SI21222A - Method for preparation of nanoparticles - Google Patents

Method for preparation of nanoparticles Download PDF

Info

Publication number
SI21222A
SI21222A SI200200136A SI200200136A SI21222A SI 21222 A SI21222 A SI 21222A SI 200200136 A SI200200136 A SI 200200136A SI 200200136 A SI200200136 A SI 200200136A SI 21222 A SI21222 A SI 21222A
Authority
SI
Slovenia
Prior art keywords
nanoparticles
active substance
water
process according
polymer
Prior art date
Application number
SI200200136A
Other languages
Slovenian (sl)
Inventor
Julijana Kristl
Pegi Ahlin
Mateja Cegnar
Franc Vre�er
Janko Kos
Original Assignee
Krka, Tovarna Zdravil, D.D., Novo Mesto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krka, Tovarna Zdravil, D.D., Novo Mesto filed Critical Krka, Tovarna Zdravil, D.D., Novo Mesto
Priority to SI200200136A priority Critical patent/SI21222A/en
Priority to AU2003228202A priority patent/AU2003228202A1/en
Priority to PCT/SI2003/000017 priority patent/WO2003099262A1/en
Priority to EP03725975A priority patent/EP1558224A1/en
Publication of SI21222A publication Critical patent/SI21222A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • A61K38/57Protease inhibitors from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes

Abstract

The submitted invention refers to a new method used in preparation of nanoparticles. In particular, it relates to a method in which a water-in-oil-in-water (W/O/W) double emulsion technique applied under low-level energy conditions is used to prepare biologically degradable nanoparticles from copolymers of lactic and glycol acids. The technique includes simultaneous processes of mixing and sonification with nanoparticles containing one or more active compounds while biological activity of the active compound involved is preserved.

Description

Postopek za pripravo nanodelcevProcess for preparing nanoparticles

Tehnično področje izumaTechnical field of the invention

Predloženi izum se nanaša na nov postopek za pripravo nanodelcev. Izum se še zlasti nanaša na postopek za pripravo biološko razgradljivih nanodelcev iz kopolimerov mlečne in glikolne kisline, ki vsebujejo eno ali več aktivnih snovi, z uporabo postopka dvojne emulzije voda-v-olju-v-vodi (V/O/V).The present invention relates to a novel process for the preparation of nanoparticles. The invention relates in particular to a process for the preparation of biodegradable nanoparticles of lactic and glycolic acid copolymers containing one or more active substances, using a water-in-oil-in-water (V / O / V) double emulsion process.

Ozadje izumaBACKGROUND OF THE INVENTION

V preteklosti so bila kot rezultat obširnega napredka na področju biotehnologije in genetskega inženiringa pripravljena številna nova proteinska zdravila, za katera se domneva, da imajo visok potencial v zdravljenju različnih bolezni. Na primer, za zdravljenje raka so bili kot potencialna protitumorska sredstva predlagani številni proteini, ki imajo sposobnost, da oslabijo tumorsko rast, invazijo in metastaziranje. Ti proteini vključujejo tudi proteazne inhibitorje, kot so TIMP-ji (tkivni inhibitorji metalo proteaz), inhibitorji plasminogenskega aktivatorja in cistatini.In the past, as a result of extensive advances in biotechnology and genetic engineering, many new protein drugs have been developed that are believed to have high potential in the treatment of various diseases. For example, many proteins have been proposed as potential anticancer agents for the treatment of cancer, with the ability to attenuate tumor growth, invasion, and metastasis. These proteins also include protease inhibitors such as TIMPs, tissue plasminogen activator inhibitors and cystatins.

Ena od pomanjkljivosti proteinskih zdravil je njihova nestabilnost v fiziološkem okolju, njihova nagnjenost k encimatski razgradnji in s tem krajša razpolovna doba in vivo. Nadalje so proteini v večini primerov velike molekule, ki težko prehajajo skozi biološke membrane, kar znatno zmanjša njihovo uporabnost.One of the drawbacks of protein drugs is their instability in the physiological environment, their propensity for enzymatic degradation, and thus their shorter half-life in vivo. Furthermore, proteins are, in most cases, large molecules that are difficult to pass through biological membranes, significantly reducing their usefulness.

Da bi presegli nekatere izmed gornjih problemov, so razvili nosilne sisteme za aktivne snovi, ki izboljšajo razpolovno dobo in biološko uporabnost takšnih snovi. Med takšnimi sistemi predstavljajo zelo obetaven pristop nanodelci, saj so njihove lastnosti zaščite aktivne snovi in nadzorovanega sproščanja zelo koristne. Še zlasti je bilo ugotovljeno, da nanodelci omogočajo transport učinkovin skozi biološke membrane in specifično ciljanje s potencialno površinsko modifikacijo (Lamprecht A., Ubrich N.,To overcome some of the above problems, carrier systems for active substances have been developed that improve the half-life and bioavailability of such substances. Among such systems, nanoparticles represent a very promising approach as their properties of active substance protection and controlled release are very useful. In particular, it has been found that nanoparticles allow the transport of active substances through biological membranes and specific targeting with potential surface modification (Lamprecht A., Ubrich N.,

Perez M. H., Lehr C. M., Hoffman M., Maincent P., Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification, Int. J. Pharm. 184 (1999) 97-105).Perez M. H., Lehr C. M., Hoffman M., Maincent P., Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification, Int. J. Pharm. 184 (1999) 97-105).

Glavno prednost nanodelcev predstavlja možnost njihove različne uporabe. Omogočajo parenteralne in neparenteralne načine vnosa. Injiciramo jih lahko intravensko in ker je protein vključen znotraj polimernega matriksa in s tem zaščiten pred krožečimi encimi, je plazemska razpolovna doba vključenega proteina podaljšana v primerjavi z injicirano raztopino proteina. Sproščanje proteina iz nanodelcev je tudi zadržano, kar ima za posledico podaljšano aktivnost proteina. Nadalje lahko, ob izbiri ustreznega polimera, nanodelci olajšajo absorpcijo skozi biološke membrane. Možno je tudi peroralno jemanje. Pri tem je odločilni parameter velikost delcev, ki določa absorpcijo iz gastrointestinalnega trakta. Manjši nanodelci se običajno absorbirajo v večjem obsegu.The main advantage of nanoparticles is the possibility of their different use. They provide parenteral and non-parenteral routes of administration. They can be injected intravenously and since the protein is incorporated within the polymer matrix and thus protected against circulating enzymes, the plasma half-life of the protein involved is prolonged compared to the injected protein solution. The release of protein from nanoparticles is also delayed, resulting in prolonged protein activity. Furthermore, by selecting the appropriate polymer, the nanoparticles can facilitate absorption through biological membranes. Oral administration is also possible. The decisive parameter is the particle size that determines the absorption from the gastrointestinal tract. Smaller nanoparticles are usually absorbed on a larger scale.

Do sedaj je bilo razvitih več kapsulacijskih tehnik za pripravo nanodelcev, ki uporabljajo dva glavna principa, to je enojno (V/O) in dvojno (V/O/V) emulzijsko metodo.So far, several encapsulation techniques have been developed for the preparation of nanoparticles using two main principles, the single (I / O) and the double (I / O / V) emulsion method.

Tako je v US 4,177,177 opisan postopek direktnega emulgiranja raztopine v vodi netopnih polimerov v primernih organskih topilih v vodno raztopino, ki vsebuje vsaj en emulgator neionskega, anionskega ali kationskega tipa. Za zmanjševanje velikosti kapljic emulzije so uporabili ultrazvok (sonifikacijo), s čimer so dosegli velikost delcev manjšo od 0,5 pm.Thus, US 4,177,177 describes a process for the direct emulsification of a solution of water-insoluble polymers in suitable organic solvents into an aqueous solution containing at least one emulsifier of the nonionic, anionic or cationic type. Ultrasound (sonication) was used to reduce the size of the emulsion droplets to achieve a particle size of less than 0.5 pm.

