SI21630A - Multipole magnetizing device and procedure for its manufacture - Google Patents

Multipole magnetizing device and procedure for its manufacture Download PDF

Info

Publication number
SI21630A
SI21630A SI200300220A SI200300220A SI21630A SI 21630 A SI21630 A SI 21630A SI 200300220 A SI200300220 A SI 200300220A SI 200300220 A SI200300220 A SI 200300220A SI 21630 A SI21630 A SI 21630A
Authority
SI
Slovenia
Prior art keywords
notches
magnetic
head
multipole
magnet
Prior art date
Application number
SI200300220A
Other languages
Slovenian (sl)
Inventor
Albin Sirc
Anton Hamler
Original Assignee
Iskra Mehanizmi, Industrija Mehanizmov, Aparatov In Sistemov D.D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iskra Mehanizmi, Industrija Mehanizmov, Aparatov In Sistemov D.D. filed Critical Iskra Mehanizmi, Industrija Mehanizmov, Aparatov In Sistemov D.D.
Priority to SI200300220A priority Critical patent/SI21630A/en
Priority to SI200432340A priority patent/SI1513169T1/en
Priority to EP04468015.5A priority patent/EP1513169B1/en
Publication of SI21630A publication Critical patent/SI21630A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

The multipole magnetizing device uses a massive multipole magnetizing head for magnetizing permanent magnets from highly coercitive materials, like hardmagnet ferrites and materials based on rare earth compounds, which for achieving the magnetic saturation point require a very large magnetic field, concentrated at precisely defined sections. The magnetizing process is performed inside the multipole magnetizing head in such a way that on the permanent magnet a series of symmetrical and alternating facing poles is provided. The magnetizing head is made in the shape of a hollow cylinder-shaped body from electrically conductive material. By adequate geometry of the series of vertical notches on the hollow cylinder-shaped body, a series of facing current circuits is created. The shape of the current circuits ensures that the majority of the electric current is close enough to the surface of the magnetizing material. The width of the magnetic poles is defined by the distance between the notches.

Description

MNOGOPOLNA MAGNETILNA NAPRAVA IN POSTOPEK IZDELAVEMULTIPLE MAGNETIC DEVICE AND MANUFACTURING PROCEDURE

Izum sodi v področje naprav in postopkov za magnetenje in razmagnetenje trdomagnetnih materialov, bolj natančno v področje mnogopolnih magnetilnih naprav.The invention belongs to the field of devices and processes for magnetization and demagnetization of solid magnetic materials, more specifically to the field of multipole magnetic devices.

Tehnični problem, ki ga pričujoči izum rešuje, je konstrukcijska rešitev in postopek izdelave naprave za mnogopolno magnetenje trdomagnetnih materialov, kot so redke zemlje in feriti, ki za doseganje točke magnetnega nasičenja potrebujejo zelo veliko magnetno poljsko jakost, skoncentrirano na točno določenih področjih. Naprava mora vzdržati velike mehanske obremenitve, ki so posledica magnetnih sil močnega magnetnega polja. To nastaja pri velikih tokovnih impulzih, kar povzroča intenzivno segrevanje magnetilne naprave med magnetenjem. Konstrukcijska rešitev in postopek izdelave morata zagotavljati precizno in simetrično geometrijsko obliko magnetilne naprave in učinkovito odvajanje sproščene toplote.A technical problem that is solved by the present invention is the construction solution and the manufacturing process of a device for the multipolar magnetization of rigid magnetic materials, such as rare earths and ferrites, which require very high magnetic field strength concentrated in specific areas to reach a point of magnetic saturation. The device must withstand the high mechanical stresses resulting from the magnetic forces of a strong magnetic field. This occurs at high current pulses, which causes the magnetic device to heat up intensively during magnetization. The design and manufacturing process must ensure a precise and symmetrical geometric shape of the magnet device and efficient release of the released heat.

