SI22865A - Peptide uroaktivin as activator of enzyme urokinase - Google Patents

Peptide uroaktivin as activator of enzyme urokinase Download PDF

Info

Publication number
SI22865A
SI22865A SI200800224A SI200800224A SI22865A SI 22865 A SI22865 A SI 22865A SI 200800224 A SI200800224 A SI 200800224A SI 200800224 A SI200800224 A SI 200800224A SI 22865 A SI22865 A SI 22865A
Authority
SI
Slovenia
Prior art keywords
peptide
amino acid
acid sequence
acute
seq
Prior art date
Application number
SI200800224A
Other languages
Slovenian (sl)
Inventor
OBERMAJER@Nataša
DOLJAK@Bojan
KOS@Janko
Original Assignee
Univerza@V@Ljubljani
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univerza@V@Ljubljani filed Critical Univerza@V@Ljubljani
Priority to SI200800224A priority Critical patent/SI22865A/en
Priority to PCT/EP2009/006899 priority patent/WO2010034490A1/en
Publication of SI22865A publication Critical patent/SI22865A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

During intensive studies leading to the submitted invention, the inventors here found out that the peptide uroaktivin with the amino acid sequence SEQ ID NO: 1 binds and increases the enzymatic activity of urokinase and tissue plasminogenic activator. Thus according to the first aspect, the submitted invention assures the amino acid sequence of the peptide uroaktivin - SEQ ID NO: 1. The submitted invention also assures the use of the peptide uroaktivin for a more successful treatment of diseases or states in which the application of thrombolytics is indicated - such states are particularly acute coronary thromboses (acute myocardial infarction), acute ischemic brain strokes, acute pulmonary thromboembolisms, deep venous thromboses and acute arterial thromboembolisms - and for assuring patency of arteriovenous canules and intravenous catheters.

Description

PEPTID UROAKTIVIN, KOT AKTIVATOR ENCIMA UROKINAZEPEPTID UROACTIVIN AS AN ACTIVATOR OF UROKINASE ENCYMS

OPIS IZUMADESCRIPTION OF THE INVENTION

A. PODROČJE TEHNIKE, NA KATEREGA SE IZUM NANAŠAA. TECHNICAL FIELD OF THE INVENTION

Predloženi izum se nanaša na peptid uroaktivin, ki se veže na urokinazni plazminogenski aktivator (urokinazo) in poveča njegovo encimsko aktivnost. Še zlasti se predloženi izum nanaša na uporabo takšnega peptida za zdravljenje vseh bolezni, pri katerih se uporablja rekombinantni tkivni ali urokinazni plazminogenski aktivator, to je pri vseh indikacijah uporabe trombolitikov. Navedeni izum se nanaša v splošnem na trombolitike, še posebej tkivni in urokinazni aktivator plazminogena.The present invention relates to a peptide uroactivin that binds to a urokinase plasminogen activator (urokinase) and enhances its enzymatic activity. In particular, the present invention relates to the use of such a peptide for the treatment of all diseases using a recombinant tissue or urokinase plasminogen activator, that is, in all indications of the use of thrombolytics. The present invention relates generally to thrombolytics, in particular tissue and urokinase plasminogen activators.

B. PRIKAZ PROBLEMA, KI GA REŠUJE IZUMB. DISPLAY OF THE PROBLEMS SOLVED BY THE INVENTION

Nezaželen nastanek strdkov v žilah (tromboza) je eden glavnih kardiovaskularnih zapletov. Nastanek strdka (trombusa) lahko povzroči zmanjšanje ali popolno prekinitev (okluzijo) pretoka krvi skozi žilo. Prekinitev pretoka krvi lahko vodi v akutni miokardni infarkt, ishemično možgansko kap, vensko tromboembolijo ali pljučno embolijo. Za preprečevanje nastajanja strdkov se uporabljajo antitrombotiki med katere spadajo antikoagulanti (antagonisti vitamina K), zaviralci agregacije trombocitov (acetilsalicilna kislina, heparin in heparinski derivati, hirudin, klopidogrel, dipiridamol) in trombolitiki (oz. fibrinolitiki). Strdki v venah, kjer je pretok krvi počasnejši, so sestavljeni večinoma iz premreženega fibrina in manj iz trombocitov, zato je primarna terapija z antikoagulanti tipa varfarina in heparina. Strdki v arterijah, kjer je pretok krvi hitrejši vsebujejo več trombocitov in manj fibrina, zato se kot preventiva uporablja acetilsalicilna kislina, v primeru okluzije pa trombolitične učinkovine. Antikoagulanti in zaviralci agregacije trombocitov preprečujejo nastajanje novih in povečevanje že obstoječih strdkov, medtem ko se trombolitiki uporabljajo za čimhitrejšo razgradnjo (lizo) obstruktivnih strdkov, pri tem pa ne preprečijo eventualnega nastajanja novih strdkov.Unwanted vascular clot formation (thrombosis) is one of the major cardiovascular complications. The formation of a clot (thrombus) can lead to a decrease or complete interruption (occlusion) of blood flow through the vessel. Interruption of blood flow can lead to acute myocardial infarction, ischemic stroke, venous thromboembolism or pulmonary embolism. Anti-thrombotic agents are used to prevent clot formation, including anticoagulants (vitamin K antagonists), platelet aggregation inhibitors (acetylsalicylic acid, heparin and heparin derivatives, hirudin, clopidogrel, dipyridamole) and thrombolytics (or fibrinolytics). Clots in veins where blood flow is slower are composed mainly of cross-linked fibrin and less of platelets, so the primary therapy is warfarin and heparin type anticoagulants. Clots in the arteries where blood flow is faster contain more platelets and less fibrin, so acetylsalicylic acid is used as a preventative, and thrombolytic agents are used in the case of occlusion. Anticoagulants and platelet aggregation inhibitors prevent new clots from forming and enlarging pre-existing clots, while thrombolytics are used to break down (lick) obstructive clots as quickly as possible, without preventing any new clots from forming.

