SI22504A - Pressureless seasonal water-based thermal tank with system for emphasising water temperature layers - Google Patents

Pressureless seasonal water-based thermal tank with system for emphasising water temperature layers Download PDF

Info

Publication number
SI22504A
SI22504A SI200700082A SI200700082A SI22504A SI 22504 A SI22504 A SI 22504A SI 200700082 A SI200700082 A SI 200700082A SI 200700082 A SI200700082 A SI 200700082A SI 22504 A SI22504 A SI 22504A
Authority
SI
Slovenia
Prior art keywords
rayleigh
water
bernard
convection
heat
Prior art date
Application number
SI200700082A
Other languages
Slovenian (sl)
Inventor
trancar Janez Ĺ
Original Assignee
trancar Janez Ĺ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by trancar Janez Ĺ filed Critical trancar Janez Ĺ
Priority to SI200700082A priority Critical patent/SI22504A/en
Publication of SI22504A publication Critical patent/SI22504A/en

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The pressureless seasonal water-based thermal tank enables an indirect improvement of the efficiency rate of gathering solar energy, its transformation into heat, while in particularly the direct improvement of the efficiency rate of the seasonal heat storage. The application according to the described invention includes full (4) or half linear lamella structures (5), which are located above the filling heat exchangers (1) or beneath the drain heat exchangers (2) enabling focused and limited Reyleigh-Bernard convection (10). This prevents horizontal mixing of water (6) and the guaranteed inducing of a maximum thermally-layered water in the storage tank, which provides a 30 % enhanced efficiency rate in gathering and releasing heat from the storage tank compared to any existing systems. There is an additional description of the storage tank with a bendable water- nonpermeable foil (16), which in a simple way solves the problem of water expansion due to temperature changes (17) and thus pressure equalisation.

Description

NETLAČNI SEZONSKI VODNI HRANILNIK TOPLOTE S SISTEMOM ZA POUDARJANJE TEMPERATURNE SLOJENOSTI VODENON-CURRENT SEASONAL WATER HEAT TANK WITH SYSTEM FOR STRESSING WATER TEMPERATURE

Predmet izuma:Subject of the invention:

Predmet izuma je netlačni sezonski hranilnik toplote, v katerem shranjujemo toploto z izkoriščanjem toplotne kapacititete vode. Opisani sezonski hranilnik toplote je predviden za hranjenje toplote, pridobljene iz solarnega sistema v toplejšem delu leta, do hladnejšega dela leta. Bistvo izuma je nova konfiguracija sezonskega hranilnika, kjer s sistemom za poudarjanje temperaturne slojenosti vode dosežemo do 30% boljše izkoristke dovajanja in odvajanja toplote iz hranilnika v primerjavi s katerikoli obstoječimi sistemi. Dodatno izum opisuje izvedbo hranilnika z upogljivo vodonepropustno folijo, s katero lahko na enostaven način rešuje problem raztezanja vode pri spremembah temperature in s tem izravnavo tlaka.The subject of the invention is a non-pressurized seasonal heat storage tank in which heat is stored by utilizing the heat capacity of water. The seasonal heat storage tank described is designed to store heat from the solar system in the warmer part of the year until the cooler part of the year. The essence of the invention is a new configuration of the seasonal reservoir, where the system for emphasizing the temperature layering of water achieves up to 30% better efficiency of supply and extraction of heat from the reservoir compared to any existing systems. In addition, the invention describes the construction of a tank with a flexible watertight foil, which can easily solve the problem of water elongation during temperature changes and thereby compensate for pressure.

Definicija problema:Problem definition:

Tehnični problem, ki ga rešuje izum, je indirektno povečanje izkoristka zajema solarne energije, pretvorjene v toploto, ter direktno povečanje izkoristka shranjevanja in porabe toplote, namenjene za ogrevanja stavb in sanitarne vode. Tako lahko izum učinkovito prispeva k uporabi solarne energije za opisane namene.A technical problem solved by the invention is the indirect increase in the efficiency of solar energy converted to heat and the direct increase of the efficiency of storage and consumption of heat intended for heating buildings and sanitary water. Thus, the invention can effectively contribute to the use of solar energy for the purposes described.