V patentu US4470031 opisana večpolna magnetilna naprava za trajne magnete ima nosilno strukturo, ki je bodisi trden blok ali pa sestav zloženih plošč ali lamel, narejeno iz električno neprevodnega materiala, na primer izsteklenih vlaken, v katerem so narejene odprtine za namestitev električno prevodnega magnetilnega navitja. Odprtine so oblikovane tako, da nudijo navitju čvrsto oporo in preprečijo premike ali deformacije kljub močnim magnetnim poljem, ki se ustvarijo pri visokotokovni impulzni razelektritvi. Navitje je lahko oblikovano tako, da ustvari raznovrstne vzorce polov na ploščatih magnetih ali na cilindričnih magnetih, za katere se na nosilni strukturi predvidijo primerne odprtine.U.S. Pat. The openings are designed to provide the winding with a firm support and to prevent displacement or deformation despite the strong magnetic fields generated by high-current impulse discharge. The windings may be designed to create a variety of pole patterns on flat magnets or on cylindrical magnets for which suitable openings are provided on the supporting structure.

Poznano je, da se visoko koercitivni magnetni materiali magnetijo v prvi vrsti z velikimi tokovnimi impulzi skozi električno prevodni material, ki je oblikovan tako, da tvori v primeru okroglega magneta okoli njega zaporedje tokovnih zank, v primeru ploščatega magneta pa zaporedje tokovnih zank ob njem. Magnetno polje se torej v materialu, ki ga magnetimo, ustvarja s pomočjo omenjenih tokovnih zank, ki so pri znanih magnetilnih napravah v splošnem narejene iz žice.It is known that highly coercive magnetic materials are primarily magnetized by large current pulses through an electrically conductive material, which is designed to form, in the case of a circular magnet around it, a series of current loops and, in the case of a flat magnet, a sequence of current loops adjacent to it. The magnetic field is thus generated in the material to be magnetized by said current loops, which are generally made of wire in known magnetic devices.

Bistvo mnogopolne magnetilne naprave po izumu je v tem, da omogoča magnetenje visoko koercitivnih magnetnih materialov, kot so redke zemlje, pri katerih je potrebna visoka vrednost magnetne poljske jakosti za doseganje točke nasičenja materiala. Naprava je konstruirana tako, da koncentrira magnetno polje na zelo ozkih področjih, kar omogoča formiranje magnetnih polov v majhnih razmakih, tako da je mogoče v primeru cilindričnega magneta narediti zaporedje polovih parov na njegovem obodu, v primeru ploščatega magneta pa na njegovi površini . Natančnost geometrijske oblike magnetilne glave zagotavlja stabilnost procesa pri magnetenju in manjši raztros med širinami in amplitudami magnetnega polja posameznih polov.The essence of the multipole magnet device according to the invention is that it allows the magnetization of highly coercive magnetic materials, such as rare earths, which require a high magnetic field strength to reach the material saturation point. The device is designed to concentrate the magnetic field in very narrow areas, allowing the formation of magnetic poles at small intervals, so that in the case of a cylindrical magnet, a sequence of half pairs can be made at its periphery and, in the case of a flat magnet, at its surface. The precision of the geometric shape of the magnet head ensures the stability of the magnetization process and a smaller spread between the widths and amplitudes of the magnetic field of the individual poles.

Mnogopolna magnetilna naprava in postopek izdelave po izumu bo v nadaljevanju podrobneje opisana s pomočjo slik, na katerih so prikazani:The multipolar magnet device and the manufacturing process according to the invention will now be described in more detail with the aid of the following figures:

Slika 1 - naris naprave po izumu, delno v sredinskem prerezu;Figure 1 is an outline of the device according to the invention, partly in the middle section;

Slika 2 - naris telesa 8;Figure 2 - outline of body 8;

Slika 3 - stranski ris telesa 8 mnogopolne magnetilne glave 6;Figure 3 is a side view of the body 8 of a multipolar magnet head 6;

Slika 4 - tloris telesa 8 mnogopolne magnetilne glave 6;Figure 4 is a plan view of the body 8 of the multipole magnet head 6;

Slika 5 - prerez A-A telesa 8;Figure 5 is a cross-sectional view of A-A of body 8;

Slika 6 - diagram magnetnega potenciala in magnetne gostote v magnetilni reži; Slika 7 - prikaz glavnine električnega toka ob impulznem magnetenjuFigure 6 - diagram of magnetic potential and magnetic density in the magnetic gap; Figure 7 - representation of the bulk of the electric current by pulse magnetization