V EP 0 052 510 B2 je opisana tehnika ločevanja faz ob uporabi koacervacijskih sredstev ali ne-topil, kot so mineralna olja in rastlinska olja. Aktivna snov, npr. polipeptid, se najprej raztopi v vodni fazi emulzije voda-v-olju. Polimer se obori okoli vodnih kapljic z dodatkom ne-topila za polimer, kot je silikonsko olje. Nato se doda sredstvo za utrjevanje, da se ekstrahira organsko topilo iz mikro- ali nanodelcev.EP 0 052 510 B2 describes a phase separation technique using co-preservatives or non-solvents such as mineral oils and vegetable oils. The active substance, e.g. the polypeptide is first dissolved in the aqueous phase of the water-in-oil emulsion. The polymer is precipitated around water droplets by the addition of a non-solvent polymer such as silicone oil. A curing agent is then added to extract the organic solvent from the micro or nanoparticles.

Vendar pa je ena od pomanjkljivosti navedenega postopka v veliki porabi organskih topil, ki so potrebna za ekstrakcijo in spiranje.However, one of the disadvantages of this process is the high consumption of organic solvents required for extraction and washing.

V US 5,019,400 je opisan še en postopek, v katerem se uporablja tehnika sušenja z razprševanjem in/ali tehnika oblaganja z razprševanjem Za sušenje z razprševanjem sta polimer in aktivna snov dispergirana v topilu za polimer. Topilo se nato upari z razprševanjem raztopine, kar ima za posledico tvorbo polimernih kapljic, ki vsebujejo aktivno snov. Vendar pa lahko občutljive snovi, kot so proteini, postanejo med postopkom neaktivne zaradi uporabljenih povišanih temperatur in zaradi izpostavitve mejnim površinam organsko topilo/zrak.US 5,019,400 describes another process employing a spray drying technique and / or a spray coating technique For spray drying, the polymer and the active substance are dispersed in a polymer solvent. The solvent is then evaporated by spraying the solution, resulting in the formation of polymer droplets containing the active substance. However, sensitive substances such as proteins can become inactive during the process due to the elevated temperatures used and the exposure to the boundary surfaces of the organic solvent / air.

V US 5,407,609 je opisan postopek, v katerem se uporablja uparevanje topila. Tehnika uparevanja topila (postopek olje-v-vodi (O/V)) vključuje raztopitev polimera in aktivne snovi v organskem topilu, nakar se raztopino doda k mešajoči se vodni zunanji fazi, ki se ne meša s polimerom. Vodna zunanja faza običajno vsebuje surfaktante, ki stabilizirajo emulzijo olje-v-vodi in preprečijo aglomeracijo. Uporabljeni emulgator je običajno polivinil alkohol. Organsko topilo se nato v času nekaj ur ali več upari, pri čemer se polimer obori, tako da se tvori polimerni matriks.US 5,407,609 describes a process using solvent evaporation. The solvent evaporation technique (oil-in-water (O / V) process) involves the dissolution of the polymer and the active substance in an organic solvent, after which the solution is added to a water-immiscible, water-immiscible polymer phase. The aqueous outer phase usually contains surfactants that stabilize the oil-in-water emulsion and prevent agglomeration. The emulsifier used is usually polyvinyl alcohol. The organic solvent is then evaporated for several hours or more, with the polymer precipitated to form a polymer matrix.

Razvita je bila tudi tako imenovana dvojna emulzij ska metoda voda-v-olju-v-vodi (V/O/V), ki je uporabna še zlasti kadar se uporabijo v vodi topni peptidi, ki se jih le težko vgradi z običajnim postopkom olje-v-vodi (O/V) (EP 0 190 833 BI). Glavna prednost tega postopka je v tem, da med postopkom tvorbe nanodelcev protein ostaja v notranji vodni fazi, s čimer se zmanjša neposredni stik med proteinom in organskim topilom. Ta postopek vključuje raztapljanje proteina v vodi, dodajanje vodne raztopine proteina ob mešanju k organski polimerni raztopini in tvorbo prve V/O emulzije. Ta V/O emulzija se nato vlije v vodno fazo, ki vsebuje emulgator, pri čemer se ob mešanju tvori dvojna V/O/V emulzija. Organsko topilo se naknadno odstrani z uparevanjem ali ekstrakcijo.A so-called water-in-oil-in-water (V / O / V) double emulsion method has also been developed, which is useful especially when using water-soluble peptides that are difficult to incorporate in the conventional oil process -in-leads (O / V) (EP 0 190 833 BI). The main advantage of this process is that during the nanoparticle formation process, the protein remains in the internal aqueous phase, thereby reducing direct contact between the protein and the organic solvent. This process involves dissolving the protein in water, adding an aqueous solution of the protein while stirring to an organic polymer solution, and forming the first I / O emulsion. This V / O emulsion is then poured into an aqueous phase containing the emulsifier, forming a double V / O / V emulsion when stirred. The organic solvent is subsequently removed by evaporation or extraction.

Vendar pa se lahko med pripravo takšne vrste nanodelcev pojavijo med topilom in proteinom značilne destruktivne interakcije, ki so delno posledica uporabljenih organskih topil, strižnih sil med mešanjem in sonifikacijo, kar vse zmanjša biološko aktivnost vgrajene aktivne snovi.However, during the preparation of this type of nanoparticle, characteristic destructive interactions can occur between the solvent and the protein, partly due to the organic solvents used, the shear forces during mixing and sonication, all of which reduce the biological activity of the incorporated active substance.

Odločilni korak v pripravi mikro- in nanodelcev je emulgiranje, ki se ga lahko splošno izvede s sonifikacijo, visokotlačno homogenizacijo ali s homogenizacijo z visokim strigom. Mešanje, združeno z naknadno sonifikacijo eno uro, ima običajno za rezultat nanodelce s premerom večjim od 1400 nm. (Ferdous A. J., Stembridge N. Y., Singh M. Role of monensin PLGA polymer nanoparticles and liposomes as potentiator of ricin A immunotoxins in vitro, J.Control. Rel. 50, 1998: 71-78). Za pridobitev delcev v nanometrskem območju je potrebna višja energija, kar ima pogosto za posledico izgubo biološke aktivnosti proteina. Kadar so uporabili postopek uparevanja topila olje-v-vodi (O/V) in so združili vse tri postopke, t.j. vzorec so homogenizirali (20 000 vrt./min, 20 minut), čemur je sledilo hkratno mešanje (500 vrt./min) in sonifikacija 1 uro, so dobili delce velikosti manj kot 200 nm.The decisive step in the preparation of micro- and nanoparticles is emulsification, which can generally be performed by sonication, high-pressure homogenization or high-shear homogenization. Mixing combined with subsequent sonication for one hour usually results in nanoparticles larger than 1400 nm in diameter. (Ferdous A. J., Stembridge N. Y., Singh M. Role of monensin PLGA polymer nanoparticles and liposomes as a potentiator of ricin A immunotoxins in vitro, J. Control. Rel. 50, 1998: 71-78). Higher energy is required to obtain particles in the nanometer range, which often results in a loss of protein biological activity. When they used an oil-in-water (O / V) solvent evaporation process and combined all three processes, i.e. the sample was homogenized (20,000 rpm, 20 minutes), followed by simultaneous stirring (500 rpm) and sonication for 1 hour to give particles smaller than 200 nm in size.