Fizikalno ozadje problema:Physical background of the problem:

Izkoristek dovajanja toplote v hranilnik ali odvajanja toplote iz hranilnika je odvisen od temperaturnega gradienta na mestu prestopa toplote in od sposobnosti pospeševanja toplotnih tokov znotraj hranilnika. Na mestu dovajanja oz. prestopa toplote v hranilnik je zato potrebno zagotavljati najnižje temperature hranilnika ter čimbolj efektivno prenesti toploto proti mestu odjema energije iz hranilnika, kjer se želi najvišje možne temperature. Slednje se lahko učinkovito reši le v tekočinskem hranilniku z izkoriščanjem pojava vzgona tople tekočine v hladni. Zato so dovodi toplote vednoThe utilization of heat supply to the storage tank or the removal of heat from the storage tank depends on the temperature gradient at the site of heat transfer and the ability to accelerate heat flows within the storage tank. At the point of delivery or. Therefore, it is necessary to ensure the lowest temperatures of the storage tank and to transfer the heat as efficiently as possible to the place where energy is extracted from the storage tank, where the highest possible temperatures are desired. The latter can only be efficiently solved in a liquid reservoir by taking advantage of the phenomenon of hot liquid buoyancy in the cold. That is why heat supplies are always there

Obrazec SIPO P-1 spodaj, odvodi pa zgoraj.Form SIPO P-1 below and drains above.

Vendar pa prihaja zaradi nelinearnih pojavov t.i. Rayleigh-Bernardove konvekcije do močnega mešanja že pri sorazmerno kratkih vertikalnih prenosih (pri razdaljah nad 10 cm). Zato je treba Rayleigh-Bernardovo konvekcijo ustrezno omejiti, da se prepreči horizontalno mešanje pri vertikalnem prenosu toplote in zagotovi največjo možno temperaturno slojenost v realnih pogojih delovanja sezonskega toplotnega hranilnika. Dodatno lahko izkoristek hranilnika pada zaradi toplotnih izgub, ki so posledica različnih načinov uporabe ekspanzijskih sistemov.However, it comes because of the nonlinear phenomena of t.i. Rayleigh-Bernard convection to strong mixing even at relatively short vertical transmissions (at distances greater than 10 cm). Therefore, Rayleigh-Bernard convection should be appropriately curtailed to prevent horizontal mixing in vertical heat transfer and to provide the highest possible temperature layering under realistic operating conditions of the seasonal heat storage tank. Additionally, the efficiency of the reservoir may be reduced due to heat losses resulting from different uses of expansion systems.

Znane rešitve:Known solutions:

Znanih je nekaj izvedb sezonskega hranilnika, kjer se toploto shranjuje v toplotno kapaciteto vode. Najenostavnejša in najprimitivnejša rešitev je rešitev brez toplotnih izmenjevalcev, kjer ogret medij iz primarnege sistema, s katerim zajemamo solarno energijo in jo pretvarjamo v toploto, direktno vstopa v hranilnik. Zaradi toka tekočine, se vstopajoč topel medij praktično na 0.5 m nad vstpno točko zmeša s hladnim medijem hranilnika, kar ne omogoča vzpodbujanja temperaturne slojenosti. Take rešitve so zato lahko uporabne le v majhnih hranilnikih, ki služijo blaženju sunkov porabe. Takih rešitev n emoremo skalirati in so zato neprimerne za uporabo v sezonskih hranilnikih, ker bi bili izkoristki polnjenja in praznjenja premajhni. Poleg tega mora biti v tem primeru medij v hranilniku enak kot prenosni medij v (solarnem) sistemu zajema energije, kar pomeni uporabo velike količine dragega prenosnega medija s temperaturo zmrzišča pod 40“C.Some variants of the seasonal reservoir are known, where heat is stored in the heat capacity of water. The simplest and most primitive solution is the solution without heat exchangers, where the heated medium from the primary system, which captures solar energy and converts it into heat, directly enters the reservoir. Due to the fluid flow, the inlet warm medium is mixed at practically 0.5 m above the inlet point with the cool medium of the reservoir, which does not allow the stimulation of temperature layering. Such solutions can therefore only be used in small storage tanks, which serve to mitigate the shocks of consumption. Such solutions cannot be scaled and are therefore unsuitable for use in seasonal storage tanks, since the efficiency of filling and discharging would be too low. In addition, in this case, the medium in the storage tank must be the same as the transmission medium in the (solar) energy capture system, which means the use of a large amount of expensive transmission medium with a freezing point below 40 “C.