Nosilno strukturo mnogopolne magnetilne naprave sestavljajo nosilec 1, nosilni steber 2 in nosilni steber 3, ki sta pritrjena na robovih nosilca 1, in hladilna plošča 14, ki je na nosilca 2 in 3 pritrjena z objemkama 14a. Na sredini nosilca 1 je pritrjen nosilec 4 za trn 5, na katerega se namesti magnet, ki ga magnetimo. Magnetilna glava 6 je vgrajena v sredini mehanskega ščitnika 7 tako, da se njena vzdolžna os pokriva z vzdolžno osjo trna 5. Mehanski ščitnik 7 z vgrajeno magnetilno glavo 6 je vpet na stebra 2 in 3 tako, da ga je mogoče po stebrih premikati. Narejen je iz električno neprevodnega in nemagnetnega materiala ustrezne mehanske trdnosti, na katerega se magnetilna glava 6 opira v radialni smeri, tako da lahko vzdrži velike sile močnega magnetnega polja, ki nastaja pri velikih tokovnih impulzih.The supporting structure of a multipole magnet device consists of a carrier 1, a carrier column 2 and a carrier column 3, which are fixed at the edges of the carrier 1, and a cooling plate 14, which is secured to the carrier 2 and 3 by clamps 14a. In the center of bracket 1, a bracket 4 is attached to the mandrel 5, on which a magnet is mounted which is magnetized. The magnet head 6 is mounted in the center of the mechanical guard 7 so that its longitudinal axis is covered by the longitudinal axis of the mandrel 5. The mechanical guard 7 with the magnetic head 6 is mounted on the columns 2 and 3 so that it can be moved along the columns. It is made of an electrically non-conductive and non-magnetic material of adequate mechanical strength to which the magnetic head 6 rests in a radial direction so that it can withstand the high forces of a strong magnetic field generated by large current pulses.

Na sredini hladilne plošče 14, ki ima vzdolžno odvodno cev 16 za odvajanje hladilne tekočine, je vpet hladilni trn 15, ki ima hladilni sistem izveden tako, da je v votli notranjosti trna 15 vstavljena cev 15b, ki je nekoliko tanjša od valjaste votline trna 15 in je spodaj poševno odrezana. Hladilna tekočina tako teče po cevi 15b navzdol, se na dnu valjaste votline trna 15 obrne navzgor in teče v prostoru med zunanjo steno cevi 15b in steno valjaste votline trna 15 proti odvodni cevi 16 v hladilni plošči 14.In the middle of the cooling plate 14, which has a longitudinal drainage pipe 16 for draining the coolant, there is a clamped cooling mandrel 15 having a cooling system designed so that a tube 15b is inserted in the hollow interior of the mandrel 15 which is slightly thinner than the cylindrical mandrel cavity 15 and is inclined below. The coolant thus flows down the pipe 15b downwards, faces upward at the bottom of the cylindrical mandrel 15 and flows in the space between the outer wall of the mandrel 15b and the wall of the mandrelated mandrel 15 against the drainage pipe 16 in the cooling plate 14.

Mnogopolna magnetilna glava 6 se narejena v obliki votlega valjastega telesa 8, ki je izdelano iz električno dobro prevodnega masivnega materiala. Telo 8 ima enakomerno razporejene vertikalne zareze 9 in 11, ki si sledijo izmenično in so zarezane po celi debelini stene telesa 8, v vertikalni smeri pa je njihova dolžina enaka približno 8/9 višine telesa 8, pri čemer se zareze 9 začnejo na vrhu telesa 8, zareze 11 pa na dnu telesa 8. . Med prvo in zadnjo zarezo 9, na kateri sta povezana priključka 12 in 13, poteka namesto zareze 11 zareza 10, in to po celi višini telesa 8.The multipolar magnet head 6 is made in the form of a hollow cylindrical body 8 made of electrically conductive solid material. The body 8 has a uniformly spaced vertical notches 9 and 11, which follow each other and are notched throughout the thickness of the wall of the body 8, and in the vertical direction, their length is approximately 8/9 of the height of the body 8, with the notches 9 beginning at the top of the body 8, notches 11 then the bottom of the body 8.. Between the first and last notches 9, on which the connectors 12 and 13 are connected, runs instead of the notch 11 of the notch 10, all along the height of the body 8.

