SI21995A - Procedure of selecting processing parameters in electroerosion processes by determining the share of short-circuit discharges - Google Patents
Procedure of selecting processing parameters in electroerosion processes by determining the share of short-circuit discharges Download PDFInfo
- Publication number
- SI21995A SI21995A SI200500064A SI200500064A SI21995A SI 21995 A SI21995 A SI 21995A SI 200500064 A SI200500064 A SI 200500064A SI 200500064 A SI200500064 A SI 200500064A SI 21995 A SI21995 A SI 21995A
- Authority
- SI
- Slovenia
- Prior art keywords
- short
- dkr
- machining
- power
- slot
- Prior art date
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
Postopek izbire obdelovalnih parametrov obdelave pri elektroerozijskem procesu z ugotavljanjem deleža kratkostičnih razelektritevThe process of selecting the machining parameters of the treatment in the erosion process by determining the percentage of short-circuit discharges
Področje izumaFIELD OF THE INVENTION
Predmet izuma je sistem za določitev optimalnih obdelovalnih parametrov elektroerozijskega obdelovalnega procesa glede na dano obdelovalno površino brez prekinitve obdelave, oz. bolj natančno sistem sprotne (on-line) izbire takšnih obdelovalnih parametrov elektroerozijskega procesa, ki dosegajo največjo produktivnost pri obdelavi dane obdelovalne površine.The object of the invention is a system for determining the optimum machining parameters of an erosion machining process with respect to a given machining surface without interrupting the machining, or more specifically, a system of on-line selection of such machining parameters of the erosion process that maximize productivity in the machining of a given machining surface.
Sistem je primeren za potopno in žično elektroerozij o, kakor tudi za mikro elektroerozijsko obdelavo.The system is suitable for submersible and wire erosion as well as micro-erosion treatment.
Stanje tehnikeThe state of the art
V primeru grobe obdelave, to je takrat, ko dosežena kvaliteta obdelovalne površine ni pomembna, je potrebno zagotoviti optimalno električno moč v reži, ki zagotavlja največjo stopnjo odvzema ob še sprejemljivi obrabi elektrode. Električno moč v reži določajo izbrani obdelovalni parametri na stroju.In the case of rough machining, ie when the achieved quality of the machining surface is not important, it is necessary to provide the optimum electric power in the slot, which ensures the highest degree of removal with even acceptable electrode wear. The electric power in the slot is determined by the selected machining parameters on the machine.
Znano jez da je optimalna električna moč v reži odvisna od velikosti projekcije obdelovalne površine, to je tiste površine, ki jo tvori reža med elektrodo in obdelovancem, na ravnino, ki je pravokotna na smer obdelave. Takšno površino imenujemo erodirna površina. Količnik med povprečno električno močjo v reži in velikostjo erodirne površine imenujemo gostota moči.It is well known by that the optimum electrical power in the gap depends on the size of the projection of the working surface, that is, those surfaces, which is formed by a gap between the electrode and the workpiece, in a plane which is perpendicular to the direction of processing. This is called the eroding surface. The ratio between the average electric power in the slot and the size of the eroding surface is called the power density.
V stanju tehnike je poznanih precej rešitev sprotne izbire obdelovalnih parametrov elektroerozijskega procesa za dano obdelovalno površino. Veliko teh rešitev je tudi patentiranih.In the prior art there are many known solutions to the current choice of machining parameters of the erosion process for a given machining surface. Many of these solutions are also patented.
V patentu US 4,559,434 je opisana izbira optimalnih obdelovalnih parametrov žične elektroerozije za dano obdelovalno površino, ki je izvedena že v NC programu, ki med drugim podaja tudi trajektorijo žice in s tem določa konturo izdelka. V tem primeru je potrebno določiti velikost erodirne površine za vsak odsek konture obdelovanca že pri pisanju NC programa.U.S. Patent 4,559,434 describes the selection of optimal machining parameters for wire electroerosion for a given machining surface, which is already performed in the NC program, which also specifies the trajectory of the wire, thereby determining the contour of the product. In this case, it is necessary to determine the size of the eroding surface for each section of the workpiece contour already when writing the NC program.