Druga rešitev vključuje uporabo toplotnih izmenjevalcev. Ker ni direktnih masnih tokov, je lahko medij hranilnika drugačen od medija sistema zajema energije. Vendar pa problem horizontalnega mešanja zaradi pojava Rayleigh-Bernardove konvekcije ostaja. Taki hranilniki imajo enake težave kot prej omenjeni pri skaliranju na višiše večje od 0.5m in niso primerni za uporabo kot sezonski hranilniki.Another solution involves the use of heat exchangers. In the absence of direct mass flows, the storage medium may be different from the medium of the energy capture system. However, the problem of horizontal mixing due to the appearance of Rayleigh-Bernard convection remains. Such reservoirs have the same problems as previously mentioned when scaling to altitudes greater than 0.5m and are not suitable for use as seasonal storage tanks.

Naslednja rešitev je uporaba toplotnih izmenjevalcev skupaj s sistemom za poudarjanje slojenosti na podlagi cevi s protipovratnimi ventili, ki pa je na dolgi rok problematična zaradi mehanskega delovanja potopljenih ventilov.Another solution is to use heat exchangers together with a system for emphasizing layering on the basis of non-return valves, which in the long run is problematic due to the mechanical operation of submerged valves.

Zadnje rešitve vključujejo uporabo sistemov za poudarjanje slojenosti na podlagi vertikalnih struktur na osnovi luknjičastih cevi (pat. JP2279937, pat. DE10121842) ali odprtih lijakov cilindrične simetrije brez toplotnih izmenjevalcev (pat. EP0861985). Problema sta najprej velika količina prenosnega medija, ki je enak mediju v hranilniku,Recent solutions include the use of layering systems based on vertical tube-based structures (Pat. JP2279937, Pat. DE10121842) or open cylindrical symmetry funnels without heat exchanger (Pat. EP0861985). The first problem is a large amount of removable media, which is the same as the medium in the storage,

Obrazec SIPO P-1 ter dovodni masni tok (ne tisti, ki je vzbujen zaradi Rayleigh-Bernardove konvekcije), ki neizogibno ruši temperaturno slojenost in ni primeren za sezonske hranilnike. Tudi če bi bil sistem uporabljen skupaj s toplotnimi izmenjevalci, je pri večjih hranilnikih cilindrična simetrija izvedenih rešitev neučinkovita, ker so neizogibne t.i. „mrtve cone” hranilnika, v katere toplote ne moremo dovajati ali dovajati na deset-minutnih časovnih skalah, ki so tipične za dejanske delovne pogoje sezonskega hranilnika. Tako je izkoristek takega hranilnika tudi do 50% manjši. Dodatno pri odprtih strukturah s cilindrično simetrijo prihaja do puščanja strukture, saj je ves vertikalen tok usmerjen v ozek vertikalno-odprt stržen. S tem se spet zmanjšuje izkoristek hranilnika.The SIPO P-1 form and the flow mass (not the one excited by Rayleigh-Bernard convection), which inevitably breaks down the temperature stratification and is not suitable for seasonal storage tanks. Even if the system were used in conjunction with heat exchangers, the cylindrical symmetry of the solutions implemented is not effective at larger storage tanks, since they are inevitable. 'Dead zones' of the reservoir to which heat cannot be supplied or fed on ten-minute time scales typical of the actual operating conditions of the seasonal reservoir. Thus, the efficiency of such a storage tank is up to 50% less. In addition, in the case of open structures with cylindrical symmetry, structure leakage occurs, since all vertical flow is directed to a narrow vertical-open core. This again reduces the efficiency of the tank.

Pri vseh znanih rešitvah ostaja nerešeno vprašanje izboljšanja izkoristka sezonskega hranilnika.With all known solutions, the issue of improving seasonal storage efficiency remains unresolved.

Opis rešitev problema po izumu:Description of solutions to the problem of the invention:

Po izumu je problem rešen z linarnim lamelnim sistemom omejevanja RayleighBernardove konvekcije v kombinaciji s toplotnimi izmenjevalci v hranilniku, pritrjenimi na samostoječo nosilno strukturo, kot je razloženo spodaj in prikazano na naslednjih slikah:According to the invention, the problem is solved by a linear lamellar RayleighBernard convection limiting system in combination with heat exchangers in a reservoir attached to a freestanding support structure, as explained below and shown in the following figures:

Slika 1 - pogled na tipično strukturo sezonskega hranilnika v primeru dvojnega polnilnega toplotnega izmenjevalca (1), enojnega toplotnega izmenjevalca za napajanje ogrevanja in dvojnega izmenjevalca za ogrevanje sanitarne vode (2) s spremljajočimi lamelnimi strukturami (4) in (5) za omejevanje Rayleigh-Bernardove konvekcijeFigure 1 - view of a typical seasonal tank structure in the case of dual charge heat exchanger (1), single heat exchanger for heating supply and dual heat exchanger for hot water (2) with accompanying lamella structures (4) and (5) for limiting Rayleigh- Bernard convection

