SI22723A - Dedicated display with intelligent light points - Google Patents

Dedicated display with intelligent light points Download PDF

Info

Publication number
SI22723A
SI22723A SI200800019A SI200800019A SI22723A SI 22723 A SI22723 A SI 22723A SI 200800019 A SI200800019 A SI 200800019A SI 200800019 A SI200800019 A SI 200800019A SI 22723 A SI22723 A SI 22723A
Authority
SI
Slovenia
Prior art keywords
light
ipix
point
led
dedicated
Prior art date
Application number
SI200800019A
Other languages
Slovenian (sl)
Inventor
Jaro Kapus
Original Assignee
Jaro Kapus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jaro Kapus filed Critical Jaro Kapus
Priority to SI200800019A priority Critical patent/SI22723A/en
Priority to EP09468001A priority patent/EP2110806A3/en
Publication of SI22723A publication Critical patent/SI22723A/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2085Special arrangements for addressing the individual elements of the matrix, other than by driving respective rows and columns in combination
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2085Special arrangements for addressing the individual elements of the matrix, other than by driving respective rows and columns in combination
    • G09G3/2088Special arrangements for addressing the individual elements of the matrix, other than by driving respective rows and columns in combination with use of a plurality of processors, each processor controlling a number of individual elements of the matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Audible And Visible Signals (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

Subject of the invention is a dedicated display with integrated intelligent light points, where the positions of the light points are arbitrary and predefined, hence they are not necessarily positioned in a grid. The multitude of mutually logically connected light points with elements like (bulb, LED, LCD, oLED, mechanical display or any other element, which emits or reflects light) creates a light field, which represent a variable light-based traffic sign, information panel, ad panel etc. and is controlled via PCBUS (Power Communication Bus) of the supply communication bus, which links the light elements to the controller and requires only two conductors for this.

Description

NAMENSKI PRIKAZOVALNIK Z INTELIGENTNIMI SVETLOBNIMIPURPOSE DISPLAY WITH INTELLIGENT LIGHT

TOČKAMIPOINTS

Predmet izuma je namenski prikazovalnik z inteligentnimi svetlobnimi točkami, kjer so pozicije svetlobnih točk poljubne in vnaprej definirane, torej niso nujno pozicionirane v rastru. Množica med seboj logično povezanih svetlobnih točk z elementi kot so (žarnica, LED, LCD, oLED, mehanski displaj, ali katerikoli element, ki oddaja ali reflektira svetlobo) tvori svetlobno polje, ki predstavlja spremenljive svetlobne prometne znake, informacijske table, reklamne napise, itd., in je krmiljena preko is PCBUS (Power Communication Bus) napajalnega komunikacijskega vodila, ki povezuje posamezne svetlobne točke s krmilnikom in za to potrebuje samo dva vodnika. Izum spada v razred G09G 03/32 mednarodne patentne klasifikacije.The object of the invention is a dedicated display with intelligent light points, where the positions of the light points are arbitrary and predefined, so they are not necessarily positioned in the raster. A plurality of logically related light points with elements such as (bulb, LED, LCD, oLED, mechanical displacement, or any element that emits or reflects light) forms a light field that represents variable light traffic signs, information boards, advertising signs, etc., and is controlled via is PCBUS (Power Communication Bus) power communication bus, which connects the individual light points to the controller and requires only two conductors. The invention belongs to the class G09G 03/32 of the international patent classification.

Tehnični problem, ki ga izum uspešno rešuje, je omogočiti razvoj serijske proizvodnje unikatnih namenskih prikazovalnikov, ki naj bi kljub bistveno kompleksnejši rešitvi (v primerjavi z LED verigami), zagotovili nižjo ceno unikatnih prikazovalnikov, zaradi možne enostavne in hitre avtomatizirane serijske proizvodnje, kjer se postavitev svetlobnih točk na vsakem posameznem prikazovalniku lahko razlikuje.A technical problem which the invention successfully solves is to enable the development of serial production of unique dedicated displays, which, despite a significantly more complex solution (compared to LED chains), would provide a lower price for unique displays, due to the possibility of simple and fast automated serial production, where the layout of the light points on each individual display may vary.

Rešitev zastavljenega tehničnega problema je torej temeljni paradoks serijske proizvodnje unikatov. Dosedanje rešitve temeljijo na povezovanju posameznih svetlobnih točk z žicami. Druga rešitev pa je izdelava namenskega tiskanega vezja, na katerem so na želenih mestih svetlobne točke istočasno pa krmilnik zanje.The solution to the technical problem posed is therefore the fundamental paradox of serial production of unique products. Previous solutions are based on connecting individual light points to wires. Another solution is to make a dedicated printed circuit board with the light points at the desired points at the same time as the controller for them.

Obe dosedanji rešitvi nista najbolj primerni za maloserijske in prototipne rešitve. Zahtevata veliko ročnega dela tistega, ki napravo sestavlja ali pa znanja in razvojnega dela strokovnjaka. To zahteva veliko časa in velikokrat prevelike stroške. Avtomatizacija proizvodnje bi bila zelo kompleksna, draga in lahko tudi nezanesljiva.Both solutions so far are not best suited for small-scale and prototype solutions. It requires a lot of manual work by the person who assembles the device or by the knowledge and development work of a specialist. This takes a lot of time and often costs too much. Manufacturing automation would be very complex, expensive and also unreliable.

Pri namenskem prikazovalniku z inteligentnimi svetlobnimi točkami po izumu so pozicije svetlobnih točk poljubne in vnaprej definirane, torej niso nujno pozicionirane v rastru (kot npr. pri matričnem prikazovalniku) pri čemer je uporabljena rešitev, kjer ima PCBUS tudi funkcijo nosilne is konstrukcije, torej montaža posameznih svetlobnih točk iPix na nosilno ploščo z dvema prevodnima plastema.In a dedicated intelligent light display device according to the invention, the light positions are arbitrary and predefined, so they are not necessarily positioned in the screen (such as in a matrix display) using a solution where the PCBUS also has the function of load-bearing structure, ie the assembly of individual iPix light points onto a carrier plate with two conductive layers.

