SI22065A - Multimode optical fibre with low differential delay between modes - Google Patents

Multimode optical fibre with low differential delay between modes Download PDF

Info

Publication number
SI22065A
SI22065A SI200500190A SI200500190A SI22065A SI 22065 A SI22065 A SI 22065A SI 200500190 A SI200500190 A SI 200500190A SI 200500190 A SI200500190 A SI 200500190A SI 22065 A SI22065 A SI 22065A
Authority
SI
Slovenia
Prior art keywords
fiber
difference
refractive index
less
genera
Prior art date
Application number
SI200500190A
Other languages
Slovenian (sl)
Inventor
Denis Donlagic
Original Assignee
Univerza v Mariboru, Fakulteta za elektrotehniko racunalnistvo in informatiko, Laboratorij za elektro-opticne in senzorske sisteme
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univerza v Mariboru, Fakulteta za elektrotehniko racunalnistvo in informatiko, Laboratorij za elektro-opticne in senzorske sisteme filed Critical Univerza v Mariboru, Fakulteta za elektrotehniko racunalnistvo in informatiko, Laboratorij za elektro-opticne in senzorske sisteme
Priority to SI200500190A priority Critical patent/SI22065A/en
Priority to PCT/FI2005/050284 priority patent/WO2006010798A1/en
Priority to US11/658,561 priority patent/US7646955B2/en
Publication of SI22065A publication Critical patent/SI22065A/en
Priority to US12/643,542 priority patent/US8290323B2/en

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

The invention improves the bandwidth, reliability and complexity of telecommunication systems, which are based on multi-mode optical fibres. The invention reduces the differential delay between the modes in reaching a bandwidth exceeding 5 GHz.km regardless of the type of inducing modes in the optical fibre. The invention thus enables the attaining of high bandwidths also in cases, when the highest modes have been induced. This has a favourable impact on the conditions, which the components like light source, connectors, fibre splitters, other optical components, cables etc. have to meet. The invention eliminates the unfavourable effects of deposits, which provide a reduction of the fibre core size and differences between the indices of refraction between the sheath and the core thus providing a higher bandwidth of the optical fibre while at the same time reducing the production cost. This way it is possible to reduce the delay between the fastest and slowest modes below 20 ps/km.

Description

MNOGORODOVNO OPTIČNO VLAKNO Z NIZKO DIFERENCIALNO ZAKSNITVIJO MED RODOVIMULTIPLE OPTICAL FIBER WITH LOW DIFFERENTIAL DELAY

Predmet izuma je optično vlakno, ki omogoča doseganje pasovne širine čez 5 GHz.km ob poljubno vzbujenem naboru vodenih rodov. Takšno vlakno je namenjeno hitremu prenosu podatkov predvsem na krajše razdalje, možne pa so tudi aplikacije na drugih področjih.The subject of the invention is an optical fiber which enables the bandwidth to be reached beyond 5 GHz.km with an arbitrary set of guided genera. Such a fiber is intended for fast data transmission mainly over shorter distances, but applications in other areas are also possible.

Tehnični problem, ki ga rešuje izum, je zmanjšanje diferencialne zakasnitve med rodovi (differential mode delay-DMD), ki omejuje pasovno širino telekomunikacijskega sistema. Po izumu so predstavljene oblike profilov mnogorodovnih optičnih vlaken, ki omogočajo doseganje pasovne širine čez 5 GHz.km ne glede na vzbujen nabor rodov, vključno z primeri kadar v mnogorodovnem vlaknu vzbudimo višje rodove ali celoten nabor vodenih rodov.A technical problem solved by the invention is the reduction of differential mode delay (DMD), which limits the bandwidth of the telecommunications system. According to the invention, the shapes of multi-fiber optic profiles are presented, which enable the bandwidth exceeding 5 GHz.km regardless of the excited set of genera, including cases where higher genera or the entire set of aquatic genera are excited in a multifaceted fiber.

Cilj telekomunikacijske industrije je v splošnem prenos velike količine informacij v čim krajšem času na čim večje razdalje. Z naraščanjem števila uporabnikov in zahtevnosti storitev se dnevno povečujejo tudi zahteve po množini prenesenih informacij.The objective of the telecommunications industry is generally to transmit a large amount of information over as short a distance as possible. With the increasing number of users and the complexity of services, the demands for the amount of information transferred are increasing daily.

V svetu so znane mnoge rešitve, ki omogočajo hiter prenos informacij na velike razdalje. Optične komunikacije, ki so predmet intenzivnega razvoja v zadnjih 20 letih, omogočajo doseganje pasovne širine brez primere v drugih tehnologijah. Rešitve, ki danes uporabljajo optične prenose na krajše razdalje uporabljajo predvsem mnogorodovna vlakna. Prednost mnogorodovnega vlakna je predvsem v možnosti sklopa tega vlakna z enostavnejšimi in cenenimi izvori. V preteklosti so to bile to predvsem LED diode z valovno dolžino okoli 850 nm. V zadnjem času so se na tržišču pojavile cenene laserske diode z vertikalnim resonatorjem (vertical cavity surface emitting laser ali VCSEL), ki omogočajo učinkovitejši sklop z optičnim vlaknom ter doseganje precej višjih modulacijskih hitrosti.There are many solutions known in the world that allow for the rapid transmission of information over long distances. Optical communications, which have been the subject of intense development over the last 20 years, make it possible to achieve unprecedented bandwidth in other technologies. Solutions that today use short-range optical transmissions are primarily used by multi-fiber. The advantage of multifaceted fiber lies in the possibility of assembling this fiber with simpler and cheaper sources. In the past, these were mainly LEDs with a wavelength of about 850 nm. Recently, low-cost vertical cavity surface emitting lasers (VCSELs) have emerged on the market, enabling more efficient fiber optic coupling and much higher modulation speeds.