Slika 2 - shematičen prikaz razpiranja stržena toplega dvigajočega se toka nad cevjo toplotnega izmenjevalca pri neomejeni Rayleigh-Bernardovi konvekciji (6)Figure 2 - Schematic illustration of the expansion of a core of warm rising current above a heat exchanger tube at unrestricted Rayleigh-Bernard convection (6)

Slika 3 - stranski pogled na lamelno strukturo sistema za omejevanje RayleighBernardove konvekcije (4)Figure 3 - Side view of the lamellar structure of a RayleighBernard convection limiting system (4)

Slika 4 - prečni presek lamelne strukture sistema za omejevanje RayleighBernardove konvekcije (4) z označeno širino lamel (7), nagibom (8) in medsebojno razdaljo (9) ter shematski prikaz toka Rayleigh-Bernardove konvekcije v primeru močnega vzgona (10) in v primeru, ko postane vzgon zanemarljiv (11)Figure 4 is a cross-sectional view of the lamellar structure of a RayleighBernard convection limiting system (4) with a marked lamella width (7), an inclination (8) and a distance (9) and a schematic representation of the Rayleigh-Bernard convection current in the case of heavy buoyancy (10) and in when buoyancy becomes negligible (11)

OhrAZPC SIPO P-1OhrAZPC SIPO P-1

Slika 5 - prečni presek polovične lamelne strukture sistema (5) za omejevanje Rayleigh-Bernardove konvekcije za izvedbo ob steni hranilnikaFigure 5 - cross-section of the half-lamellar structure of a system (5) for limiting Rayleigh-Bernard convection for implementation along the tank wall

Slika 6 - vertikalna projekcija pritrdišč lamel iz folije na napenjalne vrvice za doseganje enakomerne napetostiFigure 6 - Vertical projection of the foil lampholder anchorages on the tension cords to achieve a uniform tension

Slika 7 - izvedba netlačne izvedbe hranilnika z upogljivo folijo z uporabo gubFigure 7 - Design of a non-pressurized design of a flexible foil tank using wrinkles

Opisani hranilnik vsebuje polnilne toplotne izmenjevalce (1), ki dovajajo toploto v hranilnik. Da ne bi prišlo do razpiranja stržena toplega dvigajočega se toka oz. do pojava t.i. Rayleigh-Bernardove konvekcije in t.i. Rayleigh-Bernardovih nestabilnostnih con (6), ki vzpodbudijo izrazito horizontalno mešanje toplega toka s hladnim okoliškim medijem, je po izumu nad polnilnim izmenjevalcem izvedena lamelna struktura (4), ki vsebuje dve zrcalno simetrični vertikalni seriji nagnjenih vzporednih lamel (3), ki fokusirajo topli tok Rayleigh-Bernardove konvekcije (10).The described tank contains charge heat exchangers (1) that supply heat to the tank. In order to prevent the hot rising current, to the occurrence of t.i. Rayleigh-Bernard convections and t.i. Rayleigh-Bernard instability zones (6), which promote pronounced horizontal mixing of warm flow with cold surrounding medium, according to the invention, a lamellar structure (4) is provided above the filling exchanger containing two mirror-symmetrical vertical series of inclined parallel lamellae (3). warm flow of Rayleigh-Bernard convection (10).

Analogno vsak praznilni toplotni izmenjevalec (2) odvaja toploto iz hranilnika tako, da jemlje toploto iz okoliškega medija in ga zato ohlaja. Spuščajoči se ohlajen medij je omejen z vgradnjo lamelne strukture, ki se od polnilne razlikuje samo po tem, da fokusira hladni tok navzdol.Analogously, each emptying heat exchanger (2) removes heat from the reservoir by taking heat from the surrounding medium and therefore cooling it. The descending cooled medium is limited by the installation of a lamellar structure that differs from the filling only in that it focuses the cold downstream.

Po izumu so omenjene lamelne strukture sestavljene po naslednjih pravilih:According to the invention, said lamellar structures are assembled according to the following rules:

1. Lamele so postavljene pod ostrim kotom (8) glede na predvideno smer toka Rayleigh-Bernardove konvekcije, torej med 0 in 90, tako da tok RayleighBernardove konvekcije, ki jih zadene, vedno usmerjajo proti zrcalni ravnini (10). Simetrija strukture je linearna in ne cilindrična, s katero se ne da doseči enakomerne gostote tokov po hranilniku (slika 1).1. The slats are positioned at a sharp angle (8) with respect to the intended direction of the Rayleigh-Bernard convection current, i.e., between 0 and 90, so that the current of the RayleighBernard convection which hits them is always directed toward the mirror plane (10). The symmetry of the structure is linear and not cylindrical, which does not allow a uniform current density across the reservoir (Figure 1).