Izum bomo podrobneje obrazložili na osnovi izvedbenega primera in pripadajoči slik, ki kažejo možne aplikacije in izvedbe, pri čemer bodo v nadaljevanju opisane tri osnovne vrste rešitev in sicer: poenostavljen sistem za prikaz samo dveh slik, enostaven sistem za prikaz do 2**N slik in kompleksen sistem z možnostjo kontrole posamezne svetlobne točke iPix:The invention will be explained in more detail on the basis of an embodiment and accompanying figures showing possible applications and embodiments, with three basic types of solutions described below: a simplified system for displaying only two images, a simple system for displaying up to 2 ** N images and a complex system capable of controlling individual iPix light points:

slika 1 osnovna izvedbena ideja namenskega prikazovalnika z inteligentnimi svetlobnimi elementi pri kompleksnem sistemu z možnostjo kontrole posamezne svetlobne točke po izumu;FIG. 1 is a basic embodiment of a dedicated display with intelligent light elements in a complex system capable of controlling a single light point according to the invention; FIG.

slika 2 vezje osnovne enote svetlobne točke za prikaz samo dveh slik;Figure 2 is a circuit of the base unit of the light point for displaying only two images;

slika 3 kodni diagram krmiljenja osnovne enote svetlobne točke pri prikazu štirih slik;Fig. 3 is a code diagram of the control of the base unit of the light point when displaying four images;

slika 4 vezje osnovne enote svetlobne točke za prikaz samo 2**N slik, v nadaljevanju bo N = 4;figure 4 circuit of the base unit of the light point to display only 2 ** N images, hereafter N = 4;

slika 5 shematski prikaz variantne rešitve z žičnimi povezavami; slika 6 shematski prikaz variantne rešitve na nosilni plošči z dvema prevodnima plastema;Fig. 5 is a schematic illustration of a variant solution with wire connections; 6 is a schematic view of a variant solution on a support plate with two conductive layers;

slika 7 vezje osnovne enote svetlobne točke;7 is a circuit of a base unit of a light point;

slika 8 diagram impulzov pri komunikaciji;Fig. 8 diagram of impulses in communication;

slika 9 povezava krmilnika z osnovno enoto svetlobne točke; slika 10 komunikacijski paketi v enem komunikacijskem ciklu; slika 11 vezje za detekcijo napak osnovne enote svetlobne točke.Fig. 9 shows the connection of the controller to the base unit of the light point; Figure 10 communication packets in a single communication cycle; Fig. 11 Fault detection circuit of the light unit base unit.

Osnovna izvedbena ideja namenskega prikazovalnika z inteligentnimi 20 svetlobnimi točkami pri kompleksnem sistemu z možnostjo kontrole posamezne svetlobne točke iPix je prikazana na sliki 1. Vsaka svetlobna točka iPix vsebuje svetlobni element LED in mikrokontroler MPU, ki komunicira s glavnim krmilnikom preko napajalnega komunikacijskega vodila PCBUS. Napajanje je lahko izvedeno preko dveh prevodnih plošč, ki sta med seboj izolirani. Pri tovrstni rešitvi odpadejo vse žice in izvedba avtomatiziranega procesa se izredno poenostavi. MPU, ki ga vsebuje vsaka svetlobna točka iPix omogoča, poleg komunikacije tudi direktno krmiljenje svetlobne točke iPix in nadzira njegovo pravilnost delovanja. V primeru nepravilnega delovanja svetlobne točke iPix to sporoči glavnemu krmilniku.The basic implementation idea of a dedicated 20-point intelligent display for a complex system capable of controlling individual iPix points is shown in Figure 1. Each iPix point contains an LED element and an MPU microcontroller that communicates with the main controller via the PCBUS power bus. Power can be supplied via two conductive panels, which are isolated from each other. This kind of solution eliminates all the wires and the automation process is extremely simplified. The MPU contained in each iPix light point enables, in addition to communication, direct control of the iPix light point and controls its proper functioning. If the iPix point light is malfunctioning, it reports this to the master controller.

Na sliki 2 je prikazano vezje osnovne enote svetlobne točke iPix' za prikaz samo dveh slik. Sestavljena je iz vzporedne vezave dveh io zaporednih vezav diode D, upora in LED 1 in diode D, upora in LED 2 diode. Takšna izvedba omogoča izvedbo namenskega prikazovalnika, prirejenega za tipično aplikacijo, ki je namenjena prikazu samo dveh slik (npr. prometni znak križ - puščica). V tem primeru osnovna enota svetlobne točke iPix' ne potrebuje nobene inteligence, ker je napajanje is terminalov A in B z izmenično napetostjo. V vsakem primeru gori samo en svetlobni element (LED 1 ali LED 2 dioda). Diode D so potrebne samo kadar je za LED VFmax < Vab. Fizična izvedba svetlobne točke iPix' je enostavna, driver za polje svetlobnih točk je možno enostavno izvesti z Hbridge FET močnostno stopnjo, cena posameznih svetlobnih točk iPix' pa je minimalna.Figure 2 shows the iPix 'base unit circuit for displaying only two images. It consists of the parallel connection of two io sequential connections of diode D, resistor and LED 1 and diode D, resistor and LED 2. Such an embodiment permits the execution of a dedicated display adapted for a typical application intended for displaying only two images (eg, the cross-arrow traffic sign). In this case, the iPix 'base unit does not require any intelligence, since the power is from AC terminals A and B. In each case, only one light element (LED 1 or LED 2) lights up. D diodes are only required when VFmax <Bait LED. The physical implementation of the iPix 'light point is simple, the driver for the light point field can be easily implemented with the Hbridge FET power level, and the cost of individual iPix' light points is minimal.