Klasično mnogorodovno vlakno je znano že več kakor 25 let in je standardizirano z mednarodnimi standardi, kot so npr. ITU G.651. Po najnovejših standardih, kot je OM3, omogočajo tovrstna vlakna doseganje pasovna širina ob popolnem vzbujanju celotnega nabora vodenih rodov do 1.5 GHz.km. Tudi kadar je dosežena skupna pasovno širina sisteam 1.5 GHz.km pa se je izkazalo, da je diferencialna zakasnitev rodov še zmeraj okoli 1 ns/km, kar močno omejuje nadaljnje povečevanje pasovne širine. Razvoj cenenih laserjev z vertikalnim resonatorjem je v zadnjem času pripeljal do razvoj novega koncepta, pri katerem laser selektivno vzbudi le nižje rodove optičnega vlakna. Na ta način se zmanjšajo zakasnitev med najhitrejšimi in najpočasnejšimi vzbujenimi rodovi, kar je omogočilo doseganje prenosnih hitrosti čez 1.5 Gbit.km. Omenjen princip je bil predmet številnih raziskav in je bil pred kratkim tudi standardiziran s standardoma IEEE 802.3z in IEEE 802.3ae. Selektivno vzbujanje rodov v mnogorodovnem vlaknu prinaša poleg izboljšanja pasovne širine tudi vrsto pomanjkljivosti. Optični konektorji neustrezne kvalitete, slabi spoji, nekatere optične komponente ter predvsem kabliranje in polaganje optičnih kablov lahko povzroči sklop med rodovi, kar lahko pripelje do nenadnega in neželenega zmanjšanja pasovne širine. Sistemi, ki temeljijo na selektivnem vzbujanju tako zahtevajo tudi bolj zapleteno terensko merilno opremo. Dodatno zahteva selektivno vzbujanje rodov uporabo komponent z ožjim naborom proizvodnih toleranc, kar znižuje cenovno učinkovitost prenosnih sistemov. Potencialno največja pomanjkljivost selektivnega vzbujanja v prihodnosti bo morda izhajala iz pomanjkljive kompatibilnosti tovrstnega koncepta z nastajajočo tehnologijo VCSEL polij. VCSEL polje sestavlja večje število laserskih diod z različnimi valovnimi dolžinami, ki so integrirane na istem čipu, kar omogoča cenovno učinkovito valovno-dolžinsko multipleksiranje. Takšno polje je možno v celoti sklopiti z optičnim vlaknom, pod pogoji, da je velikost območja jedra v katero se sklaplja optično polje zadosti veliko. Večje VCSEL polje zato ni možno sklopiti z mnogorodovnim vlaknom na način, ki bi vzbudil selektivno le manjše število rodov.Classical multipurpose fiber has been known for over 25 years and has been standardized by international standards such as eg. ITU G.651. According to the latest standards, such as OM3, such fibers allow bandwidth to be achieved with full excitation of the entire set of aquatic genera up to 1.5 GHz.km. Even when the total system bandwidth of 1.5 GHz.km was reached, the differential delay of the genera was still shown to be still about 1 ns / km, which greatly limits the further increase in bandwidth. The development of low-cost vertical resonator lasers has recently led to the development of a new concept in which the laser selectively excites only the lower genera of optical fiber. In this way, the delay between the fastest and slowest excited genera is reduced, allowing transmission speeds to be reached in excess of 1.5 Gbit.km. This principle has been the subject of much research and has recently been standardized with the IEEE 802.3z and IEEE 802.3ae standards. The selective excitation of genera in a multifaceted fiber brings with it a number of disadvantages, in addition to improving bandwidth. Optical connectors of poor quality, poor connections, some optical components, and in particular cabling and laying of fiber optic cables, can cause an assembly between genera, which can lead to a sudden and unwanted reduction in bandwidth. Selective excitation based systems also require more sophisticated field measurement equipment. It additionally requires the selective excitation of genera to use components with a narrower set of production tolerances, which reduces the cost-effectiveness of transmission systems. The potential biggest drawback of selective excitation in the future may stem from the lack of compatibility of this concept with the emerging VCSEL field technology. The VCSEL array consists of a large number of laser diodes with different wavelengths integrated on the same chip, allowing cost effective wavelength multiplexing. Such a field can be fully coupled to an optical fiber, provided that the size of the core area into which the optical field is coupled is sufficiently large. Therefore, a larger VCSEL field cannot be coupled to a multiple-stranded fiber in a way that would selectively excite only a smaller number of genera.

Iz navedenega je torej razvidna potreba po mnogorodovnem vlaknu z veliko pasovno širino, tudi kadar se vzbudi poljuben oziroma celoten nabor vodenih rodov.Therefore, the need for a multi-band fiber with a large bandwidth is evident, even when any or a whole set of aquatic genera is excited.

Znana je množica različnih izvedb sistemov, ki omogočajo povečanje pasovne širine mnogorodvnega vlakna. Kot je že omenjeno, večina teh sistemov je temelji na standardiziranem selektivnem vzbujanju rodov v mnogorodovnem vlaknu. Obstajajo tudi posamične nestandardizirane rešitve sistemov za selektivno vzbujanje, kot so na primer opisne v patentih US 6,580,543 in US 6,330,382, Najdemo tudi izvedbe mnogorodovnih vlaken, ki so optimirana tako, da omogočajo doseganje pasovne širine čez 1.5 Gbit.km ob selektivnem vzbujanju rodov in hkrati omogočajo doseganje pasovne širine do 500 MHz.km ob vzbuditvi celotnega nabora vodenih rodov. Tovrstne rešitve so predstavljene po patentih US 6,434,309, US 6,438,303, US 6,618,534 in US 6,724,965. Možna je tudi uporaba kompenzacije medrodovne disperzije po patentu US 6,363,195, a je njena učinkovitost zelo omejena.There are many known embodiments of systems that allow for the increase in the bandwidth of a multi-fiber. As mentioned above, most of these systems are based on standardized selective excitation of genera in a multilayered fiber. There are also individual non-standardized solutions for selective excitation systems, such as those described in U.S. Pat. Nos. 6,580,543 and 6,330,382. enable a bandwidth of up to 500 MHz to be achieved. Such solutions are disclosed by US Patents 6,434,309, US 6,438,303, US 6,618,534 and US 6,724,965. Alternatively, international dispersion compensation according to U.S. Pat. No. 6,363,195 is possible, but its effectiveness is very limited.