Podobno nepopolna rešitev je opisana v patentu US 4,361,745 za postopek potopne elektroerozije, kjer je pri prvi obdelavi potrebno določiti optimalne obdelovalne parametre pred obdelavo, le-ti pa se shranijo v procesnem krmilniku za naslednje enake izdelke. Ker se potopna elektroerozija uporablja predvsem v posamični proizvodnji, je takšna rešitev uporabna le v izjemnih primerih.A similarly incomplete solution is described in U.S. Pat. No. 4,361,745 for an immersion erosion process, where the first machining process requires the determination of the optimum machining parameters before machining, and these are stored in the process controller for the following identical products. Since submersible electroerosion is mainly used in individual production, such a solution is useful only in exceptional cases.
Po patentih US 5,276,302 in US 3,369,239 je problem rešen s spremljanjem kapacitivnosti reže med elektrodo in obdelovancem. Vendar erodirna površina ni enolično določena s kapacitivnostjo reže. Le-ta se namreč spreminja glede na onesnaženost reže z delci odstranjenega dielektrika in z velikostjo reže.According to US Patents 5,276,302 and US 3,369,239, the problem is solved by monitoring the capacitance of the gap between the electrode and the workpiece. However, the eroding surface is not uniquely determined by the gap capacitance. It varies depending on the contamination of the gap with the particles of the removed dielectric and the size of the gap.
Podobno patent JP 57138544 A opisuje rešitev, ki temelji na principu upornosti v reži. Vendar ima merjenje upornosti v reži v primerjavi z merjenjem kapacitivnosti reže še dodatno slabost, saj je zaradi velike občutljivosti na onesnaženost reže z delci odvzetega materiala, na podlagi upornosti v reži težko sklepati na velikost erodirne površine.Similarly, JP 57138544 A describes a solution based on the principle of slit resistance. However, the measurement of the resistance in the gap compared to the measurement of the gap capacitance has the additional disadvantage because, because of the high sensitivity to the contamination of the gap with the particulate material taken away, it is difficult to conclude on the size of the eroding surface based on the resistance in the gap.
Patenti US 4,510,367, US 4,533,811, US 5,243,166 in US 5,362936 temeljijo na empiričnih modelih hitrosti odvzema materiala glede na razelektritveno energijo in računajo velikost erodirne površine glede na hitrost rezanja (potovanja žice po konturi izdelka) pri žični elektroeroziji. Parametri empiričnih modelov so določeni na podlagi velikega števila eksperimentov. Glavna pomanjkljivost takega sistema je počasen odziv na spremembe debeline obdelovanca, zato sistem dobro deluje le pri zveznih spremembah debeline. Boljše rezultate dosega analitični model, ki so ga zgradili Rajurkar in sodelavci (1994, Annals of the CIRP, 43/1, str. 199-202 in 1997, Annals of the CIRP, 46/1, str. 147-150), ki je uporaben za stroje za žično elektroerozijo z izofrekvenčnimi generatorji in dobro določa velikost erodirne površine ter dovolj hitro reagira na spremembo velikosti erodirne površine. Tudi ta model bazira na znanih obdelovalnih parametrih in izmerjeni hitrosti rezanja. Liao s sodelavci (2002, Journal of Material Processing Technology, 121/3, str. 252-258) je predstavil model za določitev velikosti erodirne površine pri rezanju z žično elektroerozijo, ki je bil zgrajen z neparametričnim modeliranjem: naučena nevronska mreža zajema obdelovalne parametre in izvaja predikcijo velikosti erodirne površine. Na potopni elektroeroziji so izvedli sistem, ki določa velikost erodirne površine iz enostavnega modela odvzema materiala ene razelektritve in hitrosti podajanja elektrode (Dehmer 1992, WZL Produktionstechnik, 224, Duesseldorf, VVollenberg 1996, EDM Technology transfer, str. 7-13, Schulze 2000, Proceedings on the 2nd International Conference on Machining andPatents US 4,510,367, US 4,533,811, US 5,243,166 and US 5,362936 are based on empirical models of discharge rate with respect to the discharge energy and calculate the size of the eroding surface with respect to cutting speed (wire travel along the contour of the product) in wire erosion. The parameters of the empirical models are determined on the basis of a large number of experiments. The main disadvantage of such a system is the slow response to changes in workpiece thickness, so the system only works well with continuous changes in thickness. Better results are obtained by an analytical model built by Rajurkar et al (1994, Annals of the CIRP, 43/1, pp. 199-202 and 1997, Annals of the CIRP, 