2. Širina lamel (7), njihov nagib (8) in njihova medsebojna razdalja (9) so usklajene tako, da je vertikalni tok Rayleigh-Bernardove konvekcije skozi strukturo zaprt pri dovolj velikem temperaturnem gradientu oz. ko je vzgon dovolj velik (10) in odprt, ko vzgona ni več. V tem primeru se tok usmeri med lamelami iz strukture (11). Lamele so narejene iz katerikoli toplotno slabo prevodnih materialov, kot npr. iz termopolimerov, ki so dimenzijsko stabilni do 100C, še posebej pa so primerni poliolefini.2. The width of the slats (7), their inclination (8) and their distance (9) are coordinated such that the vertical flow of Rayleigh-Bernard convection through the structure is closed at a sufficiently large temperature gradient or. when buoyancy is large enough (10) and open when buoyancy is gone. In this case, the current is directed between the slats of the structure (11). The slats are made of any thermally poorly conductive material, such as. from thermopolymers which are dimensionally stable up to 100C, and polyolefins are particularly suitable.

3. Razdalja med lamelami (9) je manjša od tipične velikosti Rayleigh-Bernardove nestabilnostne cone (14), ki je v primeru uporabe vode in nekaj kW moči toplotnih izmenjevalcev največ 20 cm pri nagibu vsaj 45. Velja, da je pri manjših medsebojnih3. The distance between the blades (9) is smaller than the typical size of the Rayleigh-Bernard instability zone (14), which, when using water and some kW of heat exchanger power, is at most 20 cm at a slope of at least 45.

Obrazec SIPO P-1 razdaljah lamel nagib lahko manjši. Če so moči manjše, je medsebojna razdalja ustrezno manjša.The SIPO Form P-1 slats may have a smaller slope. If the forces are smaller, the distance between them is correspondingly smaller.

4. Horizontalna projekcija postavljenih lamel (13) je vsaj za polovico večja od RayleighBernardove nestabilnostne cone.4. The horizontal projection of the erected blades (13) is at least half greater than the RayleighBernard instability zone.

Po izumu postavimo zgoraj opisane strukture v hranilnik po naslednjih pravilih:According to the invention, the structures described above are placed in the container according to the following rules:

5. Vsak hranilnik ima vsaj eno polnilno strukturo in vsaj eno praznilno strukturo. Polnilna struktura ima toplotni izmenjevalec spodaj in lamele usmerjajo topel tok Rayleigh-Bernardove konvekcije navznoter in navzgor. Praznilna struktura ima toplotni izmenjevalec zgoraj in lamele usmerjajo hladen tok Rayleigh-Bernardove konvekcije navznoter in navzdol.5. Each storage tank shall have at least one filling structure and at least one discharge structure. The filling structure has a heat exchanger below and the fins direct the warm flow of Rayleigh-Bernard convection inwards and upwards. The discharge structure has a heat exchanger above and the blades direct the cool flow of Rayleigh-Bernard convection inward and downward.

6. V horizontalni smeri postavimo polnilne in praznilne strukture izmenično ter z linearno simetrijo.6. In the horizontal direction, place the filling and discharge structures alternately and with linear symmetry.

7. Horizontalne razdalje med polnilnimi in praznilnimi strukturami so večje od velikosti Rayleigh-Bernardove nestabilnostne cone, vendar ne večje od 1m.7. Horizontal distances between filling and discharge structures are greater than the size of Rayleigh-Bernard instability zone but not larger than 1m.

8. Za zagotavljanje večine toplotnih potreb stanovanjskega objekta, sta ponavadi potrebni vsaj dve različni praznilni strukturi in sicer za segrevanje ogrevalnega sistema in za segrevanje sanitarne vode.8. To meet most of the thermal needs of a residential building, at least two different discharge structures are usually required to heat the heating system and to heat the hot water.

9. Ker ogrevalni sistem v energijsko varčnih objektih dela z majhnimi močmi, vendar integralno gledano porabi veliko energije, postavimo ustrezno praznilno strukturo v sredino hranilnika.9. Since the heating system works with low power in energy-efficient buildings but consumes a lot of energy integrally, we place the appropriate discharge structure in the center of the tank.