Fiziološka fibrinolizaPhysiological fibrinolysis

Fibrinoliza je normalen proces v telesu, ki poteka sočasno s koaguacijo in omogoča hemostazo ter preprečuje nastajanje krvnih strdkov, ki bi povzročali omejitve krvnega pretoka. Pri procesu koagulacije iz fibrinogena pod vplivom trombina nastajajo monomeri fibrina, ki polimerizirajo in tvorijo protofibrile, zgrajene iz dveh antiparalelnih ne-kovalentno povezanih verig. Znotraj ene verige so monomeri fibrina povezani kovalentno. Glavni fibrinolitični encim je serinska proteaza plazmin, ki nastane iz plazminogena s pomočjo aktivatorjev. Plasminogen vsebuje motive sekundarne strukture, ki se specifično vežejo na lizin in arginin fibrin(ogen)a in se pri nastajanju strdka vgradi med verige fibrina. V procesu fibrinolize se plazminogen pretvori v aktivno obliko in cepi fibrin C-terminalno glede na vezane lizine in arginine. Pri svojem delovanju plasmin sprva ustvari vrzeli v fibrinu, nadaljna razgradnja pa povzroči solubilizacijo fibrina. (Walker in Nesheim, 1999).Fibrinolysis is a normal process in the body that goes hand in hand with coagulation, allowing for haemostasis and preventing blood clots that would cause blood flow restrictions. In the process of coagulation from fibrinogen under the influence of thrombin, fibrin monomers are formed, which polymerize and form protofibrils constructed from two antiparallel non-covalently linked chains. Within one chain, the fibrin monomers are covalently linked. The major fibrinolytic enzyme is the plasmin serine protease, which is generated by plasminogen through activators. Plasminogen contains secondary structure motifs that specifically bind to lysine and arginine fibrin (ogen) a and are incorporated into fibrin chains during clot formation. In the process of fibrinolysis, plasminogen is converted to the active form and cleaves fibrin C-terminally with respect to bound lysines and arginines. Initially, plasmin creates gaps in fibrin, and further degradation causes solubilization of fibrin. (Walker and Nesheim, 1999).

Primarna aktivatorja plazminogena sta tkivni aktivator plazminogena (tPA) in urokinazni aktivator plazminogena (uPA, urokinaza). tPA se sprošča iz endotelijskih celic žil, urokinaza pa iz fibroblastov, endotelijskih celic in monocitov. Proces fibrinolize uravnava veliko število inhibitorjev (inhibitor plazminogenskega aktivatorja-lin -2, PAI-1, PAI-2; alfa2-antiplasmin; alfa2-makroglobulin; serpin; TAFI), kar zagotavlja, daje liza lokalno omejena..The primary plasminogen activators are tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA, urokinase). tPA is released from vascular endothelial cells and urokinase is released from fibroblasts, endothelial cells and monocytes. The process of fibrinolysis regulates a large number of inhibitors (plasminogen activator inhibitor-lin -2, PAI-1, PAI-2; alpha2-antiplasmin; alpha2-macroglobulin; serpin; TAFI), ensuring that lysis is locally restricted.

Trombolitične učinkovine in njihove indikacijeThrombolytic agents and their indications

Fibronilzo je mogoče sprožiti farmakološko s t.im. trombolitično (oz. fibrinolitično) terapijo. Najpogosteje uporabljeni trombolitiki za sistemsko uporabo so:Fibronilzo can be triggered pharmacologically by e.g. thrombolytic (or fibrinolytic) therapy. The most commonly used thrombolytics for systemic use are:

- alteplaza (rekombinantni tPA)- alteplase (recombinant tPA)

- aniztreplaza- aniztreplaza

- streptokinaza in- streptokinase and

- urokinaza.- urokinase.

Poleg omenjenih se ponekod uporablja še druge trombolitične učinkovine:In addition, some thrombolytic agents are used elsewhere:

- stafilokinaza (bakterijski rekombinantni protein)- staphylokinase (bacterial recombinant protein)

- duteplaza (tPa sestavljen iz dveh proteinskih verig)- duteplazase (tPa composed of two protein chains)

- reteplaza (tPA podoben protein s daljšim razpolovnim časom eliminacije) inreteplase (a tPA - like protein with a longer elimination half - life), and

- tenekteplaza (tPA z dvema spremenjenima aminokislinama).- tenecteplase (tPA with two changed amino acids).

Trombolitične učinkovine se zaradi proteinske narave aplicirajo samo parenteralno. Najpomembnejše pri izboru trombolitične terapije je, da mora temeljiti na ovrednotenju individualnega trombotičnega zapleta, posameznikovega stanja in njegove anamneze. Pri uporabi trombolitikov je potrebno upoštevati ravnotežje med potencialno koristjo in tveganjem za krvavitve, ki so glavni neželeni učinek pri trombolizi.Due to the protein nature, thrombolytic agents are only administered parenterally. What is most important in the choice of thrombolytic therapy is that it should be based on the evaluation of the individual's thrombotic complication, the individual's condition and his / her history. When using thrombolytics, a balance between the potential benefit and the risk of haemorrhage, a major adverse effect of thrombolysis, must be considered.

Trombolitiki se uporabljajo za zdravljenje:Thrombolytics are used to treat:

- akutne koronarne tromboze (akutni miokardni infarkt)- acute coronary thrombosis (acute myocardial infarction)

- akutne ishemične možganske kapi- acute ischemic strokes

- akutne pljučne tromboembolije- acute pulmonary thromboembolism

- globinske venske tromboze- deep vein thrombosis

- akutne arterijske tromboembolije- acute arterial thromboembolism

- akutne arterijske tromboze.- acute arterial thrombosis.

Trombolitiki se uporabljajo za zagotavljanje prehodnosti:Thrombolytics are used to ensure transience:

- arteriovenskih kanul- arteriovenous cannulas

- intravenskih katetrov.- intravenous catheters.

Urokinaza in njeno delovanjeUrokinase and its action

Urokinaza je 411 aminokislin velik protein, sestavljen iz treh domen: C-terminalne katalitične domene, ki vsebuje aktivno mesto serinske proteaze, N-terminalna kringlova domena in domena, homologna epidermalnemu rastnemu dejavniku, s katero se veže na receptor UPAR/CD87.Urokinase is a 411 amino acid large protein composed of three domains: a C-terminal catalytic domain containing the active site of a serine protease, an N-terminal kringle domain, and a domain homologous to the epidermal growth factor that binds to the UPAR / CD87 receptor.

Urokinaza se sintetizira v obliki zimogena (prourokinaza, pro-uPA in enoverižna urokinaza, sc-uPA) in se aktivira s proteolitično cepitvijo med Lys[158]-Ile[l59]. Nastali verigi ostaneta povezani preko disulfidne vezi.Urokinase is synthesized in the form of zymogen (prourokinase, pro-uPA and single-chain urokinase, sc-uPA) and is activated by proteolytic cleavage between Lys [158] -Ile [l59]. The resulting chains remain connected via a disulfide bond.

Urokinaza neposredno cepi peptidno vez Arg[560]-Val[561] v plazminogenu, pri tem nastane plazmin in se aktivira fibrinolitični sistem. Plazmin razgrajuje fibrin, fibrinogen in druge plazemske proteine v strdkih, med drugim tudi koagulacijska faktorja V in VIII.Urokinase directly cleaves the peptide bond Arg [560] -Val [561] in plasminogen, producing plasmin and activating the fibrinolytic system. Plasmin breaks down fibrin, fibrinogen and other plasma proteins in clots, including coagulation factors V and VIII.