Sekvenca zarez 9, 10 in 11 oblikuje vrsto električno prevodnih stebrov v telesu 8. Geometrična oblika stebrov tvori tokovno zanko, ki se začne pri zarezi 10. Prek priključnih sponk 12 in 13 teče tok skozi tokovne zanke v stebrih magnetilne glave 6 tako, da je smer toka v sosednjih stebrih nasprotna. Oblika stebrov, ki formirajo tokovno zanko, zagotovlja, da je glavnina električnega toka ob impulznem magnetenju dovolj blizu površine magnetnega materiala, kar je razvidno iz slike 6. Širina magnetnih polov je določena z razporeditvijo zarez 9, 10 in 11 po obodu telesa 8, to pomeni z razmaki med zarezami. Najbolj ugodne razmere je mogoče doseči v primeru lameliranja telesa 8, kar omogoča pri velikih tokovnih impulzih reda velikosti 80 kA gostoto magnetnega pretoka na površini magnetnega materiala reda velikosti 2 T.The sequence of notches 9, 10 and 11 forms a series of electrically conductive columns in the body 8. The geometric shape of the columns forms a current loop starting at the notch 10. Through the terminals 12 and 13, current flows through the current loops in the columns of the magnetic head 6 such that direction of flow in adjacent columns opposite. The shape of the pillars that form the current loop ensures that the bulk of the electrical current during pulse magnetization is sufficiently close to the surface of the magnetic material, as can be seen from Figure 6. The width of the magnetic poles is determined by the notches 9, 10 and 11 along the circumference of the body 8, i.e. means with comma spaces. The most favorable conditions can be obtained in the case of the laminating of the body 8, which allows, at large current pulses of the order of 80 kA, a magnetic flux density on the surface of a magnetic material of the order of 2 T.

Zareze 9, 10 in 11 na telesu 8 magnetilne glave 6 se lahko izdelajo s postopkom žične ali potopne erozije ali s kakim drugim postopkom za odvzemanje materiala. Ti omogočajo izdelavo geometrijsko natančnih simetričnih tokovodnih poti, ki zagotavljajo simetrijo magnetnih polov. S tem dosežemo tudi fokusiranje magnetnega polja na ozkih odsekih magnetnega materiala. Simetrija magnetnih polov je pomembna tudi zaradi kompenzacije velikih transverzalnih sil, ki nastajajo ob velikih tokovnih impulzih skozi magnetilno glavo 8. Učinkovita kompenzacija transverzalnih sil podaljša življenjsko dobo magnetilne naprave. Ustrezno mehansko trdnost zagotavlja natančna geometrična oblika telesa 8 z zarezami 9, 10 in 11, ki zagotavljajo simetrijo tokovodnih poti in s tem enakomerno porazdelitev sile na oporne stene mehanskega ščitnika 7.The notches 9, 10 and 11 on the body 8 of the magnet head 6 may be made by wire or submersible erosion or by some other material removal process. These make it possible to produce geometrically precise symmetrical current paths that provide the symmetry of the magnetic poles. This also achieves focusing of the magnetic field on narrow sections of magnetic material. The symmetry of the magnetic poles is also important due to the compensation of the large transverse forces generated by the large current pulses through the magnetic head 8. Effective compensation of the transverse forces extends the life of the magnetic device. Adequate mechanical strength is provided by the precise geometric shape of the body 8 with notches 9, 10 and 11, which ensure the symmetry of the flow paths and thus the even distribution of force on the supporting walls of the mechanical shield 7.

Izpraznitve v zarezah 9, 10 in 11, ki ločujejo med seboj posamezne tokovodne poti, se zapolnijo s sintetično smolo, armirano s steklenimi vlakni ali z vlakni Kevlar®.The discharges in the grooves 9, 10 and 11, which separate the individual flow paths, are filled with synthetic glass fiber reinforced resin or Kevlar® fibers.