10. Ker sistem za segrevanje sanitarne vode dela z veliko močjo v sunkih in porabi manj oz. največ približno enako količino energije kot ogrevalni sistem ter so zaradi tega snovni tokovi tudi bolj izraziti, postavimo ustrezno praznilno strukturo ob rob hranilnika, da zagotavimo najmanjši vpliv na slojenost vode in hkrati hladne Rayleigh-Bernardove konvekcijske tokove ob steni hranilnika izkoristimo za aktivno preprečevanje toplotnih izgub skozi steno hranilnika. Zato take praznilne strukture, nameščene ob steni, izvedemo v polovični izvedbi z eno samo vertikalno serijo lamel (5).10. Because the DHW heating system works with high power in shocks and consumes less or less. up to about the same amount of energy as the heating system, which makes the material flows even more pronounced, install a suitable discharge structure at the edge of the reservoir to minimize the impact on water stratification, while utilizing cold Rayleigh-Bernard convection currents at the reservoir wall to actively prevent heat loss through the wall of the tank. Therefore, such emptying structures, located adjacent to the wall, are carried out in half embodiment with a single vertical series of blades (5).

11. Med vse praznilne strukture moramo namestiti polnilne strukture po 6. pravilu in 7. pravilu, kar pomeni, da v zgoraj opisanem primeru z dvema polovičnima praznilnima strukturama ob stenah za ogrevanje sanitarne vode in praznilno strukturo v sredini za ogrevalni sistem namestimo dve polnilni strukturi na ustrezni razdalji, ki jo določa razmerje dinamike porabljanja in dovajanja energije v hranilnik.11. We must install filling structures in accordance with Rule 6 and Rule 7 among all the discharge structures, which means that in the case described above, two filling structures are installed with two half-empty discharge structures adjacent to the DHW walls and a discharge structure in the middle of the heating system. at the appropriate distance determined by the ratio of the dynamics of energy consumption and delivery to the storage tank.

Obrazen SIPO P-1Formed SIPO P-1

Po izumu postavimo zgoraj opisan sistem lamelnih struktur in toplotnih izmenjevalcev na samostoječo nosilno konstrukcijo po naslednjih pravilih:According to the invention, the system of lamellar structures and heat exchangers described above is mounted on a freestanding load-bearing structure according to the following rules:

12. Nosilna konstrukcija stoji v vodonepropustni vreči, ki zapira vodni hranilnik (16) in je narejena iz elastičnih, upogljivih in slabo toplotno prevodnih materialov, ki omogočajo izdelavo gub za netlačno izvedbo hranilnika, za kar je še posebej je primeren poliizobutilen. Spodaj je vreča položena na tanko plast toplotnega izolatorja, ob strani na vsaj 60 cm debelo steno iz dimenzijsko stabilnih kosov izolatorja, med katerimi mora biti nekje na sredini debeline izolatorja tudi sevalna zaščita v obliki električno prevodne folije, ki preprečuje izgube z infrardečim sevanjem. Zgoraj plava vreča na vodi oz. pri postavljanju konstrukcije na zgornjem delu konstrukcije, ki nosi praznilne izmenjevalce.12. The supporting structure is housed in a watertight bag that closes the water reservoir (16) and is made of elastic, flexible and poorly thermally conductive materials that allow creases to be made for the non-pressure construction of the reservoir, for which polyisobutylene is particularly suitable. Below, the bag is placed on a thin layer of thermal insulator, at least 60 cm thick on the side, of dimension-stable insulator pieces, some of which must have a radiation shield in the middle of the insulator in the form of an electrically conductive film to prevent losses by infrared radiation. Above is a blue bag on the water. when placing the structure on the top of the structure carrying the void exchangers.

13. Nosilna konstrukcija je spodaj in zgoraj lahko narejena iz katerikoli materiala, v vertikalni smeri pa le iz toplotno slabo prevodnih materialov, da se ne podira temepraturna slojenost vode. Primerni so npr. termopolimeri, ki so dimenzijsko stabilni v vodi s temperaturo do 100“C, še posebej nylon.13. The supporting structure below and above may be made of any material, and in the vertical direction only of thermally poorly conductive materials, in order not to break the temperature layering of water. They are suitable e.g. thermopolymers that are dimensionally stable in water at temperatures up to 100 “C, especially nylon.