Eno- in dvo-verižne oblike urokinaze se vežejo na receptorje na plazemski membrani: uPAR/CD87 in receptorje LDL receptorske družine: LDLR-relativni protein, receptor alfa2makroglobulina (LRP/a2-MR) in receptor VLDL. Afiniteta vezave urokinaze na receptorje LDL receptorske družine (Kd~ (1-2)-10-8 M) je velikostni razred nižja od vezave na uPAR/CD87. Poleg tega pa se urokinaza lahko veže tudi na nekatere druge receptorje preko proteazne ter kringlove domene.Single- and double-stranded forms of urokinase bind to plasma membrane receptors: uPAR / CD87 and LDL receptor family receptors: LDLR-relative protein, alpha2macroglobulin receptor (LRP / a 2 -MR), and VLDL receptor. The binding affinity of urokinase to the LDL receptor family (Kd ~ (1-2) -10 -8 M) receptors is a size class lower than binding to uPAR / CD87. In addition, urokinase can bind to some other receptors via the protease and kringle domains.

Multidomenska struktura omogoča polifunkcionalno delovanje urokinaze, saj vsebuje številna mesta za vezavo tako substratov kot tudi različnih celičnih receptorjev.The multidomain structure facilitates the polyfunctional action of urokinase, as it contains numerous binding sites for both substrates and different cellular receptors.

Tkivni plazminogenski aktivator in njegovo delovanjeTissue plasminogen activator and its action

Tkivni plazminogenski aktivator (tPA) je serinska proteaza in jo uvrščamo, enako kot urokinazo, v družino Sl A serinskih proteaz. Normalno se nahaja na površini endotelijskih celic ven, kapilar, pljučnih arterij, srca in maternice in se izloča po poškodbi žile.Tissue plasminogen activator (tPA) is a serine protease and is classified as urokinase in the Sl A family of serine proteases. It is normally found on the surface of endothelial cells of the veins, capillaries, pulmonary arteries, heart and uterus and is secreted after damage to the vein.

tPA se sintetizira kot enoverižni polipeptid in se po delovanju plazmina ali tripsina (cepitev vezi Arg-Ile) razcepi v dvoverižni polipeptid, povezan z disulfidno vezjo. Težka veriga tPA se nahaja na N-terminalnem delu (Mr 39.000), lahka veriga pa je na C-terminalnem koncu (Mr 33.000). tPA je sestavljen iz petih različnih strukturnih domen: domena homologna fibronektinski fmger-like strukturi, domena homologna epidermalnemu rastnemu dejavniku, kringlovi domeni 1 in 2 (kot se nahajata v urokinazi, plazminogenu, trombinu, dejavniku XII) se nahajajo na težki verigi ter aktivno mesto serinske proteaze, ki se nahaja na lahki verigi.tPA is synthesized as a single-stranded polypeptide and cleaves after disintegration of plasmin or trypsin (cleavage of the Arg-Ile bond) into a double-stranded polypeptide linked to a disulfide bond. The tPA heavy chain is located at the N-terminal end (Mr 39,000) and the light chain is at the C-terminal end (Mr 33,000). tPA consists of five different structural domains: a domain homologous to a fibronectin fmger-like structure, a domain homologous to the epidermal growth factor, kringel domains 1 and 2 (as found in urokinase, plasminogen, thrombin, factor XII) are in the heavy chain and the active site a light chain serine protease.

Tkivni plazminogenski aktivator pretvarja plazminogen v plazmin. Specifičnost ativacije je odvisna od afinitete tPA do fibrina in tvorbe ternarnega kompleksa med tPA, plazminogenom in fibrinom, kar povzroči močno povečanje aktivacijske hitrosti plazminogena na površini fibrina. Funkcionalne domene tPA, ki so odgovorne za afiniteto do fibrina in povečanja aktivnosti tPA se nahajajo znotraj N-terminalne regije (težka veriga), najverjetneje v fingerlike domeni (Binyai) in v drugi kringlovi domeni (van Zooneveld).A tissue plasminogen activator converts plasminogen into plasmin. The specificity of ativation depends on the affinity of tPA to fibrin and the formation of a ternary complex between tPA, plasminogen, and fibrin, resulting in a strong increase in the plasminogen activation rate on the fibrin surface. The functional tPA domains responsible for affinity for fibrin and enhancement of tPA activity are located within the N-terminal region (heavy chain), most likely in the fingerlike domain (Binyai) and in the second kringel domain (van Zooneveld).

Vloga citokeratinov pri aktivaciji plazminogenaRole of cytokeratins in plasminogen activation

Aktivacija plazminogena na celični površini je veliko hitrejša v primerjavi z aktivacijo v raztopini, saj interakcija plazminogena z vezavnimi proteini povzroči spremembo konformacije plazminogena, kije bolj odprta za proteolizno delovanje (Ellis, 1991). Citokeratin 8 je poglavitni vezavni protein plazminogena na membrani celic raka dojke. Citokeratin 8 je intermediatni filamentni protein, ki v paru z citokeratinom 18 tvori netopni strukturni citoplazemski skelet. C-terminalni del citokeratina 8 penetrira skozi celično membrano (Hembrough, 1995; Ditzel, 1997) in veže plazminogen (Kralovich, 1998). Aktivacija plazminogena je pospešena z vezavo tkivnega plazminogenskega aktovatorja (tPA), ki se lahko veže bodisi na citokeratin 8 ali na citokeratin 18 (Kralovich, 1998)Activation of plasminogen on the cell surface is much faster than activation in solution, since the interaction of plasminogen with binding proteins results in a change in the conformation of plasminogen, which is more open to proteolysis (Ellis, 1991). Cytokeratin 8 is a major plasminogen binding protein on the membrane of breast cancer cells. Cytokeratin 8 is an intermediate filamentous protein that, in combination with cytokeratin 18, forms an insoluble structural cytoplasmic skeleton. The C-terminal portion of cytokeratin 8 penetrates the cell membrane (Hembrough, 1995; Ditzel, 1997) and binds plasminogen (Kralovich, 1998). Plasminogen activation is accelerated by the binding of tissue plasminogen activator (tPA), which can bind to either cytokeratin 8 or cytokeratin 18 (Kralovich, 1998)

Zaporedje peptida uroaktivin ustreza aminokislinskemu zaporedju, ki se nahaja v Cterminalnem delu citokeratinov 1, 2, 8, 10 in 18 kot močno ohranjena regija citokeratinov. Predvidevamo, da prav ta regija predstavlja vezalno mesto za tPA kot tudi za urokinazo.The peptide sequence of uroactivin corresponds to the amino acid sequence located in the Cterminal portion of cytokeratins 1, 2, 8, 10 and 18 as a strongly conserved region of cytokeratins. This region is assumed to be the binding site for tPA as well as urokinase.