Rešitev tehničnega problema z izvedbenimi primeriSolve a technical problem with implementation examples

Naloga predloženega izuma je torej rešiti pomanjkljivosti stanja tehnike in zagotoviti nov postopek za pripravo nanodelcev, ki nima znatnega škodljivega učinka na aktivne snovi, ki jih želimo vključiti.The object of the present invention is therefore to solve the drawbacks of the prior art and to provide a new process for the preparation of nanoparticles which does not have a significant adverse effect on the active substances which we wish to include.

Med obširnimi študijami, ki so vodile do predloženega izuma, so izumitelji ugotovili, da ima kombinacija različnih ukrepov, namreč mešanja in sonifikacije, obeh na nivoju, pri katerem vsak posamezen ukrep kot tak nima za posledico dovolj intenzivnega emulgiranja, za rezultat nanodelce majhne velikosti, v katerih vgrajena aktivna snov izraža izboljšano biološko aktivnost.In the extensive studies leading to the present invention, the inventors have found that a combination of different measures, namely mixing and sonication, both at a level at which each individual action as such does not result in sufficiently intense emulsification to result in a small size nanoparticle, in which the incorporated active substance expresses enhanced biological activity.

Predloženi izum se torej po enem vidiku nanaša na postopek za pripravo nanodelcev z vgrajeno eno ali več aktivnimi snovmi, kjer uporabimo emulzij sko metodo, pri kateri hkrati izvedemo mešanje in sonifikacijo, vsako pri energetskem nivoju, ki sam ni zadosten za tvorbo nanodelcev, in ki ohrani biološko aktivnost vgrajene aktivne snovi.The present invention therefore relates, in one aspect, to a process for the preparation of nanoparticles with incorporated one or more active substances, employing an emulsion method whereby mixing and sonication are carried out simultaneously, each at an energy level which is not sufficient for the formation of the nanoparticles, and which maintains the biological activity of the incorporated active substance.

V smislu izuma se mešanje in sonifikacija izvedeta hkrati in pri zmernih pogojih. V prednostni izvedbi je hitrost mešanja v območju od 4000 do 15000 vrt./min, prednostno od 5000 do 10000 vrt./min in še bolj prednostno od 5000 do 7000 vrt./minAccording to the invention, mixing and sonification are carried out simultaneously and under moderate conditions. In a preferred embodiment, the mixing speed is in the range from 4000 to 15000 rpm, preferably from 5000 to 10000 rpm and more preferably from 5000 to 7000 rpm

Sonifikacija se prednostno izvede pri frekvenci od 20 kHz do 70 kHz.Sonification is preferably performed at a frequency of 20 kHz to 70 kHz.

Postopek v smislu izuma še zlasti obsega:The process of the invention particularly comprises:

I) raztapljanje biološko razgradljivega polimera v zanj primernem organskem topilu (prednostno v organskem topilu, ki se ne meša z vodo),I) dissolving the biodegradable polymer in a suitable organic solvent (preferably in a water-immiscible organic solvent),

II) emulgiranje, pri katerem hkrati izvedemo mešanje in sonifikacijo, vsako pri energetskem nivoju, ki sam ni zadosten za tvorbo nanodelcev, ki obsega:II) emulsification, in which mixing and sonification are carried out simultaneously, each at an energy level which is not sufficient for the formation of the nanoparticles, comprising:

a) emulgiranje aktivne snovi (prednostno polipeptida ali peptida), raztopljene v vodi ali v zanjo primernem vodnem topilu (npr. v pufru), v organsko raztopino, dobljeno v stopnji I), da zagotovimo nastanek primarne emulzije z aktivno snovjo v notranji vodni fazi ina) emulsifying the active substance (preferably a polypeptide or peptide) dissolved in water or a suitable aqueous solvent (e.g., in buffer) into the organic solution obtained in step I) to ensure the formation of the primary emulsion with the active substance in the internal aqueous phase and

b) emulgiranje primarne emulzije, dobljene v stopnji Ha), v vodno raztopino emulgatorja kot kontinuirano fazo (prednostno z vodno raztopino polivinil alkohola), tako da dobimo nanodelce, v katerih je vgrajena aktivna snov terb) emulsifying the primary emulsion obtained in step Ha) into the aqueous solution of the emulsifier as a continuous phase (preferably with an aqueous solution of polyvinyl alcohol) to obtain nanoparticles in which the active substance is incorporated; and

III) izolacijo in sušenje nanodelcev na znan način (prednostno sušenje izvedemo z liofilizacijo, pri čemer je aktivna snov v stopnji Ha raztopljena v zanjo primernem vodnem topilu, ki vsebuje krioprotektante).III) isolation and drying of the nanoparticles in a known manner (preferably drying is carried out by lyophilization, whereby the active substance in step Ha is dissolved in a suitable aqueous solvent containing cryoprotectants).

V postopku v smislu izuma uporabimo novo ustrezno modificirano tehniko emulgiranja, pri kateri hkrati uporabimo homogenizacijo z visokim strigom ob nizkih vrtljajih/minuto in sonifikacijo. Dobljeno primarno emulzijo nato emulgiramo v raztopino emulgatorja, da dobimo dvojno emulzijo (V/O/V). Dvojno emulzijo razredčimo s prebitno vodo, da omogočimo odstranitev organskega topila, in zmes mešamo, da omogočimo uparitev topila, s Čimer se inducira obarjanje polimera in s tem tvorba trdnih nanodelcev z vgrajeno aktivno snovjo. Delce izoliramo s centrifugiranjem ali filtracijo in jih večkrat speremo z destilirano vodo ali ustreznimi vodnimi pufri, da s površin odstranimo prebiten emulgator. Nato delce posušimo s konvencionalnimi sredstvi, na primer v vakuumu, s prepihavanjem s plinastim dušikom ali s tokom zraka, z liofilizacijo ali s sušenjem z razprševanjem.In the process of the invention, a new appropriately modified emulsification technique is used, which simultaneously utilizes high shear homogenization at low rpm / sonication. The resulting primary emulsion is then emulsified into the emulsifier solution to obtain a double emulsion (V / O / V). The double emulsion is diluted with excess water to allow the removal of the organic solvent, and the mixture is stirred to allow the solvent to evaporate, thereby inducing the precipitation of the polymer and thereby the formation of solid nanoparticles with the incorporated active substance. The particles were isolated by centrifugation or filtration and washed several times with distilled water or appropriate aqueous buffers to remove excess emulsifier from the surfaces. The particles are then dried by conventional means, for example in vacuo, by blowing with nitrogen gas or airflow, by lyophilization or by spray drying.

Organsko topilo, uporabljeno v stopnji raztapljanja biološko razgradljivega polimera, je lahko kakršnokoli topilo, ki je sposobno tvoriti emulzijo z določeno količino vodne raztopine emulgatorja, in katerega lahko odstranimo iz emulzijskih kapljic z dodatkom uporabljene prebitne vodne raztopine emulgatorja in ki ima nadalje sposobnost, da raztaplja biološko razgradljive polimere. Z drugimi besedami, topilo se ne sme mešati z vodo ali se z njo v bistvu ne sme mešati, je pa deloma topno v navedeni vodni raztopini emulgatorja. Primeri organskih topil, ki se lahko uporabijo za raztapljanje polimera, so kloroform, benzen, diklorometan, kloroetan, dikloroetan, trikloroetan, ogljikov tetraklorid, etileter, cikloheksan, n-heksan, toluen, bolj prednostno etil acetat, metilen klorid ali zmes metilen klorida in acetona, najbolj prednostno etil acetat. Presenetljivo smo ugotovili, da uporaba etil acetata omeji izgubo biološke aktivnosti proteinov kot je cistatin in zagotovi manjše delce v primerjavi z drugimi topili. Ne da bi želeli biti omejeni s kakršnokoli teorijo menimo, da je to lahko posledica večje topnosti etil acetata v vodi, kar vodi do hitrejše difuzije etil acetata v zunanjo vodno fazo, pri čemer za sabo pusti netopne polimerne delce z vključenim proteinom.The organic solvent used in the dissolution step of the biodegradable polymer may be any solvent capable of forming an emulsion with a given amount of aqueous emulsifier solution and which can be removed from the emulsion droplets by the addition of an excess aqueous emulsifier solution used and further having the ability to dissolve biodegradable polymers. In other words, the solvent must not be miscible with or substantially miscible with water, but is partially soluble in said aqueous emulsifier solution. Examples of organic solvents that can be used to dissolve a polymer are chloroform, benzene, dichloromethane, chloroethane, dichloroethane, trichloroethane, carbon tetrachloride, ethyl ether, cyclohexane, n-hexane, toluene, more preferably ethyl acetate, methylene chloride or a mixture of methylene chloride and a mixture of methylene chloride acetone, most preferably ethyl acetate. Surprisingly, we have found that the use of ethyl acetate limits the loss of biological activity of proteins such as cystatin and provides smaller particles compared to other solvents. Without wishing to be limited by any theory, we believe that this may be due to the higher solubility of ethyl acetate in water, which leads to faster diffusion of ethyl acetate into the outer aqueous phase, leaving behind insoluble polymer particles with the protein involved.