14. Na nosilno konstrukcijo so spodaj pritrjeni polnilni linearni toplotni izmenjevalci. Nad njimi so polnilne strukture s sistemom omejevanja Rayleigh-Bernardove konvekcije kot je opisano v pravilih od 1 do 11.14. Filler linear heat exchangers are attached to the supporting structure below. Above them are charge structures with a Rayleigh-Bernard convection constraint system as described in Rules 1 to 11.

15. Na nosilno konstrukcijo so zgoraj pritrjeni praznilni linearni toplotni izmenjevalci. Pod njimi so polnilne strukture s sistemom omejevanja Rayleigh-Bernardove konvekcije kot je opisano v pravilih od 1 do 11.15. Empty linear heat exchangers are attached to the supporting structure above. Below them are charge structures with a Rayleigh-Bernard convection constraint system as described in Rules 1 to 11.

16. Lamele polnilnih in praznilnih struktur za omejevanje Rayleigh-Bernardove konvekcije so nameščene na toplotno slabo prevodnih trakovih ali vrvicah stabilnih do 100“C, npr. iz temopolimerov, kot so poliamidi ali teflon. Lamele so lahko iz tolotno slabo prevodnih plošč ali iz folije. Pri uporabi slednjih se enakomerno napetost lamel in s tem ravna oblika doseže z vsiljeno obliko vrvice v obliki verižnice (16). Projekcije točk - pritrdišč lamel opisujejo verižnico v vertikalni ravnini (zrcalni ravnini celotne strukture).16. Rayleigh-Bernard convection limiting blades and discharge structures are mounted on thermally poorly conductive bands or cords stable up to 100 “C, e.g. from temopolymers such as polyamides or Teflon. The slats can be made of poorly conductive panels or foil. In the use of the latter, a uniform tension of the blades and thus a straight shape is achieved by the forcing of a string in the form of a chain (16). The projections of the points of the anchorages of the slats describe the chain in the vertical plane (the mirror plane of the whole structure).

Claims (6)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Netlačni sezonski vodni hranilnik toplote s sistemom za poudarjanje temperaturne slojenosti vode označen s tem, da je nad polnilnim toplotnim izmenjevalcem (1) v toplotnem hranilniku linearni lamelni sistem omejevanja Rayleigh-Bernardove konvekcije (4, 5) v obliki sistema lamel (3), ki fokusirajo topli tok Rayleigh-Bernardove konvekcije navznoter in navzgor (10) in da je analogno pod praznilnim toplotnim izmenjevalcem (2) v toplotnem hranilniku lamelni linami sistem omejevanja Rayleigh-Bernardove konvekcije v obliki sistema lamel, ki fokusirajo hladni tok Rayleigh-Bernardove konvekcije navznoter in navzdol.A non-pressure seasonal water heat storage unit with a system for emphasizing the water temperature stratification, characterized in that a linear lamellar system of limiting Rayleigh-Bernard convection (4, 5) in the form of a lamella system (3) is above the filling heat exchanger (1) in the heat storage tank. , which focus the warm flow of Rayleigh-Bernard convection inwards and upwards (10) and, by analogy below the void heat exchanger (2) in the heat storage, the lamellar lines are a system of limiting Rayleigh-Bernard convection in the form of a system of lenses that focus the cold current of Rayleigh-Bernard convection inward and downward. 2. Sistem iz zahtevka 1 označen s tem, da so lamele (3) sistema za omejevanje Rayleigh-Bernardove konvekcije postavljene pod ostrim kotom (7) glede na predvideno smer toka Rayleigh-Bernardove konvekcije, torej med 0 in 90“ tako da tok Rayleigh-Bernardove konvekcije, ki jih zadene, vedno usmerjajo proti zrcalni ravnini (4) in da se lamele, gledano od strani vsaj minimalno prekrivajo (12).2. The system of claim 1, characterized in that the fins (3) of the Rayleigh-Bernard convection limiting system are arranged at an acute angle (7) with respect to the intended direction of the Rayleigh-Bernard convection current, ie between 0 and 90 "such that the Rayleigh current -Bernard's convection, which hits them, is always directed towards the mirror plane (4) and the lamellae, viewed from the side, overlap at least minimally (12). 3. Sistem iz zahtevkov 1 in 2 označen s tem, da so lamele postavljene linearno v horizontalni smeri vzporedno s toplotnim izmenjevalcem (1) ali (2), nad ali pod katerimi so nameščene, in da so lamele pri polnem lamelnem sistemu postavljene v dveh zrcalno simetričnih skupinah z zrcalno simetrijo čez ravnino med obema skupinama (4).3. The system of claims 1 and 2, characterized in that the blades are positioned linearly in a horizontal direction parallel to the heat exchanger (1) or (2) above or below which they are positioned, and that the blades are positioned in two in the full lamella system mirror symmetry groups with mirror symmetry across the plane between the two groups (4). 4. Sistem iz zahtevkov 1, 2, in 3 označen s tem, da v primeru postavitve strukture ob steno hranilnika lamele tvorijo le eno skupino vzporednih lamel, torej polovično lamelno strukturo (5).The system of claims 1, 2, and 3, characterized in that, when the structure is placed against the wall of the reservoir, the lamellae form only one group of parallel lamellae, that is, a half-lamella structure (5). 5. Sistem iz zahtevkov od 1 do 4 označen s tem,5. The system of claims 1 to 4, characterized in that Ohrazpn SIPD P-1 da v primeru izvedbe lamel iz folije predstavljajo projekcije pritrdišč lamel na zrcalno vertikalno ravnino strukture za omejevanje Rayleigh-Bernardove konvekcije obliko verižnice (15).It is appreciated by SIPD P-1 that in the case of foil lamellae, the projections of the lampholder anchorages on the mirror vertical plane of the structure to constrain Rayleigh-Bernard convection represent the shape of a chain (15). 6. Sistem iz zahtevkov od 1 do 5 označen s tem, da je lahko postavljen v vodoneprepustno upogljivo vrečo hranilnika, ki omogoča netlačno izvedbo zaradi uporabe gub (16) upogljive vreče, kljub raztezanju vode zaradi segrevanja (17).6. The system of claims 1 to 5, characterized in that it can be placed in a watertight flexible flexible storage bag, which allows non-pressure execution due to the use of the flexible bag folds (16), despite the water being stretched due to heating (17).
SI200700082A 2007-04-02 2007-04-02 Pressureless seasonal water-based thermal tank with system for emphasising water temperature layers SI22504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200700082A SI22504A (en) 2007-04-02 2007-04-02 Pressureless seasonal water-based thermal tank with system for emphasising water temperature layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200700082A SI22504A (en) 2007-04-02 2007-04-02 Pressureless seasonal water-based thermal tank with system for emphasising water temperature layers