Nobena znana rešitev trenutno ne omogoča doseganje pasovne širine čez 5 GHz.km ob poljubnem oziroma popolnem vzbujanju celotnega nabora vodenih rodov. V zgodnji dobi razvoja optičnih vlaken so bili sicer predlagan profili optičnih vlaken, ki bi omogočila izenačitev skupinskih hitrosti višjih in nižjih rodov. Prvi takšen primer je delo K. Okamoto and T. Okoshi, Analysis of Wave Propagation in Optical Fibers Having Core with a a-Power Refractive-lndex Distribution and Uniform Cladding IEEE Transactions on Microwave Theory and Techniques, 24(7), pp.416-421, Marec 1976. V tem delu so avtorji predlagali širitve jedra optičnega vlakna tako, so imeli robovi jedra optičnega vlakna nižji lomni količnik kakor obloga. Problem tega predloga je bil v tem, da je zahteval zelo veliko negativno razliko lomnega količnika na robu podaljšanega jedra, to je več kakor -0.5%, kar ni kompatibilno s postopki za izdelavo optičnih vlaken. To delo je bilo potem nadaljevano s strani Katsunari Okamoto in Takanori Okoshi-ja v delu Computer-Aided Synthesis of the Optimum Refractive-lndex Profile for a Multimode Fiber IEEE Transactions on Microwave Theory and Techniques, 25(3), pp. 213-221, Marec 1977. Kjer je bilo s pomočjo poizkušanja izračunan nekoliko bolj ugoden a še zmerja za praktično proizvodnjo zaradi velike negativne razlike lomnih količnikov na robu jedra nepraktičen profil. Kasneje sta B.Stolz in D.Yevick predlagala v delu Correcting Multimode Fiber Profiles with Differential Mode Delay, J.Optical Communications, vol 4 (1983), no 4 pp. 139-147. Uvedbo dodaten strukture na robu jedra, ki bi naj teoretično omogočila delen popravek diferencialne rodovne zakasnitve do določene mere, a se podan predlog nikdar iz neznanih vzrokov ni uveljavil v praksi.No known solution currently allows the bandwidth exceeding 5 GHz.km to be excited or fully excited by the entire set of aquatic genera. In the early years of the development of optical fibers, optical fiber profiles were proposed, which would allow the grouping speeds of higher and lower genera to be equalized. The first such example is the work of K. Okamoto and T. Okoshi, Analysis of Wave Propagation and Optical Fibers Having a Core with a-Power Refractive-lndex Distribution and Uniform Cladding IEEE Transactions on Microwave Theory and Techniques, 24 (7), pp.416 -421, March 1976. In this work, the authors proposed extensions of the optical fiber core so that the edges of the optical fiber core had a lower refractive index than the coating. The problem with this proposal was that it required a very large negative difference in the refractive index at the edge of the elongated nucleus, ie more than -0.5%, which is not compatible with optical fiber fabrication procedures. This work was then continued by Katsunari Okamoto and Takanori Okoshi in the Computer-Aided Synthesis of Optimum Refractive-lndex Profile for Multimode Fiber IEEE Transactions on Microwave Theory and Techniques, 25 (3), pp. 213-221, March 1977. Where, by means of experimentation, a slightly more favorable but still moderate for practical production has been calculated, owing to the large negative difference of the refractive indexes at the edge of the nucleus, an impractical profile. Later, B.Stolz and D.Yevick proposed in Correcting Multimode Fiber Profiles with Differential Mode Delay, J.Optical Communications, vol 4 (1983), no 4 pp. 139-147. The introduction of an additional structure at the edge of the nucleus, which should theoretically allow a partial correction of the differential gender delay to some extent, but the given proposal has never been put into practice for unknown reasons.

Po izumu je problem rešen z vpeljavo posebne strukture v profil mnogorodovnega optičnega vlakna, ki omogoča izenačitev skupinskih hitrosti višjih in nižjih rodov, hkrati pa je profil primeren za izdelavo s trenutno znanimi postopki.According to the invention, the problem is solved by the introduction of a special structure in the profile of a multifaceted optical fiber, which allows equalization of group velocities of higher and lower genera, while at the same time the profile is suitable for production with the currently known methods.

izum bo podrobneje opisan na primerih in slikah, ki prikazujejo:The invention will now be described in more detail by way of examples and figures showing:

sl. 1 logaritem relativne časovna zakasnitev (RČZ) rodov v standardnem 50 pm optičnem vlaknu pri valovni dolžini 850 nm. Vsaka točka predstavlja en linearno polariziran rod. Mnoge točke se med seboj prekrivajo.FIG. 1 logarithm of relative time delay (RMS) of genera in a standard 50 pm optical fiber at a wavelength of 850 nm. Each point represents one linearly polarized genus. Many points overlap.

sl. 2 logaritem relativne časovne zakasnitev rodov v standardnem 50 pm optičnem vlaknu pri valovni dolžini 1310 nm. Vsaka točka predstavlja en linearno polariziran rod. Mnoge točke se med seboj prekrivajo.FIG. 2 is the logarithm of the relative time delay of the genera in a standard 50 pm optical fiber at a wavelength of 1310 nm. Each point represents one linearly polarized genus. Many points overlap.

sl. 3 primer profila izboljšanega optičnega vlakna z definicijo deprimiranega razširjenega jedra in depresije sl. 4 logaritem relativne časovne zakasnitev rodov v izboljšanem 50 pm optičnem vlaknu pri valovni dolžini 850 nm. Vsaka točka predstavlja en linearno polariziran rod. Mnoge točke se med seboj prekrivajo.FIG. 3 is an example of an improved optical fiber profile with a definition of depressed expanded nucleus and depression. FIG. 4 is the logarithm of the relative time delay of the genera in an improved 50 pm optical fiber at a wavelength of 850 nm. Each point represents one linearly polarized genus. Many points overlap.

sl. 5 logaritem relativne zakasnitev rodov v izboljšanem 50 pm optičnem vlaknu pri valovni dolžini 1310 nm. Vsaka točka predstavlja en linearno polariziran rod. Mnoge točke se med seboj prekrivajo.FIG. 5 is the logarithm of the relative delay of genera in an enhanced 50 pm optical fiber at a wavelength of 1310 nm. Each point represents one linearly polarized genus. Many points overlap.