Pri variantni rešitvi, kjer je potrebno na namenskem prikazovalniku prikazati do največ 2**N slik (možnost posamične kontrole N skupin iPix točk), je izvedbeni primer prikazan na slikah 3 in 4. Pri tej rešitvi lahko svetlobna točka iPix nastopa v večih slikah. Informacija pri napajanju svetlobne točke je zakodirana na način, kot ga prikazuje kodni diagram na sliki 3. Na periodo menjave slike Tslike, ki je običajno dolg čas reda velikosti sekunde, se pojavi modulacija v času Tdata, ki je bistveno krajša od časa menjave slike, zato ne moti napajanje LED in ne vpliva na svetilnost. V času Tdata se pošlje N podatkovnih pulzov, katerih vsota določa kodo, ki prižiga ustrezno osnovno enoto svetlobne točke iPix. Poenostavljeno vezje, ki bi omogoča dekodiranje in poganjanje osnovne enote svetlobne točke iPix je prikazano na sliki 4.In the variant solution, where up to a maximum of 2 ** N images need to be displayed on the dedicated display (the possibility of individually controlling N groups of iPix points), the implementation example is shown in Figures 3 and 4. In this solution, the iPix light point can appear in several images. The information for powering the light point is encoded as shown in the code diagram in Figure 3. On the Tslike image-changing period, which is usually a long time of the order of a second, modulation occurs at Tdata, which is substantially shorter than the time of image change, therefore, it does not interfere with the LED power supply and does not affect the luminance. During Tdata, N data pulses are sent, the sum of which determines the code that fires the corresponding iPix lightpoint base unit. A simplified circuit to decode and drive the iPix Light Point Base Unit is shown in Figure 4.

io Rezerva napajanja med prenosom podatkov je spet izvedena z diodo D in C2. Brisanje števca (start detekcije podatkov) je izvedeno z diferenciatorjem C1 in R1. Kodo, ki prižiga LED pa izberemo s priklopom na ustrezno sponko Qx. Logiko sprejemne kode je mogoče izvesti z enostavnim 4 bitnim števcem serije 74, recimo 74HC163 (za primer N=4). is Za odločitev po uporabi predloženega vezja obstajajajo predvsem tri glavne prednosti take rešitve in sicer, da je cena za 74 vezje za faktor 3 5 manjša od najcenejšega CPU, ni potrebno razvijati softvera za svetlobno točko in da je gonilnik in generator podatkovnih pulzov je zelo enostaven.io The power reserve during data transmission is again made using diodes D and C2. Deletion of the counter (start of data detection) is performed with the differentiator C1 and R1. The code that lights up the LED is selected by connecting to the appropriate Qx clip. The receiving code logic can be implemented with a simple 4 bit series 74 counter, say 74HC163 (for example N = 4). is There are three main advantages to deciding whether to use the circuit provided, namely that the price for the 74 circuit by a factor of 3 5 is less than the cheapest CPU, no need to develop light point software, and that the driver and data pulse generator is very easy .

2o Na sliki 5 je prikazan shematski prikaz variantne rešitve namenskega prikazovalnika z inteligentnimi svetlobnimi točkami iPix v ohišju O pri kompleksnem sistemu z možnostjo kontrole posamezne svetlobne točke iPix z žičnimi povezavami, na sliki 6 pa shematski prikaz iste variantne rešitve na nosilni plošči v ohišju O z dvema prevodnima plastema P1 ,P2 in vmesno izolacijo I medtem ko kaže slika 7 vezje osnovne enote svetlobne točke iPix.2o Figure 5 shows a schematic view of a dedicated solution of a dedicated display with intelligent iPix light points in O housing for a complex system with the ability to control a single iPix light point with wire connections, and Figure 6 shows a schematic representation of the same variant solution on a carrier plate in O housing two conductive layers P1, P2, and intermediate insulation I, while Figure 7 shows the base unit unit of the iPix light point.

Lastnost izbranih PIC kontrolerjev je nizka poraba pod 200μΑ in napajanje od 2 do 5V. Oboje je zelo primerno za ta projekt, ker bo v dveh fazah osnovnega cikla MPU napanje samo iz kondenzatorja C. Kapacitivnost C in časi posameznih faz cikla so zato medsebojno povezani. Zamisel celotnega delovanja zagotavlja, da bo to mogoče doseči.The selected PIC controllers feature low power consumption below 200μΑ and 2 to 5V power supply. Both are very well suited to this project because in the two phases of the basic MPU cycle, only the capacitor C. will be energized. The capacitance C and the times of the individual phases of the cycle are therefore interconnected. The idea behind the whole operation is that it will be achievable.

io Tokovna omejitev MCU izhoda je 20 mA toka skozi LED, kar bo v tem primeru zadoščalo. Tok lahko dodatno limitiramo z izborom upora Rled. Svetilnost diode bo uravnaval MPU s pulznoširinsko modulacijo v fazi READ. Diagram impulzov pri komunikaciji je prikazan na sliki 8. Doseganje vsaj 16 nivojev svetilnosti zato ni problem. Zaradi komunikacije is in sinhronizacije 100% duty cikel ni mogoč, realno pa se bo približati 90%. Komunikacija se vedno vrši ciklično in sinhrono. Perioda cikla je konstantna. Ker sta napajanje in komunikacija združena po istem vodu, je problem komunikacije in napajanja treba urediti tako, da zagotavlja konstantno svetilnost, ne glede na komunikacijo. Zato uporabimo rešitev s komunikacijskimi pulzi, ki so vedno prisotni, ne glede na preneseno informacijo in modulacijo teh pulzov s koristno informacijo. En cikel komunikacije se deli na tri faze in sicer (slika 7) READ - prenos od kontrolerja do svetlobne točke iPix. V to smer gredo komande za svetlobno točko iPix in podatki: stanje, svetilnost, mode delovanja VVRITE - prenos iz svetlobne točke iPix nazaj v kontroler. V to smer se prenaša minimalna količina informacij, v glavnem gre za status »error LED« ; SYNC - sinhronizacija začetka.io The current limitation of the MCU output is 20 mA of current through the LED, which will be sufficient in this case. The current can be further limited by selecting the Rled resistor. The brightness of the diode will be controlled by the pulse width modulation MPU in the READ phase. The impulse diagram for communication is shown in Figure 8. Reaching at least 16 luminosity levels is therefore not a problem. Due to the communication of is and synchronization, a 100% duty cycle is not possible, but in real terms it will approach 90%. Communication is always done cyclically and synchronously. The cycle period is constant. Since the power supply and communication are combined along the same line, the communication and power supply problem must be arranged in such a way that it ensures constant luminosity, regardless of communication. Therefore, we use the solution with communication pulses that are always present, regardless of the information transferred and the modulation of these pulses with useful information. One communication cycle is divided into three phases, namely (Figure 7) READ - Transmission from the controller to the iPix light point. The iPix light point controls and data go in this direction: status, luminance, operating modes VVRITE - transfer from iPix light point back to the controller. A minimal amount of information is transmitted in this direction, mainly in the status of "error LED"; SYNC - start synchronization.