46/1, pp. 147-150), which It is useful for wire electro-erosion machines with isofrequency generators and determines well the size of the eroding surface and reacts quickly enough to resizing the eroding surface. Also, this model is based on known machining parameters and measured cutting speed. Liao et al (2002, Journal of Material Processing Technology, 121/3, pp. 252-258) presented a model for determining the size of an eroding surface in wire-erosion cutting, which was built by non-parametric modeling: the learned neural network captures the processing parameters and performs a prediction of the size of the eroding surface. Submersible electro-erosion was performed by a system that determines the size of the eroding surface from a simple single-charge material removal model and electrode feed rate (Dehmer 1992, WZL Produktionstechnik, 224, Duesseldorf, Volenberg 1996, EDM Technology transfer, pp. 7-13, Schulze 2000, Proceedings on the 2 nd International Conference on Machining and
Mesurement of Sculptured Surfaces, str. 295-304, Krakow).Mesurement of Sculptured Surfaces, p. 295-304, Krakow).
Za natančno delovanje sistema se zahteva enak potek toka med posameznimi razelektritvami. Vsi našteti modeli so relativno kompleksni, zahtevajo sofisticirano elektroniko za implementacijo na stroju in veliko število procesnih parametrov (npr. rezalno hitrost, velikost reže med žico in obdelovancem, vse obdelovalne parametre itd.), da znajo predvideti velikost erodirne površine in na podlagi tega izbrati optimalne obdelovalne parametre.The exact operation of the system requires the same flow of current between the individual charges. All of these models are relatively complex, requiring sophisticated electronics to implement on the machine and a large number of process parameters (eg cutting speed, size of the gap between the wire and workpiece, all machining parameters, etc.) to be able to predict the size of the eroding surface and to choose from optimal machining parameters.
Patent US 4,504,722 opisuje rešitev izbire optimalnih obdelovalnih parametrov, to je tistih, ki dosegajo stabilno obdelavo. V splošnem se stabilnost obdelave meri z deležem vnaprej določenih tipov razelektritev: prostih A, delovnih B, obločnih C in kratkostičnih D (slika 1). Večji delež delovnih razelektritev B kaže na bolj stabilno obdelavo. Po tem izumu podana rešitev problema določitve primerne električne moči v reži med obdelavo je v obliki iskalnega algoritma, ki išče po v naprej definiranih območjih obdelovalnih parametrov in preverja, ali izbrani obdelovalni parametri dosegajo zadovoljivo stabilnost procesa: dovolj velik delež delovnih razelektritev B. Ker sta vsaj dva medsebojno neodvisna vzroka za nestabilen obdelovalni proces, to je onesnažena reža in prevelika gostota moči v reži, takšno iskanje ni najboljša rešitev, ker obe vrsti nestabilne obdelave vrednoti z istim procesnim parametrom, to je z deležem delovnih razelektritev. Poleg tega omenjeni izum izbira vrednosti za štiri obdelovalne parametre na večjem številu nivojev, kar zahteva relativno dolg čas iskanja pravilne kombinacije vrednosti vseh obdelovalnih parametrov. Tudi algoritem iskanja optimalnega obdelovalnega režima je dokaj kompleksen, in sama naprava prav tako.U.S. Patent 4,504,722 describes a solution for selecting the optimum machining parameters, i.e., those that achieve stable machining. In general, the stability of machining is measured by the proportion of predefined discharge types: free A, working B, arc C, and short-circuited D (Figure 1). A higher proportion of B discharges indicates more stable processing. According to the invention, the solution to the problem of determining the appropriate electrical power in the slot during machining is in the form of a search algorithm that searches for predefined ranges of machining parameters and verifies that the machining parameters selected achieve satisfactory process stability: a sufficiently large proportion of operating discharges B. at least two mutually independent causes of an unstable machining process, that is, a contaminated slot and an excessive power density in the slot, such a search is not the best solution, since both types of unstable processing are evaluated by the same process parameter, that is, by the share of work discharges. In addition, said invention selects values for four processing parameters at a number of levels, which requires a relatively long search time for the correct combination of values of all processing parameters. Also, the algorithm for finding the optimal machining mode is quite complex, and so is the device itself.
