-14 2022-08-12 江苏利信新型建筑模板有限公司 Composite green aluminum alloy building template and processing technology thereof
CN116210718B (en) * 2022-12-05 2024-08-20 苏州宝丽迪材料科技股份有限公司 Modified nano ZnO microsphere coating and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930591B2 (en) * 1995-12-22 2007-06-13 東陶機器株式会社 Photocatalytic hydrophilic coating composition, method for forming hydrophilic film and coated article
ES2333117T3 (en) * 2002-07-09 2010-02-17 Leibniz-Institut Fur Neue Materialien Gemeinnutzige Gmbh SUBSTRATE WITH PHOTOCATALITIC COAT OF TIO2.
US20060162617A1 (en) * 2003-04-30 2006-07-27 Naoki Tanaka Photocatalyst coating liquid, photocatalyst film and photocatalyst member
TR200502005A2 (en) * 2005-05-27 2006-12-21 Dyo Boya Fabr�Kalari Sanay� Ve T�Caret Anon�M ��Rket� A paint and production method

Also Published As

Publication number Publication date
WO2010053459A1 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
SI22911A (en) Preparation of tio2/sio2 sols and their use for application of self-cleaning and antifogging coatings
JP4974459B2 (en) Support comprising a photocatalytic TiO2 layer
US7449245B2 (en) Substrates comprising a photocatalytic TiO2 layer
CN101945964B (en) Hybrid binder system
EP0826633B1 (en) Particles, aqueous dispersion and film of titanium oxide, and preparation thereof
WO2000018504A1 (en) Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
JPH10231146A (en) Antifogging and antifouling glass article
EP2749608B1 (en) Anti-reflection coatings with self-cleaning properties, substrates including such coatings, and related methods
US20190225821A1 (en) Coating composition and coated article
JP2002146283A (en) Photocatalytic coating fluid containing titanium oxide and its manufacturing method and titanium oxide photocatalytic structure
Yadav et al. Fabrication of SiO 2/TiO 2 double layer thin films with self-cleaning and photocatalytic properties
EP2644662B1 (en) Hybrid photocatalytic coatings, method for applying said coatings to different substrates and uses of the substrates thus coated
Sikong et al. Photoactivity and hydrophilic property of SiO 2 and SnO 2 co-doped TiO 2 nano-composite thin films.
JP2001262007A (en) Titania coating liquid and its production method, and titania film and its formation method
KR102066527B1 (en) sol composition of photo-catalystic material, method of preparing the same, and Method of preparing thin layer of Photo-catalyst using the same
Sudhagar et al. Influence of porous morphology on optical dispersion properties of template free mesoporous titanium dioxide (TiO2) films
KR20060025606A (en) Sol containing titanium dioxide, thin film formed therefrom and production process of the sol
KR101048340B1 (en) Transparent film forming composition
Mālnieks et al. Optical, photocatalytical and structural properties of TiO2–SiO2 sol-gel coatings on high content SiO2 enamel surface
SI22672A (en) PREPARATION OF TiO2/SiO2 SOLS AND THEIR USE FOR APPLICATION OF SELF-CLEANING AND ANTI-FOGGING COATINGS
Matsuda Functionalities and modification of sol–gel derived SiO2–TiO2 systems for advanced coatings and powders
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
Long et al. Photoinduced hydrophilic effect and its application on self-cleaning technology
Nocuń et al. Preparation and characterization of V 2 O 5 doped SiO 2-TiO 2 thin films
JP7463164B2 (en) Coating Fluid

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20100608

KO00 Lapse of patent

Effective date: 20160712