Omenjene tri cikle omogoča vezava, ki je podana na sliki 9, in prikazuje povezavo krmilnika z osnovno enoto svetlobne točke iPix.These three cycles are made possible by the binding given in Figure 9, which shows the controller's connection to the iPix base unit.

V fazi READ je napajalna napetost Un = UR večja od Uf (napetost LED diode), zato ta lahko sveti. Tok skozi diodo definira upor Rled. Un v tem primeru zagotavlja tudi napajanje MPU preko diode D. Pri tem se tudi io kondenzator C nabije na UR. V tej fazi so prisotni kratki negativni komunikacijski pulzi na napajanju, ki so nosilci informacije pri komunikaciji READ (glej detajl). Dolžina teh pulzov Tpulz je bistveno manjša od periode pojavljanja teh pulzov Tbit. Kar omogoča, da opazno ne vplivajo na svetilnost LED. Kodiranje (modulacija) teh pulzov mora biti taka, da se število komunikacijskih pulzov in širina ne spreminjata, kar zagotavlja enakomerno svetilnost ne glede na komunikacijo. Ker v tej fazi lahko svetijo vse svetlobne točke iPix, je tukaj napajalni tok velik.In the READ phase, the supply voltage Un = UR is greater than Uf (LED voltage), so it can illuminate. The current through the diode defines the Rled resistor. Un in this case also provides power to the MPU via diode D. In this case, also the capacitor C is charged to the UR. At this stage, short negative communication pulses on the power supply are present, which are the carriers of information in READ communication (see detail). The length of these Tpulse pulses is significantly smaller than the period of occurrence of these Tbit pulses. Which allows them to not noticeably affect the brightness of the LED. The coding (modulation) of these pulses must be such that the number of communication pulses and widths do not change, ensuring uniform luminosity regardless of communication. Since all iPix light points can be lit at this stage, the power supply here is large.

V fazi VVRITE se napajalna napetost Un zmanjša na Uw- pod L/fLED. Zato se tok skozi diodo avtomatsko prekine. Napetost Un je tudi manjšaIn the VVRITE phase, the supply voltage Un is reduced to Uw- under L / fLED. Therefore, the current through the diode is automatically interrupted. The voltage of Un is also less

2o kot napetost kondenzatorja C, ki sedaj napaja MCU. Tok iz kondenzatorja lahko teče samo v MCU in ne nazaj, kar preprečuje dioda D. Tok v tej fazi pade praktično na nič, kar omogoča, da je napajanje v tej fazi preko relativno visoke impedance. Dejansko je napajanje preko upora Rfw. Vse to pa omogoča, da izbrana svetlobna točka iPix vsili GND na Un preko IN/OUT MPU pina, kar omogoča komunikacijo nazaj v krmilnik.2o as the voltage of capacitor C which is now supplying the MCU. The current from the capacitor can only flow into the MCU and not back, which prevents diode D. The current drops practically to zero at this stage, allowing the power to be delivered at this stage via relatively high impedance. In fact, the power is through the Rfw resistor. All this allows the selected iPix light point to force GND on Un via an IN / OUT MPU pin, which allows communication back to the controller.

Na koncu cikla sledi SYNC faza, kjer krmilnik iPix polja postavi napetost Un na GND, kar je znak vsem svetlobnim točkam, da se bo začel nov cikel. Dolžina SYNC faze mora biti daljša od komunikacijskega pulza, vendar ne predolga, da se rezerva v C ne porabi.The SYNC phase is followed by the end of the cycle, where the iPix field controller sets the voltage Un to GND, which indicates to all the light points that a new cycle will begin. The length of the SYNC phase must be longer than the communication pulse, but not too long for the reserve in C not to be consumed.

Na sliki 10 je prikazano kodiranje - komunikacijski protokol pri povezavi krmilnika z osnovno enoto svetlobne točke iPix.Figure 10 shows the encoding - communication protocol when connecting the controller to the iPix lightpoint base unit.

V fazi READ (glavna komunikacija - smer krmilnik -> iPix) je pri pripravi io komunikacijskega protokola potrebno rešiti dva problema in sicer: primernost kodiranja (ker sta signal in napajanje skupaj, je primerno le tako kodiranje, da je nivo večino časa visok) in konstantnost števila komunikacijskih pulzov, da se ne bo spreminjala svetilnost glede na komunikacijo.In the READ (Master Communication - Controller -> iPix) phase, two problems need to be solved in the preparation of the io communication protocol: the suitability of encoding (since the signal and power are together, only encoding is appropriate so that the level is high most of the time) and the constant number of communication pulses so that the luminosity will not change with respect to communication.

is Na sliki 10 prikazuje prva vrsta informacijo, ki jo želimo kodirati. Za kodiranje uporabimo znano in preizkušeno Manchester kodo (druga vrstica na sliki), katere glavna lastnost je, da poleg informacije nosi tudi informacijo CLK. Druga lastnost pa je, da je število prehodov vedno enako ne glede na informacijo. Problem Manchester kode v našem primeru je, da je duty cycle 50 %, kar pa ni dopustno zaradi napajanja. Zato modificiramo Manchester kode tako, da vsak prehod generira kratek pulz nizkega nivoja, kar ponazarja 3 vrstica na sliki 10. Dekodiranje se vrši po enostavnem algoritmu, kjer se meri čas med dvema pulzoma. Če je čas kratek ni spremembe v signalu informacije, če pa izmerimo dolg čas, pa se nivo izhodnega signala invertira. Ker ne vemo kaj bo začetni bit informacije, je treba v začetku poslati nekaj Ί” da se dekoder sinhronizira in potem eno “0“ da označimo start paketa.is Figure 10 shows the first type of information that we want to encode. For coding, we use the known and proven Manchester code (second line in the figure), whose main feature is that it carries CLK information in addition to the information. Another feature is that the number of passages is always the same regardless of the information. The problem with the Manchester code in our case is that the duty cycle is 50%, which is not permissible because of the power supply. Therefore, we modify the Manchester codes so that each passage generates a short low-level pulse, as illustrated by the 3 lines in Figure 10. Decoding is done by a simple algorithm measuring the time between two pulses. If the time is short there is no change in the information signal, but if we measure a long time, the level of the output signal is inverted. Since we do not know what the initial bit of information will be, it is necessary to send some Ί ”at the beginning to synchronize the decoder and then one“ 0 ”to indicate the start of the packet.