C. PODATI O STANJU TEHIKEC. DETAILS OF TECHNICAL STATUS

Stanje tehnike na področju uporabe urokinaze za razgradnjo neželenih strdkov v telesu (fibrinolizo) opisujejo naslednji viri, vendar po do sedaj znanih podatkih, aktivatorji urokinaze še niso patentirani:The state of the art in the field of the use of urokinase for the breakdown of unwanted clots in the body (fibrinolysis) is described by the following sources, but according to the data available to date, urokinase activators have not yet been patented:

- Banyai L, Varadi A, Patthy L. Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator. FEBS Lett. 1983 Oct 31 ;163(1):37-41.- Banyai L, Varadi A, Patthy L. Common evolutionary origins of the fibrin-binding structures of a fibronectin and tissue-type plasminogen activator. FEBS Lett. 1983 Oct 31; 163 (1): 37-41.

- Ditzel H, Garrigues U, Andersen C, Larsen M, Garrigues H, Svejgaard A, Hellstrom I, Hellstrom K, Jensenius J: Modified cytokeratins expressed on the surface of carcinoma celiš undergo endocytosis upon binding of human monoclonal antibody and its recombinant Fab fragment. Proč Natl Acad Sci U S A 1997, 94(15):8110-8115.- Ditzel H, Garrigues U, Andersen C, Larsen M, Garrigues H, Svejgaard A, Hellstrom I, Hellstrom K, Jensenius J: Modified cytokeratins expressed on the surface of carcinoma whole undergo endocytosis upon binding of the human monoclonal antibody and its recombinant Fab fragment . Away Natl Acad Sci U S A 1997, 94 (15): 8110-8115.

- Ellis V, Behrendt N, Dano K: Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem 1991, 266(19):12752-12758.- Ellis V, Behrendt N, Dano K: Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem 1991, 266 (19): 12752-12758.

- Hembrough T, Vasudevan J, Allietta M, Glass Wn, Gonias S: A cytokeratin 8-like protein with plasminogen-binding activity is present on the extemal surfaces of hepatocytes, HepG2 celiš and breast carcinoma celi lines. J Celi Sci 1995, 108 (Pt 3):1071-1082.- Hembrough T, Vasudevan J, Allietta M, Glass Wn, Gonias S: A cytokeratin 8-like protein with plasminogen-binding activity is present on the extemal surfaces of hepatocytes, HepG2 whole and breast carcinoma whole lines. J Celi Sci 1995, 108 (Pt 3): 1071–1082.

- Kralovich KR, Li L, Hembrough TA, Webb DJ, Kams LR, Gonias SL. Characterization of the binding sites for plasminogen and tissue-type plasminogen activator in cytokeratin 8 and cytokeratin 18. J Protein Chem. 1998 Nov;17(8):845-54.- Kralovich KR, Li L, Hembrough TA, Webb DJ, Kams LR, Gonias SL. Characterization of binding sites for plasminogen and tissue-type plasminogen activator in cytokeratin 8 and cytokeratin 18. J Protein Chem. 1998 Nov; 17 (8): 845-54.

- Van Zonneveld A J, Veerman H, Pannekoek H. Autonomous functions of structural domains on human tissue-type plasminogen activator. Proč Natl Acad Sci USA. 1986 Jul;83(13):4670-4.- Van Zonneveld A J, Veerman H, Pannekoek H. Autonomous functions of structural domains on human tissue-type plasminogen activator. Away from Natl Acad Sci USA. 1986 Jul; 83 (13): 4670-4.

Walker JB, Nesheim ME. The molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from a fibrin clot perfused with plasmin. J Biol Chem. 1999 Feb 19;274(8):5201 -12.Walker JB, Nesheim ME. Molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from a fibrin clot perfused with plasmin. J Biol Chem. 1999 Feb 19; 274 (8): 5201 -12.

United States Patent 6,861,054; Higazi. March 1, 2005, suPAR stimulating activity of tcuPA-mediated fibrinolysis and different uses thereof.United States Patent 6,861,054; Higazi. March 1, 2005, suPAR stimulating activity of tcuPA-mediated fibrinolysis and different uses.

United States Patent 4,996,050; Tsukada, et al. February 26, 1991: Fibrinolytic activity enhancer.United States Patent 4,996,050; Tsukada, et al. February 26, 1991: Fibrinolytic activity enhancer.

D. OPIS SKIC IZUMAD. DESCRIPTION OF THE DRAWINGS OF THE INVENTION

Skica 1 prikazuje rezultate vezave peptida uroaktivina na urokinazni plazminogenski aktivator, dobljene s pomočjo površinske plazmonske resonance. Krivulje predstavljajo vezavo urokinaznega plazminogenskega aktivatorja na imobiliziran uroaktivin in njegovo disocijacijo pri koncentracijah 10 nM, 20 nM and 50 nM (od spodaj navzgor).Figure 1 shows the results of binding of the uroactivin peptide to the urokinase plasminogen activator obtained by surface plasmon resonance. The curves represent binding of the urokinase plasminogen activator to immobilized uroactivin and its dissociation at concentrations of 10 nM, 20 nM and 50 nM (bottom up).

Skica 2 prikazuje aktivacijo plazminogena ob prisotnosti peptida uroaktivina. Aktivacijo plazminogena smo sledili z merjenjem fluorescence pri 470 nm v prisotnosti 500 pM urokinaznega plazminogenskega aktivatorja, 500 nM plazminogena, specifičnega substrata za plazmin D-Ala-Lev-Lys-AMC (0.5 mM) ter naraščajočih koncentracij peptida. Fluorescenco smo odčitali po 90 min.Figure 2 shows plasminogen activation in the presence of the peptide uroactivin. Plasminogen activation was followed by measuring fluorescence at 470 nm in the presence of 500 pM urokinase plasminogen activator, 500 nM plasminogen, plasmid specific substrate D-Ala-Lev-Lys-AMC (0.5 mM), and increasing peptide concentrations. Fluorescence was read after 90 min.

Skica 3 prikazuje kinetiko aktivacije plazminogena ob prisotnosti peptida uroaktivina. Aktivacijo plazminogena smo sledili z merjenjem fluorescence pri 470 nm v prisotnosti 500 pM urokinaznega plazminogenskega aktivatorja, 500 nM plazminogena, specifičnega substrata za plazmin D-Ala-Lev-Lys-AMC (0.5 mM) ter naraščajočih koncentracij peptida. Fluorescenco smo spremljali 100 min.Figure 3 shows the kinetics of plasminogen activation in the presence of the peptide uroactin. Plasminogen activation was followed by measuring fluorescence at 470 nm in the presence of 500 pM urokinase plasminogen activator, 500 nM plasminogen, plasmid specific substrate D-Ala-Lev-Lys-AMC (0.5 mM), and increasing peptide concentrations. Fluorescence was monitored for 100 min.