Opis tehničnega problemaDescription of a technical problem
Tehnični problem, ki ga predmetni izum rešuje je sprotna izbira obdelovalnih parametrov elektroerozijskega procesa, ki določajo takšno povprečno električno moč, ki dosega največjo stopnjo odvzema, kjer omenjena izbira paramentrov poteka sprotno, torej brez prekinitve obdelovalnega procesa.The technical problem that the present invention solves is the current selection of the machining parameters of the erosion process, which determine such average electrical power, which reaches the highest rate of removal, where said selection of the parameters takes place on a regular basis, without interruption of the processing process.
Optimalna povprečna električna moč, ki doseže največjo stopnjo odvzema, je odvisna od obdelovalne površine, ki jo tvorita elektroda, ki je prednostno anoda, in obdelovanec, ki je prednostno katoda. V splošnem se obdelovalna površina med obdelavo spreminja, saj med obdelavo elektroda prodira v obdelovanec. Zato je med obdelavo potrebno spreminjati obdelovalne parametre, da dosežemo največjo možno stopnjo odvzema.The optimum average electrical power that achieves the highest withdrawal rate depends on the machining surface formed by the electrode, which is preferably the anode, and the workpiece, which is preferably the cathode. In general, the machining surface changes during machining as it penetrates the workpiece during machining. It is therefore necessary to vary the machining parameters during the processing in order to obtain the highest possible withdrawal rate.
Med elektroerozijsko obdelavo prihaja do električnih razelektritev v reži med elektrodo in obdelovancem, ki so posledica električnih impulzov generiranih v impulznem generatorju. Vsaka razelektritev natali in upari nekaj materiala obdelovanca in na površini obdelovanca nastane krater. Z nalaganjem kraterjev na površino obdelovanca se vrši odvzem materiala. Velikost kraterjev je odvisna predvsem od energije razelektritev, torej od razelektritvenega toka, razelektritvene napetosti in časa trajanja razelektritve. Stopnja odvzema pa je odvisna predvsem od povprečne električne moči v reži, torej je poleg naštetih obdelovalnih parametrov odvisna tudi od časa premora med razelektritvami. V primeru prevelike povprečne električne moči v reži postane obdelovalni proces nestabilen, kar se odraža na manjši stopnji odvzema in večji obrabi elektrode. Zato je v primeru spreminjajoče se obdelovalne površine potrebno navedene obdelovalne parametre posredno ali neposredno spremljati oziroma prilagajati obdelovalni površini, da dosežemo največje stopnje odvzema.During the erosion treatment, electrical discharges occur in the gap between the electrode and the workpiece, which are the result of electrical impulses generated in the impulse generator. Each discharge accumulates and evaporates some of the workpiece material and a crater forms on the workpiece surface. By loading craters on the workpiece surface, material is removed. The size of the craters depends mainly on the discharge energy, ie on the discharge current, the discharge voltage and the duration of the discharge. The withdrawal rate depends mainly on the average electrical power in the slot, so in addition to the above processing parameters, it also depends on the break time between charges. In the case of excessive average electrical power in the slot, the machining process becomes unstable, which is reflected in a lower rate of removal and greater wear on the electrode. Therefore, in the case of a changing work surface, these work parameters need to be directly or indirectly monitored or adjusted to the work surface in order to achieve maximum removal rates.