Vsak negativni impulz kot motnja lahko povzroči desinhronizacijo komunikacijskega paketa. Težavam se lahko bistveno izognemo, če ne reagiramo na rob komunikacijskega pulza temveč pulz detektiramo s skaniranjem nivoja. Drugi trik pa je, da zaradi dobro definiranih časov vemo kdaj lahko pričakujemo naslednji pulz in ga skaniramo samo tedaj.Any negative impulse as a disturbance can cause the communication pack to be desynchronized. Problems can be significantly avoided if we do not react to the edge of the communication pulse but detect the pulse by scanning the level. The second trick is that because of well-defined times, we know when to expect the next pulse and scan it only then.

io Na ta način se da sfiltrirati veliko motenj.io Many disturbances can be filtered out in this way.

Ker MPU tako in tako nima možnosti procesiranja IRQ, bo ves program tekel v eni zanki, lahko uporabimo nasleden princip programa:Since the MPU does not have the ability to process IRQ anyway, the whole program will run in one loop, we can use the following program principle:

• čakanje na komunikacijski impulz;• waiting for a communication impulse;

• v času Tpulz tipanje vsaj 2x;• At least 2x during the Tpulz time;

is · če pulza ni, predvidimo dvakratnik dolžine;is · if the pulse is not present, assume twice the length;

• iz izmerjenega časa dekodiranje izhoda;• decoding the output from the measured time;

• sedaj imamo Tbit časa za procesiranje vsega kar je potrebno;• now we have Tbit time to process everything that is needed;

• ponovitev zanke.• loop repetition.

Omenjen princip je dober, ker ne potrebujemo IRQ delovanja, malo časa porabimo za skeniranje vhoda in imamo relativno dolgo časa za procesiranje ostalih funkcij. Seveda pa morata biti časa Tpulz in Tbit primerno izbrana, da bo obremenitev MPU optimalna.This principle is good because we do not need IRQ operation, we spend a little time scanning the input and have a relatively long time to process other functions. Of course, the Tpulz and Tbit times must be appropriately selected to optimize MPU load.

V fazi VVRITE (smer svetlobna točka -> krmilnik) lahko uporabimo kar kodiranje standardne serijske komunikacije. Razmerje enk in ničel ni pomembno, ker so LED ugasnjeni. Prenese se le minimalno bytov, zato je ta faza dovolj kratka, da napajalni kondenzator C zdrži do konca.In the VVRITE phase (direction of light point -> controller), standard serial communication encoding can be used. The enk and zeros ratio doesn't matter because the LEDs are off. Only a few bytes are transferred, so this phase is short enough for the power capacitor C to last until the end.

Kakršnokoli parametriranje (nastavljanje načina delovanja, svetilnosti barv, ...) se zaradi skromnih resursov MPU, ne more izvesti v nekem trajnem pomnilniku ampak samo v RAMu MPU. To pomeni v fazi inicializacije po vklopu polja svetlobne točke ali med delovanjem. Za večino nastavitev to ni problem. Obstaja pa problem naslavljanja svetlobne točke iPix.Any parameterization (setting the mode of operation, color luminance, ...) due to the modest MPU resources, cannot be performed in some permanent memory, but only in the MPU RAM. This means during the initialization phase after switching on the light point field or during operation. For most settings, this is not a problem. However, there is a problem addressing the iPix light spot.

Očitno je, da so v sistemu v smislu komunikacije vse svetlobne točke iPix na istem busu. Torej vse enote sprejemajo isto komunikacijo. Ker želimo individualno kontrolo posamezne svetlobne točke iPix, je jasno, da mora obstajati nek način adresiranja. Pri tem je treba rešiti vprašanje is kako narediti vsako svetlobno točko iPix drugačno od vseh drugih. Skratka nekako je treba v vsako enoto vstaviti edinstveno kodo ali naslov in ta informacija se mora trajno pomniti. Ker želimo minimalno možno ceno za MPU varjante z EEROM odpadejo. Koda je lahko zapisana samo kot programska konstanta, ki se vpiše skupaj s firmwerom. Na srečo imamo vObviously, in the system in terms of communication, all iPix light points are on the same bus. So all units receive the same communication. Because we want individual control of each iPix light spot, it is clear that there must be some way of addressing it. The question is how to make each iPix light different from any other. In short, a unique code or address must be inserted into each unit, and this information must be permanently remembered. Because we want the lowest possible price for MPU variants with EEROM are eliminated. The code can only be written as a program constant to be entered with the firmware. Fortunately, we have in

PIC družini MPU dve možnosti.The PIC to the MPU family has two options.

• program (firmware) se pred montažo v svetlobni element naloži v flash pomnilnik MCU-ja. Par lokacij v flash-u lahko namenimo za naslov naprave.• The firmware is loaded into the flash memory of the MCU before mounting in the light element. A couple of flash locations can be assigned to the device address.

• v masovni proizvodnji, kjer sprotno programiranje ni zaželjeno pa MICROCHIP nudi možnost vpisa edinstvene kode in fiksnega firmvera v fazi prodkcije čipa.• In mass production where current programming is not desirable, MICROCHIP offers the possibility of entering unique code and fixed firmware at the chip production stage.