Skica 4 prikazuje aktivacijo plazminogena ob prisotnosti peptida uroaktivina. Aktivacijo plazminogena smo sledili z merjenjem fluorescence pri 470 nm v prisotnosti 500 pM tkivnega plazminogenskega aktivatorja, 500 nM plazminogena, specifičnega substrata za plazmin D-Ala-Lev-Lys-AMC (0.5 mM) ter naraščajočih koncentracij peptida. Fluorescenco smo odčitali po 90 min.Figure 4 shows plasminogen activation in the presence of the peptide uroactivin. Plasminogen activation was followed by measuring fluorescence at 470 nm in the presence of 500 pM tissue plasminogen activator, 500 nM plasminogen, specific plasmid substrate D-Ala-Lev-Lys-AMC (0.5 mM), and increasing peptide concentrations. Fluorescence was read after 90 min.

Skica 5 prikazuje kinetiko aktivacije plazminogena ob prisotnosti peptida uroaktivina. Aktivacijo plazminogena smo sledili z merjenjem fluorescence pri 470 nm v prisotnosti 500 pM tkivnega plazminogenskega aktivatorja, 500 nM plazminogena, specifičnega substrata za plazmin D-Ala-Lev-Lys-AMC (0.5 mM) ter naraščajočih koncentracij peptida. Fluorescenco smo spremljali 100 min.Figure 5 shows the kinetics of plasminogen activation in the presence of the peptide uroactin. Plasminogen activation was followed by measuring fluorescence at 470 nm in the presence of 500 pM tissue plasminogen activator, 500 nM plasminogen, specific plasmid substrate D-Ala-Lev-Lys-AMC (0.5 mM), and increasing peptide concentrations. Fluorescence was monitored for 100 min.

Skica 6 prikazuje kontrolni poizkus aktivacije plazminogena ob prisotnosti peptida uroaktivina in v odsotnosti plazminogenskega aktivatorja (uPA ali tPA). Aktivacijo plazminogena smo sledili z merjenjem fluorescence pri 470 nm v prisotnosti 500 nM plazminogena, specifičnega substrata za plazmin D-Ala-Lev-Lys-AMC (0.5 mM) ter naraščajočih koncentracij peptida. Fluorescenco smo odčitali po 90 min.Figure 6 shows a control experiment of plasminogen activation in the presence of a peptide of uroactivin and in the absence of a plasminogen activator (uPA or tPA). Plasminogen activation was followed by measuring fluorescence at 470 nm in the presence of 500 nM plasminogen, a specific substrate for plasmin D-Ala-Lev-Lys-AMC (0.5 mM), and increasing peptide concentrations. Fluorescence was read after 90 min.

Skica 7 prikazuje kontrolni poizkus aktivacije plazminogena ob prisotnosti undekapeptida. Aktivacijo plazminogena smo sledili z merjenjem fluorescence pri 470 nm v prisotnosti 500 pM urokinaznega plazminogenskega aktivatorja, 500 nM plazminogena, specifičnega substrata za plazmin D-Ala-Lev-Lys-AMC (0.5 mM) ter naraščajočih koncentracij undekapeptida. Fluorescenco smo odčitali po 90 min.Figure 7 shows a control experiment of plasminogen activation in the presence of undecapeptide. Plasminogen activation was followed by fluorescence measurements at 470 nm in the presence of 500 pM urokinase plasminogen activator, 500 nM plasminogen, plasmid specific substrate D-Ala-Lev-Lys-AMC (0.5 mM), and increasing undecapeptide concentrations. Fluorescence was read after 90 min.

Skica 8 prikazuje poizkus razgradnje fibrinskega strdka ob prisotnosti peptida uroaktivina. Razgradnjo fibrinskega strdka smo sledili z merjenjem absorbance pri 405 nm v prisotnosti 500 nM plazminogena, urokinaznega plazminogenskega aktivatorja (250 pM, 500 pM ter 1 nM) in naraščajočih koncentracij uroaktivina. Absorbanco smo spremljali do popolne razgadnje fibrinskega strdka.Figure 8 shows an attempt to break down a fibrin clot in the presence of a peptide of uroactivin. The degradation of the fibrin clot was followed by measuring the absorbance at 405 nm in the presence of 500 nM plasminogen, a urokinase plasminogen activator (250 pM, 500 pM and 1 nM) and increasing concentrations of uroactin. Absorbance was monitored until the fibrin clot was completely exposed.

E. IZVEDBENI PRIMERIE. IMPLEMENTING EXAMPLES

Predloženi izum je ponazorjen z naslednji neomejujočimi primeri:The present invention is illustrated by the following non-limiting examples:

1. Načrtovanje peptida1. Design of peptides

Aminokislinsko zaporedje citokeratinov 1, 2, 8, 10 in 18 izvira iz proteinske baze NCBI Protein Database (1346343, 547754, 225702, 40354192 in 30311). Zaporedja smo uredili s pomočjo programa ClustalW multiple sequence alignment software (www.ch.embnet.org) in na osnovi urejenih zaporedij načrtovali zaporedje peptida uroaktivin, ki ne ustreza nobenemu zaporedju omenjenih citokeratinov. Prav tako zaporedja uroaktivina ni v bazi podatkov Blast do sedaj znanih aminokislinskih zaporedij kakršnihkoli živih bitij.The amino acid sequence of cytokeratins 1, 2, 8, 10 and 18 is derived from the NCBI Protein Database protein database (1346343, 547754, 225702, 40354192, and 30311). The sequences were edited using the ClustalW multiple sequence alignment software (www.ch.embnet.org), and based on the ordered sequences, a sequence of the peptide uroactivin that did not correspond to any of the cytokeratin sequences was designed. Also, the uroactin sequence is not in the Blast database of the known amino acid sequences of any living thing so far.

2. Sinteza peptida2. Peptide synthesis

Peptid uroaktivin z aminokislinskim zaporedjem SEQ ID NO: 1 je bil sintetiziran pri Biosynthesis Inc. (Denver, TX, USA). Njegova čistost je bila 85,6 % določena s HPLC in masno analizo.The peptide uroactin with the amino acid sequence of SEQ ID NO: 1 was synthesized by Biosynthesis Inc. (Denver, TX, USA). Its purity was 85.6% determined by HPLC and mass analysis.