Opis izumaDescription of the invention
Po predmetnem izumu je problem določitve optimalnih obdelovalnih parametrov rešen z ugotavljanjem deleža kratkostičnih razelektritev D. V primeru prevelike gostote moči v reži, kar povzroča nestabilen obdelovalni proces in s tem tudi manjšo stopnjo odvzema in večjo obrabo elektrode, se delež kratkostičnih razelektritev opazno poveča. Večja gostota moči v reži povzroča večjo upornost v reži, kar privede do zmanjšanja reže do take mere, da se kratkostične razelektritve pojavljajo pogosteje. Na ta način se gostota moči v reži direktno odraža na deležu kratkostičnih razelektritev D.According to the present invention, the problem of determining the optimum machining parameters is solved by determining the proportion of short-circuit discharges D. In the case of excessive power density in the gap, which causes an unstable machining process and thus a lower rate of withdrawal and greater wear on the electrode, the proportion of short-circuit discharges is noticeably increased. A higher power density in the gap causes more resistance in the gap, which results in a reduction of the gap to such an extent that short-circuit discharges occur more frequently. In this way, the power density in the gap is directly reflected in the fraction of short-circuit discharges D.
Raziskave potrjujejo, da je delež kratkostičnih razelektritev D zadosten parameter za določitev optimalnih obdelovalnih parametrov in to pri vseh elektroerozijskih postopkih.Research confirms that the fraction of short-circuit discharges D is a sufficient parameter to determine the optimum machining parameters for all electro-erosion processes.
Kratek opis slikShort description of the pictures
Izum bo v nadaljevanju opisan na izvedbenem primeru, kjer se pozivamo na priložene slike, ki prikazujejoThe invention will now be described in the following example, where reference is made to the accompanying drawings
Slika 1: štiri tipične razelektritve prikazane na napetostnem signalu v režiFigure 1: Four typical charges shown on a voltage signal in the slot
Slika 2 shema elektroerozijskega stroja z analizatorjem impulzov, ki posreduje informacije o poteku obdelovalnega procesa v krmilnik strojaFigure 2 schematic diagram of an electro-erosion machine with a pulse analyzer that transmits information on the progress of the machining process to the machine controller
Slika 3: algoritem določitve optimalnega obdelovalnega režimaFigure 3: algorithm for determining the optimum machining mode
Podroben opis izumaDETAILED DESCRIPTION OF THE INVENTION
Kot je prikazano na sliki 2, sta elektroda 2 in obdelovanec 1 medsebojno razmaknjena za majhno režo 9 (0,01 do 0,1 mm), za kar skrbi podajalni sistem 4. Režo 9 zapolnjuje električno neprevodna tekočina, dielektrik. V reži 9 prihaja do razelektritev med elektrodo 2 in obdelovancem 1, ki so posledica električnih impulzov iz generatorja 3. Med delovnimi B in obločnimi C razelektritvami se lokalno v reži 9 vzpostavi plazemski kanal, ki povzroča segrevanje, nataljevanje in uparjanje materiala obdelovanca 1 na mestu, kjer se pojavi. Posledično nastane na tem mestu krater. Tako se s periodičnim pojavljanjem razelektritev vrši odvzem materiala obdelovanca. Parametre razelektritev in velikost reže 9 posreduje krmilnik 6 do generatorja 3 oziroma podajalnega sistema 4.As shown in Figure 2, the electrode 2 and the workpiece 1 are spaced apart by a small gap 9 (0.01 to 0.1 mm), which is taken care of by the feed system 4. The gap 9 is filled by an electrically conductive fluid, a dielectric. In the gap 9, discharge occurs between the electrode 2 and the workpiece 1 as a result of electrical impulses from the generator 3. A plasma channel is locally created in the gap 9 in the workpiece B and arc C discharge, which causes the workpiece material 1 to heat, deposit and evaporate in place. where it appears. As a result, a crater forms at this point. In this way the discharge of the workpiece material is carried out by periodic discharge. Discharge parameters and slot size 9 are transmitted by controller 6 to generator 3 or feeder 4.
Operater stroja komunicira s krmilnikom preko uporabniškega vmesnika 7. Med obdelavo se dielektrik onesnažuje z odvzetimi delci in produkti pirolize dielektrika; za dotok svežega dielektrika v režo 9 skrbi sistem za pretok dielektrika 5.The machine operator communicates with the controller via the user interface 7. During the processing, the dielectric is contaminated with the particulate matter and the dielectric pyrolysis products; the flow of fresh dielectric into the slot 9 is provided by the dielectric flow system 5.