Ker so emulzije termodinamsko nestabilni sistemi, je nujna uporaba emulgatorja. Emulgator služi večim namenom: pripomore k pridobitvi pravilne porazdelitve velikosti kapljic emulzije, stabilizira V/O/V emulzijo, da se izognemo koalescenci kapljic in prepreči, da bi se oborjeni nanodelci lepili eden na drugega. Prednostni primeri emulgatorjev so anionski surfaktanti (npr. natrijev oleat, natrijev stearat, natrijev lavril sulfat itd.), neionski suffaktanti (npr. estri polioksietilen sorbitana in maščobnih kislin (Tween 80, Tvveen 60 itd.)), derivati polioksietilen ricinusovega olja, polivinil pirolidon, polivinil alkohol, karboksimetilceluloza, lecitin, želatina itd., bolj prednostno polivinil alkohol. Takšne emulgatorje lahko uporabimo bodisi same ali v kombinaciji.As emulsions are thermodynamically unstable systems, the use of an emulsifier is essential. The emulsifier serves several purposes: it helps to obtain the correct size distribution of the emulsion droplets, stabilizes the I / O / V emulsion to avoid coalescence of the droplets and prevent the precipitated nanoparticles from sticking to each other. Preferred examples of emulsifiers are anionic surfactants (eg, sodium oleate, sodium stearate, sodium lauryl sulfate, etc.), nonionic surfactants (eg esters of polyoxyethylene sorbitan and fatty acids (Tween 80, Tvveen 60, etc.)), polyoxysuccinyl ore derivatives, polyoxytin ethylene derivatives pyrrolidone, polyvinyl alcohol, carboxymethylcellulose, lecithin, gelatin, etc., more preferably polyvinyl alcohol. Such emulsifiers can be used either alone or in combination.

Za vgrajevanje aktivne snovi lahko uporabimo množico različnih polimernih materialov, kot so poliestri mlečne in glikolne kisline, polimlečna kislina, poli-βhidroksimaslena kislina, polihidroksivalerinska kislina, polikaprolakton, poliesteramidi, policianoakrilati, poli(amino kisline), polikarbonati, polianhidridi, biološko razgradljivi polimeri, pri čemer je značilno prednosten poliester mlečne in glikolne kisline. Masno razmerje (poli)mlečne kisline/(poli)glikolne kisline je prednostno od okoli 99/1 do 36/65, bolj prednostno 95/5 do 50/50, pri čemer natančno sestavo polimera izbere strokovnjak na osnovi svojega splošnega znanja in v odvisnosti od želene kinetike sproščanja. Mikrosfere in nanodelci iz kopolimerov mlečne in glikolne kisline (PLGA) so biološko kompatibilni, se razgradijo ob tvorbi ne-toksičnih monomerov, polimerni matriks odlično zaščiti proteine in peptide pred destruktivnimi pogoji okolja, še zlasti kadar jih dajemo peroralno. Prav tako lahko z variiranjem molekulske mase in razmerja monomerov PLGA nadzorujemo kinetiko sproščanja vgrajenih aktivnih snovi.A variety of polymeric materials, such as lactic and glycolic acid polyesters, polylactic acid, poly-β-hydroxybutyric acid, polyhydroxyvaleric acid, polycaprolactone, polyesteramides, polycyanoacrylates, poly (amino acids), poly (amino acids), can be used to incorporate the active substance whereby lactic and glycolic acid polyester are preferably preferred. The (poly) lactic acid / (poly) glycolic acid by weight ratio is preferably from about 99/1 to 36/65, more preferably 95/5 to 50/50, with the precise composition of the polymer being selected by one skilled in the art and depending on of the desired release kinetics. Microspheres and nanoparticles of lactic and glycolic acid (PLGA) copolymers are biocompatible, break down upon the formation of non-toxic monomers, and the polymer matrix perfectly protects proteins and peptides from destructive environmental conditions, especially when administered orally. By varying the molecular weight and the ratio of PLGA monomers, the kinetics of the release of the incorporated active substances can also be controlled.

Kot aktivno snov, ki jo vgradimo v smislu predloženega izuma, lahko uporabimo kakršnokoli zdravilno učinkovino, še zlasti snovi, ki imajo kratko razpolovno dobo v telesu, kot so proteini in/ali peptidi. Uporabimo lahko biološko aktivne makromolekule kot so interferoni, interlevkini, kolonije stimulirajoči faktorji, faktorji tumorske nekroze, drugi imuno modulatorji, rastni faktorji, transformirajoči rastni faktorji, eritropoetin, albumin, krvni proteini, hormoni, vakcine, virusi, toksini, protitelesa, protitelesni fragmenti, encimi, encimski inhibitorji vključno s cistatinom.Any active substance, in particular substances having a short half-life in the body, such as proteins and / or peptides, can be used as the active ingredient to be incorporated in the present invention. Bioactive macromolecules such as interferons, interleukins, colonial stimulating factors, tumor necrosis factors, other immune modulators, growth factors, transforming growth factors, erythropoietin, albumin, blood proteins, hormones, vaccines, viruses, toxins, antibodies, antibodies, fragments can be used enzymes, enzyme inhibitors including cystatin.

Poleg aktivne snovi lahko vključimo tudi druge snovi, kot so sredstva za nadzorovanje stabilnosti in, če je želeno, sredstva za nadzorovanje topnosti biološko aktivne snovi. Takšna sredstva so lahko sredstva za nadzorovanje pH, konzervansi ter stabilizatorji in krioprotektanti, ki lahko vključujejo glikole, albumin, želatino, aminokisline, etilendiamin tetraocetno kislino, dimetil sulfoksid, citronsko kislino, dekstrin, saharozo, fruktozo, manozo, trehalozo, ostale sladkorje in vse njihove kombinacije.In addition to the active substance, other substances such as stability control agents and, if desired, solubility control agents of the biologically active substance may be included. Such agents may be pH control agents, preservatives, and stabilizers and cryoprotectants, which may include glycols, albumin, gelatin, amino acids, ethylenediamine tetraacetic acid, dimethyl sulfoxide, citric acid, dextrin, sucrose, fructose, mannose, trehalose, trehalose. their combinations.

Še en vidik predloženega izuma so nanodelci, ki jih dobimo po postopku v smislu predloženega izuma, ki imajo prednostno velikost od okoli 100 do okoli 800 nm. Ti nanodelci dajejo presenetljivo povečano biološko aktivnost in stabilnost aktivnim snovem, ki so vgrajene v njih.Another aspect of the present invention is the nanoparticles obtained by the process of the present invention, preferably having a size of from about 100 to about 800 nm. These nanoparticles give surprisingly increased biological activity and stability to the active substances incorporated into them.