3. Testiranje vezave uroaktivina na plazminogenski aktivator s površinsko plazmonsko resonanco3. Testing the binding of uroactin to plasminogen activator by surface plasmon resonance

Vezavo urokinaze na uroaktivin smo določali s sistemom Biacore X (Biacore, Švedska). Poizkus je potekal na CM5 senzorskem čipu (BR-1003-98 BIAcore). Uroaktivin smo imobilizirali pri pretoku 1 pL/min 10 minut (300 RU). Pretočno celico smo nato izprali s 5 pL 10 mM glicinskega pufra (pH 2.2) pri pretoku 30 pL/min. Drugo pretočno celico smo uporabili kot referenčno celico. Enak postopek spiranja smo uporabili za regeneracijo površine dodekapeptida med posameznimi injiciranji različnih koncentracij peptida. uPA smo raztopil v PBST pufru (PBS z 0.05% Tween 20).Urokinase binding to uroactivin was determined using a Biacore X system (Biacore, Sweden). The experiment was run on a CM5 sensor chip (BR-1003-98 BIAcore). Uroactivin was immobilized at a flow rate of 1 pL / min for 10 minutes (300 RU). The flow cell was then washed with 5 µL of 10 mM glycine buffer (pH 2.2) at a flow rate of 30 µL / min. The second flow cell was used as the reference cell. The same rinsing process was used to regenerate the dodecapeptide surface during single injections of different peptide concentrations. uPA was dissolved in PBST buffer (PBS with 0.05% Tween 20).

Vezani uroaktivin smo tretirali z različnimi koncentracijami plazminogenskega aktivatorja. V primeru urokinaznega plazminogenskega aktivatorja smo uporabili 10 nM, 20 nM and 50 nM.Bound uroactin was treated with different concentrations of plasminogen activator. In the case of the urokinase plasminogen activator, 10 nM, 20 nM, and 50 nM were used.

Vse meritve so potekale pri 25°C in pretoku 1 pL/min v 1% PBST pufru. 5 pL uPA smo injicirali v posamezni meritvi. Krivulje asociacije in disociacije urokinaznega plazminogenskega aktivatorja na peptid uroaktivin so prikazane na skici 1. Z metodo premikajoče bazne linije - programski paket Biacore smo določili Ka = 9.8 nM .All measurements were performed at 25 ° C and a flow rate of 1 pL / min in 1% PBST buffer. 5 pL uPA was injected in a single measurement. The association and dissociation curves of the urokinase plasminogen activator on the peptide uroactivin are shown in Figure 1. Using the moving baseline method - the Biacore software package, we determined Ka = 9.8 nM.

4. Aktivacija plazminogena4. Plasminogen activation

Pospešeno aktivacijo plazminogena ob prisotnosti peptida uroaktivina smo sledili z merjenjem fluorescence pri 470 nm, in sovpada s povečanim nastajanjem plazmina. V testu smo uporabili 500 pM urokinazni ali tkivni plazminogenski aktivator, 500 nM plazminogen in 0,5 mM specifični substrat za plazmin D-Ala-Lev-Lys-AMC. Količina nastalega plazmina v 90 min in kinetika njegovega nastanka kažeta na močno povečano nastajanje ob prisotnosti peptida uroaktivina. Nastanek plazmina je odvisno od koncentracije peptida uroaktivina (skice 2-5). V kontrolnih poskusih, kjer plazminogenski aktivator ni bil prisoten, do nastanka plazmina ni prišlo.Accelerated plasminogen activation in the presence of the peptide uroactivin was followed by fluorescence measurements at 470 nm and coincided with increased plasmin production. 500 pM urokinase or tissue plasminogen activator, 500 nM plasminogen, and 0.5 mM specific plasmid substrate D-Ala-Lev-Lys-AMC were used in the assay. The amount of plasmin produced in 90 min and the kinetics of its formation indicate a markedly increased formation in the presence of the peptide uroactivin. Plasmin formation is dependent on the concentration of the peptide uroactivin (Figures 2-5). In control experiments where plasminogen activator was absent, plasmin production did not occur.

uPAuPA

Urokinazni plazminogenski aktivator (uPA) (500pM) smo raztopili v fosfatnem pufru, pH 7.4 in dodali 50 pl/ vodnjaček. Dodali smo različne koncentracije uroaktivina (0.1 μΜ, 0.25 μΜ, 0.5 μΜ, 1 μΜ, 2.5 μΜ ter 5 μΜ) ter inkubirali na 37°C 30 min. Nato smo dodali specifični fluorogeni substrat za plazmin D-Ala-Lev-Lys-AMC (0.5 mM) ter nazadnje plazminogen (500 nM) (vsi od Sigma, St. Louis, MD) v posamezne vodnjačke mikrotiterske plošče in sledili nastanek plazmina 1.5 ure pri 37°C (Ex = 370 nm in Em = 470 nm) s pomočjo fluorescenčnega čitalca mikrotiterskih ploščic (Safire 2, Tecan). V kontrolnem poiskusu smo dodali undekapeptid oz. dodekapeptid z drugačnim zaporedjem. Izvedli smo tudi kontrolni poskus, kjer nismo dodali uPA. Rezultat je reprezentativen trem neodvisnim poizkusom. Podane so povprečne vrednosti štirih paralelk ± standardna deviacija.Urokinase plasminogen activator (uPA) (500pM) was dissolved in phosphate buffer, pH 7.4, and 50 µl / well was added. Different concentrations of uroactivin (0.1 μΜ, 0.25 μΜ, 0.5 μΜ, 1 μΜ, 2.5 μΜ, and 5 μΜ) were added and incubated at 37 ° C for 30 min. Subsequently, a specific fluorogenic substrate for plasmin D-Ala-Lev-Lys-AMC (0.5 mM) and finally plasminogen (500 nM) (all from Sigma, St. Louis, MD) were added to individual well microtiter plates and followed by plasmin formation for 1.5 hours at 37 ° C (Ex = 370 nm and Em = 470 nm) using a fluorescence microtiter plate reader (Safire 2, Tecan). In the control experiment, undecapeptide was added. dodecapeptide with a different sequence. We also performed a control experiment where we did not add uPA. The result is representative of three independent experiments. The mean values of the four parallels ± standard deviation are given.

tPAtPA

Tkivni plazminogenski aktivator (tPA) (500pM) smo raztopili v fosfatnem pufru, pH 7.4 in dodali 50 μΐ/ vodnjaček. Dodali smo različne koncentracije uroaktivina (0.1 μΜ, 0.25 μΜ, 0.5 μΜ, 1 μΜ, 2.5 μΜ ter 5 μΜ) ter inkubirali na 37°C 30 min. Nato smo dodali specifični fluorogeni substrat za plazmin D-Ala-Lev-Lys-AMC (0.5 mM) ter nazadnje plazminogen (500 nM) (vsi od Sigma, St. Louis, MD) v posamezne vodnjačke mikrotiterske plošče in sledili nastanek plazmina 1.5 ure pri 37°C (Ex = 370 nm in Em = 470 nm) s pomočjo fluorescenčnega čitalca mikrotiterskih ploščic (Safire 2, Tecan). V kontrolnem poiskusu smo dodali undekapeptid oz. dodekapeptid z drugačnim zaporedjem. Izvedli smo tudi kontrolni poskus, kjer nismo dodali tPA. Rezultat je reprezentativen trem neodvisnim poizkusom. Podane so povprečne vrednosti štirih paralelk ± standardna deviacija.Tissue plasminogen activator (tPA) (500pM) was dissolved in phosphate buffer pH 7.4 and 50 μΐ / well was added. Different concentrations of uroactivin (0.1 μΜ, 0.25 μΜ, 0.5 μΜ, 1 μΜ, 2.5 μΜ, and 5 μΜ) were added and incubated at 37 ° C for 30 min. Subsequently, a specific fluorogenic substrate for plasmin D-Ala-Lev-Lys-AMC (0.5 mM) and finally plasminogen (500 nM) (all from Sigma, St. Louis, MD) were added to individual well microtiter plates and followed by plasmin formation for 1.5 hours at 37 ° C (Ex = 370 nm and Em = 470 nm) using a fluorescence microtiter plate reader (Safire 2, Tecan). In the control experiment, undecapeptide was added. dodecapeptide with a different sequence. We also performed a control experiment where no tPA was added. The result is representative of three independent experiments. The mean values of the four parallels ± standard deviation are given.