V obeh primerih imamo torej nek ID, ki je drugačen za vsak svetlobni element v polju in ga lahko uporabimo za naslov naprave, ki mora imeti naslednje lastnosti: spričo tega ker smo izjemno omejeni z resursi naj bosta za ta namen namenjena samo dva byta, torej 65536 različnih ID, kar pa je dovolj, saj ciljamo na sistem, ki bo imel red velikosti svetlobnih io elementov cca 1000. Torej bistveno manj kot je možnih kod. Nadalje si morajo adrese slediti kontinuirano brez presledkov ena za drugo po vsem polju svetlobnih elementov, ker v nekaterih prenosnih komunikacijskih paketih uporabimo naslavljanje s pozicijo bita v nizu, kar bo razloženo kasneje. Ta zahteva omogoča hkratno aktivacijo vseh svetlobnih is elementov na displaju ali enostavno povedano, trenutno menjavo slike s prenosom enega komunikacijskega paketa. V primeru vnaprej programiranih adres v območju 0 - FFFF, ki jih zagotovi proizvajalec MPU, nastane problem pri aktivacijskem paketu, kjer mora enota svetlobne točke poznati ofset prve enote, da lahko naslov prilagodi glede na pozicijo bita v aktivacijskem paketu. Temu se lahko izognemo če fiksiramo dolžino DATA v aktivacijskem paketu na 2 ** N bitov. V našem primeru je optimalno 1024. Sedaj ofset ni več potreben. Iz tega sledi tudi vrednost Tcyc.In both cases, therefore, we have an ID that is different for each light element in the field and can be used for a device address, which must have the following properties: because we are extremely limited by resources, only two bytes should be used for this purpose, 65536 different IDs, which is enough because we are targeting a system that will have an order of magnitude of light elements of about 1000. So significantly less than the possible codes. Furthermore, addresses must be continuously monitored one after the other throughout the field of light elements because in some portable communication packets, addressing with the bit position in the string is used, which will be explained later. This requirement allows for the simultaneous activation of all light elements on the display or, simply put, instantaneous image change by downloading a single communication package. In the case of pre-programmed addresses in range 0 - FFFF provided by the MPU manufacturer, there is a problem with the activation packet, where the light point unit needs to know the offset of the first unit in order to adjust the address according to the bit position in the activation packet. This can be avoided by fixing the DATA length in the activation packet to 2 ** N bits. In our case, 1024 is optimal. Now the offset is no longer needed. This also implies the value of Tcyc.

Kot je bilo že rečeno se v enem komunikacijskem cilku pošlje fiksno število komunikacijskih bitov, vendar pa ni nujno da vsi prenašajo koristno informacijo. Prav tako pa je možno, da se v enem ciklu prenese več komunikacijskih paketov. En paket je sestavljen takole:As stated earlier, a fixed number of communication bits are sent in one communication target, but not all carry the useful information. However, it is also possible to download several communication packages in one cycle. One package is composed as follows:

Št. bitovNo. bits

8 8 16 16 16 16 0-1024 0-1024 16 16 SYNC SYNC HEADER HEADER ADDRESS ADDRESS DATA DATA CHK CHK

Maksimalna dolžina je torej 1080 bitov. In od tukaj povezava:The maximum length is therefore 1080 bits. And from here the link:

io Tr = 1080 * Tbitio Tr = 1080 * Tbit

SYNCSYNC

7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

Je konstanten niz 8 bitov, kjer 7 enk na začetku poskrbi za sinhronizacijo is dekoderja. Zadnja 0 pa pomeni start informacije, ki se mora procesiratiIt is a constant set of 8 bits, where 7 units initially provide synchronization with the decoder. The last 0 indicates the start of information that must be processed

HEADERHEADER

15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 Št bitov: No bits: ADD ADD RESS + DATA + C RESS + DATA + C HK HK 0 0 Ved Ved no 0 no 0 0 0 0 0 Paket s komando Package with command 0 0 1 1 Aktivacijski paket Activation package 1 1 0 0 Rezerva Reserve 1 1 1 1 Rezerva Reserve

ADDRESSADDRESS

15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 Naslov cilja 0 Goal 0 Title -1FFF (8191) -1FFF (8191) 0 0 0 0 1 1 AND Maska za skupino enot AND Unit group mask ostalo the rest Nedefinirano Undefined - rezerva - reserve

CHKCHK

15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 Vsota vseh enk v paketu iz segmentov HEADE The sum of all units in the package from the HEADE segments R, ADDR R, ADDR ESS, DATA ESS, DATA

DATADATA

Podatki so sestavljeni na dva načina;The data are compiled in two ways;

PAKET S KOMANDOPACKAGE WITH THE COMMAND

N - bitov N - bits M bitov M bits KOMANDA TEAM PARAMETRI PARAMETERS

AKTIVACIJSKI PAKETACTIVATION PACKAGE

1024 bitov_ »1« na ustrezni poziciji (index) sproži na iPix enoti z naslovom »index« ustrezno akcijo1024 bits_ "1" at appropriate position (index) triggers action on iPix unit named "index"

Velikost komand in parametrov, prav tako komande in parametri so v tej fazi še nedefinrane in bodo določene ob implementaciji končne rešitve, io Pomembno je, da se del DATA informacije tretira kot komanda, ki se na svetlobnem elementu izvede, pri tem pa se uporabijo parametri, ki se nahajajo v polju PARAMETRI. Paketi s komando so primerni za krmiljenje posamezne svetlobne točke ali grupe svetlobnih točk iPix.The size of the commands and parameters, as well as the commands and parameters, are still undefined at this stage and will be determined upon implementation of the final solution, io It is important to treat some of the DATA information as a command executed on a light element using parameters located in the PARAMETERS field. Command packs are suitable for controlling an individual light point or a group of iPix light points.

Pri delovanju namenskega prikazovalnika z inteligentnimi svetlobnimi is elementi se procesor lahko zaradi motnje lahko zacikla in svetlobna točka iPix preneha delovati. Problem je rešljiv z vgrajeno WDOG funkcijo. Čeprav zaciklana svetlobna točka iPix ni dobra, pa še ni kritična, v smislu drugega problema. MPU se lahko zacikla ali pokvari tako, da vsili pin za komunikacijo na GND. V READ fazi to ni velik problem, ker bo skozi pin tekel le max l/O tok cca 20 mA, kar ni problem. Problem pa je, da bo v WRITE fazi vsem drugim svetlobnim točkam iPix preprečil povratno komunikacijo.When a dedicated display with intelligent light elements is in operation, the processor may break the circuit and the iPix light point due to interference. The problem is solved with the built-in WDOG function. Although the fixed iPix light spot is not good, it is not yet critical, in terms of another problem. The MPU can become pinched or broken by forcing a pin to communicate to the GND. This is not a big problem in the READ phase because only max l / O current of about 20 mA will flow through the pin, which is not a problem. The problem, however, is that in the WRITE phase, it will prevent all other iPix points from returning feedback.