Ker je tokovno prevodni del, v katerem se med magnetenjem sprošča velika energija, zaradi kompenzacije velikih mehanskih sil obdan s toplotno slabo prepustnim materialom, je odvajanje toplote izvedeno s hladilnim trnom 15 iz toplotno dobro prevodnega materiala, ki je poleg tega hlajen z v trn integriranim hladilnim sistemom, ki odvaja toploto iz njega. Omenjeni hladilni trn 15 je vpet v hladilni plošči 14, v katero s pomočjo dovajanja hladilne tekočine še dodatno odvaja toploto. Po končanem magnetenju se mehanski ščitnik 7 z integrirano magnetilno glavo 6 premakne na hladilni trn 15 tako, da le-ta sede v izpraznitev, kjer je bil med postopkom magnetenja vstavljen permanentni magnet,. Trn 15 se tako fizično dotika stebrov telesa 8, to je tokovodnih poti, in zaradi velike temperaturne diference pospešeno prejema odvečno toplotno energijo iz magnetilne naprave. Čas ohlajanja je definiran tako, da vzdržuje delovno temperaturo okrog 100°C, kar zagotavlja daljšo življenjsko dobo naprave in stabilen proces magnetenja.Since the current-conducting part, in which a large amount of energy is released during magnetization, is surrounded by heat-permeable material to compensate for the high mechanical forces, heat dissipation is carried out by a cooling mandrel 15 from a thermally conductive material, which is further cooled by an integrated cooling mandrel. to a system that extracts heat from it. Said cooling rod 15 is clamped in the cooling plate 14, into which it further extracts heat through the supply of coolant. After the magnetization is complete, the mechanical shield 7 with the integrated magnet head 6 moves to the cooling mandrel 15 so that it is seated in the discharge, where a permanent magnet was inserted during the magnetization process. Thorn 15 thus physically touches the pillars of the body 8, that is, the flow paths, and, because of the large temperature difference, rapidly receives excess thermal energy from the magnetic device. Cooling time is defined to maintain an operating temperature of about 100 ° C, which ensures longer device life and a stable magnetization process.

Po varianti I je telo 8 izdelano iz dobro električno prevodnega in izoliranega traku, ki je v primeru magnetilne naprave za magnetenje ploščatega magneta zložen v kvader oziroma v primeru magnetilne naprave za magnetenje cilindričnega magneta zvit v svitek toroidne oblike.According to variant I, the body 8 is made of well electrically conductive and insulated tape, which is folded into a square in the case of a magnetic device for magnetizing a flat magnet or, in the case of a magnetic device for magnetizing a cylindrical magnet, wrapped in a toroidal roll.

Po varianti II je telo 8 sestavljeno iz med seboj izoliranih koncentričnih cevk, ki so v primeru magnetilne naprave za magnetenje ploščatega magneta zložene v kvader oziroma v primeru magnetilne naprave za magnetenje cilindričnega magneta zvite v svitek toroidne oblike. Pprevodne poti imajo pravokoten presek, kadar je telo 8 zloženo v kvader, in presek v obliki kolobarja, kadar ima telo 8 cilindrično obliko.According to variant II, the body 8 is composed of isolated concentric tubes which are folded into squares in the case of a magnetic magnet magnetizing device, or rolled into a toroidal shape in the case of a magnetic magnet magnetizing device. The conduction paths have a rectangular cross section when the body 8 is folded into a quad and a cross section in the form of a circle when the body 8 has a cylindrical shape.

Število polovih parov, ki jih lahko ima telo 8 po izumu, izrazimo z enačbo: p = 1 + N, kjer je N množica naravnih števil.The number of half pairs that the body 8 can have according to the invention is expressed by the equation: p = 1 + N, where N is the set of natural numbers.

Mnogopolna magnetilna naprava po izumu omogoča generacijo visoko intenzivnega magnetnega polja, z magnetno poljsko jakostjo reda velikosti 2500 kA/m na zelo ozkih površinah na obodu v primeru cilindričnega magneta ali ob površini ploščatega magneta. Tako visoka jakost je potrebna za magnetenje magnetnih materialov iz redkih zemelj, kar dokazujeta sliki 6 in 1.The multi-pole magnetic device according to the invention enables the generation of a high-intensity magnetic field, with a magnetic field strength of the order of 2500 kA / m on very narrow surfaces at the circumference in the case of a cylindrical magnet or at the surface of a flat magnet. Such high strength is required for the magnetization of rare earth magnetic materials, as shown in Figures 6 and 1.