Predloženi izum v bistvu temelji na ugotovitvi, da lahko vrtenje homogenizatorja z visoko hitrostjo (15000 vrt./min), kije običajno potrebno za proizvodnjo nanodelcev, nadomestimo z nižjo hitrostjo, v kolikor je sistem istočasno izpostavljen delovanju ultrazvoka z majhno energijo, pri čemer se biološka aktivnost in biološka uporabnost aktivne snovi, ki je vgrajena, izboljša v primerjavi z nanodelci, proizvedenimi z običajnimi tehnikami samega mešanja ali sonifikacije ali zaporedno kombinacijo obojega.The present invention is essentially based on the observation that the rotation of the high-speed homogenizer (15000 rpm) normally required for the production of nanoparticles can be compensated for at a lower speed if the system is simultaneously exposed to low-energy ultrasound, the biological activity and bioavailability of the active substance incorporated improves compared to the nanoparticles produced by conventional techniques of self-mixing or sonication, or a sequential combination of both.

Ugotovili smo tudi, da krajši čas homogeniziranja (2 minuti v primerjavi s 7 minutami) v večji meri ohrani aktivnost proteina. To je vsaj delno lahko posledica zmanjšanja časa, ki je na razpolago za stik proteina z organskim topilom. Kratek čas izdelave lahko vodi tudi do večje učinkovitosti vgrajenega proteina znotraj nanodelcev, ker ovira difuzijo proteina iz notranje vodne faze proti zunanji fazi velikega volumna.We also found that shorter homogenization time (2 minutes versus 7 minutes) retains protein activity to a greater extent. This may at least in part be due to a decrease in the time available for the protein to contact the organic solvent. Short production time can also lead to greater efficiency of the embedded protein within the nanoparticles, since it impedes the diffusion of the protein from the inner aqueous phase to the outer bulk phase.

Nanodelci v smislu izuma so primerni za izdelavo zdravila za parenteralno, nazalno, pulmonalno, peroralno, oralno, transdermalno ali rektalno dajanje aktivne snovi.The nanoparticles of the invention are suitable for the manufacture of a medicament for parenteral, nasal, pulmonary, oral, oral, transdermal or rectal administration of the active substance.

Na slikah je:The pictures show:

Sl. 1 prikazuje velikost nanodelcev, pridobljenih s postopkom v smislu predloženega izuma, v primerjavi z nanodelci iz stanja tehnike.FIG. 1 shows the size of the nanoparticles obtained by the process of the present invention in comparison with the prior art nanoparticles.

Sl. 2 prikazuje aktivnost cistatina pod različnimi eksperimentalnimi pogoji.FIG. 2 shows cystatin activity under different experimental conditions.

Sl. 3 prikazuje aktivnost cistatina med shranjevanjem, kadar je vgrajen v nanodelcih (3a), dobljenih po predloženem izumu, v primerjavi z raztopino cistatina (3b).FIG. 3 shows the activity of cystatin during storage when incorporated in the nanoparticles (3a) obtained according to the present invention as compared to the cystatin solution (3b).

Naslednji primeri ponazarjajo izum, ne da bi bil le-ta nanje omejen.The following examples illustrate the invention without being limited thereto.

Primer laExample la

Naslednji postopek smo uporabili za pripravo praznih nanodelcev iz kopolimera mlečne in glikolne kisline (PLGA) (nanodelcev brez vključenega proteina). Izvedli smo študijo za ovrednotenje, kako eksperimentalne omejitve vplivajo na velikost nanodelcev.The following procedure was used to prepare blank nanoparticles from lactic and glycolic acid (PLGA) copolymers (nanoparticles without protein included). We conducted a study to evaluate how experimental constraints affect nanoparticle size.

Najprej smo pripravili polimerno raztopino tako, da smo v epruveti raztopili 50 mg PLGA (Resomer RG 503H, Boehringer Ingelheim) v 1 ml etil acetata. Nato smo k polimerni raztopini dodali 200 μΐ vode in zmes homogeno emulgirali z rotor-stator homogenizatorjem (Omni Lab tek, Omni International, ZDA) dve minuti. Na dveh različnih vzorcih smo uporabili dve različni hitrosti vrtenja, 15000 oz. 12500 vrt./min. Po eni minuti homogeniziranja smo k homogeniziram zmesi dodali 4 ml 5 % vodne raztopine PVA (polivinil alkohola), da se je tvorila stabilna dvojna emulzija (V/O/V). Ko je bilo homogeniziranje končano, smo nastalo dvojno emulzijo počasi vlili k 100 ml 0,1 % vodne raztopine PVA. Dobljeno zmes smo nato homogenizirali 5 minut pri 5000 vrt./min.The polymer solution was first prepared by dissolving 50 mg of PLGA (Resomer RG 503H, Boehringer Ingelheim) in 1 ml of ethyl acetate in a test tube. Then, 200 μΐ of water was added to the polymer solution and the mixture was emulsified homogeneously with a rotor-stator homogenizer (Omni Lab run, Omni International, USA) for two minutes. We used two different rotation speeds, 15000 oz., On two different samples. 12500 rpm After one minute of homogenization, 4 ml of 5% aqueous PVA (polyvinyl alcohol) solution was added to the homogenized mixtures to form a stable double emulsion (V / O / V). When the homogenization was complete, the resulting double emulsion was slowly poured onto 100 ml of 0.1% aqueous PVA solution. The resulting mixture was then homogenized for 5 minutes at 5000 rpm.

Disperzijo smo nato ultracentrifugirali pri 15000 vrt./min 15 minut z uporabo ultracentrifuge Sorvall RC 5C plus, rotor SS 34, ZDA. Po ločitvi smo nanodelce trikrat sprali z destilirano vodo (20 ml) in zbrali s centrifugiranjem pri predhodno navedenih pogojih.The dispersion was then ultracentrifuged at 15,000 rpm for 15 minutes using an Sorvall RC 5C plus ultracentrifuge, SS 34 rotor, USA. After separation, the nanoparticles were washed three times with distilled water (20 ml) and collected by centrifugation under the above conditions.

Dobljeni delci so imeli velikost v območju od 600 nm do 700 nm, pri čemer so dosegli minimalno velikost v formulaciji, kije bila pripravljena z najvišjo hitrostjo vrtenja.The particles obtained had a size in the range of 600 nm to 700 nm, reaching a minimum size in the formulation prepared at the highest rotational speed.