sl. 6 absolutna zakasnitev v izboljšanem 50 pm optičnem vlaknu pri valovni dolžini 850 nm za različne parametre profila. Vsaka točka predstavlja eden linearno polariziran rod. Mnoge točke se med seboj prekrivajo.FIG. 6 absolute delay in an improved 50 pm optical fiber at a wavelength of 850 nm for different profile parameters. Each point represents one linearly polarized genus. Many points overlap.

sl. 7 absolutna zakasnitev v izboljšanem 50 pm optičnem vlaknu pri valovni dolžini 1310 nm za različne parametre profila. Vsaka točka predstavlja eden linearno polariziran rod. Mnoge točke se med seboj prekrivajo.FIG. 7 absolute delay in an improved 50 pm optical fiber at a wavelength of 1310 nm for various profile parameters. Each point represents one linearly polarized genus. Many points overlap.

sl. 8 absolutna zakasnitev v optičnih vlaknih z zmanjšanim jedrom valovni dolžini 850 nm za različne parametre profila. Vsaka točka predstavlja eden linearno polariziran rod. Mnoge točke se med seboj prekrivajo.FIG. 8 absolute delay in optical fibers with a reduced core wavelength of 850 nm for different profile parameters. Each point represents one linearly polarized genus. Many points overlap.

sl. 9 absolutna zakasnitev v optičnih vlaknih z zmanjšanim jedrom pri valovni dolžini 1310 nm za različne parametre profila. Vsaka točka predstavlja eden linearno polariziran rod. Mnoge točke se med seboj prekrivajo.FIG. 9 absolute delay in optical fibers with reduced nucleus at a wavelength of 1310 nm for different profile parameters. Each point represents one linearly polarized genus. Many points overlap.

Podrobna numerična analiza je pokazala, da ni možno doseči pasovne širine čez 3 GHz.km v primeru popolne zbuditve celotnega nabora vodenih rodov v standardnem mnogorodovnem vlaknu. Kot je splošno znano, se doseže minimalna medrodovna disperzija in s tem največja pasovna širina vlakna z uvedbo a-profil optičnega vlakna, ki je definiran z n(r)=nmax(1-2A(r/a)a)1/2 za r<a in nmax(1-2A)1/z za r>a, pri tem je r koordinata, ki kaže v radialni smeri cilindričnega optičnega vlakna, a je radij jedra optičnega vlakna, n(r) lomni količnik optičnega vlakna pri radiju r, nmin je minimalni lomni količnik (v običajnem vlaknu je to lomni količnik obloge), nmax maksimalni lomni količnik jedra vlakna, α-parameter profila, Δ pa je definiran kot A=(nmax 2 - nmin2)/ (2nmax2). Profili standardnih mnogorodovnih vlaken torej sestavlja gradientno jedro, definirano z zgornjo enačbo, ki opisuje α-alfa profil optičnega vlakna ter obloga s konstantnim lomnim količnikom nmin. α-parameter profila je giblje okoli vrednosti 2 in je odvisen od valovne dolžine za katero je vlakno namenjeno.A detailed numerical analysis showed that bandwidth beyond 3 GHz.km could not be achieved in the case of complete waking of the entire set of aquatic genera in a standard multifaceted fiber. As is well known, minimal inter-atomic dispersion is achieved and thus the maximum fiber bandwidth is achieved by introducing an a-profile optical fiber defined by zn (r) = n max (1-2A (r / a) a ) 1/2 for r <a and n max (1-2A) 1/z for r> a, where r is the coordinate pointing in the radial direction of the cylindrical optical fiber, but is the radius of the optical fiber core, n (r) is the refractive index of the optical fiber at the radius r, n min is the minimum refractive index (in ordinary fiber, this is the refractive index of the lining), n max is the maximum refractive index of the fiber core, the α parameter of the profile, and Δ is defined as A = (n max 2 - nmin 2 ) / ( 2nmax 2 ). The profiles of standard multifilament fibers, therefore, consist of a gradient core defined by the equation above, which describes the α-alpha profile of the optical fiber and the coating with a constant refractive index n min . The α-parameter of the profile is about 2 and depends on the wavelength for which the fiber is intended.

Podrobna izvedena numerična analiza je pokazala, α-profil optičnega vlakna ne omogoča minimizacije skupinske zakasnitve višjih rodov v primerjavi z nižjimi rodovi, kar je prikazano na slikah 1 in 2. Sliki 1 in 2 podajata logaritem relativne časovne zakasnitve (RČZ), kot funkcijo razlike med efektivnim lomnim količnikom posameznih rodov ter obloge. RČZ je definirana kot:Detailed numerical analysis showed that the α-profile of the optical fiber does not allow minimization of group delay of higher genera compared to lower genera, which is shown in Figures 1 and 2. Figures 1 and 2 give the logarithm of relative time delay (RMS) as a function of the difference between the effective refractive index of individual genera and the lining. RCH is defined as:

RČZ zakasnitev osnovnega rodu-zakasnitev opazovanega višjega rodu zakasnitev opazovanega višjega roduRZZ delay of basic lineage - delay of observed higher lineage delay of observed higher lineage

Iz slik 1 in 2 je razvidno, da so zakasnitve višjih rodov bistveno večje kakor zakasnitve nižjih rodov, kar povzroča močno medrodovno disperzijo in močno omejuje pasovno širino optičnega vlakna ob vzbuditvi višjih rodov. Velike zakasnitve so posledica negativnega vpliva obloge s konstantnim lomnim količnikom na širjenje višjih rodov. Znaten delež evanescentnega polja višjih rodov se namreč širi po oblogi, kjer se izgubi učinek izravnave skupinskih hitrosti rodov, ki izhaja iz valovodnih lastnosti gradientnega jedra.Figures 1 and 2 show that the delays of the higher genera are significantly larger than the delays of the lower genera, causing strong inter-dispersion and severely limiting the optical fiber bandwidth upon excitation of the higher genera. The long delays are due to the negative influence of the lining with a constant refractive index on the propagation of higher genera. A considerable part of the evanescent field of the higher genera is spreading over the lining, where the effect of balancing the group velocities of the genera resulting from the wave properties of the gradient core is lost.