5. Test raztapljanja fibrinskega strdka5. Fibrin clot dissolution test

Fibrinski strdek smo naredili z dodatkom 50 μΐ človeškega trombina (0.3 U/ml, končna koncentracija) (1NIH U = 0.324 ± 0.073 pg trombina) in CaCl2 (20 mM) 50 μΐ človeškemu fibrinogenu (2 mg/ml, končna koncentracija) v plošči s 96 vodnjački. Tvorba strdka je potekala 3 ure na sobni temperaturi. Nato smo dodali 50 μΐ 1 μΜ plazminogena ter 50 μΐ urokinaznega plazminogenskega aktivatorja (500 pM, 1.0 nM, 2.0 nM) z dodanim uroaktivinom (20 μΜ, 10 μΜ, 5 μΜ, 0 M). Spremembe v motnosti strdka smo spremljali z merjenjem spremembe absorbance v času pri 405 nm pri 25 °C na mikrotiterskem čitalcu. Meritve smo izvajali v štirih paralelkah za vsako koncentracijo ter poizkus trikrat ponovili.Fibrin clot was made by adding 50 μΐ human thrombin (0.3 U / ml, final concentration) (1NI U = 0.324 ± 0.073 pg thrombin) and CaCl 2 (20 mM) to 50 μΐ human fibrinogen (2 mg / ml, final concentration) in 96-well plate. The clot formation took place at room temperature for 3 hours. Then, 50 μΐ 1 μΜ plasminogen and 50 μ 50 urokinase plasminogen activator (500 pM, 1.0 nM, 2.0 nM) were added with the addition of uroactin (20 μΜ, 10 μΜ, 5 μΜ, 0 M). Changes in clot opacity were monitored by measuring the change in absorbance over time at 405 nm at 25 ° C on a microtiter reader. The measurements were performed in four parallel units for each concentration and repeated three times.

Ί2>Ί2>

SEQUENCE LISTING <110> OBERMAJER Nataša, DOLJAK Bojan, KOS Janko, UNIVERSITY OF LJUBLJANA <120> Peptide uroaktivin, as activator of enzyme urokinase (Peptid uroaktivin, kot aktivator encima urokinaze) <140> P-200800224 <141> 2008-09-25 <160> 1 <210> 1 <211> 12 <212> PRT <213> Artificial sequence <220>SEQUENCE LISTING <110> OBERMAJER Natasa, DOLJAK Bojan, KOS Janko, UNIVERSITY OF LJUBLJANA <120> Peptide uroactivin, as an activator of enzyme urokinase (Peptide uroactivin, as an activator of the urokinase enzyme) <140> P-200800224 <141> 2008-09- 2008 25 <160> 1 <210> 1 <211> 12 <212> PRT <213> Artificial sequence <220>

<223> Designed peptide based on highly homologous region of OKI, CK2, CK8, CK10 and CK18.<223> Designed peptide based on a highly homologous region of OKI, CK2, CK8, CK10 and CK18.

<400> 1<400> 1

Val Lys Ile Ala Leu Glu Val Glu Ile Ala Thr TyrVal Lys Ile Ala Leu Glu Val Lys Ile Ala Thr Tyr

Claims (11)