Ta problem lahko rešimo z vgrajeno MPU WDOG funkcijo ki bo v tem primeru bo resetirala MPU in delovanje se bo normaliziralo. V primeru hardverske napake, ko bi en pokvarjen pin preprečil komunikacijo vsem ostalim enotam pa ni druge pomoči kot to, da se tako stanje zazna na strani krmilnika in se sproži glavno sistemsko napako. Napaka se bo detektirala takrat, ko nobena povratna komunikacija ne bo možna. Seveda bo prikazovalnik še naprej pravilno prikazoval informacijo, le detekcija napak ne bo več nudila informacije o posamezni svetlobni točki iPix. Na sliki 12 je prikazano vezje za detekcijo napak osnovne enote svetlobne io točke iPix. Čeprav izkušnje kažejo da je večina LED napak prekinjeno stanje, pa rešitev v nadaljevanju detektira tudi stanje - kratek stik. Ker ima družina PIC varjante MPU z vgrajenim komparatorjem napetosti, ga je možno uporabiti za namen detekcije LED napak. Slika 12 prikazuje vezje, ki izkorišča vgrajen komparator za detekcijo napake na LED. is Detekcija se vrši v času ko je LED prižgana (Izhod LED MPU OUT) daje nizek nivo, zato tok teče skozi upor Rled in LED.This problem can be solved with the built-in MPU WDOG function which in this case will reset the MPU and the operation will normalize. In the case of a hardware failure, when one broken pin would prevent communication to all other units, there is no other help than detecting such a condition on the controller side and triggering a major system error. An error will be detected when no return communication is possible. Of course, the display will continue to display the information correctly, only fault detection will no longer provide information about each iPix light point. Figure 12 shows the fault detection circuit of the base unit of the iPix point light. Although experience shows that most LED faults are intermittent, the solution below also detects a short circuit. Because the PIC family has MPU variants with a built-in voltage comparator, it can be used for LED fault detection. Figure 12 shows a circuit utilizing a built-in comparator for fault detection on LEDs. is The detection is made when the LED is on (LED output MPU OUT) gives a low level, so the current flows through the resistor Rled and LED.

Glede LED stanja imamo 3 možnosti napetosti na vhodu komparatorjaIn terms of LED status, we have 3 voltage options at the comparator input

C+:C +:

C + C + LED status LED status Blizu vrednosti Uf (padec na LED) Near Uf (drop to LED) OK OK Blizu GND Near GND Kratek stik Short circuit Blizu V+ Near V + prekinjeno interrupted

Če želimo določiti v katerem od treh področij se merjena napetost nahaja in imamo samo en komparator, moramo imeti možnost referenco na komparatorju C- nastaviti na dve vrednosti RefHi in RefLow. Z dvema poskusoma lahko tako določimo področje v katero pade merjena napetost. Za nižjo referenco vzamemo notranjo referenco, ki je prisotna že v MPU. Na žalost je ta referenca cca 0.6 V zaradi tega ker je Uf LED bistveno večja bi potrebovali nekoliko višjo referenco. Problem se reši tako, da se napetost zniža z delilnikom R2 in R4. Za drugo meritev, ko pa rabimo referenco višjo od Uf, pa uporabimo vhod C- in delilnik R1 in R3.In order to determine in which of the three areas the measured voltage is located and we have only one comparator, we must be able to set the reference on the comparator C- to two values RefHi and RefLow. Two experiments can thus determine the area where the measured voltage falls. For the lower reference, we take the internal reference that is already present in the MPU. Unfortunately, this reference is about 0.6 V because the Uf LED is much larger, you would need a slightly higher reference. The problem is solved by reducing the voltage with the splitter R2 and R4. For the second measurement, however, when we need a reference higher than Uf, we use input C- and divider R1 and R3.

Status LED se določi po tabeli:The LED status is determined by the table:

Um je na skupni točki R2 in R4.The mind is at the common point R2 and R4.

Uref (C -) Uref (C -) pogoj condition CMPout CMPout LED status LED status RefHi RefHi Um > RefHi Um> RefHi 1 1 Prekinjeno Interrupted RefHi RefHi Um < RefHi Um <RefHi 0 0 OK OK RefLow - interna RefLow - Internal Um > RefLow Um> RefLow 1 1 OK OK RefLo - interna RefLo - internal Um < RefLow Um < RefLow 0 0 Kratek stik Short circuit

is Če v obeh poskusih dobimo odgovor OK, je LED ok, drugače pa imamo vrsto napake.is If the answer is OK in both attempts, the LED is ok, otherwise we have an error type.

Namenski prikazovalnik z inteligentnimi svetlobnimi točkami po izumu, ki uspešno rešuje zastavljen tehnični problem, je možno izvesti z najnovejšo tehnologijo in sicer s procesorji, ki izpolnjujejo dve bistveni postavki: nizka poraba (kar je neobhodno potrebno za multipleks napajanja in komunikacije po istem vodilu) ter ekstremno nizka cena MPU.A dedicated intelligent point-of-light display according to the invention that successfully solves a technical problem can be implemented with the latest technology, using processors that meet two essential elements: low power consumption (which is indispensable for multiplex power and communications on the same bus), and extremely low MPU price.

Oboje je potreben pogoj, da predložena rešitev dobi ekonomski smisel. Zaradi tehnologije, ki omogoči, da je cena MPU lahko celo manjša od cene svetlobnega elementa (LED), pomeni to bistven prihranek pri proizvodnji naprave.Both are a prerequisite for the proposed solution to make economic sense. Technology that allows the price of an MPU to be even less than the cost of a light element (LED) means a significant savings in the production of the device.