Izum rešuje problem negativnega vpliva obloge po sliki 3 tako, da vpeljuje v znan profil mnogorodovnega vlakna, ki ga sestavljata jedro 1 z radijem a 5 in razliko lomnih količnikov 8 ter obloga 3, dodatni strukturi:The invention solves the problem of the negative impact of the lining according to Figure 3 by introducing into the known profile of a multipart fiber consisting of a core 1 with a radius of 5 and a difference of refractive indexes 8 and a lining 3, with the additional structure:

a) deprimirano razširjeno jedro 2 z radialno dimenzijo b 6 in relativno razliko lomnih količnikov Δ2 9 glede na oblogo 3, ki je nadaljevanje prvotnega jedra 1 z obliko a-profilaa) depressed expanded core 2 with a radial dimension b 6 and a relative difference of the refractive indexes Δ 2 9 with respect to the lining 3, which is a continuation of the original core 1 with the shape of an a-profile

b) depresijo 4 z radialno dimenzijo c 7 in relativno razliko lomnih količnikov Δ2 9 glede na oblogo 3, ki se nahaja okoli razširjenega jedrab) depression 4 with radial dimension c 7 and relative difference of refractive indexes Δ 2 9 with respect to the lining 3 located around the expanded core

Na ta način se doseže dvoje: večinski delež evanescentnega polja višjih rodov se širi po razširjenem deprimiranem jedru 2, ki ima obliko α-profila ter omogoča dobro izenačevanje skupinskih hitrosti višjih rodov, doseže se boljša ujetost višjih rodov v primarno jedro 1 in razširjeno jedro 2. Končni učinek je ta, da je delež evanescentnega polja višjih rodov, ki se širi v oblogi s konstantnim lomnim količnikom 3 zanemarljiv. To omogoča zelo dobro izenačevanje skupinskih hitrosti višjih rodov, kar je prikazano na slikah 4 in 5. Iz obeh slik je jasno razvidno znatno zmanjšanje (izboljšanje) relativne zakasnitve med rodovi v primerjavi z zakasnitvami na slikah 1 in 2. Nabor parametrov deprimiranega razširjenega jedra 2 in depresije 4, ki omogoča izenačitev skupinskih hitrosti je širok in odvisen od valovne dolžine. Za praktično izdelavo vlaken so seveda zanimive minimalne dimenzije obeh območij. Večje razširjeno jedro 2 zahteva manjše dimenzije depresije 4 in obratno. V skrajnem primeru je možno depresijo 4 v celoti izpustiti, vendar postane v tem primeru potrebna dimenzija razširjenega jedra 2 večja in globlja, kar je pogosto neugodno s stališča proizvodnje vlakna.This is achieved in two ways: the majority share of the evanescent field of the higher genera expands over the expanded depressed nucleus 2, which has the shape of an α-profile, allowing a good equalization of the group velocities of the higher genera, achieving better trapping of the higher genera into the primary nucleus 1 and the expanded nucleus 2 The final effect is that the fraction of the evanescent field of higher genera propagating in the coating with a constant refractive index 3 is negligible. This allows very good equalization of group velocities of higher genera, as shown in Figures 4 and 5. Both figures clearly show a significant reduction (improvement) in the relative delay between genera compared to the delays in Figures 1 and 2. The set of parameters of the depressed extended kernel 2 and depression 4, which allows the equalization of group velocities to be broad and depends on the wavelength. Of course, the minimum dimensions of both areas are of interest for practical fiber production. A larger expanded core 2 requires smaller dimensions of depression 4 and vice versa. In the extreme, depression 4 can be completely omitted, but in this case the required dimension of the expanded core 2 becomes larger and deeper, which is often disadvantageous from the point of view of fiber production.

Sliki 6 in 7 podajata absolutne zakasnitve med posameznimi rodovnimi skupinami za primer vlakna z naslednjimi parametri profila: 2a=50 pm, Δ·,=1%, Δ2=-0.5%, b=5.5, c=5 pm ter a=2.087 pri 850 nm in a=2.0 pri 1310nm. Iz slik 6 in 7 je razvidno, da so največje zakasnitev med rodovi vsega 0.057 ns/km pri 850nm in 0.053 ns/km pri 1310nm, kar omogoča doseganje pasovne širine več kakor 10 GHz.km ob popolnem vzbujanju celotnega nabora vodenih rodovFigures 6 and 7 give the absolute delays between each generic group for the fiber case with the following profile parameters: 2a = 50 pm, Δ ·, = 1%, Δ 2 = −0.5%, b = 5.5, c = 5 pm, and a = 2.087 at 850 nm and a = 2.0 at 1310nm. Figures 6 and 7 show that the maximum delays between genera are 0.057 ns / km at 850nm and 0.053 ns / km at 1310nm, enabling a bandwidth of more than 10 GHz to be achieved with complete excitation of the entire set of aquatic genera

Opravljena je bila vrsta sistematičnih numeričnih izračunov z namenom ugotovitve praktične minimalne potrebne radialne dimenzije b (na sliki 3 označene s 6) razširjenega jedra 2, radialne dimenzije c (na sliki 3 označene s 7) depresije 4 in razlike lomnih količnikov J2 (na sliki 3 označene z 9), ki omogočajo učinkovito odpravljanje vpliva obloge in s tem zmanjšanje medrodovne disperzije. Tabela 1 podaja praktično izračunane vrednosti parametrov profila optičnega vlakna, ki omeji medrodovno disperzijo, ki nastane kot posledic vpliva obloge, pod teoretično mejo, ki je pogojena z zmogljivost idealnega α-profila mnogorodovnega vlakno z velikostjo jedra 2a=50 pm.A series of systematic numerical calculations were performed to determine the practical minimum required radial dimension b (in Fig. 3 indicated by 6) of the expanded core 2, the radial dimension c (in Fig. 3 indicated by 7) of depression 4, and the refractive index differences J 2 (in Fig. 3). 3 indicated by 9), which allow the effect of the lining to be effectively eliminated and thereby reduce the intergranular dispersion. Table 1 gives the practically calculated values of the parameters of the optical fiber profile, which limits the interannual dispersion resulting from the effect of the coating, below the theoretical limit, which is conditioned by the performance of an ideal α-profile multi-stranded fiber with a core size of 2a = 50 pm.