-1010-1010

Primer lbExample lb

Naslednjo študijo smo izvedli za določitev izgube aktivnosti cistatina med homogeniziranjem pod različnimi pogoji in za identifikacijo največje hitrosti vrtenja, ki je še možna, da se ohrani aktivnost cistatina. Cistatin, inhibitor cisteinskih proteinaz, smo izolirali iz beljaka kokošjih jajc kot je bilo opisano (Kos, J., Dolinar, M., Turk, V.: Isolation and characterisation of chicken L- and H-kininogens and their interaction with chicken cysteine proteinases and papain, Agends and Actions 38, 331-339, 1992). Biološko aktivnost cistatina smo določili na rastlinski proteinazi papainu z uporabo BANA (a-N-benzoil-DL-arginin-3-naftilamid) kot substrata. Vpliv različnih pogojev homogeniziranja na aktivnost cistatina smo opazovali na vodni raztopini cistatina. Izvedli smo enako zaporedje posameznih stopenj postopka kot v primeru la. V primeru lb torej nismo uporabili polimera PLGA, 1 ml etil acetata, 4 ml 5 % vodne raztopine PVA in 100 ml 0,1% vodne raztopine PVA pa smo nadomestili z destilirano vodo. Namesto 200 μΐ vode smo uporabili raztopino proteina (2 mg cistatina smo raztopili v 200 μΐ 0,1 M fosfatnega pufra, pH=6,0). Uporabili smo enake pogoje kot v primeru la in učinek hitrosti vrtenja na inhibitomo aktivnost cistatina smo določili kot je opisano zgoraj.The following study was performed to determine the loss of cystatin activity during homogenization under different conditions and to identify the maximum rotational speed still possible to maintain cystatin activity. Cystatin, a cysteine proteinase inhibitor, was isolated from chicken egg proteins as described (Kos, J., Dolinar, M., Turk, V.: Isolation and characterization of chicken L- and H-kininogens and their interaction with chicken cysteine proteinases and papain, Agends and Actions 38, 331-339, 1992). The biological activity of cystatin was determined on plant proteinase papain using BANA (α-N-benzoyl-DL-arginine-3-naphthylamide) as a substrate. The effect of different homogenization conditions on cystatin activity was observed on an aqueous cystatin solution. We performed the same sequence of individual stages of the process as in the case of la. Therefore, in case of lb, the PLGA polymer was not used, 1 ml of ethyl acetate, 4 ml of 5% PVA aqueous solution and 100 ml of 0.1% PVA aqueous solution were replaced with distilled water. A protein solution was used instead of 200 μΐ of water (2 mg cystatin was dissolved in 200 μΐ 0.1 M phosphate buffer, pH = 6.0). The same conditions were used as in the case of 1a and the effect of rotational speed on the inhibitory activity of cystatin was determined as described above.

Ugotovili smo, daje homogeniziranje pri 15000, 12500 in 10000 vrt./min povzročilo izgubo biološke aktivnosti cistatina za 82 %, 66 % oz. 30 %.It was found that homogenization at 15000, 12500 and 10000 rpm resulted in a loss of cystatin biological activity of 82%, 66% and. 30%.

Ugotovili smo, daje potrebno hitrost vrtenja zmanjšati na 5000 vrt./min, da se ohrani aktivnost cistatina na nivoju okoli 98%. Vendar takšno zmanjšanje vnosa energije ne omogoča pridobivanja nanodelcev.We found that the required rotational speed was reduced to 5000 rpm to maintain cystatin activity at about 98%. However, such a reduction in energy input does not allow the production of nanoparticles.

Primer 2aExample 2a

Da bi omogočili pripravo nanodelcev tudi pri nižjih hitrostih vrtenja, smo izvedli enak postopek kot v primeru la, razen da smo hkrati s homogeniziranjem (10000, 7500 in 5000 vrt./min) uporabili tudi ultrazvok. Nastali nanodelci so imeli velikost 320, 350 oz. 360 nm.To enable the nanoparticles to be prepared even at lower rotational speeds, we performed the same procedure as in the case of la, except that ultrasound was used simultaneously with homogenization (10000, 7500, and 5000 rpm). The resulting nanoparticles had a size of 320, 350 and respectively. 360 nm.

-1111-1111

To kaže, da lahko bolj učinkovito izrabimo vnos energije, če izvedemo različne tipe (postopke) emulgiranja hkrati, npr. homogeniziranje in ultra-sonifikacijo. Torej sinergijski učinek mehanske in ultrazvočne energije omogoča izdelavo nanodelcev pri nižjih vrt./min (5000 vrt./min) in blagih ultrazvočnih valovih.This suggests that we can more efficiently utilize energy input by performing different types (processes) of emulsification simultaneously, e.g. homogenization and ultra-sonification. Therefore, the synergistic effect of mechanical and ultrasonic energy enables the production of nanoparticles at lower rpm (5000 rpm) and mild ultrasonic waves.

Primer 2bExample 2b

Naslednji test smo izvedli za določitev sinergijskega učinka emulgiranja (primer 2a) na aktivnost cistatina.The following test was performed to determine the synergistic effect of emulsification (Example 2a) on cystatin activity.

Izvedli smo enak postopek kot v primeru lb, razen da smo ultrazvok uporabili hkrati s homogeniziranjem pri 5000 vrt./min. Izguba biološke aktivnosti cistatina je bila le 20 %. To kaže, daje ta postopek dober kompromis med ohranjanjem visokega nivoja aktivnosti proteina in tvorbo nanodelcev z želeno velikostjo.We performed the same procedure as in the case of lb, except that ultrasound was used simultaneously with homogenization at 5000 rpm. The loss of cystatin biological activity was only 20%. This suggests that this process is a good compromise between maintaining a high level of protein activity and forming the desired size nanoparticles.

Primer 3aExample 3a

Naslednjo študijo smo izvedli z namenom določitve stabilnosti proteina znotraj nanodelcev pod simuliranimi fiziološkimi pogoji.The following study was performed to determine the stability of a protein within nanoparticles under simulated physiological conditions.

Nanodelce smo izdelali s postopkom v smislu predloženega izuma. Izvedli smo enak postopek kot v primeru la, razen da smo namesto 200 μΐ vode uporabili 200 μΐ raztopine cistatina v vodi in da smo namesto uporabe homogenizacije z visoko hitrostjo uporabili homogenizacijo pri 5000 vrt./min s hkratno uporabo ultrazvoka.The nanoparticles were manufactured by the process of the present invention. We performed the same procedure as in the case of la, except that instead of using 200 μΐ of water, we used 200 μΐ of cystatin solution in water, and instead of using high-speed homogenization, homogenization was performed at 5000 rpm with simultaneous use of ultrasound.

Nastale nanodelce smo sprali, centrifugirali in zbrali kot v primeru la in jih na koncu dispergirali v 5 ml 0,12 M fosfatnega pufra (PBS) s pH 7,2-7,4 in inkubirali 19 dni pri 37 °C ob mešanju na magnetnem mešalniku (2 vrt./min).The resultant nanoparticles were washed, centrifuged and collected as in the case of 1a and finally dispersed in 5 ml of 0.12 M phosphate buffer (PBS) with a pH of 7.2-7.4 and incubated for 19 days at 37 ° C with stirring on magnetic mixer (2 rpm).

Pri različnih časovnih intervalih (3 ure, 1, 2, 5, 7, 12, 14, 16 in 19 dni) smo odvzeli 300 μΐ vzorca, nato vzorce centrifugirali (15 minut pri 16000 vrt./min) in določiliAt different time intervals (3 hours, 1, 2, 5, 7, 12, 14, 16 and 19 days), 300 μΐ of the sample was taken, then the samples were centrifuged (15 minutes at 16000 rpm) and determined

-1212 aktivnost cistatina v supematantu z encimatskim spektrofotometričnim testom (BANA test). Preostale nanodelce smo vrnili nazaj v inkubacijsko disperzijo.-1212 cystatin activity in the supernatant by enzymatic spectrophotometric assay (BANA test). The remaining nanoparticles were returned to the incubation dispersion.

Primer 3bExample 3b

Nadalje smo nanodelce z vključenim cistatinom pripravili v smislu predloženega izuma, le da smo namesto v vodi cistatin raztopili v raztopini 2% albumina, 300mM trehaloze, 300mM manoze, 300mM fruktoze in lOOmM saharoze (krioprotektant). Po pripravi nanodelcev kot v primeru la smo le te centrifugirali 15 min pri 7000 vrt./min z uporabo ultracentrifuge Sorvall RC 5C plus, rotor SS 34, ZDA. Sediment smo resuspendirali v vodi s pomočjo ultrazvoka in ga posušili z liofilizacijo. Aktivnost cistatina v disperziji nanodelcev po liofilizaciji, je predstavljala 90% tiste pred liofilizacijo. V primeru, da smo nanodelce s cistatinom pripravili kot pri lb in jih liofilizirali, je bila aktivnost cistatina le 17% tiste pred liofilizacijo.Further, cystatin-incorporated nanoparticles were prepared according to the present invention except that instead of water, cystatin was dissolved in a solution of 2% albumin, 300mM trehalose, 300mM mannose, 300mM fructose and 100mM sucrose (cryoprotectant). After preparation of the nanoparticles, as in the case of la, these were centrifuged for 15 min at 7000 rpm using an Sorvall RC 5C plus ultracentrifuge, SS 34 rotor, USA. The sediment was resuspended in water by ultrasound and dried by lyophilization. Cystatin activity in nanoparticle dispersion after lyophilization accounted for 90% of that before lyophilization. When cystatin nanoparticles were prepared as in lb and lyophilized, cystatin activity was only 17% of that before lyophilization.