Publications (1)

Publication Number Publication Date
SI22504A true SI22504A (en) 2008-10-31

Family

ID=39889202

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200700082A SI22504A (en) 2007-04-02 2007-04-02 Pressureless seasonal water-based thermal tank with system for emphasising water temperature layers

Country Status (1)

Country Link
SI (1) SI22504A (en)

Similar Documents

Publication Publication Date Title
AU2013338644B2 (en) Method for operating an arrangement for storing thermal energy
US20180356163A1 (en) Method and device for inputting thermal energy into and removing thermal energy from a body of water
TW201128155A (en) Vertical fluid heat exchanger installed within natural thermal energy body
ES2763902T3 (en) Procedure to operate a thermal energy storage plant
EP2924364B1 (en) Solar collector with integrated storage tank
US10126019B2 (en) Seasonal heat-cold energy storage and supply pool and seasonal heat-cold energy storage and supply system comprising the same
US10852070B2 (en) Latent heat storage module and latent heat storage apparatus
US20050258261A1 (en) Method for operating heating systems, heating system for carrying out the method and use thereof
JP6549084B2 (en) Vertical fluid heat exchanger
ES2356282T3 (en) HEAT STORAGE DEVICE.
US20120048259A1 (en) Solar installation
JP5777702B2 (en) Heat-driven self-circulating fluid heating and storage tanks and systems
CN103996419A (en) Molten salt reactor waste heat cooling device and method thereof
JP6427852B2 (en) Adjustment method of heat storage and release speed of heat storage agent
SI22504A (en) Pressureless seasonal water-based thermal tank with system for emphasising water temperature layers
ES2973120T3 (en) Heat accumulator
Gil et al. Design of a 100 kW concentrated solar power on demand volumetric receiver with integral thermal energy storage prototype
KR100716508B1 (en) A solar-heated hot-water boiler
JP6466667B2 (en) Solar heat utilization system
JP2007232227A (en) Solar water heater
US8967135B2 (en) Solar heater system for domestics waters
CN100434857C (en) Vapor-lift pump heat transport apparatus
CN110462749A (en) Nuclear facilities with fuel tank and corresponding refrigerating module
CN219607807U (en) High-temperature phase-change heat storage and release device and solar photo-thermal power generation system comprising same
JP2013015309A (en) Underground heat storage cooler heater

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20070426

KO00 Lapse of patent

Effective date: 20101113