Tabela 1:Table 1:

850 nm 850 nm 1310 nm 1310 nm Δ2=-0.3 %Δ 2 = -0.3% b=4.4 pm, c=3 pm b = 4.4 pm, c = 3 pm - - Δ2=-0.35 %Δ 2 = -0.35% b=4.9 pm, c-1 pm b = 4.9 pm, c-1 pm b=4 pm, c=5 pm b = 4 pm, c = 5 pm Δ2=-0.5 %Δ 2 = -0.5% b=5.35 pm, c-0 pm b = 5.35 pm, c-0 pm b=5.5 pm, c=1 pm b = 5.5 pm, c = 1 pm

Uspešno obvladovanje neugodnih učinkov obloge omogoča nadaljnje zmanjšanje dimenzij jedra a in J/ pod vrednosti, značilne za standardna vlakna. V primeru če bi zmanjšali radij jedra a in A1t pri tem pa ne bi poskrbeli za odstranitev vpliva obloge, bi bil vpliv obloge izrazit in bi omejil pasovno širino vlakna na vrednosti, ko jih dosegajo obstoječa standardna vlakna. Uvedba razširjenega deprimiranega jedra 2 in depresije 1 nam tako omogoča zmanjšanje radija a jedra 1 in razlike lomnih količnikov kar se odraža v povečanju pasovne širne in pocenitvi vlakna. Zmanjšanje Δι ima namreč za posledico zmanjšanja vsebnosti germanija, ki je najdražja surovina za proizvodnjo mnogorodovnega vlakna. Da ohranimo zadostno neobčutljivost na ukrivljenosti mora imeti takšno vlakno z zmanjšanim jedrom ustrezne parametre profila, pri katerih so posamezne rodovne skupine dovolj ločene v prostoru faznih konstant. Razlike med efektivnimi lomni količniki posameznih rodovnih skupin morajo bit najmanj takšne, kot so v standardnih vlaknih. V praksi to pomeni, da mora bit razlika efektivnih lomnih količnikov med sosednjimi rodovnimi skupinami vsaj 0.001 pri valovni dolžini 1310nm in 0.0007 pri valovni dolžini 850 nm.Successful handling of the adverse effects of the coating enables further reduction of the core a and J / sub dimensions of the standard fiber. If core radius a and A 1t were reduced without eliminating the effect of the coating, the effect of the coating would be pronounced and would limit the fiber bandwidth to values when reached by existing standard fibers. The introduction of extended depressed core 2 and depression 1 thus allows us to reduce the radius a of core 1 and the refractive index difference, which is reflected in the increase in bandwidth and the reduction in fiber. The decrease in Δι results in a decrease in the content of germanium, which is the most expensive raw material for the production of multifaceted fiber. In order to maintain sufficient insensitivity to curvature, such a fiber with a reduced nucleus must have adequate profile parameters for which the individual genera are sufficiently separated in the space of phase constants. The differences between the effective refractive indexes of each generic group must be at least as large as those in standard fibers. In practice, this means that the difference of the effective refractive indexes between adjacent genera must be at least 0.001 at a wavelength of 1310 nm and 0.0007 at a wavelength of 850 nm.

Praktična primera parametrov profilov tovrstnih vlaken z radijem a=19 pm in a=75 /zm sta podana v tabeli 2.Practical examples of the profile parameters of such fibers with radii a = 19 pm and a = 75 / zm are given in Table 2.

Tabela 2:Table 2:

Jedro Sail 850 nm 850 nm 1310 nm 1310 nm a a J2 [%] J2 [%] b [pm] b [pm] c [pm] c [pm] a a δ2 [%]δ 2 [%] b [pm] b [pm] c [pm] c [pm] a=15pm, Δ-,=0.36 % a = 15pm, Δ -, = 0.36% 2.1027 2.1027 -0.25 -0.25 4.24 4.24 3 3 2.015 2,015 -0.4 -0.4 6.7 6.7 5 5 a=19pm, Δ^Ο.578 % a = 19pm, Δ ^ Ο.578% 2.0965 2.0965 -0.35 -0.35 4.81 4.81 3 3 2.01 2.01 -0.45 -0.45 6.27 6.27 5 5

Takšna vlakna je kljub zmanjšanemu jedru možno učinkovito sklopiti z obstoječimi VCSEL izvori.Such fibers, despite their reduced core, can be effectively coupled to existing VCSEL sources.

Zmanjšanje radija jedra a in ΔΊ se odraža v pomembnem povečanju dosegljive pasovne širine, kar ponazarjata sliki 8 in 9. Največja zakasnitev med najhitrejšim in najpočasnejšim rodom je za vlakno z a=19pm manj kakor 18 ps/km ter manj kakor 5 ps/km za vlakno z a= 15 pm. To mogoča teoretično doseganje pasovnih širin med 50 in 100 GHz.km.The decrease in the radius of kernel a and Δ Ί is reflected in a significant increase in the available bandwidth, as illustrated in Figures 8 and 9. The maximum delay between the fastest and slowest lineages is for fiber by = 19pm less than 18 ps / km and less than 5 ps / km for fiber for = 15 pm. This can theoretically achieve bandwidths between 50 and 100 GHz.km.

Poznavalcu s področja optičnih vlaken je razumljivo, da so vrednosti parametrov v tabelah 1 in 2 le značilni primeri in da je možno najti tudi podobne in nekoliko drugačne parametre, ki zagotavljajo podobne ali enake zmogljivosti, kot so bile prikazane na praktičnih primerih.It is understood by a person skilled in the art that the parameter values in Tables 1 and 2 are only typical examples and that similar and slightly different parameters can be found that provide similar or identical performance to those shown in practical examples.