Primer 3cExample 3c

Z namenom primerjati stabilnost proteina, sproščenega iz nanodelcev, z običajno raztopino proteina, smo pripravili kontrolni vzorec in ga obdelali pod enakimi pogoji, kot disperzijo nanodelcev v primeru 3a.In order to compare the stability of the protein released from the nanoparticles with the normal protein solution, a control sample was prepared and treated under the same conditions as the nanoparticle dispersion in Example 3a.

Kontrolni vzorec smo pripravili z raztopitvijo ustrezne količine cistatina v 5 ml PBS (pribiližno enaka koncentracija glede na protein v sproščenem mediju predhodnega primera 3 a).The control sample was prepared by dissolving an appropriate amount of cystatin in 5 ml of PBS (approximately the same concentration relative to the protein in the released medium of Example 3 a).

Izvedli smo enak postopek kot v primeru 3a in dobili smo stabilnost inkubiranega proteina za različne časovne intervale.The same procedure as in Example 3a was performed and stability of the incubated protein was obtained for different time intervals.

Claims (14)

Patentni zahtevkiPatent claims 1. Postopek priprave nanodelcev z vgrajeno eno ali več aktivnimi snovmi, označen s tem, da uporabimo emulzijsko metodo, pri kateri hkrati izvedemo mešanje in sonifikacijo, vsako pri energetskem nivoju, ki sam ni zadosten za tvorbo nanodelcev, in ki ohrani biološko aktivnost vgrajene aktivne snovi.A process for the preparation of nanoparticles incorporating one or more active substances, characterized in that an emulsion method is used whereby mixing and sonication are carried out simultaneously, each at an energy level which is not sufficient for the formation of the nanoparticles and which retains the biological activity of the incorporated active substances. 2. Postopek po zahtevku 1, označen s tem, da obsega:A method according to claim 1, characterized in that it comprises: I) raztapljanje biološko razgradljivega polimera v zanj primernem organskem topilu,I) dissolving the biodegradable polymer in a suitable organic solvent, II) emulgiranje, pri katerem hkrati izvedemo mešanje in sonifikacijo, vsako pri energetskem nivoju, ki sam ni zadosten za tvorbo nanodelcev, ki obsega:II) emulsification, in which mixing and sonification are carried out simultaneously, each at an energy level which is not sufficient for the formation of the nanoparticles, comprising: a) emulgiranje aktivne snovi, raztopljene v vodi ali v zanjo primernem vodnem topilu, v organsko raztopino, dobljeno v stopnji I), da zagotovimo nastanek primarne emulzije z aktivno snovjo v notranji vodni fazi ina) emulsifying the active substance dissolved in water or a suitable aqueous solvent into the organic solution obtained in step I) to ensure the formation of the primary emulsion with the active substance in the internal aqueous phase, and b) emulgiranje primarne emulzije, dobljene v stopnji Ha), v vodno raztopino emulgatorja kot kontinuirano fazo, tako da dobimo nanodelce, v katerih je vgrajena aktivna snov; terb) emulsifying the primary emulsion obtained in step Ha) into the aqueous solution of the emulsifier as a continuous phase to obtain nanoparticles in which the active substance is incorporated; ter III) izolacijo in sušenje nanodelcev na znan način.III) isolation and drying of nanoparticles in a known manner. 3. Postopek po zahtevku 1 ali 2, označen s tem, daje hitrost mešanja v območju od 4000 do 15000 vrt./min.Method according to claim 1 or 2, characterized in that the mixing speed is in the range of 4000 to 15000 rpm. 4. Postopek po kateremkoli od zahtevkov 1 do 3, označen s tem, da sonifikacijo izvedemo pri 20 kHz do 70 kHz.A method according to any one of claims 1 to 3, characterized in that sonification is carried out at 20 kHz to 70 kHz. 5. Postopek po kateremkoli od zahtevkov 2 do 4, označen s tem, da kot organsko topilo uporabimo organsko topilo, ki se ne meša z vodo, prednostno kloroform, benzen, diklorometan, kloroetan, dikloroetan, trikloroetan, ogljikov tetraklorid, etileter, cikloheksan, n-heksan, toluen, bolj prednostno etil acetat, metilen klorid ali zmes metilen klorida in acetona, najbolj prednostno etil acetat.A process according to any one of claims 2 to 4, characterized in that the water-miscible organic solvent, preferably chloroform, benzene, dichloromethane, chloroethane, dichloroethane, trichloroethane, carbon tetrachloride, ethyl ether, cyclohexane, is used as the organic solvent. n-hexane, toluene, more preferably ethyl acetate, methylene chloride or a mixture of methylene chloride and acetone, most preferably ethyl acetate. -1414-1414 6. Postopek po kateremkoli od zahtevkov 2 do 5, označen s tem, da kot emulgator uporabimo anionske surfaktante, neionske sufraktante, derivate polioksietilen ricinusovega olja, polivinil pirolidon, polivinil alkohol, karboksimetilcelulozo, lecitin, želatino ali kakršnokoli njihovo kombinacijo in prednostno polivinil alkohol.Process according to any one of claims 2 to 5, characterized in that the anionic surfactants, nonionic surfactants, polyoxyethylene castor oil derivatives, polyvinyl pyrrolidone, polyvinyl alcohol, carboxymethylcellulose, lecithin, gelatin or any combination of alcohol are used as emulsifiers. 7. Postopek po kateremkoli od zahtevkov 2 do 6, označen s tem, da je polimer poliester mlečne in glikolne kisline, polimlečna kislina, ροΐΐ-β-hidroksimaslena kislina, polihidroksivalerinska kislina, polikaprolakton, poliesteramid, policianoakrilat, poli(amino kislina), polikarbonat, polianhidrid, biološko razgradljiv polimer, prednostno kopolimer mlečne in glikolne kisline.Process according to any one of claims 2 to 6, characterized in that the polymer is lactic and glycolic acid polyester, polylactic acid, ροΐΐ-β-hydroxybutyric acid, polyhydroxyvaleric acid, polycaprolactone, polyesteramide, polycyanoacrylate, poly (amino acid) , a polyanhydride, a biodegradable polymer, preferably a lactic and glycolic acid copolymer. 8. Postopek po kateremkoli od predhodnih zahtevkov, označen s tem, da je aktivna snov protein in/ali peptid in/ali biološko aktivna makromolekula kot so interferoni, interlevkini, kolonije stimulirajoči faktorji, faktorji tumorske nekroze, drugi imuno modulatorji, rastni faktorji, transformirajoči rastni faktorji, eritropoetin, albumin, krvni proteini, hormoni, vakcine, virusi, toksini, protitelesa, protitelesih fragmenti, encimi, encimski inhibitorji vključno s cistatinom.Method according to any one of the preceding claims, characterized in that the active substance is a protein and / or peptide and / or biologically active macromolecule such as interferons, interleukins, colonial stimulating factors, tumor necrosis factors, other immune modulators, growth factors, transforming growth factors, erythropoietin, albumin, blood proteins, hormones, vaccines, viruses, toxins, antibodies, antibody fragments, enzymes, enzyme inhibitors including cystatin. 9. Postopek po kateremkoli od predhodnih zahtevkov, označen s tem, da so v nanodelce poleg ene ali več aktivnih snovi vgrajena tudi sredstva za nadzorovanje stabilnosti in/ali sredstva za nadzorovanje topnosti aktivne snovi, prednostno sredstva za nadzorovanje pH, konzervansi, stabilizatorji in krioprotektanti.Method according to any one of the preceding claims, characterized in that the nanoparticles, in addition to one or more active substances, also include stability control agents and / or solubility control agents for the active substance, preferably pH control agents, preservatives, stabilizers and cryoprotectants . 10. Postopek po kateremkoli od zahtevkov 2 do 9, označen s tem, da sušenje nanodelcev izvedemo z liofilizacijo, pri čemer je aktivna snov raztopljena v zanjo primernem vodnem topilu, ki vsebuje krioprotektante.Process according to any one of claims 2 to 9, characterized in that the drying of the nanoparticles is carried out by lyophilization, the active substance being dissolved in a suitable aqueous solvent containing cryoprotectants. 11. Postopek po zahtevku 10, označen s tem, da so krioprotektanti lahko sladkorji, glikoli, albumin, želatina, aminokisline, dimetil sulfoksid ali njihove različneProcess according to claim 10, characterized in that the cryoprotectants may be sugars, glycols, albumin, gelatin, amino acids, dimethyl sulfoxide or their various -1515 kombinacije, prednostno albumin, saharoza, fruktoza, manoza, trehaloza ali njihove kombinacije.-1515 combinations, preferably albumin, sucrose, fructose, mannose, trehalose or combinations thereof. 12. Nanodelci, označeni s tem, da jih pridobimo s postopkom po kateremkoli od zahtevkov 1 do 11.12. Nanoparticles, characterized in that they are obtained by the process according to any one of claims 1 to 11. 13. Nanodelci po zahtevku 12, označeni s tem, da imajo povprečni premer od okoli 100 nm do okoli 800 nm.13. Nanoparticles according to claim 12, characterized in that they have an average diameter of from about 100 nm to about 800 nm. 14. Uporaba nanodelcev, pridobljenih po postopku po kateremkoli od zahtevkov 1 do 11, za izdelavo zdravila za parenteralno, nazalno, pulmonalno, peroralno, oralno, transdermalno ali rektalno dajanje aktivne snovi.Use of nanoparticles obtained by the method according to any of claims 1 to 11 for the manufacture of a medicament for parenteral, nasal, pulmonary, oral, oral, transdermal or rectal administration of the active substance.
SI200200136A 2002-05-28 2002-05-28 Method for preparation of nanoparticles SI21222A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SI200200136A SI21222A (en) 2002-05-28 2002-05-28 Method for preparation of nanoparticles
AU2003228202A AU2003228202A1 (en) 2002-05-28 2003-05-27 Process for the production of nanoparticles, wherein low mechanical and sonic energies are used simultaneously
PCT/SI2003/000017 WO2003099262A1 (en) 2002-05-28 2003-05-27 Process for the production of nanoparticles, wherein low mechanical and sonic energies are used simultaneously
EP03725975A EP1558224A1 (en) 2002-05-28 2003-05-27 Process for the production of nanoparticles, wherein low mechanical and sonic energies are used simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200200136A SI21222A (en) 2002-05-28 2002-05-28 Method for preparation of nanoparticles