Claims (8)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Mnogopolna magnetilna naprava za izdelavo mnogopolnih trajnih magnetov s simetričnimi in izmenično nasprotnimi poli, pri čemer so trajni magneti iz visoko koercitivnih materialov, kot so trdomagnetni feriti in materiali na osnovi redkih zemelj, značilna po tem, da sta na nosilec (1) nameščena nosilni steber (2) in nosilni steber (3) med katerima je nosilec (4) trna (5) na katerega se namesti magnet, ki ga magnetimo, da je v vertikalni osi trna (5) tudi os magnetilne glave (6), ki je nameščena v sredini mehanskega ščitnika (7), da stebra (2 in 3) prehajata skozi valjasti odprtini (7a) na stranskih delih ščitnika (7), valjasto odprtino (14a) hladilne plošče (14), da je magnetni ščitnik (7) z integrirano magnetilno glavo (6) premičen vzdolž stebra (2 in 3), da je mehanski ščitnik (7) narejen iz električno neprevodnega in nemagnetnega materiala ustrezne mehanske trdnosti, na katerega se magnetilna glava (6) opira v radialni smeri, da je hladili trn (15) vpet v hladilno ploščo (14), ki ima vzdolžno, prezračevalno cev (16), da ima hladilni trn (15) v notranjem valjastem delu (15a) ožjo cev (15b), ki je v spodnjem delu poševno odrezana, da ima valjasti del (15a) vzdolžno cevko (15c), ki se združi z cevjo (16) hladilne plošče (14).A multipolar magnet device for producing multipolar permanent magnets with symmetrical and alternating opposite poles, wherein permanent magnets are made of highly coercive materials such as solid magnetic ferrites and rare earth based materials, characterized in that they are mounted on a support (1) a supporting column (2) and a supporting column (3) between which is a support (4) of a mandrel (5) on which a magnet is mounted, magnetized, so that in the vertical axis of the mandrel (5) there is also an axis of the magnetic head (6) which is located in the middle of the mechanical shield (7) so that the columns (2 and 3) pass through the cylindrical openings (7a) on the side portions of the shield (7), the cylindrical opening (14a) of the cooling plate (14) to be a magnetic shield (7) with an integrated magnetic head (6) movable along the pillar (2 and 3) so that the mechanical shield (7) is made of electrically non-conductive and non-magnetic material of adequate mechanical strength to which the magnetic head (6) relies in the radial direction to cool it thorn (15) clamped in cool a support plate (14) having a longitudinal, ventilation pipe (16) so that the cooling mandrel (15) has a narrower tube (15a) in the inner cylindrical portion (15a), which is inclined obliquely at the bottom to have a cylindrical portion (15a) ) a longitudinal tube (15c) that joins the tube (16) of the cooling plate (14). 2. Mnogopolna magnetilna naprava po zahtevku 1, značilna po tem, da je mnogopolna magnetilna glava (6) izdelana iz masivnega valjastega telesa (8) dobro električno prevodnega materiala, ki je v sredini votlo, da je telo (8) geometrično oblikovano tako, da se zareze (9) začnejo na vrhu telesa (8) in se končajo na približno 8/9 višine telesa (8), da zareze (9) vertikalno delijo telo (8) na krožne izseke, ki so po vertikalni osi pravokotne oblike, da prva zareza (10) deli telo (8) po vertikalni stranici in se nahaja med prvo in zadnjo zarezo (9), na katerih sta priključni sponki (12 in 13), da se zareze (11) začnejo na dnu in se končajo na približno 8/9 višine telesa (8), da zareze (11) delijo telo (8) na krožne izseke od spodaj navzgor, da si po zarezi (10) zareze (9 in 11) izmenično sledijo po obodu telesa (8).2. The multipole magnet device according to claim 1, characterized in that the multipole magnet head (6) is made of a solid cylindrical body (8) of well electrically conductive material, which is hollow in the middle so that the body (8) is geometrically shaped, that the notches (9) begin at the top of the body (8) and end at about 8/9 of the height of the body (8), that the notches (9) divide the body (8) vertically into circular sections which are perpendicular to the vertical axis, that the first notch (10) divides the body (8) along the vertical side and is located between the first and last notches (9), on which the connecting clips (12 and 13) are located, so that the notches (11) begin at the bottom and end at about 8/9 of the height of the body (8) so that the notches (11) divide the body (8) into circular sections from the bottom up, so that after the notch (10) the notches (9 and 11) alternately follow the circumference of the body (8). 