Claims (10)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1 .Optični telekomunikacijski sistem, značilen po tem, da ga sestavlja mnogorodovno vlakno, ki povezuje oddajnik in sprejemnik, pasovna širina sistema pa presega 5 GHz.km ob tem pa oddajnik v mnogorodovnem vlaknu vzbuditi celoten nabor vodenih rodov.Optical telecommunication system, characterized in that it consists of a multi-fiber linking the transmitter and the receiver, the system bandwidth exceeding 5 GHz.km, while transmitting the transmitter in a multi-line fiber to a complete set of guided genera. 2. Optični telekomunikacijski sistem po zahtevku 1, značilen po tem, da vsebuje mnogorodovno vlakno s profilom, ki ga sestavljajo gradientno jedro (1) z radijem a (5), ki je večji od 22 μηη in manjši od 27 μηη in razliko lomnih količnikov Δ1 (8), ki je večja od 0.7% in manjša od 1.5%, deprimirano razširjeno gradientno jedro (2) z radialno dimenzijo b (6) in negativno razliko lomnih količnikov Δ2 (8), ki znaša med -0.1% in -0.5%, depresija (3) z razliko lomnih količnikov Δ2 (9) ter oblogo (4), ki sega do zunanjega roba vlakna.Optical telecommunication system according to claim 1, characterized in that it contains a multi-stranded fiber with a profile consisting of a gradient core (1) with a radius a (5) of greater than 22 μηη and less than 27 μηη and a refractive index difference Δ 1 (8) greater than 0.7% and less than 1.5%, a depressed expanded gradient core (2) with a radial dimension b (6) and a negative refractive index difference Δ 2 (8) between -0.1% and -0.5%, depression (3) with a refractive index difference of Δ 2 (9) and a lining (4) extending to the outer edge of the fiber. 3. Optični telekomunikacijski sistem, značilen po tem, da ga sestavlja mnogorodovno vlakno, ki povezuje oddajnik in sprejemnik, pasovna širina sistema pa presega 10 Gbit.km ob tem pa oddajnik v mnogorodovnem vlaknu vzbuditi celoten nabor vodenih rodov.3. Optical telecommunication system, characterized in that it consists of a multi-fiber connecting the transmitter and the receiver, the system bandwidth exceeding 10 Gbit.km, while generating a full set of guided generators in the multi-fiber network. 4. Optični telekomunikacijski sistem po zahtevku 1, značilen po tem, da vsebuje mnogorodovno vlakno s profilom, ki ga sestavljajo gradientno jedro (1) z radijem a (5), ki je večji od 15 μηη in manjši od 22 μηι in razliko lomnih količnikov Δι (8), ki je večja od 0.5% in manjša od 1%, deprimirano razširjeno gradientno jedro (2) z radialno dimenzijo b (6) in negativno razliko lomnih količnikov Δ2 (8), ki znaša med -0.1% in -0.5%, depresija (3) z razliko lomnih količnikov Δ2 (9) ter oblogo (4), ki sega do zunanjega roba vlakna.Optical telecommunication system according to claim 1, characterized in that it contains a multi-stranded fiber with a profile consisting of a gradient core (1) with a radius of a (5) greater than 15 μηη and less than 22 μηι and a refractive index difference Δι (8) greater than 0.5% and less than 1%, depressed expanded gradient core (2) with radial dimension b (6) and a negative refractive index difference Δ 2 (8) of -0.1% and - 0.5%, depression (3) with a difference in refractive index Δ 2 (9) and a lining (4) extending to the outer edge of the fiber. 5. Mnogorodovno optično vlakno, značilno po tem, da podpira širjenje več kakor 7 linearno polariziranih rodov in ima največjo diferencialno zakasnitev med vodenimi rodovi, ki je manjša kakor 0.5 ns/km ter ga sestavljajo gradientno jedro (1) z radijem a (5), ki je večji od 22 pm in manjši od 27 pm in razliko lomnih količnikov Δι (8), ki je večja od 0.7% in manjša od 1.5%, deprimirano razširjeno gradientno jedro (2) z radialno dimenzijo b (6) in negativno razliko lomnih količnikov Δ2 (8), ki znaša med -0.1% in -0.5%, depresija (3) z razliko lomnih količnikov Δ2 (9) ter oblogo (4), ki sega do zunanjega roba vlakna.5. Multiple optical fiber, characterized in that it supports the propagation of more than 7 linearly polarized genera and has a maximum differential delay between guided genera of less than 0.5 ns / km and consists of a gradient kernel (1) with radius a (5) , which is greater than 22 pm and less than 27 pm and a refractive index difference Δι (8) of greater than 0.7% and less than 1.5%, depressed expanded gradient core (2) with radial dimension b (6) and a negative difference refractive indexes Δ 2 (8), ranging between -0.1% and -0.5%, depression (3), with the difference of refractive indexes Δ 2 (9), and lining (4) extending to the outer edge of the fiber. 6. Mnogorodovno vlakno s profilom po zahtevku 5, značilno po tem, da znaša razlika med efektivnimi lomnimi količniki sosednjih rodovnih skupin najmanj 0.001 pri valovni dolžini svetlobe 1310 nm in najmanj 0.0007 pri valovni dolžini svetlobe 850 nm.Multiple fiber profile according to claim 5, characterized in that the difference between the effective refractive indexes of the adjacent genera is at least 0.001 at a light wavelength of 1310 nm and at least 0.0007 at a wavelength of 850 nm. 7. Mnogorodovno optično vlakno, značilno po tem, da podpira širjenje več kakor 5 linearno polariziranih rodov in ima največjo diferencialno zakasnitev med vodenimi rodovi, ki je manjša kakor 0.25 ns/km ter ga sestavljajo gradientno jedro (1) z radijem a (5), ki je večji od 22 pm in manjši od 27 pm in razliko lomnih količnikov Δ-, (8), ki je večja od 0.7% in manjša od 1.5%, deprimirano razširjeno gradientno jedro (2) z radialno dimenzijo b (6) in negativno razliko lomnih količnikov Δ2 (8), ki znaša med -0.1% in -0.5%, depresija (3) z razliko lomnih količnikov Δ2 (9) ter oblogo (4), ki sega do zunanjega roba vlakna.7. Multiple optical fiber, characterized in that it supports the propagation of more than 5 linearly polarized genera and has a maximum differential delay between guided genera of less than 0.25 ns / km and consists of a gradient core (1) with radius a (5) , greater than 22 pm and less than 27 pm and a refractive index difference Δ-, (8) greater than 0.7% and less than 1.5%, depressed expanded gradient kernel (2) with radial dimension b (6), and a negative difference in the refractive index Δ 2 (8) of between -0.1% and -0.5%, depression (3) with the difference in the refractive index Δ 2 (9) and the lining (4) extending to the outer edge of the fiber. 8. Mnogorodovno vlakno s profilom po zahtevku 7, značilno po tem, da znaša razlika med efektivnimi lomnimi količniki sosednjih rodovnih skupin najmanj 0.001 pri valovni dolžini svetlobe 1310 nm in najmanj 0.0007 pri valovni dolžini svetlobe 850 nm.Multiple fiber profile according to claim 7, characterized in that the difference between the effective refractive indexes of adjacent genera is at least 0.001 at a light wavelength of 1310 nm and at least 0.0007 at a wavelength of 850 nm. 9. Mnogorodovno optično vlakno, značilno po tem, da ga sestavlja gradientno jedro (1) z a obliko lomnega lika, razširjeno deprimirano gradientno jedro (2), ki ima a obliko lomnega lika in je nadaljevanje gradientnega jedra (1), pri tem pa znaša radialna dimenzijo deprimiranega gradientnega jedra (6) več kakor 0.4 pm in manj kakor 15 pm pri tem znaša negativna relativna razlika lomnih količnikov (9) med zunanjim robom razširjenega deprimiranega jedra (2) in obloge (3) med -0.15% in 0.4%, depresije (4), ki obdaja razširjeno gradientno jedro in ima radialno dimenzijo, ki je večja od 15 pm.9. Multiple-fiber optical fiber, characterized in that it consists of a gradient core (1) for the fracture shape, an expanded depressed gradient core (2) having a fracture shape and a continuation of the gradient core (1), the radial dimension of the depressed gradient kernel (6) is more than 0.4 pm and less than 15 pm, with a negative relative difference of the refractive indexes (9) between the outer edge of the expanded depressed kernel (2) and the liner (3) between -0.15% and 0.4%, depression (4), which surrounds an expanded gradient nucleus and has a radial dimension greater than 15 pm. 10. Mnogorodovno optično vlakno, značilno po tem, da ga sestavlja gradientno jedro (1) z a obliko lomnega lika z radijem a (5), ki je večji od 15 pm in manjšim od 26 pm, relativno razliko lomnih količnikom zb (8) med centrom gradientnega jedra in oblogo (3), ki znaša med 0.3% in 1%, razširjeno deprimirano gradientno jedro (2), ki ima a obliko lomnega lika in je nadaljevanje gradientnega jedra (1), pri tem pa znaša radialna dimenzijo deprimiranega gradientnega jedra (2) več kakor 1 pm in manj kakor 7 pm, depresije (4), ki obdaja razširjeno gradientno jedro in ima radialno dimenzij med 2 pm in 35 pm, pri tem znaša negativna relativna razlika lomnih količnikov Δ2 (9) med depresijo (4) in oblogo (3) med 0.1 % in -0.5% ter obloge (3), ki obdaja depresijo (4).10. Multiple-fiber optical fiber, characterized in that it consists of a gradient core (1) for the fracture shape of radius a (5) greater than 15 pm and less than 26 pm, the relative difference of the refractive index zb (8) between the center of the gradient core and the cladding (3), which is between 0.3% and 1%, an expanded depressed gradient core (2) having a fracture shape a continuation of the gradient core (1) having the radial dimension of the depressed gradient core (2) more than 1 pm and less than 7 pm, of depression (4), which surrounds an expanded gradient nucleus and has radial dimensions between 2 pm and 35 pm, with a negative relative difference of the refractive index Δ 2 (9) between depression ( 4) and the lining (3) between 0.1% and -0.5% and the lining (3) surrounding the depression (4).
SI200500190A 2004-07-26 2005-06-27 Multimode optical fibre with low differential delay between modes SI22065A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SI200500190A SI22065A (en) 2005-06-27 2005-06-27 Multimode optical fibre with low differential delay between modes
PCT/FI2005/050284 WO2006010798A1 (en) 2004-07-26 2005-07-26 Multimode optical fiber with low differential mode delay
US11/658,561 US7646955B2 (en) 2004-07-26 2005-07-26 Multimode optical fiber with low differential mode delay
US12/643,542 US8290323B2 (en) 2004-07-26 2009-12-21 Multimode optical fiber with low differential mode delay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200500190A SI22065A (en) 2005-06-27 2005-06-27 Multimode optical fibre with low differential delay between modes