Claims (3)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Namenski prikazovalnik z inteligentnimi svetlobnimi točkami, označen s tem,1. Dedicated display with intelligent light points, 5 da so pozicije svetlobnih točk (iPix), poljubne in vnaprej definirane, pri čemer vsaka svetlobna točka (iPix) vsebuje mikrokontroler (MPU), ki komunicira z glavnim krmilnikom preko napajalnega komunikacijskega vodila (PCBUS), in ima napajalno komunikacijsko vodilo (PCBUS) tudi funkcijo nosilne konstrukcije tako, da je omogočena montaža io posameznih svetlobnih točk (iPix) na nosilno ploščo z dvema prevodnima plastema, ter omogoča direktno krmiljenje svetlobne točke (iPix) in hkrati nadzira pravilnost njegovega delovanja.5 that the iPix positions are arbitrary and predefined, each iPix containing a microcontroller (MPU) that communicates with the main controller via a power communication bus (PCBUS) and has a power communication bus (PCBUS) also the function of the load-bearing structure so as to allow the mounting of io individual light points (iPix) on a support plate with two conductive layers, and allows direct control of the light point (iPix) while controlling the correctness of its operation. 2. Namenski prikazovalnik z inteligentnimi svetlobnimi točkami, po is zahtevku 1, označen s tem, da je osnovna enota svetlobne točke (iPix') za prikaz samo dveh slik sestavljena iz vzporedne vezave dveh zaporednih vezav diode (D), upora in diode (LED 1) in diode (D), upora in diode (LED 2) priključenaDedicated intelligent light point display device according to claim 1, characterized in that the base light point unit (iPix ') for displaying only two images consists of a parallel connection of two consecutive diode (D) circuits, a resistor and a diode (LED) 1) and diodes (D), resistors and diodes (LED 2) connected 20 na izmenično napetost, ter s tem omogoča izvedbo namenskega prikazovalnika, prirejenega za tipično aplikacijo, ki je namenjena prikazu samo dveh slik (npr. prometni znak križ - puščica).20 to allow for the execution of a dedicated display adapted for a typical application intended for displaying only two images (eg the cross-arrow traffic sign). 3. Namenski prikazovalnik z inteligentnimi svetlobnimi točkami, po zahtevku 1, označen s tem, da se pri variantni rešitvi, kjer je potrebno na namenskem 5 prikazovalniku prikazati do največ 2**N slik, lahko svetlobna točka (iPix) pojavlja v večih slikah in je informacija pri napajanju svetlobne točke (iPix”) zakodirana na način, kjer se na periodo menjave slike Tslike, ki je običajno dolžine reda velikosti sekunde, pojavi modulacija v času Tdata, ki je bistveno krajša od časa menjave slike, medtem ko se io v času Tdata pošlje N podatkovnih pulzov, katerih vsota določa kodo, ki prižiga ustrezno osnovno enoto svetlobne točke (iPix).A dedicated intelligent point display according to claim 1, characterized in that in a variant solution where up to a maximum of 2 ** N images need to be displayed on the dedicated display 5, the point light (iPix) may appear in several images and the light-point information (iPix ”) is encoded in such a way that, during a Tslike image-shifting period, which is usually of the order of magnitude of a second, modulation occurs at Tdata, which is substantially shorter than the image-changing time, while io v at time Tdata sends N data pulses whose sum determines the code that fires the corresponding light point base unit (iPix).
SI200800019A 2008-01-30 2008-01-30 Dedicated display with intelligent light points SI22723A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200800019A SI22723A (en) 2008-01-30 2008-01-30 Dedicated display with intelligent light points
EP09468001A EP2110806A3 (en) 2008-01-30 2009-01-23 Earmarked display with intelligent light points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200800019A SI22723A (en) 2008-01-30 2008-01-30 Dedicated display with intelligent light points

Publications (1)

Publication Number Publication Date
SI22723A true SI22723A (en) 2009-08-31

Family

ID=41010077

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200800019A SI22723A (en) 2008-01-30 2008-01-30 Dedicated display with intelligent light points

Country Status (2)

Country Link
EP (1) EP2110806A3 (en)
SI (1) SI22723A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185195A1 (en) * 2002-08-06 2004-09-23 Anderson Christopher C. Laminated glass and structural glass with integrated lighting, sensors and electronics
US7045965B2 (en) * 2004-01-30 2006-05-16 1 Energy Solutions, Inc. LED light module and series connected light modules
JP5081230B2 (en) * 2006-05-04 2012-11-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device having an array of light emitters to be controlled
EP1956580A1 (en) * 2006-12-18 2008-08-13 AGC Flat Glass Europe SA Display panel
EP1970195A1 (en) * 2007-03-14 2008-09-17 AGC Flat Glass Europe SA Method for supplying electricity to an electronic component of a laminated window, laminated window for implementing said method and installation comprising a laminated window

Also Published As

Publication number Publication date
EP2110806A3 (en) 2010-09-15
EP2110806A2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
CN101878673B (en) Light output device
CN101346608B (en) Circuit arrangement for a field device
US6507158B1 (en) Protocol enhancement for lighting control networks and communications interface for same
CN103687228B (en) A kind of landscape decorative lamp system and geocoding thereof and display control method
EP1694099B1 (en) LED driver device
JP4673404B2 (en) Electronic device having light bus for light emission control
US8736527B2 (en) Flexible LED pixel string with two shielding ground lines
US8378781B1 (en) Animated light string system
CN101233790A (en) Lighting system and method for controlling a plurality of light sources
CN109644533A (en) Drive system for light emitting device
US20090128080A1 (en) System and method for controlling multiple servo motors
CN101426323A (en) Backlight driver and liquid crystal display device including the same
CN103139320B (en) The method for equipment identification code being assigned in network
EP2581311B1 (en) LED-airfield light
CN202496103U (en) Light-emitting diode control system using carrier signal
CN105282904A (en) Control system and control method thereof based on DMX512 protocol
US9844110B1 (en) Current adjustment apparatus for LED lighting fixture
JP6242408B2 (en) Light emitting device with two interfaces
CN105355165A (en) Display screen drive circuit, television set and display device
CN108156728A (en) The color matching calibration system and method for RGB lamps
SI22723A (en) Dedicated display with intelligent light points
AT14580U1 (en) Device for operating LEDs
EP3751965A1 (en) System for controlling a series of lighting fixtures
CN107278358B (en) Apparatus and method for parallel power supply
TWI596983B (en) Modular light control device and dimming control system

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20080509

KO00 Lapse of patent

Effective date: 20140909