1. Zaporedje aminokislin v uroaktivinu (peptidu z aminokislinskim zaporedjem SEQ ID NO. 1) in iz zaporedja izhajajoči peptidomimetiki.An amino acid sequence in uroactivin (a peptide having the amino acid sequence of SEQ ID NO. 1) and peptidomimetics derived from the sequence. 2. Farmacevtski sestavek, označen s tem, da vsebuje uroaktivin ali iz njega izhajajoče peptidomimetike.2. A pharmaceutical composition comprising uroactivin or peptidomimetics derived therefrom. 3. Farmacevtska oblika, označena s tem, da vsebuje uroaktivin in iz njega izhajajoče peptidomimetike po kateremukoli zahtevku 1-2, ki omogoča parenteralni vnos.A pharmaceutical formulation comprising uroactivin and peptidomimetics derived therefrom according to any one of claims 1-2, which permits parenteral administration. 4. Medicinski pripomoček, označen s tem, da vsebuje uroaktivin in iz njega izhajajoče peptidomimetike po kateremukoli zahtevku 1-2, ki se uporablja pri posrednem ali neposrednem preprečevanju strjevanja krvi, še posebej pri katetrih in žilnih vsadkih.A medical device comprising uroactin and peptidomimetics derived therefrom according to any one of claims 1-2, for use in the direct or indirect prevention of blood clotting, especially in catheters and vascular implants. 5. Peptid uroaktivin z aminokislinskim zaporedjem SEQ ID NO.l ali iz njega izhajajoči peptidomimetiki po zahtevku 1 za uporabo kot aktivator encimov, ki pospešijo proces fibrinolize.The peptide uroactin with the amino acid sequence of SEQ ID NO.l or peptidomimetics derived therefrom according to claim 1 for use as an activator of enzymes that accelerate the fibrinolysis process. 6. Peptid uroaktivin z aminokislinskim zaporedjem SEQ ID NO.l ali iz njega izhajajoči peptidomimetiki po zahtevku 1, za uporabo kot aktivator urokinaznega plazminogenskega aktivatorja.A peptide uroactin with the amino acid sequence of SEQ ID NO.l or peptidomimetics derived therefrom according to claim 1 for use as a urokinase plasminogen activator. 7. Peptid uroaktivin z aminokislinskim zaporedjem SEQ ID NO. 1 ali iz njega izhajajoči peptidomimetiki po zahtevku 1, za uporabo kot aktivator tkivnega plazminogenskega aktivatorja.7. The peptide of uroactin with the amino acid sequence of SEQ ID NO. 1 or peptidomimetics derived therefrom according to claim 1 for use as a tissue plasminogen activator. 8 . Peptid uroaktivin z aminokislinskim zaporedjem SEQ ID NO.l ali iz njega izhajajoči peptidomimetiki po zahtevku 1 za uporabo kot zdravilo.8. The peptide uroactin with the amino acid sequence of SEQ ID NO.l or peptidomimetics derived therefrom according to claim 1 for use as a medicament. 9. Farmacevtski sestavek, ki vsebuje peptid uroaktivin z aminokislinskim zaporedjem SEQ ID NO. 1 ali iz njega izhajajoče peptidomimetike po zahtevku 1, za uporabo kot aktivator encimov, ki pospešijo proces fibrinolize, kot aktivator urokinaznega plazminogenskega aktivatorja ali kot aktivator tkivnega plazminogenskega aktivatorja.A pharmaceutical composition comprising the peptide uroactin with the amino acid sequence of SEQ ID NO. 1 or peptidomimetics derived therefrom according to claim 1 for use as an activator of enzymes that accelerate the fibrinolysis process, as an activator of a urokinase plasminogen activator or as a tissue plasminogen activator. 10. Uporaba peptida uroaktivina z aminokislinskim zaporedjem SEQ ID NO. 1 ali iz njega izhajajočih peptidomimetikov po zahtevku 1, za izdelavo farmacevtskega sestavka za zdravljenje bolezni ali stanj, pri katerih je indicirana uporaba trobmolitikov.Use of the peptide uroactin with the amino acid sequence of SEQ ID NO. 1 or peptidomimetics derived therefrom according to claim 1, for the manufacture of a pharmaceutical composition for the treatment of diseases or conditions that indicate the use of platelet. 11. Uporaba peptida uroaktivina z aminokislinskim zaporedjem SEQ ID NO. 1 ali iz njega izhajajočih peptidomimetikov po zahtevku 1, za izdelavo farmacevtskega sestavka za zdravljenje akutne koronarne tromboze (akutnega miokardnega infarkta), akutne ishemične možganske kapi, akutne pljučne tromboembolije, globinske venske tromboze, akutne arterijske tromboembolije, akutne arterijske tromboze, kot tudi za zagotavljanje prehodnosti arteriovenskih kanul in intravenskih katetrov.Use of a uroactin peptide with the amino acid sequence of SEQ ID NO. 1 or peptidomimetics derived therefrom according to claim 1, for the manufacture of a pharmaceutical composition for the treatment of acute coronary thrombosis (acute myocardial infarction), acute ischemic stroke, acute pulmonary thromboembolism, deep vein thrombosis, acute arterial thromboembolism, and acute thromboembolism, patency of arteriovenous cannulas and intravenous catheters.
SI200800224A 2008-09-25 2008-09-25 Peptide uroaktivin as activator of enzyme urokinase SI22865A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200800224A SI22865A (en) 2008-09-25 2008-09-25 Peptide uroaktivin as activator of enzyme urokinase
PCT/EP2009/006899 WO2010034490A1 (en) 2008-09-25 2009-09-24 Peptide uroaktivin, as an activator of the enzyme urokinase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200800224A SI22865A (en) 2008-09-25 2008-09-25 Peptide uroaktivin as activator of enzyme urokinase

Publications (1)

Publication Number Publication Date
SI22865A true SI22865A (en) 2010-03-31

Family

ID=41227264

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200800224A SI22865A (en) 2008-09-25 2008-09-25 Peptide uroaktivin as activator of enzyme urokinase

Country Status (2)

Country Link
SI (1) SI22865A (en)
WO (1) WO2010034490A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2768852A4 (en) * 2011-10-19 2015-05-13 Theratechnologies Inc Peptide compounds derived from melanotransferrin and uses thereof
MX2016005720A (en) 2013-11-04 2016-11-25 Univ Texas Compositions and methods for administration of an enzyme to a subject's airway.
WO2022117724A1 (en) 2020-12-04 2022-06-09 Univerza V Ljubljani 8-hydroxyquinoline cysteine protease inhibitors for use in the prevention and/or treatment of a corona virus disease
CN115785191A (en) * 2022-11-24 2023-03-14 潍坊医学院 Urokinase polypeptide inhibitor and preparation method thereof

Also Published As

Publication number Publication date
WO2010034490A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
Weisel et al. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate
Nagashima et al. An inhibitor of activated thrombin-activatable fibrinolysis inhibitor potentiates tissue-type plasminogen activator-induced thrombolysis in a rabbit jugular vein thrombolysis model
Collen et al. Basic and clinical aspects of fibrinolysis and thrombolysis
Dobrovolsky et al. The fibrinolysis system: regulation of activity and physiologic functions of its main components
Mueller et al. Thrombolysis in myocardial infarction (TIMI): comparative studies of coronary reperfusion and systemic fibrinogenolysis with two forms of recombinant tissue-type plasminogen activator
Kwon et al. S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors
EP1651252A2 (en) Activated protein c variants with normal cytoprotective activity but reduced anticoagulant activity
Flight et al. Comparison of textilinin-1 with aprotinin as serine protease inhibitors and as antifibrinolytic agents
Pathak et al. Cell receptor and cofactor interactions of the contact activation system and factor XI
Vaughan et al. Recombinant plasminogen activator inhibitor-1 reverses the bleeding tendency associated with the combined administration of tissue-type plasminogen activator and aspirin in rabbits.
SI22865A (en) Peptide uroaktivin as activator of enzyme urokinase
Da Silva et al. Anti-platelet effect of cumanastatin 1, a disintegrin isolated from venom of South American Crotalus rattlesnake
Weisel et al. Mechanisms of fibrinolysis and basic principles of management
Haj‐Yehia et al. Urokinase‐derived peptides regulate vascular smooth muscle contraction in vitro and in vivo
Nieuwenhuizen Fibrinogen and its specific sites for modulation of t-PA induced fibrinolysis
Conard et al. Theoretic and practical considerations on laboratory monitoring of thrombolytic therapy
Meretoja et al. Thrombolytic therapy in acute ischemic stroke-basic concepts
Mutch Regulation of fibrinolysis by platelets
Chen et al. Functional properties of a novel mutant of staphylokinase with platelet-targeted fibrinolysis and antiplatelet aggregation activities
Guimarães et al. Fibrinolytic efficacy of Amediplase, Tenecteplase and scu-PA in different external plasma clot lysis models
Sazonova et al. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator
De Caterina et al. Cellular effects of thrombin: pharmacology of the receptor (s) in various cell types and possible development of receptor antagonists
Ren et al. Study on the activity of recombinant mutant tissue-type plasminogen activator fused with the C-terminal fragment of hirudin
Marder et al. Foundation and sites of action of antithrombotic agents
Blomback Fibrinogen and fibrin formation and its role in fibrinolysis

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20100412

KO00 Lapse of patent

Effective date: 20130507