V primerih, kjer se obdelovalna površina med obdelavo spreminja (konična elektroda, sprememba debeline obdelovanca pri žični elektroeroziji itd.) je potrebno obdelovalne parametre oziroma parametre razelektritev spreminjati oziroma optimizirati med obdelavo. Za to skrbi operater stroja neposredno, prednostno pa to opravi krmilnik stroja s pomočjo ustreznega algoritma.In cases where the machining surface changes during processing (conical electrode, change of thickness of the workpiece during wire erosion, etc.), the machining parameters or discharge parameters must be varied or optimized during machining. This is directly handled by the machine operator, and preferably by the machine controller using the appropriate algorithm.
Postopek določitve optimalnih parametrov obdelave poteka tako, da analizator 8 zajema električno napetost v reži 9, določa tipe posameznih razelektritev in izračuna delež posameznih tipov razelektritev na določenem odseku signala. Kot smiselno se izkaže hkrati obravnavati od 100 do 2000 razelektritev. Kako se posamezen tip razelektritve kaže na napetostnem signalu v reži 9 je prikazano na sliki 1. Razelektritve tipa A so proste razelektritve, pri katerih se tokokrog med električnim impulzom ne sklene, zato ostane napetost v reži 9 takšna, kot jo ustvari generator. Razelektritev tipa B je delovna razelektritev, kjer se v kratkem času po začetku impulza vzpostavi plazemski kanal v reži 9. Takrat se napetost v reži 9 zmanjša. Razelektritve tipa C so obločne razelektritve, kjer se plazemski kanal vzpostavi že v začetku impulza. Razelektritve tipa D pa so kratkostične razelektritve. Pri teh se plazemski kanal ne vzpostavi in kažejo na to, da sta elektroda 2 in obdelovanec 1 v električnem kontaktu. V tem primeru je napetost v reži 9 tekom celotnega impulza skoraj enaka U = 0 V.The process of determining the optimum processing parameters is carried out in such a way that the analyzer 8 captures the electrical voltage in the slot 9, determines the types of single charges and calculates the proportion of individual types of charges on a given signal section. It makes sense to deal with 100 to 2000 discharges at a time. How a single type of discharge shows up on a voltage signal in slot 9 is shown in Figure 1. Type A charges are free charges where the circuit does not contract during an electrical impulse, so the voltage in slot 9 remains the same as that generated by the generator. Type B discharge is a working discharge where a plasma channel in slot 9 is established shortly after the start of the pulse. At that time, the voltage in slot 9 is reduced. Type C discharges are arc discharges where the plasma channel is established early in the pulse. Type D charges, however, are short-circuit discharges. These do not establish a plasma channel and indicate that electrode 2 and workpiece 1 are in electrical contact. In this case, the voltage in slot 9 during the whole pulse is almost equal to U = 0 V.
Po predmetnem izumu je za določitev primernosti električne moči v reži 9 je pomemben samo delež kratkostičnih razelektritev D. V primeru prevelike gostote moči v reži 9 se delež kratkostičnih razelektritev D bistveno poveča. To dejstvo je osnova za postopek določitve primernih obdelovalnih parametrov za dano obdelovalno površino, ki je podan v obliki algoritma na sliki 3.According to the present invention, only the fraction of short-circuit discharges D is relevant for determining the suitability of electrical power in slot 9. In the case of excessive power density in slot 9, the proportion of short-circuit discharge D is significantly increased. This fact is the basis for the process of determining the appropriate machining parameters for a given machining surface, which is given in the form of the algorithm in Figure 3.