Publications (1)

Publication Number Publication Date
SI21222A true SI21222A (en) 2003-12-31

Family

ID=29580222

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200200136A SI21222A (en) 2002-05-28 2002-05-28 Method for preparation of nanoparticles

Country Status (4)

Country Link
EP (1) EP1558224A1 (en)
AU (1) AU2003228202A1 (en)
SI (1) SI21222A (en)
WO (1) WO2003099262A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306955C (en) * 2004-09-17 2007-03-28 中国人民解放军第二军医大学 Sodium ferulic acid albumin nano granular preparation and its preparing method
US20100204243A1 (en) * 2005-04-11 2010-08-12 Lifecare Innovations Pvt. Ltd. Process for the Preparation of Poly DL-Lactide-Co-Glycolide Nanoparticles Having Antitubercular Drugs Encapsulated Therein
UA95921C2 (en) * 2005-08-31 2011-09-26 АБРАКСИС БАЙОСАЙЕНС, ЭлЭлСи. Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents
ZA200802765B (en) * 2005-08-31 2009-08-26 Abraxis Bioscience Llc Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents
CA2714429C (en) * 2008-02-18 2015-04-28 Csir Nanoparticle carriers for drug administration and process for producing same
BRPI0802233A2 (en) * 2008-06-30 2010-03-02 Inst Nac De Tecnologia nanoparticle production process containing active substances and their pharmaceutical compositions
EP2153821A1 (en) * 2008-08-06 2010-02-17 BioAlliance Pharma Oral formulations of camptothecin derivatives
KR20190110567A (en) 2017-01-31 2019-09-30 베루 인코퍼레이티드 Compositions and methods for long-term release of gonadotropin-releasing hormone (GnRH) antagonists
CN115634204A (en) * 2022-09-07 2023-01-24 依诺科技(香港)有限公司 S-propargyl cysteine-loaded microsphere preparation and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122620A (en) * 1986-11-12 1988-05-26 Sanraku Inc Polylactic acid microsphere and production thereof
WO2000071079A2 (en) * 1999-05-21 2000-11-30 American Bioscience, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
WO2001051032A2 (en) * 2000-01-14 2001-07-19 Brown University Research Foundation Micronized freeze-dried particles

Also Published As

Publication number Publication date
WO2003099262A1 (en) 2003-12-04
EP1558224A1 (en) 2005-08-03
AU2003228202A1 (en) 2003-12-12

Similar Documents

Publication Publication Date Title
EP1343480B2 (en) Induced phase transition method for the production of microparticles containing hydrophobic active agents
Ravi et al. Development and characterization of polymeric microspheres for controlled release protein loaded drug delivery system
Abdelkader et al. Review on micro-encapsulation with chitosan for pharmaceuticals applications
JP5021552B2 (en) Method for producing microcapsules having uniform morphology, and microcapsules produced by this method
CA2294981C (en) Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US5753234A (en) Single-shot vaccine formulation
US6007791A (en) Preparation of protein microspheres, films and coatings
Cegnar et al. Cystatin incorporated in poly (lactide-co-glycolide) nanoparticles: development and fundamental studies on preservation of its activity
US20070128290A1 (en) Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20150104521A1 (en) Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20070087022A1 (en) Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
JP2000501380A (en) Sustained release particles
Singh et al. Biodegradable polymeric microspheres as drug carriers; A review
EP2203159B1 (en) Dispersion of poloxamer-protein particles, methods of manufacturing and uses thereof
Lee et al. Stabilization of protein encapsulated in poly (lactide-co-glycolide) microspheres by novel viscous S/W/O/W method
SI21222A (en) Method for preparation of nanoparticles
Lee et al. In vitro study of lysozyme in poly (lactide-co-glycolide) microspheres with sucrose acetate isobutyrate
Hassani et al. Review on micro-encapsulation with Chitosan for pharmaceutical applications
KR20020005215A (en) Biodegradable Microparticles for the Controlled Release of Drugs and Process for Preparing the Same
CA2765222C (en) Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
Braz et al. Chitosan-based nanocarriers: Effective vehicles for mucosal protein delivery
KR100871988B1 (en) Method of preparing water-free microencapsulation of hydrophilic macromolecular drugs within biodegradable microparticles and biodegradable microparticles
JPH06336438A (en) Surface-crosslinked protein prepartion

Legal Events

Date Code Title Description
IF Valid on the event date
KO00 Lapse of patent

Effective date: 20090227