3. Mnogopolna magnetilna naprava po zahtevkih 1 in 2, značilna po tem, da je valjasto telo (8) mnogopolne magnetilne glave (6) izdelano iz dobro električno prevodnega in izoliranega traku zvitega v svitek toroidne oblike.Multipole magnet device according to claims 1 and 2, characterized in that the cylindrical body (8) of the multipolar magnet head (6) is made of well electrically conductive and insulated tape rolled into a toroidal roll. 4. Mnogopolna magnetilna naprava po zahtevkih 1 in 2, značilna po tem, da je valjasto telo (8) mnogopolne magnetilne glave (6) izdelano iz dobro električno prevodnega in izoliranega traku, ki je zložen v kvader.Multipole magnet device according to claims 1 and 2, characterized in that the cylindrical body (8) of the multipolar magnet head (6) is made of a well electrically conductive and insulated strip which is folded into a square. 5. Mnogopolna magnetilna naprava po zahtevkih 1 in 2, značilna po tem, da je valjasto telo (8) mnogopolne magnetilne glave (6) izdelano iz med seboj izoliranih koncentričnih cevk.Multipole magnet device according to claims 1 and 2, characterized in that the cylindrical body (8) of the multipolar magnet head (6) is made of insulated concentric tubes. 6. Mnogopolna magnetilna naprava po zahtevkih od 1 do 5, značilna po tem, da so zareze v valjastem telesu 8 mnogopolne magnetilne glave (6) izdelane s postopkom žične ali potopne erozije in da se izpraznitve v zarezah zapolnijo s sintetično smolo, armirano s steklenimi vlakni ali z vlakni Kevlar®.Multifunctional magnet device according to claims 1 to 5, characterized in that the notches in the cylindrical body 8 of the multifunctional magnet head (6) are made by a wire or immersion erosion process and that the recesses in the notches are filled with synthetic glass-reinforced resin fibers or Kevlar® fibers. 7. Mnogopolna magnetilna naprava po zahtevkih od 1 do 5, značilna po tem, da je mnogopolna magnetilna glava (6) izdelana z metodo za odvzemanje materiala in da se izpraznitve v zarezah zapolnijo s sintetično smolo, armirano s steklenimi vlakni ali z vlakni Kevlar®.Multipole magnet device according to claims 1 to 5, characterized in that the multipolar magnet head (6) is fabricated by a material withdrawal method and that the notches in the notches are filled with synthetic resin, glass fiber reinforced or Kevlar® fibers . 8. Mnogopolna magnetilna naprava po zahtevku 1, značilna po tem, da se med postopkom magnetenja in zlasti po njem skozi cev (15b) hladilnega trna (15) dovaja hladilna tekočina, ki se preko cevke (15c) in cevjo (16) hladilne plošče (14) odvaja v ohlajevalni sistem.Multifunctional magnet device according to claim 1, characterized in that during the magnetization process and especially thereafter, coolant is supplied through the coolant tube (15b), which is passed through the cooling plate tube (15c) and tube (16). (14) Discharges into the cooling system.
SI200300220A 2003-09-05 2003-09-05 Multipole magnetizing device and procedure for its manufacture SI21630A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI200300220A SI21630A (en) 2003-09-05 2003-09-05 Multipole magnetizing device and procedure for its manufacture
SI200432340A SI1513169T1 (en) 2003-09-05 2004-09-03 Multipole magnetizing device and method for producing such device
EP04468015.5A EP1513169B1 (en) 2003-09-05 2004-09-03 Multipole magnetizing device and method for producing such device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200300220A SI21630A (en) 2003-09-05 2003-09-05 Multipole magnetizing device and procedure for its manufacture