Operater stroja preko uporabniškega vmesnika izbere začetne obdelovalne parametre in požene obdelavo. Obdelovalni parametri so grupirani v režime. Režimi so razvrščeni od režima 1, ki dosega najmanjšo moč Pi v reži 9 (indeks takega režima ima vrednost 1: z=l, kjer je i tekoči indeks, ki teče od 1 do N) do režima N, ki dosega največjo moč Pn v reži 9 (indeks takega režima ima vrednost N: z=N, kjer je število N enako številu režimov, ki jih je možno nastaviti oziroma izbrati na danem stroju).The machine operator selects the initial machining parameters via the user interface and starts the machining. The processing parameters are grouped into modes. The modes are ranked from mode 1, which reaches the minimum power Pi in slot 9 (the index of such mode has a value of 1: z = l, where i is a liquid index, which runs from 1 to N) to mode N, which reaches the maximum power Pn in slot 9 (the index of such mode has the value N: z = N, where N is equal to the number of modes that can be set or selected on a given machine).
Če so izpolnjeni pogoji za zaključek obdelave (dosežena predpisana globina obdelave, dosežen konec predpisane trajektorije rezalne žice itd.) se obdelava zaključi, sicer se obdelava nadaljuje. Med obdelavo, na podlagi napetostnega signala v reži 9, analizator 8 določi prisotnost kratkostičnih razelektritev D. Zaradi naključnosti obdelovalnega procesa je potrebno določiti delež kratkostičnih razelektritev D na več odsekih, prednostno na 2 do 10 odsekih, napetostnega signala in določiti najmanjšega izmed izmerjenih deležev kratkostičnih razelektritev: min(D). Če minimalni delež kratkostičnih razelektritev min(D) presega kritično vrednost Dkr, ki je odvisna od dolžine obravnavanega odseka napetostnega signala oziroma od števila razelektritev na odseku napetostnega signala, ki ga obravnavamo, po postopku, ki je predmet tega izuma, izberemo taksne obdelovalne parametre, ki določajo manjšo moč v reži 9 (z=z-l). Vrednosti Dkr se gibljejo med 0 in 5%.If the conditions for completion of the workpiece are fulfilled (the required depth of the workpiece is reached, the end of the prescribed trajectory of the cutting wire is reached, etc.), the workout is completed, otherwise the work-up continues. During processing, based on the voltage signal in slot 9, analyzer 8 determines the presence of short-circuit discharges D. Due to the randomness of the machining process, it is necessary to determine the proportion of short-circuit discharges D on several sections, preferably 2 to 10 sections, of the voltage signal and determine the smallest of the measured short-circuit proportions. discharge: min (D). If the minimum fraction of short-circuit discharges min (D) exceeds the critical Dkr value, which depends on the length of the voltage signal section under consideration or the number of charges on the voltage signal section under consideration, the processing parameters are selected according to the method of the present invention, which determine the lower power in slot 9 (z = zl). Dkr values range from 0 to 5%.
V primeru, da minimalni delež kratkostičnih razelektritev min(D) ne presega kritične vrednosti Dkr, je moč v reži 9 optimalna ali pa celo premajhna za doseganje največje stopnje odvzema. Za določitev optimalne moči v reži 9 v takem primeru pa postopek, ki je predmet tega izuma predvideva, da v kolikor je minimalni delež kratkostičnih razelektritev min(D) na več zaporednih odsekih signala manjši od kritične vrednosti Dkr, izberemo obdelovalne parametre, ki določajo večjo moč v reži 9 (z'=z‘+l).In the event that the minimum fraction of short-circuit discharges min (D) does not exceed the critical Dkr value, the power in slot 9 is optimal or even too small to achieve the maximum withdrawal rate. In order to determine the optimum power in slot 9 in this case, however, the method of the present invention provides that, if the minimum proportion of short-circuit discharges min (D) on several consecutive sections of the signal is less than the critical Dkr value, then select machining parameters that determine a larger power in slot 9 (z '= z' + l).
Ko so na stroju že izbrani optimalni obdelovalni parametri oziroma optimalni režim, bi preklopu na režim, ki dosega večjo moč v reži takoj sledil preklop na prejšen, optimalen režim. Če bi se to ponovilo večkrat v kratkem času, bi bila to motnja v obdelovalnem procesu; krmilnik ne bi bil sposoben ohranjanja optimalnega obdelovalnega režima.When the optimum machining parameters or optimal mode are already selected on the machine, switching to a mode that achieves greater power in the slot would immediately be followed by a switch to the previous, optimal mode. If this were repeated several times in a short time, it would be a disruption to the processing process; the controller would be incapable of maintaining the optimum machining mode.