Publications (1)

Publication Number Publication Date
SI22065A true SI22065A (en) 2006-12-31

Family

ID=37603499

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200500190A SI22065A (en) 2004-07-26 2005-06-27 Multimode optical fibre with low differential delay between modes

Country Status (1)

Country Link
SI (1) SI22065A (en)

Similar Documents

Publication Publication Date Title
KR100526516B1 (en) Graded-index optical fiber for high bit-rate and local area network
CN101738688B (en) Multimode optical system
CN108700703B (en) few-mode optical fiber for mode division multiplexing
KR101957612B1 (en) Low-loss few-mode optical fiber
US10784961B2 (en) Concentric fiber for space-division multiplexed optical communications and method of use
EP2139128B1 (en) Wavelength multiplexed optical system with multimode optical fibres
WO2006010798A1 (en) Multimode optical fiber with low differential mode delay
JP2016122209A (en) Multicore fiber design for spatial multiplexing
JP5242405B2 (en) Optical fiber and optical fiber transmission line
Li MMF for high data rate and short length applications
Hayashi et al. 125-µm-cladding 8-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects
CN111273394A (en) Multi-core multimode optical fiber
WO2015116279A2 (en) Optical fiber cables and modules with modal disperson compensation
JP6503513B2 (en) Multicore fiber
CN109073825B (en) Few-mode optical fiber for mode division multiplexing
Molin et al. Chromatic dispersion compensated multimode fibers for data communications
Li New development trends in optical fibers for data centers
Molin et al. Recent advances on MMFs for WDM and MDM
CN103842870A (en) Multimode fiber for modulatable source
CN110418990B (en) Weak coupling few-mode optical fiber for space division multiplexing
SI22065A (en) Multimode optical fibre with low differential delay between modes
US10795078B2 (en) MMF optical mode conditioning device
Korshunov et al. Capacity and spatial efficiency of multichannel optical fibers
Chen et al. Universal fibers for both single-mode and multimode transmissions in data centers
SI21479A (en) Multimode optical fibre with gigabyte bandwith upon arbitrary induced set of modes

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20051206

KO00 Lapse of patent

Effective date: 20130206