Publications (1)

Publication Number Publication Date
SI21630A true SI21630A (en) 2005-04-30

Family

ID=34132546

Family Applications (2)

Application Number Title Priority Date Filing Date
SI200300220A SI21630A (en) 2003-09-05 2003-09-05 Multipole magnetizing device and procedure for its manufacture
SI200432340A SI1513169T1 (en) 2003-09-05 2004-09-03 Multipole magnetizing device and method for producing such device

Family Applications After (1)

Application Number Title Priority Date Filing Date
SI200432340A SI1513169T1 (en) 2003-09-05 2004-09-03 Multipole magnetizing device and method for producing such device

Country Status (2)

Country Link
EP (1) EP1513169B1 (en)
SI (2) SI21630A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789875B (en) * 2012-09-11 2014-01-22 成都图南电子有限公司 Radiation magnetizing device applicable to magnet with great height
WO2020224747A1 (en) * 2019-05-03 2020-11-12 Pomoca Sa Multipolar magnetising fixture for high coercivity materials
CN111376388B (en) * 2019-10-28 2021-08-20 横店集团东磁股份有限公司 Forming die for improving magnetic performance of permanent magnetic ferrite dipolar radial magnetic ring
CN111354531A (en) * 2020-05-13 2020-06-30 宣城立创自动化科技有限公司 Intelligent magnetic shoe magnetizing device and application method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH184107A (en) 1934-07-11 1936-05-15 Baermann Max Jr Process for the production of permanent magnets.
US3158797A (en) 1961-10-31 1964-11-24 Stackpole Carbon Co Device for magnetizing circular magnets
DE3214176A1 (en) 1982-04-17 1983-10-20 Erich Dr.-Ing. 5300 Bonn Steingroever MULTIPOLE MAGNETIZING DEVICE FOR PERMANENT MAGNET
DE3506757A1 (en) 1984-09-22 1986-08-28 Erich Dr.-Ing. 5300 Bonn Steingroever Magnetising device for permanent magnets
US4638280A (en) 1985-10-29 1987-01-20 Dietrich Steingroever Multipolar magnetizing device provided with cooling means
SU1670705A1 (en) 1988-10-01 1991-08-15 Всесоюзный Научно-Исследовательский Проектно-Конструкторский Институт Технологии Электрических Машин Малой Мощности Inductor for pulse magnetization of multipolar rotors
DE3901303A1 (en) 1989-01-18 1990-07-19 Gerd Pruschke Magnetising device for permanent magnets

Also Published As

Publication number Publication date
EP1513169A2 (en) 2005-03-09
EP1513169A3 (en) 2009-12-23
SI1513169T1 (en) 2016-10-28
EP1513169B1 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
US5435881A (en) Apparatus for producing planar plasma using varying magnetic poles
KR100781030B1 (en) Magnetic field generator for magnetron plasma
EP0645641B1 (en) Improvements in or relating to MRI magnets
RU2004126149A (en) METHODS USING HIGH-ENERGY PERMANENT MAGNETS FOR ELECTROMAGNETIC PUMPING, BRAKING AND DOSING OF MELTED METALS DELIVERED TO CASTING MACHINES
WO1999021197A1 (en) Single dipole permanent magnet structure with linear gradient magnetic field intensity
SI21630A (en) Multipole magnetizing device and procedure for its manufacture
US4761584A (en) Strong permanent magnet-assisted electromagnetic undulator
RU2002135316A (en) METHOD, SYSTEM AND APPARATUS USING HIGH-ENERGY PERMANENT MAGNETS FOR ELECTROMAGNETIC MOVEMENT, BRAKING AND DOSING OF MELTED METALS DELIVERED TO CAST METERS
US3194739A (en) Fusion research apparatus
RU2678432C1 (en) Inductor for the annular permanent magnets multi-polar axial magnetization
Inoue et al. Multi-ampere negative hydrogen ion source for fusion application
US4048555A (en) Spin resonance spectrometer and magnet structure
KR101268392B1 (en) Pulsed Magnet using Amorphous Metal Modules and Pulsed Magnet Assembly
GB2282451A (en) Yoke MRI magnet with radially laminated pole-plates
Takayanagi et al. Design of the shift bump magnets for the beam injection of the 3-GeV RCS in J-PARC
Khrushchev et al. 3.5 Tesla 49-pole superconducting wiggler for DLS
EP0531281B1 (en) Method of producing permanent magnets by polar anisotropic orientation molding
SU943869A1 (en) Inductor for permanent magnet pulse magnetization
Borburgh et al. Design and construction of the LEIR extraction septum
SU913461A1 (en) Electromagnet
CN116344154A (en) Permanent magnet magnetizing device and preparation method and application thereof
JPH028366A (en) Magnetron sputtering device
SI25435A (en) Appliance for multipole magnetization
ES8700099A1 (en) Electromagnetic levitation casting apparatus having improved levitation coil assembly.
JP2013100605A (en) Arc vapor deposition device with strong magnetic guide for target having large surface region

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20041223

KO00 Lapse of patent

Effective date: 20130924