Zato je preklop na režim, ki dosega večjo moč P, možen šele po nekaj zaporednih meritev (K), ki dajo rezultat: min(D)<Dkr. To dosežemo z implementacijo števca k. Števec k se poveča (k=k+l), ko je izpolnjen pogoj min(D)<Dkr. Ko števec k preseže vrednost K, se izbere režim, ki določa večjo moč v reži (z=z+l), in števec k se resetira (fc=0). Število zaporednih meritev (K), ki dajo rezultat: min(D)<Dkr je med 2 in 50.Therefore, switching to a mode that achieves higher power P is only possible after a few consecutive measurements (K) that give the result: min (D) <Dkr. This is achieved by implementing the counter k. The counter k increases (k = k + l) when the condition min (D) <Dkr. When the counter k exceeds the value of K, the mode that determines the higher power in the slot (z = z + l) is selected and the counter k is reset (fc = 0). The number of consecutive measurements (K) giving the result: min (D) <Dkr is between 2 and 50.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200500064A SI21995A (en) | 2005-03-11 | 2005-03-11 | Procedure of selecting processing parameters in electroerosion processes by determining the share of short-circuit discharges |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200500064A SI21995A (en) | 2005-03-11 | 2005-03-11 | Procedure of selecting processing parameters in electroerosion processes by determining the share of short-circuit discharges |
Publications (1)
Publication Number | Publication Date |
---|---|
SI21995A true SI21995A (en) | 2006-10-31 |
Family
ID=37459575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200500064A SI21995A (en) | 2005-03-11 | 2005-03-11 | Procedure of selecting processing parameters in electroerosion processes by determining the share of short-circuit discharges |
Country Status (1)
Country | Link |
---|---|
SI (1) | SI21995A (en) |
-
2005
- 2005-03-11 SI SI200500064A patent/SI21995A/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920006506B1 (en) | Wire electric discharge machine apparatus | |
CN105121316B (en) | The pulse of spark erosion equipment and clearance control | |
Yan et al. | Surface quality improvement of wire-EDM using a fine-finish power supply | |
Rajurkar et al. | On-line monitor and control for wire breakage in WEDM | |
Hoang et al. | A new approach for micro-WEDM control based on real-time estimation of material removal rate | |
US11772177B2 (en) | Method for high-speed wire cutting | |
CN104308297A (en) | High-speed wire cut electrical discharge machining mechanism | |
CN102672293B (en) | Electric discharge machine | |
US5874703A (en) | Method and apparatus for impulse generator for electroerosive machining of workpieces | |
US6756557B1 (en) | Power supply for wire electric discharge machining | |
CN104339046A (en) | Wire cut electrical discharge machining mechanism capable of stably conveying wires | |
SI21995A (en) | Procedure of selecting processing parameters in electroerosion processes by determining the share of short-circuit discharges | |
USRE32855E (en) | Capacitor-type pulse generator for electrical discharge machining, especially for wire-cutting EDM | |
Blatnik et al. | Percentage of harmful discharges for surface current density monitoring in electrical discharge machining process | |
JP2879687B2 (en) | Method of detecting position of electric discharge point in electric discharge machining and control method of electric discharge machining using the same | |
JPH08215939A (en) | Method and equipment for controlling electrolytic corrosion process | |
Valentinčič et al. | Selection of optimal EDM machining parameters for the given machining surface | |
JPS6059098B2 (en) | Power supply device for electrical discharge machining | |
JPH01103228A (en) | Controller for wire electric discharge machine | |
JPS5930621A (en) | Wire-cut electric discharge machining apparatus | |
Khan et al. | An introduction to electrical discharge machining | |
JPH0661658B2 (en) | Wire cut electrical discharge machine | |
CN117506039A (en) | Wire cut electric discharge machining method, device, computer equipment and storage medium | |
JPS6119370B2 (en) | ||
JPH0661659B2 (en) | Wire cut electrical discharge machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20060608 |
|
KO00 | Lapse of patent |
Effective date: 20081125 |